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Abstract

We define a new pair of dual bases that generalize the immaculate and dual
immaculate bases to the colored algebras QSymA and NSymA. The colored dual
immaculate functions are defined combinatorially via tableaux, and we present re-
sults on their Hopf algebra structure, expansions to and from other bases, and skew
functions. For the colored immaculate functions, defined using creation operators,
we study expansions to and from other bases and provide a right Pieri rule. This
includes a combinatorial method for expanding colored immaculate functions into
the colored ribbon basis that specializes to a new analogous result in the uncolored
case. We use the same methods to define colored generalizations of the row-strict
immaculate and row-strict dual immaculate functions with similar results.

Mathematics Subject Classifications: 05E05, 16T30

1 Introduction

The quasisymmetric functions, introduced by Gessel [16], and the noncommutative sym-
metric functions, introduced by Gelfand, Krob, Lascoux, Leclerc, Retakh, and Thibon
[15], are generalizations of the symmetric functions with rich theory and importance in
algebraic combinatorics. Their algebras, QSym and NSym, are dual Hopf algebras that
also appear in representation theory, algebraic geometry, and category theory. A signifi-
cant amount of work has been done to find quasisymmetric or noncommutative analogues
of symmetric function objects, specifically of the Schur basis. This includes the develop-
ment of the quasisymmetric Schur basis, extended Schur basis, dual immaculate basis,
and row-strict dual immaculate basis in QSym and the dual quasisymmetric Schur basis,
the row-strict dual quasisymmetric Schur basis, the shin basis, the immaculate basis, and
the row-strict immaculate basis in NSym [2, 4, 9, 20, 30].

Department of Mathematics, North Carolina State University, Raleigh, North Carolina, USA
(sdaughe@ncsu.edu).

the electronic journal of combinatorics 31(2) (2024), #P2.7 https://doi.org/10.37236/12436

https://doi.org/10.37236/12436


The immaculate functions, for example, are Schur-like in that they map to the Schur
functions under the forgetful map from NSym to Sym, and they have a Jacobi-Trudi rule,
a right Pieri rule, and a creation operator construction. The dual immaculate functions,
on the other hand, resemble the combinatorial definition of the Schur functions using
tableaux. The primary goal of this paper is to define and study generalizations of the
immaculate and dual immaculate functions in the colored algebras QSymA and NSymA

introduced by Doliwa in [12].
The isomorphism between NSym and a subalgebra of rooted trees led to a colored

generalization of NSym, called NSymA, that is isomorphic to a larger subalgebra of
colored rooted trees studied in [14]. The colored algebra QSymA is defined dually using
partially commutative colored variables. The initial goal of these generalizations was to
extend the study of the relationship between symmetric functions and integrable systems
to a noncommutative setting which is of growing interest in mathematical physics [11,
23]. Additionally, the Hopf algebra of rooted trees has various applications in the field of
symbolic computation [19]. Doliwa defines the algebraic structure of QSymA and NSymA

and analogues to some classic bases. We bring the study of Schur-like bases to this space
to continue developing its theory.

Studying the lift of the dual immaculate and immaculate functions to the colored
quasisymmetric functions and colored noncommutative symmetric functions also allows
us to obtain results on the original bases. The introduction of colored variables reduces
a significant amount of cancellation and allows for the study of various patterns in more
detail. Any results on the colored dual immaculate functions or the colored immaculate
functions have immediate implications for their original counterparts.

Section 2 of this paper provides background on the symmetric functions, Hopf alge-
bras, the quasisymmetric functions, and the noncommutative symmetric functions. We
then review the immaculate and dual immaculate functions, the skew dual immaculate
functions, and the immaculate poset. Section 3 introduces Adam Doliwa’s colored gen-
eralizations of QSym and NSym. We review their Hopf algebra structure as well as the
previously defined bases. In Section 4, we define the colored dual immaculate functions
by introducing a colored generalization of immaculate tableaux. We then give expansions
of the colored dual immaculate functions into the colored monomial and colored fun-
damental bases using the combinatorics of colored immaculate tableaux. Furthermore,
we provide an expansion of the colored fundamental functions into the colored dual im-
maculate basis defined combinatorially by counting paths in a graph related to standard
colored immaculate tableaux. This result specializes to a new analogous result on the
fundamental and dual immaculate bases in QSym. Section 5 defines the colored immac-
ulate functions using a colored generalization of Bernstein creation operators. We prove
a right Pieri rule for the colored immaculate basis and give expansions of the colored
complete homogeneous and colored ribbon bases into the colored immaculate basis. Us-
ing duality, we obtain an expansion of the colored immaculate functions into the colored
ribbon basis using the colored immaculate descent graph. Applying the uncoloring map
yields a new combinatorial model for expanding the immaculate functions into the ribbon
noncommutative symmetric functions. Additionally, applying the forgetful map yields a
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new expression for the decomposition of Schur functions into ribbon Schur functions. In
Section 6, we introduce a partially ordered set on sentences in the style of the immac-
ulate poset and skew colored immaculate tableaux. We use this poset to define skew
colored dual immaculate functions and find results related to the structure constants of
the colored immaculate basis. In Section 7, we first review the row-strict immaculate and
row-strict dual immaculate functions, then we define the colored row-strict immaculate
and colored row-strict dual immaculate functions. These two bases are related to the
immaculate and dual immaculate bases by an involution on sentences, which we use to
translate our results from previous sections to the row-strict case.

2 Background

A partition of a positive integer n, written λ ⊢ n, is a sequence of positive integers
λ = (λ1, . . . , λk) such that λ1 ⩾ . . . ⩾ λk and

∑
i λi = n. The length of a partition

λ = (λ1, . . . , λk) is the number of parts, ℓ(λ) = k, and the size of a partition is the sum of
its parts, |λ| =

∑
i λi. A composition of a positive integer n, written α ⊨ n, is a sequence

of positive integers α = (α1, . . . , αk) such that
∑
αi = n. The length of a composition

α = (α1, . . . , αk) is the number of parts, ℓ(α) = k, and the size of a composition is the
sum of its parts, |α| =

∑
i αi. A weak composition is a composition that allows zeroes as

entries. If β is a weak composition then β̃, called the flattening [3] of β, is the composition
that results from removing all 0’s from β. The length of a weak composition is also its
number of parts, although it is often implicitly assumed that there are infinitely many
zeroes at the end of any weak composition.

Example 2.1. The partition λ = (3, 2, 1, 1) has size |λ| = 7 and length ℓ(λ) = 4. The
composition α = (2, 1, 3) has size |α| = 6 and length ℓ(α) = 3. The flattening of the weak
composition β = (0, 1, 1, 0, 2) is β̃ = (1, 1, 2).

The Young diagram of a partition λ = (λ1, . . . , λk) is a left-justified array of boxes
such that row i has λi boxes. Following the English convention, the top row is considered
to be row 1. The composition diagram of a composition α = (α1, . . . , αk) is a left-justified
array of boxes such that row i has αi boxes. This only differs from a Young diagram in
that the number of boxes in each row of a Young diagram must weakly decrease from top
to bottom, but there is no such restriction for composition diagrams. Let α = (α1, . . . , αk)
and β = (β1, . . . , βj) be compositions such that j ⩽ k and βi ⩽ αi for 1 ⩽ i ⩽ j. The
skew shape α/β is a composition diagram of shape α where the first βi boxes in the ith

row are removed for 1 ⩽ i ⩽ j. We represent this removal by shading in the removed
boxes.

Example 2.2. Let λ = (3, 2, 1, 1), α = (2, 1, 3), and β = (1, 1, 2). Then the Young
diagram of λ, the composition diagram of α, and the skew shape α/β respectively are:
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Let α = (α1, . . . , αk) and β = (β1, . . . , βj) be two compositions. Under the refinement
order ⪯ on compositions of size n, we say α ⪯ β if and only if {β1, β1 + β2, . . . , β1 +
· · · + βj = n} ⊆ {α1, α1 + α2, . . . , α1 + · · · + αk = n}. Under the lexicographic order ⩽ℓ

on compositions, α ⩽ℓ β if and only if αi < βi where i is the first positive integer such
that αi ̸= βi where αi = 0 if i > k and βi = 0 if i > j. Under the reverse lexicographic
order ⩽rℓ on compositions, α ⩽rℓ β if and only if αi > βi where i is the smallest positive
integer such that αi ̸= βi. Note that, in the last two orders, if such an i does not exist
then α = β. Under the dominance order ⊆ on compositions, we say α ⊆ β if and only if
k ⩽ j and αi ⩽ βi for 1 ⩽ i ⩽ k.

Example 2.3. We have the following chains in the corresponding orders:

1. Under the refinement order, (1, 1, 1, 1) ⪯ (1, 2, 1) ⪯ (1, 3) ⪯ (4).

2. Under the lexicographic order, (1, 2, 3) ⩽ℓ (1, 3, 2) ⩽ℓ (2, 1, 3) ⩽ℓ (2, 3, 1) ⩽ℓ

(3, 1, 2) ⩽ℓ (3, 2, 1).

3. Under the reverse lexicographic order, (3, 2, 1) ⩽rℓ (3, 1, 2) ⩽rℓ (2, 3, 1) ⩽rℓ (2, 1, 3)
⩽rℓ (1, 3, 2).

4. Under the dominance order, (1, 1, 1) ⊆ (2, 1, 1, 1) ⊆ (2, 3, 1, 2).

There is a natural bijection between ordered subsets of [n − 1] = {1, 2, . . . , n − 1}
and compositions of n. For an ordered set S = {s1, . . . , sk} ⊆ {[n − 1]}, comp(S) =
(s1, s2 − s1, . . . , sk − sk−1, n − sk) and for a composition α = (α1, . . . , αj), set(α) =
{α1, α1 + α2, . . . , α1 + α2 + . . .+ αj−1}.

