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Abstract

A 2016 conjecture of Brewster, McGuinness, Moore, and Noel asserts that for
k  3, if a graph has chromatic number greater than k, then it contains at least as
many cycles of length 0 mod k as the complete graph on k + 1 vertices. Our main
result confirms this in the k = 3 case by showing every 4-critical graph contains at
least four cycles of length 0 mod 3, and that K4 is the unique such graph achieving
the minimum.

We make progress on the general conjecture as well, showing that (k+1)-critical
graphs with minimum degree k have at least as many cycles of length 0 mod r as
Kk+1, provided k + 1 ∕= 0 mod r. We also show that Kk+1 uniquely minimizes the
number of cycles of length 1 mod k among all (k+1)-critical graphs, strengthening
a recent result of Moore and West and extending it to the k = 3 case.

Mathematics Subject Classifications: 05C15, 05C35, 05C38

1 Introduction

The study of cycles with a given length modulo an integer k began with work of Burr and
Erdős [8], who conjectured that for odd values of k, graphs of sufficiently large average
degree contain cycles of all lengths modulo k. This conjecture was proven by Bollobás
[1], with the bound subsequently improved by Thomassen [16]. Further work, building in
part on conjectures of Thomassen [16], has largely focused on the existence of such cycles
under minimum degree or connectivity assumptions – see, for example, [5], [7], [9], or [15].

This paper is concerned with bounding the number of cycles of length 0 mod k and
1 mod k in non-k-colorable graphs. The first result in this direction is due to Tuza [17],
who showed that graphs without cycles of length 1 mod k are k-colorable, generalizing
König’s classic characterization of bipartite graphs. For cycles of length 0 mod k, Chen
and Saito [3] showed that graphs without cycles of length 0 mod 3 are 3-colorable; Dean,
Lesniak and Saito [6] achieved the same conclusion for graphs without cycles of length

Department of Mathematics, California State University San Marcos, San Marcos, California, USA
(seankim1999@gmail.com, mpicollelli@csusm.edu).

the electronic journal of combinatorics 31(2) (2024), #P2.58 https://doi.org/10.37236/12623

https://doi.org/10.37236/12623


0 mod 4. Chen, Ma and Zang [4] established that any non-k-colorable graph is guaranteed
cycles of every length ℓ mod k except possibly ℓ = 2, settling the existence case in the
ℓ = 0 case. Very recent work has essentially settled the existence question entirely: Gao,
Huo, and Ma [10] showed every (k+1)-critical non-complete graph has cycles of all lengths
modulo k when k  6. The same conclusion for the k = 3 case was implied by work in
[3], [13], and [14], and the case where k ∈ {4, 5} is the subject of recent work of Huo [11].

The question of how many such cycles must occur has received considerably less atten-
tion. Brewster, McGuinness, Moore and Noel [2] generalized a proof of Chen and Saito’s
result due to Wrochna to show that any graph which is not k-colorable has at least
(k − 1)!/2 cycles of length 0 mod k. They further conjectured that the complete graph
Kk+1 achieves the minimum number of such cycles among all non-k-colorable graphs.

Conjecture 1.1 (Brewster, McGuinness, Moore, and Noel, [2]). If χ(G) > k, then G
contains at least (k + 1)(k − 1)!/2 cycles of length 0 mod k.

Building on the arguments in [2], Moore and West [12] established bounds on the
number of cycles of length 0 mod r and 1 mod r in non-k-colorable graphs, for 3  r  k,
although those bounds fall short of yielding Conjecture 1.1.

The main contribution of this paper is to settle Conjecture 1.1 completely in the k = 3
case.

Theorem 1.2. If G is 4-critical, then G has at least four cycles of length 0 mod 3, with
equality only for K4.

We also make progress in the general case by obtaining sharp lower bounds on the
number of cycles of length 0 mod r in (k+1)-critical graphs which have minimum degree
k, provided k + 1 is not a multiple of r. This is summarized in the next result, which an
immediate corollary of Theorem 2.4 in Section 2.

Theorem 1.3. Let k  3 and let G be a (k + 1)-critical graph with δ(G) = k. Then for
each r, 2  r  k, with k + 1 ∕= 0 mod r, G contains at least as many cycles of length
0 mod r as the complete graph Kk+1. In particular, G has at least (k+1)(k− 1)!/2 cycles
of length 0 mod k.

