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Abstract

We show that the combinatorial definitions of King and Sundaram of the sym-
metric polynomials of types B and C are indeed symmetric, in the sense that they
are invariant by the action of the Weyl groups. Our proof is combinatorial and
inspired by Bender and Knuth’s classic involutions for type A.

Mathematics Subject Classifications: 05E05, 05E10, 05E18, 20C33

1 Introduction

Symmetric polynomials are a central object of study in two branches of mathematics. On
the one side, for combinatorialists, they are generating functions. On the other side, for
representation theorists, they are characters of representations. The interplay between
these two points of view is best presented with a diagram (see Figure 1).

Jacobi–Trudi-type
formulas

Generating functions
of tableaux

Weyl’s character
formula

Weight functions
of crystals

Crystal theor
y

Jeu de taquin

Path enumeration

Figure 1: Different approaches to the topic in the literature.

In type A, corresponding to the representation theory of GLn and its combinatorics, the
objects and relations in Figure 1 are well understood. Schur (symmetric) polynomials arise
as the generating functions of semistandard Young tableaux and as the (Weyl) characters
of irreducible polynomial representations of GLn. They are also the generating functions
of Gelfand–Tsetlin patterns [Sta99]. For other Lie groups such as SO2n+1 (type B) and
Sp2n (type C), we have different candidates for tableaux and patterns whose generating
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functions are the orthogonal (Schur) polynomials and symplectic (Schur) polynomials. In
this work, we focus on the tableau defined by King for type C [Kin76] and Sundaram for
type B [Sun90], who show that their generating functions verify some recursive algebraic
formulas and deduce that they recover the irreducible characters of the corresponding Lie
groups [Sun86, Sun90].

Characters can be computed as the determinants of matrices whose entries are ele-
mentary symmetric polynomials. For type A this is the Jacobi–Trudi formula [Sta99]; for
types B and C, see [FH91, Lec. 24 and App. A], [KT87]. These determinants enumerate
tableaux after an argument of Gessel and Viennot for type A [GV85], [Sta99, Sec. 7.16];
see [FK97] for the type B and C analogues.

On the other hand, crystal bases allow Kashiwara and Nakashima to propose their own
tableaux definitions [KN94]. For type A, these recover the above combinatorics; for type
C, they are seen to be in bijection with King tableaux in [She99], via an analogue of the jeu
de taquin algorithm. We are not aware of analogous bijections for type B in the literature.

Without direct proofs, it is not immediately obvious that generating functions of
tableaux are the correct candidates for describing characters of representations. In par-
ticular, we ask whether these generating functions are invariant by the action of the Weyl
group of corresponding type; W (An−1) ∼= Sn and W (Bn) ∼= S2 ≀ Sn

∼= W (Cn). This is
certainly true of Weyl characters, but we seek a direct and combinatorial proof.

For type A, a short argument by Bender and Knuth [BK72], [Sta99, Thm. 7.10.2]
shows that the number of semistandard Young tableaux of a fixed shape λ with weight
xα coincides with the number of semistandard Young tableaux of shape λ with weight
(j j+1).xα for any simple transposition (j j+1), j = 1, ..., n − 1. This is done by
constructing an involution BKA

j which is known as a (type A) Bender–Knuth involution.
Therefore, the Schur polynomial of shape λ is a symmetric polynomial; an element of
C[x1, ..., xn]

Sn . As a remark, these involutions do not induce an action of Sn on the set of
tableaux of fixed shape, in general. Type A Bender–Knuth involutions are translated to
Gelfand–Tsetlin patterns in [BK95]; we review these constructions later in this text.

We introduce type C Bender–Knuth involutions BKC
j and show combinatorially and

directly for the first time that there is an involutory action of S2 ≀ Sn on the set of King
patterns of top row λ. We conclude that symplectic polynomials lie in C[x±

1 , ..., x
±
n ]

S2≀Sn .
As a corollary, we get type B Bender–Knuth involutions and the analogous result for
orthogonal polynomials. The maps are later translated to tableaux. As expected, our
involutions do not define an action of S2 ≀ Sn on the sets of patterns of a fixed shape (see
[Gut23, Note 4.11]).