Example 2.4. For n = 8, let S = {2, 3, 6, 7} and α = (1, 2, 1, 4). Then comp(S) =
(2, 1, 3, 1, 1) and set(α) = {1, 3, 4}.

For a positive integer s and compositions α |= n and β |= n + s, we write α ⊂s β if
αj ⩽ βj for all 1 ⩽ j ⩽ ℓ(α), and ℓ(β) ⩽ ℓ(α) + 1. This notation comes from [4] and ⊂1

constitutes a partial order on compositions.

Example 2.5. The compositions β for which (1, 2) ⊂2 β are

(1, 2) ⊂2 (2, 3) and (1, 2) ⊂2 (2, 2, 1) and (1, 2) ⊂2 (1, 3, 1).

A permutation ω of a set is a bijection from the set to itself. The permutation ω of
[n] is written in one-line notation as ω(1)ω(2) · · ·ω(n).

Example 2.6. The permutation 312 maps 1→ 3, 2→ 1, and 3→ 2.

For any set I, the Kroenecker delta is the function defined for i, j ∈ I as

δi,j =

®
1 if i = j,

0 if i ̸= j.
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2.1 The symmetric functions

Let x = (x1, x2, . . .) and cα ∈ Q. A symmetric function f(x) with rational coefficients is a
formal power series f(x) =

∑
α cαx

α where α is a weak composition of a positive integer,
xα = xα1

1 . . . xαk
k , and f(xω(1), xω(2),...) = f(x1, x2, . . .) for all permutations ω of Z>0.

Example 2.7. The following function f(x) is a symmetric function:

f(x) = x21x
3
2x3 + x21x

3
3x2 + x22x

3
1x3 + x22x

3
3x1 + x23x

3
1x2 + x23x

3
2x1 + . . .+ x24x

3
5x7 + . . . .

The algebra of symmetric functions is denoted Sym, and we take Q as our base field
unless otherwise specified. Sym has many bases with various applications and combina-
torial importance, but we limit ourselves to defining the Schur basis here. See [32] for
more background on symmetric functions.

For a partition λ ⊢ n, a semistandard Young tableau (SSYT) of shape λ is a filling
of the Young diagram of λ with positive integers such that the numbers are weakly
increasing from left to right in the rows and strictly increasing from top to bottom in
the columns. The size of an SSYT is its number of boxes, n =

∑
i λi, and its type is

a weak composition encoding the number of boxes filled with each integer. We write
type(T ) = β = (β1, . . . , βj) if T has βi boxes containing an i for all i ∈ [j]. Note that
“type” is also referred to as “content” in the literature. A standard Young tableau (SYT)
of size n is a Young tableau in which the numbers in [n] each appear exactly once. A
SSYT T of type β = (β1, . . . , βk) is associated with the monomial xT = xβ11 · · ·x

βk
k .

Example 2.8. The semistandard Young tableaux of shape (2, 2) with entries in {1, 2, 3}
and their associated monomials are:

1 1
2 2

1 1
2 3

1 1
3 3

1 2
2 3

1 2
3 3

2 2
3 3

x21x
2
2 x21x2x3 x21x

2
3 x1x

2
2x3 x1x2x

2
3 x22x

2
3

The standard Young tableaux of shape (2, 2), both of type (1, 1, 1, 1), are:

1 2
3 4

1 3
2 4

Definition 2.9. For a partition λ, the Schur symmetric function is defined as

sλ =
∑
T

xT ,

where the sum runs over all semistandard Young tableaux T of shape λ with entries in
Z>0. These functions form a basis of Sym [32].

Remark 2.10. The Schur polynomials are defined over finitely many variables
sλ(x1, . . . , xn) and correspond to tableaux filled only with integers in [n]. This paper deals
only with functions in infinitely many variables, but many results restrict to polynomials.

The Schur functions can be defined in numerous equivalent ways including via a Jacobi
Trudi formula or with Bernstein creation operators. One of their most important prop-
erties is that they are the characters of irreducible representations of the general linear
group [32].
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2.2 Hopf algebras

Hopf algebras are widespread in combinatorics and other fields with notable examples
including Sym, QSym, and NSym. We provide a brief overview of the structures needed
for our purposes. See [12, 18] for more details.

Definition 2.11. For a field k of characteristic zero, a Hopf algebra (H, µ,∆, η, ϵ) is a
bialgebra, which consists of an associative algebra and a coassociative coalgebra, along
with an antipode, as defined below.

1. An associative algebra (H, µ, η) is a k-module H with k-linear multiplication µ :
H⊗H → H and a k-linear unital algebra morphism η : k→ H that together satisfy
the commutative diagrams below.

H⊗H⊗H id⊗µ−−−→ H⊗H

µ⊗id

y yµ
H⊗H µ−−−→ H

H⊗ k H k⊗H

id⊗η
y id

y yη⊗id

H⊗H µ−−−→ H µ←−−− H⊗H

2. A co-associative coalgebra (H,∆, ϵ) is a k-module H with k-linear comultiplication
∆ : H → H ⊗ H and a k-linear unital algebra morphism ϵ : H → k called the
conunit that together satisfy the commutative diagrams below.

H ∆−−−→ H⊗H

∆

y y∆⊗id

H⊗H id⊗∆−−−→ H⊗H⊗H

H⊗H ∆←−−− H ∆−−−→ H⊗H

id⊗ϵ
y id

y yϵ⊗id

H⊗ k H k⊗H

3. The antipode S is a k-linear anti-endomorphism S for which the following diagram
below commutes.

H⊗H S⊗idH //H⊗H
µ

##
H

∆
;;

ϵ //

∆ ##

k η //H

H⊗H
idH⊗S

//H⊗H
µ

;;

The Hopf algebra (H, µ,∆, η, ϵ) is often simply denoted by H.

Definition 2.12. Let (A, µA,∆A, ηA, ϵA) and (B, µB,∆B, ηB, ϵB) be two Hopf Algebras
with antipodes SA and SB respectively, and consider elements a, a1, a2, 1A ∈ A and
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b, b1, b2, 1B ∈ B where 1A and 1B are the multiplicative identity elements. A and B
are dually paired by an inner product ⟨ , ⟩ : B ⊗A → Q, if:

⟨µB(b1, b2), a⟩ = ⟨b1 ⊗B b2,∆A(a)⟩, ⟨1B, a⟩ = ϵA(a),

⟨b, µA(a1, a2)⟩ = ⟨∆B(b), a1 ⊗A a2⟩, ϵB(b) = ⟨b, 1A⟩, ⟨SB(b), a⟩ = ⟨b, SA(a)⟩.

Two bases {ai}i∈I and {bi}i∈I of A and B respectively are dual when ⟨ai, bj⟩ = δi,j.

Example 2.13. Sym is a self-dual Hopf algebra with the inner product ⟨sλ, sµ⟩ = δλ,µ,
meaning that the Schur basis is dual to itself.

The following result gives a relation for the change of bases between dual bases.

Proposition 2.14. [22] Let A and B be dually paired algebras and let {ai}i∈I be a basis
of A. A basis {bi}i∈I of B is the unique basis that is dual to {ai}i∈I if and only if the
following relationship holds for any pair of dual bases {ci}i∈I in A and {di}i∈I in B:

ai =
∑
j∈I

ki,jcj and dj =
∑
i∈I

ki,jbi.

Next, we have a relation on the coefficient of the product and coproduct of dual bases.

Proposition 2.15. [18] The coproduct of the basis {bi}i∈I in B is uniquely defined by
the product of its dual basis {ai}i∈I in A in the following way:

ajak =
∑
i∈I

cij,kai ⇐⇒ ∆(bi) =
∑

(j,k)∈I×I

cij,kbj ⊗ bk.

Further, ∆ : B → B ⊗ B is an algebra homomorphism.

Example 2.16. For partitions λ and µ, the product of Schur functions in Sym is given
by sλsµ =

∑
ν c

ν
λ,µsν where c

ν
λ,µ are the Littlewood Richardson coefficients. For a partition

ν, the coproduct on Schur functions is given by ∆(sν) =
∑

λ,µ c
ν
λ,µsλ ⊗ sµ by Proposition

2.15.

2.3 Quasisymmetric functions

For a weak composition α = (α1, α2, . . .), we write xα = xα1
1 x

α2
2 · · · . When α has k

non-zero entries given by αi1 = a1, αi2 = a2, . . . , αik = ak with i1 < · · · < ik, then
xα = xa1i1 x

a2
i2
· · ·xakik . A quasisymmetric function f(x) is a formal power series of the form

f(x) =
∑
α

bαx
α,

where the sum runs over weak compositions α and the coefficients of the monomials
xa1i1 . . . x

ak
ik

and xa1j1 . . . x
ak
jk

are equal if i1 < . . . < ik and j1 < . . . < jk.
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We define the two most common bases ofQSym. Given a composition α, themonomial
quasisymmetric function Mα is defined as

Mα =
∑

i1<...<ik

xα1
i1
. . . xαk

ik
,

where the sum runs over strictly increasing sequences of k positive integers i1, . . . , ik ∈
Z>0. The fundamental quasisymmetric function Fα is defined as

Fα =
∑
β⪯α

Mβ.

The fundamental functions are also denoted Lα in the literature [32].

Example 2.17. The monomial quasisymmetric function indexed by (2, 1) is

M(2,1) =
∑
i<j

x2ixj = x21x2 + x21x3 + . . .+ x22x3 + x22x4 + . . .+ x23x4 + x23x5 + . . . .

The expansion of F(3) into the monomial basis is

F(3) =M(3) +M(2,1) +M(1,2) +M(1,1,1).