For cycles of length 1 mod k in non-k-colorable graphs, Moore and West [12] estab-
lished a lower bound of k!/2, which is best possible as it is achieved by Kk+1. Their
argument, a probabilistic application of Tuza’s strengthening of Minty’s Theorem, also
yielded a structural condition for equality when k  4.

Theorem 1.4 (Moore and West [12], Theorem 5). For k  3, a non-k-colorable graph
has at least k!/2 cycles with lengths congruent to 1 modulo k, with equality for k  4 only
when these cycles all have length k + 1.

By modifying their arguments, we achieve a slight strengthening of their result that
extends to the k = 3 case, and relies on a simpler constructive approach.
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Theorem 1.5. Let k  3 and let G be a (k + 1)-critical graph. Then G has at least k!/2
cycles of length 1 mod k, with equality only for the complete graph Kk+1.

The remainder of this paper is organized as follows. In Section 2 we establish some
results for (k+1)-critical graphs; Theorem 1.3 will follow immediately from Theorem 2.4.
The proof of Theorem 1.5 follows in Section 3. Section 4 is then focused on the proof of
Theorem 1.2.

2 Cycles in (k + 1)-critical graphs

In this section we will establish our results on (k+ 1)-chromatic graphs. We remark that
our notation largely follows [18], and we note that a graph G is (k+1)-critical if G has
chromatic number k + 1 but every proper subgraph has chromatic number at most k.

The results in this section are primarily established by modifying the approach to
generalized Kempe chains used by Moore and West in [12]. To that end, we will use the
the following definition from [12]:

Definition 2.1 (Moore and West [12]). Let G be a k-colorable graph and let ϕ be a
proper k-coloring of G, where we assume the set of colors is [k] = {1, 2, . . . , k}. For some
r, 3  r  k, let σ be a cyclic permutation of r distinct elements from [k]. Then we define
the σ-subdigraph Dσ to be the directed graph satisfying

1. V (Dσ) = V (G).

2. For u, v ∈ V (G), uv ∈ E(Dσ) if and only if uv ∈ E(G) and σ(ϕ(u)) = ϕ(v).

For v ∈ V (G), let Av be the set of vertices accessible from v along directed paths in
Dσ. A key observation in [12] is that we may “shift” the colors in Av by recoloring each
w ∈ Av with the color σ(ϕ(w)); the resulting k-coloring will still be a proper. Otherwise,
a monochromatic edge xy under the recoloring would have one end x ∈ Av and the other
end y /∈ Av, and must satisfy σ(ϕ(x)) = ϕ(y), contradicting y /∈ Av.

As an illustration, we begin with a slight strengthening of Theorem 4 from [12] that
bounds the number of cycles of a given modular length in a graph G such that G is (k+1)-
chromatic but G−e is not. We show further that the bound holds on the number of cycles
through each vertex of e, although we do not claim that all such cycles found contain both
vertices of e. We will use this stronger conclusion later in the proof of Theorem 1.2.

Theorem 2.2 (See Moore and West [12], Theorem 4). Fix r, k ∈ N with 3  r  k, and
let e be an edge in a graph G. If χ(G) = k + 1 but χ(G − e) = k, then letting x be an
endpoint of e, G − e contains at least 1

2

r−1
i=1 (k − i) cycles of length 0 mod r containing

the vertex x.

Proof. Letting e = xy, we fix a proper k-coloring ϕ of G − e using colors 1, 2, . . . , k and
let σ be a cyclic r-permutation of [k] that incl4udes ϕ(x). We note that ϕ(x) = ϕ(y) must
hold, else ϕ is a proper k-coloring of G.
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Consider the σ-subdigraph Dσ of G under ϕ and σ, and let Ax be the set of vertices
accessible from x via directed paths. By construction of Dσ, the mapping ϕ′ formed by
setting ϕ′(v) = σ(ϕ(v)) for v ∈ Ax and ϕ′(v) = ϕ(v) otherwise is a proper coloring.

If y /∈ Ax then ϕ′ yields a proper k-coloring of G, a contradiction. Therefore Dσ

contains a directed path P from x to y. By symmetry, it also contains a directed path
Q from y to x. The concatenation of P and Q yields a closed directed walk in Dσ. It’s
routine to show that the edges traversed by a closed directed walk can be decomposed
into directed cycles, so every vertex on P and Q lies on a directed cycle in Dσ.