These results were first claimed by Sundaram in [Sun86]. However, as noted by Hop-
kins [Hop20], the original proof is incorrect and cannot be fixed in any simple way. (The
claimed proof only shows that the functions are invariant by a set of elements of S2 ≀ Sn

which do not form a generating set for the group.) A corollary of our result, also noted
by Sundaram [Sun86, Sun90], is that the symplectic and orthogonal polynomials define
class functions on the set of diagonalizable elements in the algebraic groups of types B
and C.
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A first candidate for type C Bender–Knuth involutions is given as a composition of
type A Bender–Knuth involutions. The resulting patterns may not be symplectic, so we
post-compose with a rectification map. A ‘locality’ argument allows us to reduce our
proof to computing that BKC

2 is an involution on a generic pattern when n = 3. This
reduction is what enables us to conclude the result.

It is worth remarking that there are two ways of approaching this computation on
generic patterns when n = 3. One is to argue directly and ‘by hand’, as we do. Alter-
natively, one could use a computer to check that BKC

2 (as a tropical rational map) is
involutory. This appears to be beyond the reach of computer algebra systems at the time
of writing. But we were able to check that Trop−1BKC

2 (as a rational map) is involutory.
It remains to argue that the order of BKC

2 and the order of Trop−1BKC
2 coincide. This

step is in general non-trivial (see e.g. [GR16]).

We recall some preliminary definitions in Section 2. We define tableaux and patterns
for types A, B, and C in Section 3, and we define symmetric polynomials as their generat-
ing functions. We recall type A Bender–Knuth involutions and introduce the type B and
C analogues in Section 4. Proving that these are involutions reduces to a computation,
that we leave for Section 5.

2 Preliminary definitions

Fix a natural number n ⩾ 1 throughout this work. We work over C. We will follow
[Sta99, Ch. 7] for the standard concepts on symmetric polynomials, and [FH91] for Lie
theory.

2.1 Symmetric polynomials and partitions

The space of symmetric polynomials in n variables is Λn = C[x1, ..., xn]
Sn , where the

symmetric group Sn acts by permuting the variables. A partition λ of length smaller or
equal to n is an n-tuple of weakly decreasing non-negative integers. Let Parn be the set of
partitions of length smaller or equal to n. Bases of Λn are indexed by Parn. We represent
partitions through their Young diagram, which we draw following the English convention.

2.2 Lie groups and Weyl groups

The set Irr(GLn) of irreducible polynomial representations of GLn is indexed by Parn.
The relationship between Irr(GLn) and Λn is explained through the following result: the
(Weyl) characters of irreducible polynomial representations of GLn form a basis of Λn.
The character of the irreducible representation indexed by λ is the Schur polynomial
sλ(x1, ..., xn), as defined combinatorially in Section 3.3.

The sets Irr(Sp2n) and Irr(SO2n+1) are also indexed by Parn. (The set of irreducible
representations of the Lie algebra so(2n + 1) is richer, and indexed by the set of parti-
tions and half-partitions. The representations indexed by half-partitions are called spin
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representations, and will not be modelled by the combinatorics of this document.) The
irreducible characters for SO2n+1 and Sp2n are known as the symmetric polynomials of
types B and C. These will be defined purely combinatorially in Section 3.3, and referred
to as orthogonal polynomials and symplectic polynomials, respectively. Note that these
are not in Λn. Rather, they lie in the ring C[x±

1 , ..., x
±
n ]

W of Laurent polynomials invariant
under the Weyl group of corresponding type (as a permutation group of the variables).
In type A, these Laurent polynomials are polynomials, and the Weyl group of GLn is
W (An−1) ∼= Sn; this is consistent with the above. The Weyl groups of type B and C
coincide, and are isomorphic to the wreath product S2 ≀ Sn. We avoid wreath products
in this work, and instead provide the following description of these Weyl groups as sub-
groups of S2n: if we interpret S2n as the permutation group of the set {1, 1̄, 2, 2̄, ..., n, n̄},
then W (Bn) and W (Cn) are isomorphic to the subgroup of S2n generated by (1 1̄) and
the permutations (j j+1)(j j+1) for j ∈ [n− 1].

3 Combinatorics and symmetric functions

3.1 Tableaux for types A, B, and C

Fix λ ∈ Parn. Let [λ] := {(i, j) ∈ [n] × Z>0 : j ⩽ λi} be the set of its cells. Let X be a
totally ordered set. A tableau of shape λ in the alphabet X is a function T : [λ] → X . We
say a tableau is semistandard if T (i, j) < T (i + 1, j) and T (i, j) ⩽ T (i, j + 1) whenever
this makes sense.