The algebra of quasisymmetric functions, denoted QSym, admits a Hopf algebra struc-
ture. The monomial basis inherits its product and coproduct from the quasishuffle and

concatenation operations on compositions. The quasishuffle
Q

of compositions is defined
as the sum of shuffles of α = (α1, . . . , αk) and β = (β1, . . . , βl) where any two consecu-
tive entries αi and βj (in that order) may be replaced with αi + βj. Note that the same
composition may appear multiple times in the quasishuffle. Multiplication of monomial
functions is given by

MαMβ =
∑
γ

Mγ,

where γ is a summand in α
Q

β with multiplicity. Comultiplication of the monomial
functions is given by

∆(Mα) =
∑
β·γ=α

Mβ ⊗Mγ,

where the sum runs over all compositions β, γ such that β · γ = α.

Example 2.18. The following equations show the product and coproduct on monomial
quasisymmetric functions expanded in terms of the monomial basis:

M(2,1)M(1) = 2M(2,1,1) +M(1,2,1) +M(2,2) +M(3,1),

∆(M(1,2,1)) = 1⊗M(1,2,1) +M(1) ⊗M(2,1) +M(1,2) ⊗M(1) +M(1,2,1) ⊗ 1.

For more details on quasisymmetric functions see [27].
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2.4 Noncommutative symmetric functions

The algebra of noncommutative symmetric functions, written NSym, is the Hopf algebra
dual to QSym. NSym can be defined as the algebra with generators {H1, H2, . . .} and
no relations, that is NSym = Q ⟨H1, H2, . . .⟩ .

Given a composition α = (α1, . . . , αk), we define Hα = Hα1Hα2 . . . Hαk
. Then, the set

{Hα}α forms a basis of NSym called the complete homogeneous basis. NSym and QSym
are dually paired by the inner product defined by ⟨Hα,Mβ⟩ = δα,β for compositions α, β.

Multiplication and comultiplication in NSym are defined for the complete homoge-
neous functions as:

HαHβ = Hα·β and ∆(Hα) =
∑
(β,γ)

Hβ ⊗Hγ,

where β and γ are compositions such that α can be obtained from β
Q

γ. For a
composition α, the ribbon noncommutative symmetric function is defined as

Rα =
∑
β⪰α

(−1)ℓ(a)−ℓ(β)Hβ.

The ribbon functions are a basis of NSym dual to the fundamental basis of QSym,
meaning ⟨Rα, Fβ⟩ = δα,β. For a composition α, the elementary noncommutative symmetric
function is defined as

Eα =
∑
β⪯α

(−1)|α|−ℓ(β)Hβ.

For more details on the noncommutative symmetric functions see [15].

2.5 The dual immaculate quasisymmetric functions

The dual immaculate basis of QSym was introduced by Berg, Bergeron, Saliola, Serrano,
and Zabrocki in [4]. Like the Schur functions, the dual immaculate functions are defined
combinatorially as the sum of monomials associated to certain tableaux.

Definition 2.19. Let α and β be a composition and weak composition respectively. An
immaculate tableau of shape α and type β is a labelling of the boxes of the diagram of α
by positive integers in such a way that:

1. the number of boxes labelled by i is βi,

2. the sequence of entries in each row, from left to right, is weakly increasing, and

3. the sequence of entries in the first column, from top to bottom, is strictly increasing.

An immaculate tableau T of type β = (β1, . . . , βh) is associated with the monomial
xT = xβ11 x

β
2 · · ·x

βh
h .
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Example 2.20. The immaculate tableaux of shape α = (2, 3) and type β = (1, 2, 2) are:

1 2
2 3 3

1 3
2 2 3

Both tableaux are associated with the monomial x1x
2
2x

2
3.

Definition 2.21. For a composition α, the dual immaculate function is defined by

S∗
α =

∑
T

xT ,

where the sum runs over all immaculate tableaux T of shape α.

Example 2.22. The dual immaculate functionS∗
(2,2) corresponds to immaculate tableaux

of shape (2, 2):

1 1
2 2

1 1
2 3

1 1
3 3

1 2
2 2

1 2
2 3

1 2
3 3

1 3
2 2

1 3
2 3

1 3
3 3

2 2
3 3

2 3
3 3

· · ·

Therefore,

S∗
(2,2) = x21x

2
2 + x21x2x3 + x21x

2
3 + x1x

3
2 + 2x1x

2
2x3 + 2x1x2x

2
3 + x1x

3
3 + x22x

2
3 + x2x

3
3 + . . . .

The dual immaculate functions have positive expansions into the monomial and fun-
damental bases.

Proposition 2.23. [4] The dual immaculate functions are monomial positive. Moreover,
they expand as

S∗
α =

∑
β⩽ℓα

Kα,βMβ,

where Kα,β is the number of immaculate tableaux of shape α with type β.

Example 2.24. Let α = (2, 2) as before. The set of compositions β such that |α| = |β|
and β ⩽ℓ α is {(2, 2), (2, 1, 1), (1, 3), (1, 2, 1), (1, 1, 2), (1, 1, 1, 1)}. The two immaculate
tableaux of shape (2, 2) and type (1, 1, 2) are

1 2
3 3

1 3
2 3

Thus, K(2,2),(1,1,2) = 2, and repeating that calculation for each β in the set above yields

S∗
(2,2) =M(2,2) +M(2,1,1) +M(1,3) + 2M(1,2,1) + 2M(1,1,2) + 3M(1,1,1,1).

The expansion of the dual immaculate functions into the fundamental basis relies on
the following subset of immaculate tableaux.

Definition 2.25. A standard immaculate tableau of shape α |= n is an immaculate
tableau in which each integer 1 through n appears exactly once.
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Example 2.26. The standard immaculate tableaux of shape α = (2, 3) are:

1 2
3 4 5

1 3
2 4 5

1 4
2 3 5

1 5
2 3 4

Every immaculate tableau can be associated with a standard immaculate tableau by
standardization.

Definition 2.27. Given an immaculate tableau T of shape α, form a standard immaculate
tableau std(T ) = U of shape α by relabeling the boxes of T with the integers 1 through
n in the following way. Begin with all boxes filled with 1’s then continue on to the boxes
filled with 2’s, then 3’s, and so on, ignoring boxes we have already relabelled. Starting
from the lowest row containing each value, move through boxes filled with the same value
from left to right and bottom to top, relabelling each with the next integer from [n],
starting the very first box with 1. The resultant tableau U is a standard immaculate
tableau which we call the standardization of T .

Example 2.28. The two immaculate tableaux below both have shape (2, 3) and type
(1, 2, 2) but different standardizations:

T1 = 1 2
2 3 3

T2 = 1 3
2 2 3

std(T1) = 1 3
2 4 5

std(T2) = 1 5
2 3 4

Definition 2.29. [4, 32] A standard immaculate tableau U has a descent in position i
if (i + 1) is in a row strictly lower than i in U . We denote the set of all descents in
U as Des(U), called the descent set of U . If Des(U) = {d1, . . . , dk−1} then the descent
composition of U is defined as co(U) = comp(Des(U)) = (d1, d2−d1, d3−d2, . . . , n−dk−1).

Proposition 2.30. [4] The dual immaculate functionsS∗
α are fundamental positive. They

expand as

S∗
α =

∑
β⩽ℓα

Lα,βFβ,

where Lα,β is the number of standard immaculate tableaux with shape α and descent
composition β.

Example 2.31. Let α = (2, 2). The standard immaculate tableaux of shape (2, 2), listed
with their descent sets and descent compositions, are

S1 = 1 2
3 4

S2 = 1 3
2 4

S3 = 1 4
2 3

Des(S1)={2},
co(S1)=(2,2)

Des(S2)={1,3},
co(S2)=(1,2,1)

Des(S3)={1},
co(S3)=(1,3)

Therefore, L(2,2)(2,2) = 1, L(2,2),(1,2,1) = 1, and L(2,2),(1,3) = 1, meaning S∗
(2,2) = F(1,2,1) +

F(1,3) + F(2,2).
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2.6 The immaculate noncommutative symmetric functions

The dual immaculate functions were originally developed as the duals to the immaculate
functions in NSym [4]. The immaculate functions are defined constructively by creation
operators that generalize the Bernstein operators used to define the Schur functions.

For F ∈ QSym, the operator F⊥ acts on elements H ∈ NSym based on the relation
⟨H,FG⟩ = ⟨F⊥H,G⟩. This expands as F⊥(H) =

∑
α⟨H,FAα⟩Bα for dual bases {Aα}α

of QSym and {Bα}α of NSym. Most important for our purposes is the specialization of
this operator to the fundamental basis [4], where the expansion of F⊥

1i acting on Hα is

F⊥
1i (Hα) =

∑
β∈Nm

|β|=|α|−i
αj−1⩽βj⩽αj

Hβ̃.

We interpret the action of this operator on the indices of Hα. This operator acts on the
composition α by taking a diagram of shape α and returning the sum of all diagrams (as
indices of the H’s) whose shape is obtained by removing i boxes from the right-hand side
with no more than 1 box being removed from each row.

Example 2.32. For instance, F⊥
(1,1)H(2,1,1,2) = H(2,2) + 2H(2,1,1) + 2H(1,1,2) +H(1,1,1,1) can

be visualized with the following tableaux, where the gray blocks are removed and all rows
are moved up to fill any entirely empty rows.

H2,2 H2,1,1 H2,1,1 H1,1,2 H1,1,2 H1,1,1,1

Definition 2.33. For m ∈ Z, the noncommutative Bernstein operator Bm is defined as

Bm =
∑
i⩾0

(−1)iHm+iF
⊥
1i .

These operators generalize the Bernstein operators used to construct the Schur func-
tions [32] and thus allow for the construction of a noncommutative generalization of the
Schur functions.