Thus, Dσ has a directed cycle containing x: let Cσ be its underlying cycle in G.
Every directed cycle in Dσ visits every color from σ in order, implying that Cσ has length
0 mod r, and thus the only other r-permutation which could produce the same cycle is
the inverse σ−1. Consequently, the number of cycles found is at least half the number of
cyclic r-permutations, 1

2

r−1
i=1 (k − i).

As mentioned above, this bound generalizes a result from [2] in the case r = k that
establishes that (k + 1)-chromatic graphs contain at least (k − 1)!/2 cycles of length
0 mod k. Our goal now is to show the stronger bound of Conjecture 1.1 holds for (k+1)-
critical graphs of minimum degree k. We remark that while there exist (k + 1)-critical
graphs of arbitrarily large minimum degree for all k  3, we are unaware of any results
estimating what proportion of (k + 1)-critical graphs have minimum degree greater than
k. Since the minimum-degree-k case appears to be very ‘typical’ in the literature, and as
such graphs are easily produced through the Hajós construction, we still think this result
is of interest.

We begin with a technical lemma.

Lemma 2.3. Let k  3 and let G be a (k + 1)-critical graph with δ(G) = k. Let v be a
vertex of degree k in G with neighbors v1, . . . , vk, and let ϕ be a proper k-coloring of G−v
satisfying ϕ(vi) = i. Finally, let σ be a cyclic r-permutation of elements in [k]. Then the
σ-subdigraph of G− v under ϕ contains directed vi, vσ−1(i)-paths R

i for each color i in σ.

Proof. Fixing i in σ, we extend ϕ to a proper k-coloring ϕi of G−vvi by setting ϕi(v) = i.
Let Di

σ denote the σ-subdigraph of G − vvi under ϕi, noting that it contains the σ-
subdigraph of G − v under ϕ. We claim that Di

σ contains a directed path Q from vi to
v. Otherwise, we can shift the colors of the vertices accessible from vi according to σ,
yielding a proper k-coloring of G, a contradiction.

By definition of Di
σ, the vertex preceding v on Q must be vσ−1(i), and therefore Ri =

Q− v is a directed vi, vσ−1(i)-path lying in the σ-subdigraph of G− v as claimed.

Our next result yields Theorem 1.3 as an immediate corollary. To bound the number
of cycles of length 0 mod r in a (k+1)-critical graph G with minimum degree k, we show
that an injective mapping exists that sends cycles in Kk+1 to cycles in G, such that the
length of the image of a cycle is a multiple of that cycle’s length.

Theorem 2.4. For a graph H, let C(H) denote the set of all cycles in H, and Ci(H)
the set of cycles of length at most i. Let k  3 and let G be a (k + 1)-critical graph
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with δ(G) = k. Then there exists an injective mapping f : Ck(Kk+1) → C(G) such that
|V (f(C))| ≡ 0 mod |V (C)|.

Proof. We begin by taking Kk+1 to have vertex set [k + 1]. Let v be a vertex in G of
degree k, and let v1, . . . , vk be its neighbors. Since G is (k + 1)-critical, let ϕ be a proper
k-coloring of G − v using colors 1, 2, . . . , k. Since each neighbor vi of v must receive a
different color under ϕ, without loss of generality we assume ϕ(vi) = i.

We turn now to defining our mapping f . Let C be a cycle in Kk+1 of length r  k.
Our construction of f(C) differs depending on whether or not k + 1 ∈ V (C).

Suppose first that k + 1 /∈ V (C): we orient C into a directed cycle, and let σ denote
the corresponding cyclic r-permutation of [k]. Consider the σ-subdigraph of G− v under
ϕ: by Lemma 2.3, for each color i in σ it contains a directed vi, vσ−1(i)-path Ri. The

concatenation of these r paths, in the order (Ri, Rσ−1(i), Rσ−1(σ−1(i)), . . . , Rσ(i)), produces
a closed directed walk (see Figure 1), which must include the edges of at least one di-

rected cycle C. We note that C must follow the colors of σ in order, so letting f(C) be
its underlying cycle in G− v, f(C) has length 0 mod r, as required.

Suppose instead that k+1 ∈ V (C): we construct f(C) to include vertex v as follows.
As above, we orient C into a directed cycle and let σ be the corresponding cyclic r-
permutation, which includes color k + 1. Since r  k, let i ∈ [k + 1] be a color not on σ
and let σ′ be the cyclic r-permutation of [k] formed by replacing k + 1 with i.

