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Abstract

In this note, we prove that the ⌈12
√
n log22 n⌉th power of a connected n-vertex

Eulerian digraph is Hamiltonian, and provide an infinite family of digraphs for
which the ⌊

√
n/2⌋th power is not.

Mathematics Subject Classifications: 05C20, 05C45

1 Preliminaries

The kth power of a (directed or undirected) graph G, denoted Gk, is the graph on the
vertices of G in which there is an edge from a vertex u to a vertex v if there exists a uv-
path in G of length at most k. It is well-known that the cube of any connected undirected
graph is Hamiltonian (see [6, 11], also [3, Ex 10-14]). In 1974, Fleischner proved that
the square of any two-connected undirected graph is Hamiltonian, solving the Plummer-
Nash-Williams conjecture [4] (see [5] for a much simpler proof). Unfortunately, strongly-
connected directed graphs (digraphs) may require the ⌈n/2⌉th power to be Hamiltonian;
even k-strong connectedness is only sufficient for guaranteeing that the ⌈n/(2k)⌉th power
is Hamiltonian [10]. For a general survey on Hamilton cycles in digraphs, we refer the
reader to [7]. Interestingly, results for Eulerian digraphs are not nearly so bleak1. Through
the study of minimally Eulerian digraphs (connected Eulerian digraphs with no proper
connected Eulerian subgraph), we prove that

Theorem 1. The ⌈1
2

√
n log22 n⌉th power of any n-vertex connected Eulerian digraph is

Hamiltonian.

In fact, we prove an even stronger result (in Theorem 4) that, given a minimally
Eulerian digraph G = (V,A), specifies an ordering v1, ..., vn of V and an edge-disjoint
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1The first notable example of a class of digraphs requiring a “non-trivial” (say, o(n)) Hamiltonicity
exponent are cacti, see [9] for details.
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directed path (dipath) decomposition P1, ..., Pn of G, such that each Pi is a vivi+1-dipath
(vn+1 := v1) of length at most ⌈1

2

√
n log22 n⌉. In addition, we provide an infinite family

of minimally Eulerian digraphs for which the ⌊
√
n/2⌋th power is not Hamiltonian (Ex-

ample 5). For details regarding the importance of minimally Eulerian digraphs and their
connection to the traveling salesman problem, we refer the reader to [2, 8].

1.1 Notation, Definitions, and Basic Results

Let G = (V,A) be a simple digraph. If G contains a spanning directed cycle (dicycle),
then G is Hamiltonian. If G contains an Euler circuit (a circuit containing every edge),
then G is Eulerian. If G is connected, this is equivalent to the condition that, for every
vertex v ∈ V , the indegree d−(v) equals the outdegree d+(v). If G is a connected Eulerian
digraph and contains no proper connected Eulerian subgraph on the vertices of G, then G
is minimally Eulerian; equivalently, a connected Eulerian digraph G is minimally Eulerian
if, for any dicycle C of G, the graph G−C := (V,A−A(C)) is disconnected. If G contains
no dicycle, then G is acyclic. For more details regarding graph theoretic definitions and
notation, we refer the reader to [1]. Let

p#(G) :=
1

2

∑
u∈V

|d+(u)− d−(u)|,

a measure of how “close” to Eulerian a digraph is, and a key ingredient in our proof. The
quantity p#(G) is exactly the minimal number of dipaths required in an edge-disjoint
decomposition of G into dipaths and dicycles. That p#(G) dipaths are required follows
immediately from the definition of p#(G) above. That p#(G) dipaths are sufficient follows
from a simple greedy algorithm (iteratively perform walks from vertices u with d+(u) >
d−(u), removing dicycles when they are formed, and only removing the dipath when
a vertex v with d+(v) = 0 is reached). The size of an acyclic digraph G is immediately
bounded above by p#(G) (|V |−1), and an even tighter estimate can be obtained relatively
quickly:

Proposition 2. Let G = (V,A) be an acyclic digraph. Then |A| ⩽
√

2p#(G) |V |.