Definition 2.34. For α = [α1, . . . , αm] ∈ Zm, the immaculate noncommutative symmetric
function Sα is defined as

Sα = Bα1 · · ·Bαm(1).

The immaculate basis of QSym is the set of immaculate functions {Sα}α where α |= n
for n ∈ Z>0.

Example 2.35. If α = (α1, α2), then S(α1,α2) = Bα1(Hα2) = Hα1Hα2 −Hα1+1Hα2−1.
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Properties of these Bernstein operators lead to a right Pieri rule for the immaculate
functions.

Theorem 2.36. [4] For a composition α and an integer s,

SαHs =
∑
α⊂sβ

Sβ,

where the sum runs over all compositions β such that α ⊂s β.

Example 2.37. Applying the Pieri rule for α = (2, 1) and s = 2 yields

S(2,1)H(2) = S(2,1,2) +S(2,2,1) +S(3,1,1) +S(2,3) +S(3,2) +S(4,1).

Iteration of this Pieri rule yields the following positive expansions of the complete
homogeneous and ribbon bases in terms of the immaculate basis:

Hβ =
∑
α⩾ℓβ

Kα,βSα and Rβ =
∑
α⩾ℓβ

Lα,βSα.

Notice that these expansions relate to those in Propositions 2.23 and 2.30 via Propo-
sition 2.14. The expansion of the immaculate functions into the complete homogeneous
basis follows a Jacobi-Trudi rule.

Theorem 2.38. [4] For α = [α1, . . . , αm] ∈ Zm,

Sα =
∑
σ∈Sm

(−1)σHα1+σ1−1,α2+σ2−2,...,αm+σm−m,

with H0 = 1 and H−m = 0 for m > 0. This is equivalent to taking the noncommutative
analogue of the determinant of the matrix below obtained by expanding the determinant
of the matrix along the first row and multiplying those elements on the left:

Hα1 Hα1+1 · · · Hα1+ℓ−1

Hα2−1 Hα2 · · · Hα2+ℓ−2

...
...

. . .
...

Hαℓ−ℓ+1 Hαℓ−ℓ+2 · · · Hαℓ

 .
Certain classes of immaculate functions also have simpler expansions in terms of the

complete homogeneous basis [4]. For instance, for a positive integer n,

S1n =
∑
α|=n

(−1)n−ℓ(α)Hα.

There is another right Pieri rule for multiplication by these immaculate functions. For
a composition α and a positive integer s,

SαS1s =
∑

β|=|α|+s
αi⩽βi⩽αi+1

Sβ.
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2.7 Skew dual immaculate functions and the immaculate poset

The immaculate poset P, also defined in [4], is a labelled poset on compositions where α
covers β if β ⊂1 α. In other words, α covers β if α can be obtained by adding 1 to any
part of β or to the end of β as a new part. In terms of diagrams, this is equivalent to
adding a box to the right of any row or adding a box at the bottom of the tableau.

In the Hasse diagram of P, label the arrow from β to α withm, wherem is the number
of the row where the new box is added. Maximal chains from ∅ to α are equivalent to
standard immaculate tableaux of shape α, and maximal chains from β to α define skew
standard immaculate tableaux of shape α/β. A path {β = β(0) →m1 β(1) →m2 . . . →mk

β(k) = α} corresponds to the skew standard immaculate tableaux of shape α/β where the
boxes are filled with positive integers in the order they were added following the path.

Example 2.39. Consider two paths P1 = {∅
1−→ (1)

2−→ (1, 1)
2−→ (1, 2)

1−→ (2, 2)} and P2 =

{∅ 1−→ (1)
1−→ (2)

2−→ (2, 1)
2−→ (2, 2)}. These paths correspond to the standard immaculate

tableaux T1 and T2 below, respectively. The path P3 = {(1) 2−→ (1, 1)
1−→ (2, 1)

2−→ (2, 2)}
corresponds to the skew standard immaculate tableau T3.

T1 =
1 4

2 3
T2 =

1 2

3 4
T3 = 2

1 3

Definition 2.40. [30] Let α and β be compositions where β ⊆ α. A skew immaculate
tableau of shape α/β is a skew shape α/β filled with positive integers such that the entries
in the first column of α are strictly increasing from top to bottom and the entries in rows
are weakly increasing from left to right. We say T is a skew standard immaculate tableau
if it contains the entries 1, . . . , |α| − |β| with each appearing exactly once.

Definition 2.41. [4] Given compositions α, β with β ⊆ α, the skew dual immaculate
function is defined as

S∗
α/β =

∑
γ

⟨SβHγ,S
∗
α⟩Mγ,

where the sum runs over all γ |= |α| − |β|.

The coefficient ⟨SβHγ,S
∗
α⟩ is exactly equal to the number of skew standard immacu-

late tableaux of shape α/β with type γ [30]. Thus, the skew dual immaculate functions
can also be defined by a sum over skew immaculate tableaux.

Theorem 2.42. [30] Let α and β be compositions with β ⊆ α. Then

S∗
α/β =

∑
T

xT ,

where the sum runs over all skew immaculate tableaux of shape α/β.

Expansions of the skew dual immaculate functions into the fundamental and dual
immaculate bases yield coefficients with connections to the multiplicative structure of the
immaculate functions.
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Proposition 2.43. [4] Given compositions α and β with β ⊆ α,

S∗
α/β =

∑
γ

⟨SβRγ,S
∗
α⟩Fγ =

∑
γ

⟨SβSγ,S
∗
α⟩S∗

γ,

where the sums run over all γ |= |α| − |β|. Moreover, the coefficients cαβ,γ = ⟨SβSγ,S
∗
α⟩

are the immaculate structure constants that appear in the expansion

SβSγ =
∑
α

cαβ,γSα.

Additionally, the comultiplication of the dual immaculate functions can be described
using skew compositions.

Definition 2.44. [30] Given α |= n, the comultiplication on S∗
α is defined as

∆(S∗
α) =

∑
β

S∗
β ⊗S∗

α/β,

where the sum runs over all compositions β such that β ⊆ α.

The multiplication and antipode of the dual immaculate functions do not yet have
combinatorial definitions in general. For more on the immaculate and dual immaculate
functions see [1, 5, 7, 10, 8, 17, 25, 26].

3 Doliwa’s colored QSymA and NSymA

The algebra of noncommutative symmetric functions, and dually the algebra of quasisym-
metric functions, have natural generalizations isomorphic to algebras of sentences. In [12],
Doliwa introduces these generalizations which are built using partially commutative col-
ored variables.

Let A = {a1, a2, . . . , am} be an alphabet of letters, which we call colors. Words over
A are finite sequences of colors written without separating commas. Finite sequences
of non-empty words are called sentences. The empty word and the empty sentence are
both denoted by ∅. A weak sentence may include empty words. The size of a word
w, denoted |w|, is the total number of colors it contains. Note that when we refer to
“the number of colors”, we are counting repeated colors unless we say “the number of
unique colors”. The size of a sentence I = (w1, w2, . . . , wk), denoted |I|, is also the
number of colors it contains. The length of a sentence I, denoted ℓ(I), is the number
of words it contains. The concatenation of two words w = a1 · · · ak and v = b1 · · · bj is
w · v = a1 · · · akb1 · · · bj, sometimes just denoted wv. The word obtained by concatenating
every word in a sentence I is called the maximal word of I, denoted w(I) = w1w2 . . . wk.
For our purposes, we also define the word lengths of I as wℓ(I) = (|w1|, . . . , |wk|), which
gives the underlying composition of the sentence.
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Example 3.1. Let a, b, c ∈ A and let w1 = ac, w2 = b, and w3 = cab be words. Consider
the sentence I = (w1, w2, w3) = (ac, b, cab). Then, |w1| = 2, |w2| = 1, |w3| = 3, and
|I| = 6. The length of I is ℓ(I) = 3 and the word lengths of I is wℓ(I) = (2, 1, 3). The
maximal word of I is w(I) = acbcab.

A sentence I is a refinement of a sentence J , written I ⪯ J , if J can be obtained
by concatenating some adjacent words of I. In other words, I ⪯ J if w(I) = w(J) and
wℓ(I) ⪯ wℓ(J). In this case, I is called a refinement of J and J a coarsening of I. The
Möbius function on the poset of sentences ordered by refinement is given by

µ(J, I) = (−1)ℓ(J)−ℓ(I) for J ⪯ I. (1)

Given a total order ⩽ on A, define the following lexicographic order ⪯ℓ on words. For
words w = a1 . . . ak and v = b1 . . . bj, we say w ⩽ℓ v if ai < bi for the first positive integer
i such that ai ̸= bi. Note that if no such i exists then w = v.

Example 3.2. Let A = {a < b < c} and I = (abc). The refinements of I are (abc), (a, bc),
(ab, c), and (a, b, c). Under lexicographic order, abc ⪯ℓ acb ⪯ℓ bac ⪯ℓ bca ⪯ℓ cab ⪯ℓ cba.

The concatenation of two sentences I = (w1, . . . , wk) and J = (v1, . . . , vh) is I · J =
(w1, . . . , wk, v1, . . . , vh). Their near-concatenation is I ⊙ J = (w1, . . . , wkv1, . . . , vh) where
the words wk and v1 are concatenated into a single word. Given I = (w1, . . . , wk) where
ai is the i

th entry in I and ai+1 is the (i + 1)th entry in I, we say that I splits after the
ith entry if ai ∈ wj and ai+1 ∈ wj+1 for j ∈ [k].

Example 3.3. Let I = (a, bc) and J = (ca, b). Then, I · J = (a, bc, ca, b) and I ⊙ J =
(a, bcca, b). The sentence (a, bcca, b) splits after the 1st and 5th entries.