We next extend ϕ to a proper k-coloring ϕi of G − vvi by setting ϕi(v) = i, and let
Dσ′ denote the σ′-subdigraph of G − vvi under ϕi. By Lemma 2.3, it contains directed
paths Rσ′(i) and Ri from vσ′(i) to vi and vi to vσ′−1(i), respectively. Thus, the concatena-

tion (v, Rσ′(i), Ri, v) is a closed directed walk in Dσ′ , and therefore contains the edges of

a directed cycle C through vertex v. Let f(C) be the underlying cycle of C, noting that
f(C) has length 0 mod r.

Turning to injectivity, suppose that f(C1) = f(C2) for some C1, C2 ∈ Ck(Kk+1), and
let σ1, σ2 be the cyclic permutations of C1, C2 used in the construction above. We observe
that v ∈ V (f(C)) if and only if k + 1 ∈ V (C), and we first suppose that v /∈ V (f(C1)).
Then under ϕ, f(C1) can be oriented into a directed cycle so that it follows the colors
of σ1 in order, and it can be oriented so that follows the colors of σ2 in order. But this
implies that either σ1 = σ2, or σ2 follows the colors of σ1 in the reverse order (σ2 = σ−1

1 ),
and in either case C1 = C2.

Suppose instead that v ∈ f(C1), and let σ′
1 and σ′

2 be the cyclic permutations in [k]
formed above from σ1, σ2 by replacing k + 1 with some colors i1, i2, respectively. Then
f(C1) can be oriented into directed cycle(s) C1, C2 so that by giving vertex v color ij, Cj

follows the colors of σ′
j in order. If f(C1)− v has no repeated color under ϕ, the directed

path Cj − v follows the colors of the permutation σ′
j −{ij} = σj −{k+1} in order. Thus,

either σ2 = σ1 or σ2 = σ−1
1 , and C1 = C2 follows.

If, instead, f(C1) − v has repeated colors under ϕ, then letting r be the least length
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v v2
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Figure 1: In the proof of Theorem 2.4 in the case k = 3, we give a view of the closed
directed walks used to construct the cycles f(C). On the left we have the case where C is
the triangle on {1, 2, 3} with σ = (1 2 3), and on the right, the case where C is the triangle
on {2, 3, 4} where we take σ = (1 2 4) and then let σ′ = (2 3 1) = (1 2 3). We remark that
despite the depiction, the paths Ri may not be vertex-disjoint.

between repeated entries, it must hold that σ′
1, σ

′
2 are cyclic r-permutations, the first r−1

entries of Cj − v form the permutation σ′
j − {ij}, and the rth vertex of Cj − v is ij.

But this implies i1 = i2, and that either σ′
2 = σ′

1 or σ′
2 = σ′−1

1 , which then implies either
σ2 = σ1 or σ2 = σ−1

1 , and C1 = C2 follows, completing the proof that f is injective.

3 Proof of Theorem 1.5

Our aim now is to prove Theorem 1.5: let k  3 and let G be a (k + 1)-critical graph.
Let v be an arbitrary vertex, and let ϕ be a k-coloring of G − v using colors 1, 2, . . . , k.
We first show that G contains at least k!/2 cycles of length 1 mod k that include v.

For each i ∈ [k], let Ni be the set of neighbors of v with color i under ϕ, noting Ni ∕= ∅
since G is not k-colorable. Let Gi be the subgraph of G formed by deleting the edges
between v and Ni, and let ϕi denote the extension of ϕ to a proper k-coloring of Gi by
setting ϕi(v) = i.

Let σ be a cyclic permutation of [k], and consider the σ-subdigraph Di
σ of Gi under

ϕi. We claim that Di
σ must contain a directed path from v into Ni. Otherwise, letting

W denote the set of vertices in Di
σ accessible from v, we can recolor Gi by shifting the

colors in W according to σ, producing a proper k-coloring ϕ′ of Gi in which all vertices
in Ni have color i and v has color σ(i). But in that case ϕ′ is a proper coloring of G, a
contradiction.