Proof. If p#(G) = 0, 1, 2, the result follows immediately, as |A| ⩽ p#(G)(|V | − 1). Now,
let p#(G) > 2, V = {v1, ..., vn} be a topological sorting of G (i.e., vivj ∈ A implies
that i < j), k ∈ N be the smallest number such that p#(G) ⩽

(
k
2

)
, ℓ = ⌈n/k⌉, and

Vi = {v(i−1)k+1, ..., vik}, i = 1, ..., ℓ − 1, Vℓ = {v(ℓ−1)k+1, ..., vn}. There are at most
(
k
2

)
edges within each of the subsets Vi, i = 1, ..., ℓ − 1, and at most

(
n−k(ℓ−1)

2

)
within the

subset Vℓ. Our digraph G can be decomposed into p#(G) edge-disjoint dipaths, and, by
the topological sorting of V , each of the aforementioned p#(G) dipaths has at most ℓ− 1
edges between the subsets V1, ..., Vℓ. Therefore, there are at most (ℓ−1)p#(G) total edges
between the subsets V1, ..., Vℓ. Combining these estimates gives

|A| ⩽
(
ℓ− 1

)[(
k
2

)
+ p#(G)

]
+
(
n−k(ℓ−1)

2

)
.
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Dividing by
√

p#(G)n, we have

|A|√
p#(G)n

⩽
ℓ− 1

n

( (
k
2

)√
p#(G)

+
√

p#(G)

)
+

(
n−k(ℓ−1)

2

)√
p#(G)n

.

The right hand side is convex w.r.t. p#(G) and maximized when p#(G) is as small as
possible. We note that, by the definition of k, p#(G) >

(
k−1
2

)
. So the right hand side can

be bounded above by replacing p#(G) by
(
k−1
2

)
, giving

|A|√
p#(G)n

<
ℓ− 1

n

(k − 1)2(
k−1
2

)1/2 +

(
n− k(ℓ− 1)

)(
n− k(ℓ− 1)− 1

)
2
(
k−1
2

)1/2
n

.

The right hand side is a convex quadratic function in the term ℓ (treating ℓ as a variable
independent of n and k), and therefore achieves its maximum at one of the endpoints of
the interval [n/k, n/k + 1]. Setting ℓ = n/k gives

ℓ− 1

n

(k − 1)2(
k−1
2

)1/2 +

(
n− k(ℓ− 1)

)(
n− k(ℓ− 1)− 1

)
2
(
k−1
2

)1/2
n

=
(k − 1)2

k
(
k−1
2

)1/2 − k2 − 3k + 2

2n
(
k−1
2

)1/2 ,

and setting ℓ = n/k + 1 gives

ℓ− 1

n

(k − 1)2(
k−1
2

)1/2 +

(
n− k(ℓ− 1)

)(
n− k(ℓ− 1)− 1

)
2
(
k−1
2

)1/2
n

=
(k − 1)2

k
(
k−1
2

)1/2 .
Noting that k2 − 3k + 2 ⩾ 0 for all k ∈ N, we conclude that the maximum over the

interval [n/k, n/k + 1] is obtained at ℓ = n/k + 1. Replacing ℓ by n/k + 1, we have

|A| < (k − 1)2

k
(
k−1
2

)1/2 √p#(G)n =
(k − 1)3/2

k(k − 2)1/2

√
2p#(G)n ⩽

√
2p#(G)n,

for k ⩾ 3 (recall, p#(G) > 2).

From Proposition 2 we immediately obtain a bound (tight up to a multiplicative
constant; see Example 5) on the maximum size of a minimally Eulerian digraph:

Proposition 3. Let G = (V,A) be a minimally Eulerian digraph. Then
|A| ⩽

√
2(|V | − 1) |V |+ |V | − 1.

Proof. G is a connected Eulerian digraph, so it admits a rooted, directed subgraph T
of G in which there is a unique path (in T ) from the root to any other vertex of G.
Every dicycle of G must intersect an edge of T , as the removal of any dicycle from a
minimally Eulerian graph disconnects it. Therefore, G− T is acyclic, and by Proposition
2, |A| ⩽ |A(G− T )|+ |A(T )| ⩽

√
2(|V | − 1) |V |+ |V | − 1.
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2 A Proof of Theorem 1 and a Lower Bound

To prove Theorem 1, we show an even stronger statement regarding minimally Eulerian
digraphs.

Theorem 4. Let G = (V,A), |V | = n > 1, be a minimally Eulerian graph. Then there
exists an ordering v1, ..., vn of V and an n-dipath edge-disjoint decomposition P1, ..., Pn of
G such that each Pi is a vivi+1-dipath (vn+1 := v1) of length at most ⌈f(n)

√
n ⌉, where

f(n) = (log2 n)
log3/2 2+o(1) ⩽

1

2
log22 n.

Proof. We first show that there exists an ordering v1, ..., vn of V (G) such that there is an
n-dipath edge-disjoint decomposition P1, ..., Pn of G such that each Pi is a vivi+1-dipath.
This ordering and decomposition can be constructed by picking a base vertex v1 ∈ V (G)
and considering an Eulerian circuit W of G starting at v1, ordering the remaining vertices
based on the order of first appearance in this circuit, and taking each dipath Pi to be the
walk in W between the first appearance of vi and the first appearance of vi+1. As G is
minimally Eulerian, each such walk is a dipath. It suffices to consider n ⩾ 6388, as the
length of a dipath is at most n− 1 and ⌈1

2

√
n log22 n ⌉ ⩾ n− 1 for n = 1, ..., 6387.