Given I = (w1, . . . , wk), the reversal of I is Ir = (wk, wk−1, . . . , w1). The complement
of I, denoted Ic, is the unique sentence such that w(I) = w(Ic) and Ic splits exactly
where I does not. Both maps are involutions on sentences.

Example 3.4. Let I = (abc, de). Then Ir = (de, abc) and Ic = (a, b, cd, e).

The flattening of a weak sentence I, denoted Ĩ, is the sentence obtained by removing
all empty words from I. Further, for a weak sentence J = (v1, . . . , vk) and a sentence
I = (w1, . . . , wk), we say that J is right-contained in I, denoted J ⊆R I, if there exists a
weak sentence I/RJ = (u1, . . . , uk) such that wi = uivi for every i ∈ [k]. We say that J
is left-contained in I, denoted J ⊆L I, if there exists a weak sentence I/LJ = (q1, . . . , qk)
such that wi = viqi for every i ∈ [k]. Note that right-containment is denoted I/J in [12]
but here that notation is used exclusively to denote skew shapes.

Example 3.5. Let I = (ab, cdef), J = (b, ef), and K = (a, cde). Then J ⊆R I
and I/RJ = (a, cd), while K ⊆L I and I/LK = (b, f). Given the weak sentence
I = (∅, a, ∅, bc), the flattening of I is Ĩ = (a, bc).
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3.1 The Hopf algebra of sentences and colored noncommutative symmetric
functions

The algebra of sentences (colored compositions) is a Hopf algebra with the multiplication
being the concatenation of sentences, the comultiplication given by

∆(I) =
∑
J⊆RI

flI/RJ ⊗ J̃ ,
the natural unity map, the counit

ϵ(I) =

®
1, if I = ∅,
0, otherwise,

and the antipode

S(I) =
∑
J⪯Ir

(−1)ℓ(J)J.

The algebra of sentences taken over an alphabet with only one letter is isomorphic to
NSym. Thus, the algebra of sentences taken over any alphabet A is a natural extension
of NSym called the algebra of colored noncommutative symmetric functions, denoted
NSymA. The linear basis of sentences I is the complete homogeneous basis of NSymA,
denoted {HI}I .

NSymA can also be defined as the algebra freely generated over noncommuting ele-
ments Hw for any word in A. The Hopf algebra operations extend to {HI}I as follows:

HI ·HJ = HI·J , ∆(HI) =
∑
J⊆RI

HflI/RJ ⊗HJ̃ , S(HI) =
∑
J⪯Ir

(−1)ℓ(J)HJ .

The reversal and complement operations extend as Hr
I = HIr and Hc

I = HIc .

Definition 3.6. The uncoloring map υ : NSymA → NSym is defined υ(HI) = Hwℓ(I)

and extended linearly. If the alphabet A only contains one color, then υ is an isomorphism.

We say that two bases {BI}I and {Cα}α in NSymA and NSym respectively are
analogous if υ(BI) = Cwℓ(I) for all sentences I when A is an alphabet of one color. For
instance, the colored complete homogeneous basis of NSymA is analogous to the complete
homogeneous basis of NSym. NSymA also contains analogues of the elementary and
ribbon bases of NSym. For a sentence I, the colored elementary function is defined by

EI =
∑
J⪯I

(−1)|I|−ℓ(J)HJ ,

and the colored ribbon function is defined by

RI =
∑
J⪰I

(−1)ℓ(J)−ℓ(I)HJ and so HI =
∑
J⪰I

RJ . (2)

Note that we use υ to denote the uncoloring maps on both QSymA and NSymA, and
often refer to these together as if they are one map.
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3.2 The colored quasisymmetric functions and colored duality

The colored quasisymmetric functions, which constitute the algebra dual to NSymA, are
constructed using partially commutative colored variables. For a color a ∈ A, define the
set of infinite colored variables xa = {xa,1, xa,2, . . .} and let xA = ∪a∈Axa. These variables
are assumed to be partially commutative in the sense that variables only commute if the
second indices are different. That is, for a, b ∈ A,

xa,ixb,j = xb,jxa,i for i ̸= j and xa,ixb,i ̸= xb,ixa,i if a ̸= b.

As a result, every monomial in variables xa,i can be uniquely re-ordered so that the
sequence of the second indices of the variables is weakly increasing, at which point any
first indices sharing the same color can be combined into a single word. Every monomial
has a sentence (w1, . . . , wm) defined by its re-ordered, combined form xw1,j1 · · ·xwm,jm

where j1 < . . . < jm. Similar notions of coloring with different assumptions of partial
commutativity can be found in [6, 31].

Example 3.7. The monomial xa,2xb,3xb,1xc,2 can be reordered as xb,1xa,2xc,2xb,3 and com-
bined as xb,1xac,2xb,3. Then, the sentence of this monomial is (b, ac, b).

QSymA is a subset of Q[xA] defined as the set of formal power series such that the
coefficients of the monomials indexed by the same sentence are equal.

Example 3.8. The following function f(xA) is in QSymA:

f(xA) = 3xa,1xbc,2 + 3xa,1xbc,3 + . . .+ 3xa,2xbc,3 + 3xa,2xbc,4 + . . . .

Bases in QSym extend naturally to bases in QSymA. Letting I = (w1, w2, . . . , wm)
be a sentence, the colored monomial quasisymmetric function MI is defined as

MI =
∑

1⩽j1<j2<...<jm

xw1,j1xw2,j2 . . . xwm,jm ,

where the sum runs over strictly increasing sequences of m positive integers j1, . . . , jm.

Example 3.9. The colored monomial quasisymmetric function for the sentence (a, bc) is

M(a,bc) = xa,1xbc,2 + xa,1xbc,3 + . . .+ xa,2xbc,3 + xa,2xbc,4 + . . .+ xa,3xbc,4 + . . . .

Proposition 3.10. [12] The subspace QSymA of Q[xA] spanned by {MI}I is a subalgebra
isomorphic to the graded algebra dual of NSymA such that MI is mapped to the dual of
HI . That is, QSymA and NSymA are Hopf algebras dually paired by the inner product
⟨HI ,MJ⟩ = δI,J .

QSymA and NSymA inherit the product and coproduct from the Hopf algebra of

sentences. The quasishuffle I
Q
J is defined as the sum of all shuffles of sentences I and

J and shuffles of sentences I and J with any number of pairs wivj of consecutive words
wi ∈ I and vj ∈ J concatenated.
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Example 3.11. The usual shuffle operation on (ab, c) and (d, e) is

(ab, c) (d, e) = (ab, c, d, e)+(ab, d, c, e)+(d, ab, c, e)+(ab, d, e, c)+(d, ab, e, c)+(d, e, ab, c).

The quasishuffle of (ab, c) and (d, e) is

(ab, c)
Q

(d, e) = (ab, c, d, e)+(ab, cd, e)+(ab, d, c, e)+(abd, c, e)+(ab, d, ce)+(abd, ce)

+ (d, ab, c, e)+ (d, ab, ce)+ (ab, d, e, c)+ (abd, e, c)+ (d, ab, e, c)+ (d, abe, c)+ (d, e, ab, c).

Multiplication in QSymA is dual to the coproduct ∆ in NSymA, and given by

MIMJ =
∑
K

MK ,

where the sum runs over all summands K in I
Q
J . Similarly, comultiplication is dual

to the concatenation product in NSymA using the deconcatenation product

∆(MI) =
∑
I=J ·K

MJ ⊗MK , (3)

where the sum runs over all sentences J and K such that I = J ·K. Finally, the antipode
S∗ in QSymA is given by

S∗(MI) = (−1)ℓ(I)
∑
Jr⪰I

MJ .

Definition 3.12. The uncoloring map υ : QSymA → QSym is defined by

υ(xw1,1 · · ·xwk,k) = x
|w1|
1 · · ·x|wk|

k ,

and extends linearly. If the alphabet A contains only one color, υ is an isomorphism.

We say two bases {BI}I and {Cα}α of QSymA and QSym are analogous if υ(BI) =
Cwℓ(I) for all sentences I when A is an alphabet of one color. By definition, the colored
monomial functions are analogues for the monomial quasisymmetric functions. The fun-
damental quasisymmetric functions have colored analogues, called the colored fundamental
quasisymmetric functions, that are defined as

FI =
∑
J⪯I

MJ and MI =
∑
J⪯I

(−1)ℓ(J)−ℓ(I)FJ , (4)

where the sums run over all sentences J that are refinements of I. The colored fundamental
basis is dual to the colored ribbon basis with ⟨RI , FJ⟩ = δI,J .

the electronic journal of combinatorics 31(2) (2024), #P2.7 19



4 A partially commutative generalization of the dual immacu-
late functions

To generalize the dual immaculate functions to QSymA, we first define a colored gen-
eralization of tableaux. These allow for a combinatorial definition of the colored dual
immaculate functions, which then expand positively into the colored monomial and col-
ored fundamental bases. Additionally, we define the colored immaculate descent graph
and use it to give an expansion of the colored fundamental functions into the colored
dual immaculate functions. In [28], Mason and Searles study a lift of the dual immac-
ulate functions to the full polynomial ring. Our generalization of the dual immaculate
functions is more aligned with the Hopf algebra-related aspects of the original functions
whereas Mason and Searles’ lift relates closely to slide polynomials, key polynomials, and
Demazure atoms. The dual immaculate functions are the stable limit of their lifts while
they are isomorphic to a special case of our lift.

4.1 The colored dual immaculate basis of QSymA

Definition 4.1. For a sentence J = (w1, . . . , wk), the colored composition diagram of
shape J is a composition diagram of wℓ(J) where the jth box in row i is colored, or filled,
with the jth color in wi.