With foresight we let vi ∈ Ni be a vertex on a shortest directed path P in Di
σ from v

to Ni, noting P has length 0 mod k since it begins and ends on a vertex of color i. Then
P along with the edge viv forms a directed cycle C i

σ in G of length 1 mod k; let C i
σ be its

underlying cycle in G. Since P visits all the colors of σ in order and contains the edge
viv, C i

σ, viewed now as an oriented subgraph of G, determines i and σ. Consequently, C i
σ

could also be the underlying cycle of Cσ(i)

σ−1 , but of no other such directed cycle constructed
this way. So as i and σ vary, this construction produces at least k · (k − 1)!/2 = k!/2
distinct cycles of length 1 mod k containing v.
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Suppose now that G has exactly k!/2 cycles of length 1 mod k in total. Our argument
shows every vertex lies on at least k!/2 such cycles, so every such cycle is spanning. Fixing
a cyclic permutation σ of [k] and an i ∈ [k], the constructed cycle C i

σ is spanning, and
therefore so is the shortest directed path from v to Ni in Di

σ. Consequently, |Ni| = 1,
implying that v has degree k and thus G is k-regular. Brooks’ Theorem then implies
G = Kk+1, completing the proof.

4 Proof of Theorem 1.2

This section is focused on providing the proof of Theorem 1.2. Our argument consists of
the following three claims, noting that any 4-critical graph has minimum degree at least
3.

1. A 4-critical graph G with δ(G) = 3 has at least four cycles of length 0 mod 3.

2. K4 is the only 4-critical graph with δ(G) = 3 and exactly four cycles of length
0 mod 3.

3. A 4-critical graph G with δ(G)  4 has at least five cycles of length 0 mod 3.

The first claim follows from Theorem 1.3. The second claim is the subject of Lemma 4.1
below. The third claim, which is the most technical argument of this paper, follows from
Lemmas 4.3 and 4.7 in Section 4.1 below.

Lemma 4.1. K4 is the only 4-critical graph with minimum degree 3 that has exactly four
cycles of length 0 mod 3.

Proof. Suppose G is 4-critical, δ(G) = 3, and G has exactly four cycles of length 0 mod 3.
Let v be a vertex in G with degree 3 and label its neighbors v1, v2, v3. Let ϕ be a proper
3-coloring of G − v satisfying ϕ(vi) = i, and let σ = (1 2 3). Finally, we let R1, R2, R3

denote the three directed paths in the σ-subdigraph of G − v guaranteed to exist by
Lemma 2.3.

For i ∈ [3], let ϕi be the extension of ϕ to G − vvi formed by setting ϕi(v) = i, and
let Di

σ be the σ-subdigraph of G − vvi under ϕi. Then the closed walk in Di
σ formed

by the concatenation (v, Rσ(i), Ri, v) includes the (oriented) edges of a cycle C i in G
containing edges vvi and vvσ−1(i) in G of length 0 mod 3, and the closed walk formed by
the concatenation (R1, R3, R2) includes the edges of a cycle C4 in G−v of length 0 mod 3.
(The closed walks are also illustrated in Figure 1.)

As the cycles C1, C2, C3, C4 are distinct, these are the only cycles of length 0 mod 3 in
G. It follows then that the closed walk (R1, R3, R2) includes only the edges of C4, and, by
construction, C4 contains the paths C i−v, i ∈ [3]. We further claim that C4 spans G−v,
as any vertex x in G− v not lying on C4 must lie on a (fifth) cycle of length 0 mod 3 by
Theorem 2.2, taking e to be any edge incident to x, a contradiction.
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x1

x2

x3x4

x5

x6

x7 x8
x9

Figure 2: In the proof of Lemma 4.1, an illustration of the cycle C4 containing a chord,
which necessarily produces a fifth cycle of length 0 mod 3.

If C4 is a triangle then it follows that G = K4, so we suppose otherwise. Since
σ = (1 2 3), we can label C4’s vertices x1, x2, x3, . . . , x3k so that the edge set of C4 is
E(C4) = {x1x2, x2x3, . . . , x3k−1x3k, x3kx1} and

ϕ(xi) =






1 if i ≡ 1 mod 3,

2 if i ≡ 2 mod 3,

3 if i ≡ 0 mod 3.

Since G has minimum degree 3 and v has only three neighbors, C4 contains chords. But
chords can only connect vertices of different colors, and any such chord cuts C4 into two
cycles, one of which has length 0 mod 3, a contradiction that completes the proof. (See
Figure 2.)