The (set-wise) co-restriction of a map f : A → B to a subset C ⊂ B is defined to be
the restriction of f to f−1(C).

Definition 1. Let A := {1 < 1̄ < 2 < 2̄ < · · · < n < n̄}, and A∞ := {1 < 1̄ < 2 < 2̄ <
· · · < n < n̄ < ∞} be two ordered sets.

(A) A semistandard Young tableaux (on n letters) of shape λ is a semistandard tableau
of shape λ in the alphabet [n] = {1 < 2 < · · · < n}.

(B) A (Sundaram) orthogonal tableau T (on n letters) of shape λ is a tableau of shape
λ in the alphabet A∞ such that

– the co-restriction of T to A defines a symplectic tableau (see below), and

– at most one cell per row (the right-most cell) takes the value ∞.

(C) A (King) symplectic tableau T (on n letters) of shape λ is a semistandard tableau
of shape λ in the alphabet A such that T (i, j) ⩾ i for all (i, j) ∈ [λ].

We let SSYTn(λ), SOTn(λ), and KSpTn(λ) denote the sets of such tableaux.
The weight of a tableau T : [λ] → X is the monomial xT =

∏
a∈X xT−1(a) in the ring

C[xi : i ∈ X ]. We take the conventions xı̄ = x−1
i and x∞ = 1. That is, weights of semi-

standard Young tableaux are monomials in C[x1, ..., xn], whereas weights of orthogonal
and symplectic tableaux lie in C[x±

1 , ..., x
±
n ].
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Example 2. We present a semistandard Young tableau, an orthogonal tableau, and a
symplectic tableau of shape (3, 3, 2) and their weights.

1 1 3

2 3 4

3 4

x2
1x2x

3
3x

2
4

1 2 ∞
3 3 ∞
3̄ 3̄

x1x2

1 2 2̄

3 3 3̄

3̄ 3̄

x1x
−1
3

Note 3. Co-restriction to A defines a bijection SOTn(λ) →
⋃

µKSpTn(µ), where µ ranges
over the partitions which may be formed from [λ] by removing at most one cell per row.
The order-preserving map A → [2n] gives an inclusion KSpTn(λ) ⊆ SSYT2n(λ).

3.2 Patterns for types A, B, and C

Definition 4. A Gelfand–Tsetlin pattern (or GT pattern) with n rows is a triangular
array of non-negative integers P = (P (n), ..., P (1)), with P (k) = (p1k, ..., pkk) for k ∈ [n],
subject to the local inequalities of Figure 2. We say P (k) for k ∈ [n] are the rows of P
and we call P (n) the top row. Note that P (k) ∈ Park for each k. Let GTn(λ) be the set of
GT patterns with n rows and top row λ.

p14 p24 p34 p44
p13 p23 p33

p12 p22
p11

pi,j

pi,j+1 pi+1,j+1

pi−1,j−1 pi,j−1

⩾ ⩾

⩾ ⩾

Figure 2: Left: the arrangement of a GT pattern of size 4. Right: the local inequalities.

We have a bijection SSYTn(λ) → GTn(λ), by letting P (k) be the shape of T−1[k] (see
[Sta99, Sec. 7.10]). In other words, pi,j counts the number of entries smaller or equal to
j in the ith row of T . See Example 7.

Trough this bijection, the jth row sum Sj :=
∑

i pij of a pattern P counts the number
of entries smaller or equal to j in the corresponding tableau. Therefore, if the weight
of a pattern P is defined as the monomial xP := xS1

1 xS1−S2
2 · · ·xSn−Sn−1

n , the bijection is
weight-preserving.

Definition 5. A (King) symplectic pattern is a Gelfand–Tsetlin pattern P in which pij = 0
whenever 2i > j (see [Kin76]). We let KSpPn(λ) be the set of symplectic patterns with
2n rows and top row λ.

We think of these as “half-triangular” arrays by omitting the entries pij with 2i > j.
See Example 7. We introduce the following definition.