Example 4.2. The colored composition diagram of shape J = (aba, cb) for a, b, c ∈ A is

a b a

c b

Definition 4.3. For a sentence I, a colored immaculate tableau (CIT) of shape I is a
colored composition diagram of I filled with positive integers such that the integer entries
in each row are weakly increasing from left to right and the entries in the first column are
strictly increasing from top to bottom.

Definition 4.4. The type of a CIT T is a sentence B = (u1, . . . , uj) that indicates how
many boxes of each color are filled with each integer and in what order those boxes appear.
That is, each word ui in B is defined by starting in the lowest box containing an i and
reading the colors of all boxes containing i’s going from left to right, bottom to top. If no
box is filled with the number i, then ui = ∅. The flat type of T is given by the flattening
of B, denoted again by B̃.

For a CIT T of type B = (u1, . . . , uj), we write the monomial xT = xu1,1xu2,2 · · ·xuj ,j,
which may also be denoted xB.

Example 4.5. The colored immaculate tableaux of shape J = (aba, cb) and type B =
(a, c, ∅, b, ba) are

a, 1 b, 5 a, 5

c, 2 b, 4

a, 1 b, 4 a, 5

c, 2 b, 5

the electronic journal of combinatorics 31(2) (2024), #P2.7 20



Both tableaux are associated with the monomial xa,1xc,2xb,4xba,5 and have the flat type
B̃ = (a, c, b, ba).

Definition 4.6. For a sentence J , the colored dual immaculate function is defined as

S∗
J =

∑
T

xT ,

where the sum is taken over all colored immaculate tableaux T of shape J .

Example 4.7. For J = (aba, cb), the colored dual immaculate function is

S∗
aba,cb = xaba,1xcb,2 + xab,1xcba,2 + xaba,1xc,2xb,3 + . . .+ 2xa,1xc,2xb,3xba,4 + . . . .

The colored dual immaculate functions map to the dual immaculate functions inQSym
under the uncoloring map υ, thus we say the two bases are analogous.

Proposition 4.8. Let A be an alphabet of one color and I be a sentence. Then,

υ(S∗
I) = S∗

wℓ(I).

Moreover, {S∗
I}I in QSymA is analogous to {S∗

α}α in QSym.

Proof. Observe that υ acts on a monomial xT where T is a colored immaculate tableau of
shape I by mapping it to the monomial xT

′
where T ′ is the immaculate tableau of shape

wℓ(I) with the same integer entries as T . Thus, υ(S∗
I) = S∗

wℓ(I) for all alphabets A and
more specifically alphabets A containing only one color.

We now introduce results on colored immaculate tableaux to provide a foundation for
the expansions of the colored dual immaculate functions into other bases of QSym.

Definition 4.9. A standard colored immaculate tableau (SCIT) of size n is a colored
immaculate tableau in which the integers 1 through n each appear exactly once. The
standardization of a CIT T , denoted std(T ), is a standard colored immaculate tableau
obtained by renumbering the boxes of T in the order they appear in its type.

Example 4.10. A few colored immaculate tableaux of shape J = (ab, cb) together with
their standardizations, which are the only standard colored immaculate tableaux of shape
J = (ab, cb), are:

T1 =
a, 1 b, 2

c, 3 b, 3
T2 =

a, 1 b, 2

c, 2 b, 3
T3 =

a, 1 b, 3

c, 2 b, 2

std(T1) =
a, 1 b, 2

c, 3 b, 4
std(T2) =

a, 1 b, 3

c, 2 b, 4
std(T3) =

a, 1 b, 4

c, 2 b, 3
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Standard colored immaculate tableaux share certain statistics and properties with non-
colored standard immaculate tableaux. The number of SCIT of shape J is the same as
the number of standard immaculate tableaux of shape wℓ(J), meaning both are counted
by the same hook length formula in [4]. Additionally, the notions of descent and descent
composition for SCIT are the same as those in Definition 2.29, simply disregarding color.
However, we define an additional concept of the colored descent composition.

Definition 4.11. Let T be a standard colored immaculate tableau of type B with descent
set Des(T ) = {i1, . . . , ik} for some k ∈ Z>0. The colored descent composition of T ,
denoted coA(T ), is the unique sentence obtained by splitting w(B) after the ithj entry for
each j ∈ [k].

The colored descent composition can also be defined as the sentence obtained by
reading through the colors of the tableau in the order that the boxes are numbered and
splitting into a new word each time the next box is in a strictly lower row. Note that for
a SCIT T of type B, the colored descent composition is the unique sentence for which
wℓ(coA(T )) = co(T ) and w(coA(T )) = w(B).

Example 4.12. The standard colored immaculate tableaux of shape (ab, cb), along with
their descent sets and colored descent compositions, are:

T1 =
a, 1 b, 2

c, 3 b, 4
T2 =

a, 1 b, 3

c, 2 b, 4
T3 =

a, 1 b, 4

c, 2 b, 3

Des(T1)={2},
coA(T1)=(ab,cb)

Des(T1)={1,3},
coA(T2)=(a,cb,b)

Des(T3)={1},
coA(T3)=(a,cbb)

Proposition 4.13. Let T1 and T2 be colored immaculate tableaux of shape J and type
B. Then, T1 = T2 if and only if std(T1) = std(T2).

Proof. It is trivial that T1 = T2 implies std(T1) = std(T2). Now, let std(T1) = std(T2) =
U , meaning by definition that the boxes of T1 appear in B in the same order as the boxes
of T2. The box (i, j) in row i and column j in both tableaux is filled with the same integer
k and with the kth color in w(B), thus T1 = T2.

Proposition 4.14. Let U be a standard colored immaculate tableau of shape J . For a
weak sentence B, there exists a colored immaculate tableau T of shape J and type B that
standardizes to U if and only if B̃ ⪯ coA(U).

Proof. (⇒) Let T be a colored immaculate tableau of shape J and type B such that
std(T ) = U . Both B and coA(U) are defined by the order that boxes appear in the type
of T , thus they have the same maximum words w(B) = w(coA(U)). Note that this also
means the ith letter in B̃ and the ith letter in coA(U) correspond to the same box in J .
Recall that coA(U) splits only after descents, and suppose that coA(U) splits after the
ith letter. Then the (i + 1)th letter is on a strictly lower row. Given that these entries
correspond exactly to the ith and (i+ 1)th letter in B̃, this tells us that B̃ must also split
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since the following entry is on a lower row. Thus B̃ also splits after every descent which
implies that B̃ ⪯ coA(U).

(⇐) Let B̃ = (v1, . . . , vj) ⪯ coA(U) and let vi be the nth
i word in B. We create a

colored immaculate tableau T of shape J and type B that standardizes to U by filling
the boxes of T in the order they are numbered in U . The first |v1| boxes are labeled
with n1’s, the next |v2| boxes are labeled with n2’s, and continue this process until the
last |vj| boxes are labeled with nj’s. Since B̃ ⪯ coA(U), each time there is a descent in
U the number being filled in must increase. This maintains the order of the boxes in
the type from U , meaning T standardizes to U . This filling also maintains the strictly
increasing condition on the first column and the weakly increasing condition on each row
by construction. Therefore, T is a colored immaculate tableau of shape J and type B
with std(T ) = U .

4.2 Expansion into the colored monomial and colored fundamental bases

The colored dual immaculate functions have positive expansions into the colored monomial
and colored fundamental bases. Their coefficients are determined combinatorially using
colored immaculate tableaux.

4.2.1 Expansion into the colored monomial functions

First, we establish the relationship between the colored monomial quasisymmetric func-
tions and colored immaculate tableaux. Then, we define coefficients counting colored
immaculate tableaux and prove our expansion. Finally, the transition matrix of these
coefficients leads to a proof that the colored dual immaculate functions are indeed a basis
of QSymA.

Proposition 4.15. For a sentence B, consider a standard colored immaculate tableau U
such that B ⪯ coA(U). Then,

MB =
∑
T

xT ,

where the sum runs over all colored immaculate tableaux T such that std(T ) = U and·�type(T ) = B.

Proof. Consider a standard colored immaculate tableau U and a sentence B = (v1, . . . , vh)
such that B ⪯ coA(U). By definition,

MB =
∑

1⩽j1<...<jh

xv1,j1 . . . xvh,jh .

Each monomial xv1,j1 . . . xvh,jh is equal to xT where T is the unique (by Proposition 4.13)
colored immaculate tableau such that std(T ) = U and its type C = (u1, . . . , ug) is the
sentence where word uji is equal to vi for 1 ⩽ i ⩽ h and all other words are empty.
This includes a tableau T for every sentence C such that C̃ = B. Thus, the above sum
is equivalent to summing xT over all CIT T with type C such that std(T ) = U and
C̃ = B.
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Example 4.16. The colored immaculate tableaux of shape J = (ab, cb) and type B =
(a, cb, b) are

T1 =
a, 1 b, 3

c, 2 b, 2
T2 =

a, 1 b, 2

c, 2 b, 3

The tableaux T1 and T2 have the same shape and type, but different standardiza-
tions (see Example 4.12). Now, consider all tableaux with types that flatten to B and
standardizations equal to std(T1):

a, 1 b, 3

c, 2 b, 2

a, 1 b, 4

c, 2 b, 2
· · ·

a, 1 b, 4

c, 3 b, 3
· · ·

a, 2 b, 5

c, 4 b, 4
· · ·

a, 5 b, 9

c, 7 b, 7

A single monomial function M(a,cb,b) can be associated with this set of tableaux. The
tableaux of flat type B that standardize to T2 are also represented by a function M(a,cb,b).
Thus, when finding the overall monomial expansion for S∗

(ab,cb), the tableaux of flat type

(a, cb, b) contribute to the sum as the term 2M(a,cb,b).

Definition 4.17. For a sentence J and weak sentence B, define the colored immaculate
Kostka coefficient KJ,B as the number of colored immaculate tableaux of shape J and
type B.