4.1 4-critical graphs with minimum degree at least 4

To finish the proof of Theorem 1.2, we must now show that every 4-critical graph G with
minimum degree at least 4 contains at least five cycles of length 0 mod 3. In this case, the
argument used in Theorem 2.4 does not directly adapt as it obtained cycles from closed
directed walks. A key to constructing these walks was that every neighbor of a vertex
v of degree 3 in a 4-critical graph receives a different color under a proper 3-coloring of
G− v, which does not apply once δ(G)  4.

Instead, our arguments will rely on two other results. The first is a sufficient condition
for cycles of length 0 mod 3 to exist due to Chen and Saito [3]:

Theorem 4.2 (Chen and Saito [3], Theorem 1). If G is a graph with n  2 vertices and
at most one vertex of degree 2 or less, then G contains a cycle of length 0 mod 3.

We remark that in [3], the authors refer to cycles with length divisible by 3 as good
cycles, and we will do so for the remainder of this section. Our first application of this
will be to handle the case where a vertex lies on at least three good cycles.
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Lemma 4.3. If G is a 4-critical graph with δ(G)  4 and there exists a vertex v ∈ V (G)
such that v lies on at least three good cycles, then G contains at least five good cycles.

Proof. Suppose v ∈ V (G) lies on at least three good cycles, call them C1, C2, C3. Since
δ(G)  4, δ(G− v)  3, so G− v contains at least one good cycle C4 by Theorem 4.2.

If V (C4) ⊈ N(v) then C4 contains an edge e with at most one endpoint in N(v).
Deleting e from G− v produces a subgraph with at most one vertex of degree 2, and thus
it contains a good cycle C5 ∕= C4 by Theorem 4.2, yielding the result.

If V (C4) ⊆ N(v), then every edge of C4 forms a triangle with v, and we’re done if
|V (C4)|  5. But if |V (C4)| < 5, then |V (C4)| = 3 since C4 is good. This implies G
contains a K4 on C4 ∪ {v}, contradicting G’s 4-criticality and completing the proof.

We’ll also appeal to a recent result of Gao, Huo, Liu and Ma [9], which was used to
resolve a number of conjectures regarding the existence of cycles of prescribed lengths.

Definition 4.4 (Gao, Huo, Liu and Ma [9]). A collection of ℓ paths is admissible if the
length of every path is at least two, and the lengths form an arithmetic progression with
common difference one or two.

Theorem 4.5 (Gao, Huo, Liu, and Ma [9], Theorem 1.2 ). Let G be a 2-connected graph
and let x, y be distinct vertices of G. If every vertex in G other than x and y has degree
at least ℓ+ 1, then there exist ℓ admissible paths from x to y in G.

We note that Theorem 2.2 implies that every vertex v in a 4-critical graph lies on at
least two good cycles, by applying the Theorem first with an arbitrary edge incident with
v, then with an edge incident with v on the found cycle.

Lemma 4.6. If G is 4-critical with δ(G)  4 and every vertex is on at most two good
cycles, then:

1. G is 4-regular, and

2. Every edge of G lies on exactly one good cycle.

Proof. It suffices to argue that every edge lies on at least one good cycle. This will imply
that every vertex lies on at least d(v)/2 good cycles, yielding a maximum degree of at
most 4 under the assumptions given and therefore G is 4-regular. Furthermore, if any
edge uv lies on at least two good cycles, then those two cycles only cover three edges
incident with v, implying v lies on a third good cycle, a contradiction.

To that end, pick any edge e = uv. It is routine to show that a color-critical graph is
2-connected (e.g., see [18], Exercise 8.2.11), so by Theorem 4.5 there exist 3 admissible
paths from u to v. Since the common difference is one or two, their lengths cover the
congruence classes modulo 3, so one of these paths has length 2 mod 3 and forms a good
cycle with e.
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The next lemma will complete the proof of Theorem 1.2.

Lemma 4.7. If G is a 4-critical graph with minimum degree at least 4 and every vertex
is on at most two good cycles, then G contains at least five good cycles.

Proof. We first observe that under the given assumptions and by Theorem 2.2, every
vertex lies on exactly two good cycles. Furthermore, deleting any vertex yields a subgraph
with minimum degree at least 3, which contains a good cycle by Theorem 4.2. Thus, G
has at least three good cycles, at least one of which is not spanning.