Definition 6. A (Sundaram) orthogonal pattern is a symplectic pattern in which top row
entries might be circled. Let P be an orthogonal pattern with N rows. The shape λ of P
is defined by λi := piN + 1 if piN is circled and λi := piN otherwise. For a partition λ, we
let SOPn(λ) be the set of orthogonal patterns with 2n rows and shape λ.
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The maps from Note 3 together with the bijection SSYTn(λ) ↔ GTn(λ) give maps

KSpTn(λ) ↔ KSpPn(λ) ⊆ GT2n(λ) and SOTn(λ) ↔ SOPn(λ) ↔
⋃
µ

KSpPn(µ).

Through these bijections, given a pattern P of type B or C, the difference S2j−1 − S2j−2

counts the number of entries equal to j in the corresponding tableau, whereas S2j −S2j−1

counts the number of entries equal to ȷ̄. Therefore, if the weight of a pattern P is defined
as the monomial xP := x2S1−S2

1 x2S3−S4−S2
2 · · ·x2S2n−1−S2n−S2n−2

n , the bijections are weight-
preserving.

Example 7. We present patterns of top row (or shape) λ = (3, 2) for types A, B, and C.

1 1 3

2 3
↔

3 2 0
2 1

2

1 1̄ ∞
2 2̄

↔
2○ 2

2 1
2

1

1 1̄ 2

2 2̄
↔

3 2
3 1

2
1

3.3 Symmetric polynomials as generating functions

Definition 8. Let λ ∈ Parn. The Schur polynomial sλ, the orthogonal polynomial oλ, and
the symplectic polynomial spλ on n letters and of shape λ are defined as the generating
functions of semistandard Young tableaux, orthogonal tableaux, and symplectic tableaux
on n letters and of shape λ, respectively. Explicitly,

sλ(x1, ..., xn) =
∑

T∈SSYTn(λ)

xT , oλ(x1, ..., xn) =
∑

T∈SOTn(λ)

xT , and spλ(x1, ..., xn) =
∑

T∈KSpTn(λ)

xT .

Equivalently, they are the generating functions of GTn(λ), SOPn(λ), and KSpPn(λ).

4 Bender–Knuth involutions

We study type B and C analogues of the following elegant proof of Bender and Knuth.

Proposition 9. Schur polynomials on n letters are W (An−1)-symmetric.

Sketch of proof. We follow [BK72], [Sta99, Thm. 7.10.2]. Let (j j+1) be a simple trans-
position. Given a tableau T of shape λ and weight xT , we produce a tableau BKA

j (T ) of
shape λ and weight

xBKA
j (T ) = (j j+1).xT ,

where Sn acts on C[x1, ..., xn] by permuting the variables. To construct BKA
j (T ), begin

by freezing each pair of entries j , j + 1 that lie in the same column of T (these are usually
referred to as {j, j+1}-vertical dominoes). The entries j , j + 1 of T that are not yet frozen
are called mutable. For each row, the mutable entries of T form a word ja(j + 1)b, which
is changed to a word jb(j + 1)a in BKA

j (T ). The map BKA
j : SSYTn(λ) → SSYTn(λ) is

an involution.
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1 1 1 1 2 2 2 3 3 3 4 4 4

2 2 2 3 3 4 4 4 4

3 3 3 4

7→
1 1 1 1 2 2 2 3 3 3 3 3 4

2 2 2 3 3 3 4 4 4

4 4 4 4

Figure 3: We illustrate BKA
3 . Highlighted, mutable entries of the tableau.

We refer to the map BKA
j defined in this proof as the jth type A Bender–Knuth

involution. See Figure 3.
The translation of type A Bender–Knuth involutions to GT patterns was studied in

[BK95] and can be described as follows: it only affects the jth row P (j) = (pi,j)i⩽j, and
sends each entry pi,j to

p′i,j := min{pi,j+1, pi−1,j−1}+max{pi+1,j+1, pi,j−1} − pi,j,

where min and max ignore non-existing entries. That is,

BKA
j

(
P (n), ..., P (j), ..., P (1)

)
=

(
P (n), ...,

(
p′1,j, ..., p

′
j,j

)
, ..., P (1)

)
.

Example 10. To motivate this translation of BKA
j to GT patterns, we take a closer

look at the example of Figure 3. Let T be the tableau on the left, and let P =
((pi,n)i⩽n, ..., (pi,1)i⩽1) be its corresponding GT pattern. We consider the mutable 3142

word in the second row of T . It spans three columns, starting at (but not including)
column 4 and ending at column 7.