Proposition 4.18. Let J and C be a sentence and a weak sentence. Then, KJ,C = KJ,C̃ .

Proof. Suppose C̃ = (v1, . . . , vh) where ui1 = v1, . . . , uih = vh for some i1 < . . . < ih,
with all other uj = ∅. We define a map from the colored immaculate tableaux of shape J
and type C̃ to the colored immaculate tableaux of shape J and type C. Given a colored
immaculate tableau T of shape J and type C̃, replace each 1 with i1, 2 with i2, . . . , and
h with ih. This produces a tableau T ′ of shape J and type C. The inverse map takes
a tableau T ′ of shape J and type C and changes each i1 to 1, i2 to 2, . . ., and ih to h,
which yields the initial tableau T of shape J and type C̃. This is a bijection, meaning
KJ,C = KJ,C̃ .

Example 4.19. Let J = (ab, cb) and B = (∅, a, ∅, cb, b). Then, KJ,B = 2 because the
colored immaculate tableaux of shape J and type B are:

2, a 5, b

4, c 4, b

2, a 4, b

4, c 5, b

Notice that KJ,B̃ = 2 as well, since the CIT of shape J and type B̃ are:

1, a 3, b

2, c 2, b

1, a 2, b

2, c 3, b
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Theorem 4.20. For a sentence J , the colored dual immaculate function S∗
J expands

positively into the colored monomial basis as

S∗
J =

∑
B

KJ,BMB,

where the sum is taken over all sentences B such that |B| = |J |.

Proof. Let B1, . . . , Bj be all possible flat types of colored immaculate tableaux of shape
J . Then arrange the sum S∗

J =
∑

T xT into parts based on the flat types of the tableaux
T as

S∗
J =

∑‚�type(T )=B1

xT + . . .+
∑‚�type(T )=Bj

xT .

Consider the sum of xT over T such that ·�type(T ) = Bi. By Proposition 4.18, for any C
such that C̃ = B we have KJ,Bi

= KJ,C . By definition, for any flat sentence B,

MB =
∑
C̃=B

xC .

Thus, we can write

∑‚�type(T )=Bi

xT =
∑
C̃=Bi

KJ,CxC = KJ,Bi

Ñ∑
C̃=Bi

xC

é
= KJ,Bi

MBi
.

Therefore the overall sum becomes

S∗
J = KJ,B1MB1 + . . .+KJ,Bj

MBj
=
∑
B

KJ,BMB,

where the sum runs over all flat types B of the colored immaculate tableaux of shape J .
For all other B such that |B| = |J |, we have KJ,B = 0 and we can extend this sum to be
over all sentences B such that |B| = |J |.

Theorem 4.21. The set of colored dual immaculate functions forms a basis for QSymA.

Proof. Let A be an alphabet with a total ordering, and consider the transition matrix K
from {S∗

I}I to {MI}I . By Theorem 4.20, the entry of K in row J and column C is KJ,C .
We want to prove that K is upper unitriangular and thus invertible when the rows and
columns are ordered first by the reverse lexicographic order of compositions applied to
word lengths, then by lexicographic order on words.

Let J = (w1, . . . , wk) and C = (v1, . . . , vh) be sentences with |J | = |C|. We claim that
if wl(J) ⪰rl wl(C) and KJ,C ̸= 0 then J = C. Assume there exists a tableau T of shape
J and type C with wl(J) ⪰rl wl(C) and wl(J) ̸= wl(C). Then |w1| ⩽ |v1|. Observe
that the first row of the tableau has |w1| boxes and so if |w1| < |v1|, there would have
to be a 1 placed in a box somewhere below row 1. This is impossible by the conditions
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on colored immaculate tableaux so |w1| = |v1| and every box in row 1 is filled with 1’s.
Next, |w2| ⩽ |v2| and so the second row must start with a 2 for any 2’s to exist in T .
This implies that the first entry in each subsequent row is greater than 2 meaning that
no other row can contain 2’s. If every 2 is in the second row then and the number of
2’s is at least w2, then |w2| = |v2|. Continuing this reasoning, |wi| = |vi| for 1 ⩽ i ⩽ k.
Thus, wl(J) = wl(C). Further, by this method, we have filled the first row with 1’s, the
second row with 2’s, the ith row with i’s, etc. to construct a colored immaculate tableau
such that wi = vi for all i. Therefore, J = C. By construction, this is the only tableau
of shape J and type J so KJ,J = 1. To summarize, we have shown that KJ,C = 0 when
wl(J) ⪰l wl(C) unless J = C, in which case the entry of the matrix lies on the diagonal
and KJ,J = 1. Thus, we have proved K is upper unitriangular.

4.2.2 Expansion into the colored fundamental functions

To expand the colored dual immaculate functions into the colored fundamental basis we
first define coefficients counting SCIT. Relating these to our earlier coefficients count-
ing colored immaculate tableaux, we reformulate our expansion in Theorem 4.20 to an
expansion in terms of the colored fundamental basis.

Definition 4.22. For sentences J and C, define LJ,C as the number of standard colored
immaculate tableaux of shape J that have colored descent composition C.

Example 4.23. Let J = (ab, cb, b) and C = (a, cb, bb). The standard colored immaculate
tableaux of shape J with colored descent composition C are

U1 =
a, 1 b, 3

c, 2 b, 5

b, 4

U2 =
a, 1 b, 5

c, 2 b, 3

b, 4

Thus, L(ab,cb,b),(a,cb,bb) = 2.

Proposition 4.24. For sentences J and B,

KJ,B =
∑
C⪰B

LJ,C .

Proof. Recall that KJ,B is the number of colored immaculate tableaux of shape J and
type B. We want to show that KJ,B is equal to the sum of LJ,C , the number of standard
colored immaculate tableaux of shape J and descent composition C, overall C ⪰ B.
For this proof, let T be the set of all colored immaculate tableaux of shape J and type
B, and let U be the set of standard colored immaculate tableaux U of shape J and
descent composition C with C ⪰ B. We need to show that the map std : T → U ,
where std is the standardization map from Definition 4.9, is a bijection on these sets. By
Proposition 4.13, colored immaculate tableaux with the same shape and type must have
different standardizations or they would be the same tableau, thus our map is injective.
By Proposition 4.14, the map is surjective. This makes our map a bijection and so T and
U have the same size. Thus, we have shown that KJ,B =

∑
C⪰B LJ,C .
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Theorem 4.25. For a sentence J , the colored dual immaculate function S∗
J expands

positively into the fundamental basis as

S∗
J =

∑
C

LJ,CFC ,

where the sum runs over sentences C such that |C| = |J |.

Proof. Let J be a sentence. First, observe that applying the Möbius inversion to Propo-
sition 4.24 yields

LJ,C =
∑
C⪯B

(−1)ℓ(C)−ℓ(B)KJ,B.

Then, by Theorem 4.20 and Equation (4),

S∗
J =

∑
B

KJ,BMB =
∑
B

KJ,B

(∑
C⪯B

(−1)ℓ(C)−ℓ(B)FC

)

=
∑
C

(∑
C⪯B

(−1)ℓ(C)−ℓ(B)KJ,B

)
FC =

∑
C

LJ,CFC .

This expansion can be written as a sum over all standard colored immaculate tableaux
of a certain shape instead of using coefficients to count tableaux based on their colored
descent compositions.

Corollary 4.26. For a sentence J ,

S∗
J =

∑
U

FcoA(U),

where the sum runs over all standard colored immaculate tableaux U of shape J .

4.3 The colored immaculate descent graph

We define the colored immaculate descent graph to directly determine the expansion of the
colored fundamental functions into the colored dual immaculate basis. Additionally, our
result specializes to a new combinatorial expansion of the fundamental quasisymmetric
functions into the dual immaculate functions.

Definition 4.27. Define the colored immaculate descent graph, denoted Dn
A, as an edge-

weighted directed simple graph such that the vertex set is the set of sentences in A of size
n, and there is a directed edge from I to J , denoted I → J or J ← I, if there exists a
standard colored immaculate tableau of shape I with colored descent composition J . The
edge from I to J is weighted with the coefficient LI,J from Definition 4.22. For a path P
in Dn

A, let prod(P) denote the product of the edge-weights in P and let prod(∅) = 1.

the electronic journal of combinatorics 31(2) (2024), #P2.7 27



a

a

a

a

a

aa

c

c

c

c

c

c

c

b

b

b b

b b
b

b b

b
b b

b b b
b
b

b

b
b b

1 1

1

1

1

1 1

1

Figure 1: A subgraph of D5
{a,b,c}.

Example 4.28. In Figure 1 we illustrate the subgraph ofD5
{a,b,c} with top vertex (ab, cbb).

In this subgraph, all edges are weighted 1 because LI,J = 1 for each I and J (and thus
prod(P) = 1 for all paths) but, for example, the edge from (ab, cb, b) to (a, cb, bb) would
be 2 since L(ab,cb,b)(a,cb,bb) = 2 as in Example 4.23.

The element (ab, cbb) ∈ D5
{a,b,c} has edges going down to elements (a, cbb, b), (a, cb, bb),

and (a, cbbb) because these sentences represent possible descent compositions (with the
exception of (ab, cbb) itself) of colored standard immaculate tableaux of shape (ab, cbb) as
shown below.

a, 1 b, 4

c, 2 b, 3 b, 5

a, 1 b, 3

c, 2 b, 4 b, 5

a, 1 b, 5

c, 2 b, 3 b, 4

a, 1 b, 2

c, 3 b, 4 b, 5

(a, cbb, b) (a, cb, bb) (a, cbbb) (ab, cbb)

We say a sentence K is reachable from a sentence I if there is a directed path from I
to K. This includes the empty path, meaning that I is reachable from itself.