Let C1 be a non-spanning good cycle, and let uv be an edge connecting C1 to the rest
of G, where u ∈ V (C1) and v ∈ V (G)− V (C1). Then, by Lemma 4.6, the edge uv lies on
a good cycle C2, and then v must lie on a second good cycle C3. Our argument proceeds
by considering two cases: whether or not C2 is a triangle.

Case 1: C2 is not a triangle. By Lemma 4.6, C2 is the only good cycle containing
edge uv, and G is 4-regular. Consequently, NG(u) ∩ NG(v) = ∅, so let U = NG(u) − v
and V = NG(v)−u, and label their vertices u1, u2, u3 and v1, v2, v3, respectively. Observe
that if H = G − u − v, then for any vertex w ∈ U ∪ V , dH(w) = 3, while for any vertex
x ∈ (V (H)− U ∪ V ), dH(x) = 4. Thus, by Theorem 4.2, there exists a fourth good cycle
that does not include u nor v; label it C. We have 2 subcases for C:

1. C has an edge e with an endpoint not in U ∪ V

2. V (C) ⊆ U ∪ V .

In Subcase 1, the edge e has at most one endpoint of degree 3. So, its removal will
result in a graph with at most one vertex of degree 2. Therefore, by Theorem 4.2, we can
see that there must exist another good cycle, call it C ′, that does not contain u, v, nor e.
Thus, C ′ is our fifth good cycle in G.

For Subcase 2, note that no edge in C is contained in U or in V , else it lies on a
triangle, contradicting the fact that every edge is on exactly one good cycle. Therefore,
C is bipartite, and because C is good, it must be a 6-cycle that spans U ∪ V .

Without loss of generality, we may assume C = [u1, v1, u2, v2, u3, v3]. Now, let C ′ =
[u, u1, v1, u2, v2, v]. C and C ′ are two different good cycles that share common edges; a
contradiction. (See Figure 3.) Thus, in Case 1, G has at least five good cycles.

u v u v
C C ′

Figure 3: This image represents the fourth and fifth good cycles constructed in Subcase
2 of Case 1, noting this yields a contradiction as they share edges.

the electronic journal of combinatorics 31(2) (2024), #P2.58 10



Case 2: C2 is a triangle. Since C2 is a triangle, there is a vertex w such that V (C2) =
{u, v, w}. Let U = NG(u) − v − w, V = NG(v) − u − w, and W = NG(w) − u − v.
We note that U, V,W are pairwise disjoint, else we contradict Lemma 4.6, and we may
label their vertices U = {u1, u2}, V = {v1, v2}, and W = {w1, w2}. In the subgraph
H = G−u−v−w, all vertices in U , V , and W will have degree 3, while all other vertices
in H will have degree 4. So by Theorem 4.2, H has a good cycle C which does not use
vertices u or v. Thus, C is a fourth good cycle in G, and we consider 2 subcases:

1. C has an edge e that has an endpoint not in U ∪ V ∪W ,

2. V (C) is a subset of U ∪ V ∪W .

In Subcase 1, similar to our argument in Case 1, removing e will result in a graph
with at most one vertex with degree at most 2. Then Theorem 4.2 yields that G contains
a fifth distinct good cycle.

So we will focus on Subcase 2. By similar reasoning as in Subcase 2 of Case 1, we
know that C cannot have an edge between u1 and u2, between v1 and v2, or between w1

and w2. So, C is tripartite. Suppose first that C contains a vertex whose neighbors lie in
different parts: without loss of generality, we may suppose that C contains u1, v1, w1 and
u1 is adjacent to v1, w1. Then the cycle C ′ = [u1, v1, v, u, w, w1] is a different good cycle
that shares edges with C; a contradiction. (See Figure 4.)

u

v w

u

wv

Figure 4: In Case 2, Subcase 2, the image on the left represents G with a good cycle C
containing a vertex with neighbors in both other parts. The image on the right illustrates
a second good cycle C ′ outlined in green, sharing edges with C.

If no vertex of C has neighbors in different parts, then letting x ∈ V (C), x’s neighbors
lie in one part, and its neighbors’ neighbors lie in the same part as x. That is, C must be
contained in two parts and is therefore bipartite on at most 4 vertices, contradicting that
C is good. Thus, in Case 2, G has at least five good cycles, completing the proof.
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