1 1 1 1 2 2 2 3 3 3 4 4 4

2 2 2 3 3 4 4 4 4

3 3 3 4

We can compute its starting column (in this case 4) as the maximum of (a) the number
of entries smaller than 3 in the second row, p2,2 = 3, and (b) the number of entries smaller
or equal to 4 in the third row, p3,4 = 4. Similarly, its ending column, 7, is the minimum
of (c) the number of entries smaller than 3 in the first row, p1,2 = 7, and (d) the number
of entries smaller or equal to 4 in the second row, p2,4 = 9.

Correspondingly, p2,3 = 5 is sent by BKA
3 to min{7, 9}+max{3, 4} − 5 = 6.

13 9 4 0

10 5 3
7 3

4

7→
13 9 4 0

12 6 0
7 3

4

We now show the analogue result for type C.

Proposition 11. Symplectic polynomials in n letters are W (Cn)-symmetric.

We begin by proposing a candidate for type C Bender–Knuth involutions. An involu-
tory action of (1 1̄) on KSpPn(λ) ⊆ GT2n(λ) is given by BKA

1 . For any other generator
of W (Cn), write this permutation as a product of simple transpositions with respect to
the ordered set A = {1 < 1̄ < · · · < n < n̄}. We multiply permutations right-to-left, and
thus we get

(j j+1)(j j+1) = (j j+1)(j+1 j+1)(j j)(j j+1).
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For each of these, perform a type A involution. Starting with any given pattern P0, we
get

P0 P1 P2 P3 P4.
BKA

2j

(j j+1)

BKA
2j−1

(j j)

BKA
2j+1

(j+1 j+1)

BKA
2j

(j j+1)
(1)

Thanks to the properties of type A Bender–Knuth involutions, the resulting pattern P4

is of weight (j j+1)(j j+1).xP0 , as desired. However, P4 does not need to be symplectic:
we might find an entry plk ̸= 0 with 2l > k.

Lemma 12. Let P4 be defined as above. Then plk = 0 for all (l, k) in

{(l, k) : 2l > k} − {(j + 1, 2j)}.

Proof. The type A Bender–Knuth involutions from Equation 1 only affect the rows 2j
and 2j ± 1 of the pattern. The value of an entry of P4 in position (l, k) with 2l > k and
k ̸∈ {2j − 1, 2j, 2j + 1} is thus 0, since P0 is symplectic.

Suppose k = 2j − 1. By the above, the value of plk in the pattern P4 is computed as
min{pl,k+1, 0}+max{0, 0}− 0, which is 0. A similar argument applies to k = 2j +1. Let
k = 2j, let l > j +1. By the above, the value of plk is min{0, 0}+max{0, 0}− 0 = 0.

That is, the only possible obstruction to the symplectic property is the value of entry
pj+1,2j. We compose with the weight-preserving map rect (rectification) that subtracts
pj+1,2j from the entries pj+1,2j, pj+1,2j+1, pj,2j, and pj,2j−1, and is the identity everywhere
else. Indeed, the fact that it is weight-preserving follows from the definition of weight of
a pattern, where the variable xj−1 is raised to the power 2S2j − S2j+1 − S2j−1.

Define the jth type C Bender–Knuth involution as the composite

BKC
j := rect ◦BKA

2j ◦BKA
2j+1 ◦BKA

2j−1 ◦BKA
2j.

Example 13. Let j = 2. We illustrate the 2nd type C Bender–Knuth involution on a
symplectic pattern with 6 rows and top row (3, 3, 2).

3 3 2
3 2 0

3 0
2 0

1
1

(2̄ 3)7−−−→

3 3 2
3 2 0

2 2
2 0

1
1

(2 2̄)7−−−→

3 3 2
3 2 0

2 2
2 1

1
1

(3 3̄)7−−−→

3 3 2
3 2 2

2 2
2 1

1
1

(2̄ 3)7−−−→

3 3 2
3 2 2

3 2 1
2 1

1
1

rect7−−→

3 3 2
3 2 1

3 1 0
2 0

1
1

In the first step, we apply BKA
4 , corresponding to the permutation (2̄ 3). This acts

on the 4th row of the pattern, sending (3, 0, 0, 0) to (2, 2, 0, 0). For instance, 3 maps to
min{3}+max{2, 2} − 3 = 2. We keep doing this as indicated.