Let v1, ..., vn be an ordering of V (G) and P1, ..., Pn a decomposition of G into edge-
disjoint vivi+1-dipaths Pi. We choose this ordering and decomposition so that the elements
of the set {|A(P1)|, ..., |A(Pn)|} are lexicographically minimized (i.e., minimizes the length
of the longest dipath, minimizes the length of the 2nd longest dipath conditional on the
minimality of the longest dipath, etc). Let P̂ be the longest dipath in the set {P1, ..., Pn},
with length |A(P̂ )| = α

√
n for some α ⩾ 1

2

[
log2 n

]log3/2 2. We aim to build a sequence

of subgraphs H0(:= P̂ ) ⊂ H1 ⊂ H2 ⊂ ..., bound the order of each subgraph from below
using the lexicographic minimality of path lengths, and conclude that if α is too large
then some Hi contains too many vertices, thus producing an upper bound on α.

Let H0 = P̂ . Let Hℓ, ℓ > 0, be the union of all Pi satisfying both |A(Pi)| ⩾ α
√
n/2ℓ

and {vi, vi+1} ∩ V (Hℓ−1) ̸= ∅. Let nℓ, mℓ, and kℓ be the number of vertices, edges, and
dipaths Pi in Hℓ. We have n0 = α

√
n + 1, m0 = α

√
n, k0 = 1 and, by construction,

mℓ ⩾ kℓm0/2
ℓ for all ℓ ⩾ 0.

We may produce a lower bound for the size of each Hℓ by our lexicographic minimality
condition. We claim that every vertex of Hℓ is either the start- or end-vertex of a dipath
Pi of length at least m0/2

ℓ+1. Suppose, to the contrary, that some vi ∈ V (Hℓ) satisfies
|A(Pi−1)|, |A(Pi)| < m0/2

ℓ+1. Let Pj be a dipath in Hℓ containing vi, and let us denote
the vjvi (resp. vivj+1) portion of this path by P 1

j (resp. P 2
j ). By removing Pi, Pi+1,

and Pj from our set {P1, ..., Pn} and replacing them with P 1
j , P

2
j , and Pi ∪ Pi+1, we have

replaced a path of length |A(Pj)| (|A(Pj)| ⩾ m0/2
ℓ) with paths all of length strictly less

than |A(Pj)|, a contradiction. Therefore, kℓ+1 ⩾ nℓ/2 for all ℓ ⩾ 0, as every vertex in
V (Hℓ) is the start- or end-vertex of a dipath Pi in Hℓ+1, and each dipath Pi has only one
start- and one end-vertex.

The graph Hℓ can be decomposed into the edge-disjoint union of two graphs Hℓ,a and
Hℓ,e, where Hℓ,a is acyclic with p#(Hℓ,a) ⩽ kℓ (as Hℓ is the edge-disjoint union of kℓ paths)
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and Hℓ,e is the vertex-disjoint union of minimally Eulerian graphs H
(1)
ℓ,e , ..., H

(pℓ)
ℓ,e for some

pℓ (if the Eulerian graph H
(j)
ℓ,e is not minimal, neither is G). By Proposition 2, Hℓ,a has

at most
√
2kℓ nℓ edges. By Proposition 3, Hℓ,e has at most

pℓ∑
j=1

(√
2(n

(j)
ℓ − 1)n

(j)
ℓ + n

(j)
ℓ − 1

)
⩽

√
2(nℓ − 1)nℓ + nℓ − 1

edges, where n
(j)
ℓ := |V (H

(j)
ℓ,e )|, j = 1, ..., pℓ. Therefore,

mℓ ⩽
√
2kℓ nℓ +

√
2(nℓ − 1)nℓ + nℓ − 1.