On the fourth step, the 4th row (2, 2, 0, 0) is sent to (3, 2, 1, 0). Indeed, the first 0 maps
to min{1, 2}+max{0, 0}−0 = 1. The array is no longer half-triangular. The rectification
map corrects this by subtracting 1 from the four highlighted entries of the last pattern.
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Proof of Proposition 11. It suffices to show that each BKC
j is an involution. Consider the

composites Φ and (BKC
j )

2 given by

P0

BKA
2j7−−−→P1

BKA
2j−17−−−−−→P2

BKA
2j+17−−−−−→P3

BKA
2j7−−−→P4 = P ′

5

BKA
2j7−−−→P ′

6

BKA
2j−17−−−−−→P ′

7

BKA
2j+17−−−−−→P ′

8

BKA
2j7−−−→P ′

9 and

P0

BKA
2j7−−−→P1

BKA
2j−17−−−−−→P2

BKA
2j+17−−−−−→P3

BKA
2j7−−−→P4

rect7−−→P5

BKA
2j7−−−→P6

BKA
2j−17−−−−−→P7

BKA
2j+17−−−−−→P8

BKA
2j7−−−→P9

rect7−−→ P10.

Note that Φ is the identity, and that both maps are identical on most entries. Indeed,
in each step, the value of BKA

i on an entry only depends on the value of its four neigh-
bours. Starting with the four entries of P5 that are perturbed by rect, the effect of this
perturbation is only measured by the last two entries in rows 2j and 2j ± 1 of P10.

Therefore, it is enough to show that BKC
2 is an involution on a generic pattern with

6 rows. Our strategy to tackle this final computation is to take the entry-wise differences
Pi − P ′

i for i = 5, ..., 9. We have P ′
9 = P0, and P10 − P ′

9 is seen to vanish in Section 5.

Corollary 14. Orthogonal polynomials in n letters are W (Bn)-symmetric.

Proof. We have W (Bn) = W (Cn). From the weight-preserving bijection SOPn(λ) →⋃
µKSpPn(µ), we get oλ =

∑
µ spµ. The result now follows from Proposition 11.

Combinatorially, type B Bender–Knuth involutions are defined on patterns by ignor-
ing the circles and performing type C Bender–Knuth involutions, and later placing the
circles back to where they were.

To describe type B and C Bender–Knuth involutions on tableaux, it remains to inter-
pret rect. Consider a tableau T0 and the composite

T0 T1 T2 T3 T4.
BKA

2j

(j j+1)

BKA
2j−1

(j j)

BKA
2j+1

(j+1 j+1)

BKA
2j

(j j+1)

Lemma 12 says T4 is symplectic up to the existence of {j, ȷ̄}-vertical dominoes between
rows j and j + 1. (For a proof of the lemma in the language of tableaux see [Gut23,
Prop. 5.9].) The tableau rect(T4) is constructed from T4 by relabelling such dominoes
into {j + 1, j + 1}-vertical dominoes, and sorting rows j and j + 1 into increasing order.

Example 15. Let j = 2. We translate Example 13 to tableaux.

BKC
2 :

1 2 2̄

3 3 3̄

3̄ 3̄

(2̄ 3)7−−−→
1 2 3

2̄ 2̄ 3̄

3̄ 3̄

(2 2̄)7−−−→
1 2 3

2 2̄ 3̄

3̄ 3̄

(3 3̄)7−−−→
1 2 3

2 2̄ 3̄

3 3

(2̄ 3)7−−−→
1 2 2̄

2 2̄ 3̄

2̄ 3

rect7−−→
1 2 2̄

2̄ 3 3̄

3 3̄

Each of the four first maps are type A Bender–Knuth involutions, and the last map
rectifies the tableau by getting rid of the highlighted {2, 2̄}-vertical domino.

Corollary 16. Both symplectic polynomials and orthogonal polynomials (on n letters)
form an integral basis of Z[x±

1 , ..., x
±
n ]

S2≀Sn.
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Proof. Let ⩽ be the lexicographic order on Parn. Let f =
∑

α cαx
α ∈ Z[x±

1 , ..., x
±
n ]

S2≀Sn .
Define the leading term of f as the greatest λ such that cλ ̸= 0. Then f − cλspλ has a
lower leading term. Thus {spλ}λ∈Parn is spanning and linearly independent. Similarly for
{oλ}λ∈Parn .