Combining this inequality with the bound mℓ ⩾ kℓm0/2
ℓ, we have

kℓm0/2
ℓ ⩽

√
2kℓ nℓ +

√
2(nℓ − 1)nℓ + nℓ − 1. (1)

Using Inequality (1), we produce a recursive lower bound on nℓ that gives an upper
bound on α. In particular, we aim to show that

nℓ ⩾

(
nℓ−1m0

5× 2ℓ

)2/3

for all ℓ ⩽ log2(5
2α). (2)

If nℓ ⩾
√
2kℓ m0/2

ℓ, then Inequality (2) immediately holds, as

nℓ ⩾

√
2kℓ m0

2ℓ
=

[(
nℓ−1m0

5× 2ℓ

)2(
(2kℓ)

3/2n1/2

n2
ℓ−1

)(
52 α

2ℓ

)]1/3
⩾

(
nℓ−1m0

5× 2ℓ

)2/3

for α ⩾ 2ℓ/52. Now, suppose that nℓ <
√
2kℓ m0/2

ℓ. Then kℓm0/2
ℓ −

√
2kℓnℓ is monoton-

ically increasing with respect to kℓ. Combining this fact with the bound kℓ ⩾ nℓ−1/2 and
Inequality (1), we obtain

nℓ−1m0/2
ℓ+1 −√

nℓ−1 nℓ ⩽ kℓm0/2
ℓ −

√
2kℓ nℓ ⩽

√
2(nℓ − 1)nℓ + nℓ − 1.

This implies that

nℓ−1m0/2
ℓ+1 ⩽

√
2(nℓ − 1)nℓ +

√
nℓ−1 nℓ + nℓ − 1 <

5

2
n
3/2
ℓ ,

for n ⩾ 6388, as nℓ ⩾ n0 = α
√
n+ 1, and so the claim holds in this case as well.

Using the initial bound n0 > m0 and Inequality (2), we obtain

n ⩾ nℓ ⩾ n
(2/3)ℓ

0

ℓ∏
i=1

(
m0

5× 2ℓ+1−i

)(2/3)i

=
n
(2/3)ℓ

0

22ℓ

(
16m2

0

25

)1−(2/3)ℓ

>
16m

2−(2/3)ℓ

0

25× 22ℓ

=
16α2−(2/3)ℓn1−1

2
(2/3)ℓ

25× 22ℓ
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for ℓ ⩽ log2(5
2α). Taking the logarithm of both sides, we obtain the inequality

log2 α <
1

2− (2/3)ℓ
(
log2(25/16) + 2ℓ+ 1

2
(2/3)ℓ log2 n

)
. (3)

Setting ℓ =
⌈
log3/2

(
3
11
log2 n

)⌉
, we have ℓ < log2(5

2α), as

log3/2
(

3
11
log2 n

)
+ 1 = (log3/2 2) log2(log2 n) + log3/2(3/11) + 1

< (log3/2 2) log2(log2 n) + 2 log2(5)− 1

= log2
(
52

2
log

log3/2 2

2 n
)
.

For ℓ =
⌈
log3/2

(
3
11
log2 n

)⌉
, Inequality 3 implies that

log2 α <
log2(25/16) + 2

[
log3/2

(
3
11
log2 n

)
+ 1

]
+ 1

2
(2/3)log3/2

(
3
11

log2 n
)
log2 n

2− (2/3)log3/2
(

3
11

log2 n
)

=
1

1− 11
6 log2 n

[
log2(5/2) + log3/2

(
3
11
log2 n

)
+ 11

12

]
.

Taking the (base two) exponential of both sides, we obtain

α < 2
log2(5/2)−log3/2(11/3)+11/12

1−11/(6 log2 6388)
[
log2 n

] log3/2 2

1−11/6 log2 6388 ⩽ .46
[
log2 n

]1.9995
.

This completes the proof.

Finally, we give the following infinite class of digraphs to illustrate that Theorem 1 is
tight up to a logarithmic factor.

Example 5. Let Gk = (Vk, Ak), k ∈ N, k ⩾ 4, where Vk = {u1, ..., uℓ−1, v1, ..., vℓ},
ℓ := k(k + 1)/2, and uiuj ∈ Ak for 0 < j − i ⩽ k, and uℓ−ϕ(i)vi, viuϕ(i) ∈ Ak for all
i = 1, ..., ℓ, where ϕ(i) is the smallest number p ∈ N such that

∑p
j=1(k + 1 − j) ⩾

i. This digraph is minimally Eulerian, as every dicycle contains some vertex vi and
d+(vi) = d−(vi) = 1 for all i. There are n = k2 + k − 1 vertices and k(k2 + 2k − 1)/2
edges (i.e., about n3/2/2). The distance between any pair vi, vj in the graph is at least
⌈(ℓ + 1)/k⌉ = ⌈k/2⌉ + 1 ⩾ ⌊

√
n/2⌋ + 1. In any Hamiltonian dicycle of a power of Gk,

some pair vi, vj must be adjacent, and so at least the [⌊
√
n/2⌋ + 1]th power is required.

See Figure 1 for a visual example for k = 4.
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Figure 1: The minimally Eulerian graph Gk from Example 5 for k = 4.
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