In particular, this shows that symplectic and orthogonal polynomials are integral linear
combinations of Weyl characters of representations of Sp2n and SO2n+1, respectively.

5 A computation

To complete the proof of Proposition 11, we need to verify that the proposed map BKC
2

is an involution on the set of symplectic patterns with 6 rows and fixed shape.
To alleviate notation, we consider a pattern a = (a(6), ..., a(1)), and denote with

b, c, d, e, f the image of a under the following composite maps:

a b c d e f.
BKA

4

(2̄ 3)

BKA
3

(2 2̄)

BKA
5

(3 3̄)

BKA
4

(2̄ 3)

rect

Moreover, we set A as a copy of e, and A′ as a copy of f , and define B,B′, ..., F ′ as follows:

Φ :a
(2̄ 3)7−−−→b

(2 2̄)7−−−→c
(3 3̄)7−−−→d

(2̄ 3)7−−−→e =: A
(2̄ 3)7−−−→B

(2 2̄)7−−−→ C
(3 3̄)7−−−→D

(2̄ 3)7−−−→E = a,

(BKC
2 )

2 :a
(2̄ 3)7−−−→b

(2 2̄)7−−−→c
(3 3̄)7−−−→d

(2̄ 3)7−−−→e
rect7−−→A′ (2̄ 3)7−−−→B′ (2 2̄)7−−−→C ′ (3 3̄)7−−−→D′ (2̄ 3)7−−−→E ′ rect7−−→F ′.

We have E = a as noted in Section 3.2, and we aim to show F ′ = a.
Let us start by comparing A and A′. We have A′

jk = Ajk for all j, k except for

A′
35 = A35 − e34, A′

24 = A24 − e34, A′
23 = A23 − e34, and A′

34 = A34 − e34 = 0.

We may now turn to B and B′, in which we thus find

B′
14 = B14, B′

24 = B24, and B′
34 = B34.

Indeed, we have

B′
24 = min{A′

25, A
′
13}+max{A′

35, A
′
23} − A′

24

= min{A25, A13}+max{A35 − e34, A23 − e34} − (A24 − e34) = B24, and

B′
34 = min{A35 − e34, A23 − e34}

= min{A35, A23} − e34

= min{A35, A23} − A34 = B34.

In the next step, when comparing C and C ′, we therefore note

C ′
13 = C13, and

C ′
23 = min{B24, B12}+B34 −B′

23

= min{B24, B12}+B34 − A′
23

= min{B24, B12}+B34 − (A23 − e34) = C23 + e34.
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Similarly, in D, D′,

D′
15 = D15, D′

25 = D25, and D′
35 = D35 + e34.

Finally, comparing E and E ′ gives

E ′
14 = E14, E ′

24 = E24 + e34, and E ′
34 = E34 + e34 = a34 + e34 = e34.

And now, subtracting e34 from E ′
34, E

′
24, D

′
35 and C ′

23 recovers the pattern E. This shows
F ′ = E = a, as desired.

Note 17. For illustrative purposes, we give explicitly give the patterns A′, B′, ..., F ′ in
terms of A,B, ..., C according to the computations above. To save space, we denote
x− e34 by x− and x+ e34 by x+.

A′ =

A16 A26 A36 0 0 0

A15 A25 A−
35 0 0

A14 A−
24 A−

34 0

A13 A−
23 0

A12 0
A11

(2̄ 3)7−−−→ B′ =

B16 B26 B36 0 0 0

B15 B25 B−
35 0 0

B14 B24 B34 0

B13 B−
23 0

B12 0
B11

(2 2̄)7−−−→ C ′ =

C16 C26 C36 0 0 0

C15 C25 C−
35 0 0

C14 C24 C34 0

C13 C+
23 0

C12 0
C11

(3 3̄)7−−−→ D′ =

D16 D26 D36 0 0 0

D15 D25 D+
35 0 0

D14 D24 D34 0

D13 D+
23 0

D12 0
D11

(3 2̄)7−−−→ E ′ =

E16 E26 E36 0 0 0

E15 E25 E+
35 0 0

E14 E+
24 E+

34 0

E13 E+
23 0

E12 0
E11

rect7−−→ F ′ =

E16 E26 E36 0 0 0
E15 E25 E35 0 0

E14 E24 E34 0
E13 E23 0

E12 0
E11
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