Theorem 4.29. For a sentence I of size n, the colored fundamental functions expand
into the colored dual immaculate basis as

FI =
∑
K

L−1
I,KS

∗
K with coefficients L−1

I,K =
∑
P

(−1)ℓ(P)prod(P),
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where the sums run over all sentences K reachable from I in Dn
A and directed paths P

from I to K in Dn
A.

Proof. We proceed by induction on the length of the longest path starting at I in Dn
A,

denoted here with k. If k = 0, there are no elements reachable from I so FI = S∗
I which

agrees with Theorem 4.25. Now for some positive integer k, assume the statement is true
for any path of length ⩽ k. Consider a sentence I where the length of the longest path
starting at I is k + 1. By Theorem 4.25,

FI = S∗
I −

∑
J

LI,JFJ ,

where the sum runs over all sentences J ̸= I such that |J | = |I|. We only need to consider,
however, sentences J that are descent compositions of a SCIT of shape I because otherwise
LI,J = 0. Since there is an edge from I to each of these J ’s, the length of the longest path
starting at any J is at most k. Thus, by induction,

FI = S∗
I −

∑
J

LI,J
∑
K

L−1
J,KS

∗
K ,

for all sentences K reachable from J and L−1
J,K =

∑
P(−1)ℓ(P)LK1,K2 · · ·LKj−1,Kj

for paths
P = {K = Kj ← Kj−1 ← . . .← K1 = J} from K to J . Note that

−
∑
J

LI,J
∑
K

L−1
J,K =

∑
P

(−1)ℓ(P)LI,JLK1,K2LK2,K3 · · ·LKj−1,Kj
= L−1

I,K ,

where the sum runs over all paths P = {K = Kj ← . . . ← K1 = J ← I} from K to I.
Then,

FI =
∑
K

L−1
I,KS

∗
K ,

summing over all sentences K reachable from I.

Example 4.30. The subgraph in Figure 1 yields the following expansion of F(ab,cbb):

F(ab,cbb) = S∗
(ab,cbb) −S∗

(a,cbb,b) +S∗
(a,c,bbb) −S∗

(a,cbbb).

Similarly, the (non-colored) immaculate descent graph Dn can be defined as the graph
with a vertex set of compositions of size n where there is an edge from α to β if there
exists an s standard immaculate tableau of shape α with descent composition β. The
edge from α to β will be weighted with coefficient Lα,β. This leads to an analogous result
that follows from the proof above.

Corollary 4.31. For a composition α |= n, the fundamental quasisymmetric functions
expand into the dual immaculate functions as

Fα =
∑
β

L−1
α,βS

∗
β with coefficients L−1

α,β =
∑
P

(−1)ℓ(P)prod(P),

where the sums runs over all β reachable from α in Dn and over paths P going from α to
β in Dn.
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5 A colored generalization of the immaculate functions

A colored generalization of the immaculate basis can be defined by first introducing a col-
ored version of noncommutative Bernstein creation operators. Various properties of these
operators and extensions of our earlier results via duality lead to results on the colored
immaculate functions. These notably include a right Pieri rule and an expansion of the
colored immaculate functions into the colored ribbon functions. As a corollary, we provide
a new combinatorial model for the expansion of an immaculate function into the ribbon
basis. It remains an open problem to find a cancellation-free expansion of the immaculate
functions into the ribbon functions, but our formula does provide a straightforward and
explicit way to compute the entries in the transition matrix between the immaculate and
ribbon bases. Applying the forgetful map to our expression also yields a new expansion
of Schur functions into the ribbon Schur functions.

The process for constructing our generalization of the noncommutative Bernstein op-
erators mirrors that done in [4] with some adjustments to account for the use of sentences
in place of compositions.

Definition 5.1. For M ∈ QSymA, define the action of the linear perp operator M⊥

on H ∈ NSymA by ⟨M⊥H,G⟩ = ⟨H,MG⟩ for all G ∈ QSymA. We define the action
of the linear right perp operator M on H ∈ NSymA as ⟨M H,G⟩ = ⟨H,GM⟩ for all
G ∈ QSymA. Thus, for dual bases {AI}I of QSymA and {BI}I of NSymA, we have

M⊥(H) =
∑
I

⟨H,MAI⟩BI and M (H) =
∑
I

⟨H,AIM⟩BI .

These operators are dual to the left and right multiplication by M in QSymA. Note
that the analogues to these operators in QSym are equivalent due to commutativity.

Proposition 5.2. For sentences I = (w1, . . . , wk) and J = (v1, . . . , vh),

MI (HJ) =
∑
K

H‡J/RK ,
where the sum runs over all sentences K such that K̃ = I and K ⊆R J . Moreover, eachflJ/RK appearing in this sum is equivalent to the shape of a colored composition diagram
originally of shape J with boxes corresponding to each word in I uniquely removed from
its righthand side such that each word wj is removed from a single row strictly lower than
the row from which wj+1 is removed.

Proof. Let I = (w1, . . . , wk) and J = (v1, . . . , vh). We have that

MI (HJ) =
∑
L

⟨HJ ,MLMI⟩HL =
∑
L

⟨HJ ,
∑
R

MR⟩HL =
∑
L

∑
R

⟨HJ ,MR⟩HL,

where the sums run over all sentences L of size |J | − |I| and each summand R in L
Q
I,

respectively. Note that each sentence R may occur multiple times in L
Q

I and we
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account for the multiplicity in the summations. The sum
∑

R⟨HJ ,MR⟩ is equal to the

number of times that J appears as a summand in L
Q

I. Recall that in L
Q

I, each
summand is a sentence made up of words from L, words from I, and concatenated pairs
of words from L and I (in that order) where all words from L and all words from I are
present and in the same relative order, respectively. For each time J is a summand in

L
Q
I there exists a unique weak sentenceK ′ such that K̃ ′ = I and ‡J/RK ′ = L. Further,

the set of all K ′ obtained for J in L
Q

I considered across every possible L is simply
the set of weak sentences K such that K̃ = I and K ⊆R J , and so we can rewrite

MI (HJ) =
∑
L

∑
K′

HL =
∑
K

H‡J/RK ,
where the sums run over all sentences L of size |J | − |I|, all weak sentences K ′ such

that K̃ ′ = I and ‡J/RK ′ = L, and all weak sentences K such that K̃ = I and K ⊆R J ,
respectively.

Visualizing sentences as colored composition diagrams, we see that each weak sentence
K can be viewed as a unique set of boxes being removed from the right-hand side of the
colored composition diagram of J where the first word in K (including empty words) is

removed from the first row of J and so on. Thus, the set of indices flJ/RK of H in the sum
can also be viewed as the set of colored composition diagrams resulting from all possible
ways of removing boxes corresponding to I from a colored composition diagram of shape
J then moving rows up to fill empty rows, where each wj in I is removed from a single
row strictly lower than the single row from which wj+1 in I is removed.

Example 5.3. In this example we show the action of Mc,ab on colored diagrams:

M(c,ab)(H(ac,bc,ab,cab)) = H(a,bc,cab) +H(a,bc,ab,c) +H(ac,b,cab) +H(ac,b,ab,c).

a c

b c

a b

c a b

a c

b c

a b

c a b

a c

b c

a b

c a b

a c

b c

a b

c a b

Next, we prove various properties of the M operator that will be key in constructing
creation operators for the colored immaculate basis.

Lemma 5.4. Let J,K be sentences, AI ∈ QSymA and f,H ∈ NSymA. Then,

⟨f ⊗H,∆(AI)(MJ ⊗MK)⟩ = ⟨MJ (f)⊗MK(H),∆(AI)⟩.

Proof. Let a, b ∈ NSymA and c, d ∈ QSymA. The inner product on NSymA × QSymA

extends to NSymA ⊗NSymA ×QSymA ⊗QSymA as

⟨·, ·⟩ : NSymA⊗NSymA×QSymA⊗QSymA → Q where ⟨a⊗ b, c⊗ d⟩ → ⟨a, c⟩⟨b, d⟩
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In Sweedler notation, ∆(AI) =
∑

iA
(i) ⊗ A(i). Thus, we write

⟨f ⊗H,∆(AI)(MJ ⊗MK)⟩ =

〈
f ⊗H,

∑
i

A(i)MJ ⊗ A(i)MK

〉
=
∑
i

⟨f ⊗H,A(i)MJ ⊗ A(i)MK⟩

=
∑
i

⟨f, A(i)MJ⟩⟨H,A(i)MK⟩

=
∑
i

⟨MJ (f), A
(i)⟩⟨MK(H), A(i)⟩ by Definition 5.1

=
∑
i

⟨MJ (f)⊗MK(H), A(i) ⊗ A(i)⟩

=

〈
MJ (f)⊗MK(H),

∑
i

A(i) ⊗ A(i)

〉
= ⟨MJ (f)⊗MK(H),∆(AI)⟩.

Proposition 5.5. For a sentence Q = (q1, . . . , qi) and f,H ∈ NSymA,

MQ(fH) =
∑
0⩽j⩽i

M(q1,...,qj)
(f)M(qj+1,...,qi)

(H).

In particular, for a word w,

MQ(fHw) =MQ(f)Hw +M(q1,...,qi−1)
(f)Mqi

(Hw).

Proof. Let {AI} and {BI} be dual bases of QSymA and NSymA respectively, and let
Q = (q1, . . . , qi). Then,

MQ(fH) =
∑
I

⟨fH,AIMQ⟩BI by Definition 5.1

=
∑
I

⟨f ⊗H,∆(AIMQ)⟩BI =
∑
I

⟨f ⊗H,∆(AI)∆(MQ)⟩BI by Definition 2.12

=
∑
I

∑
Q=J ·K

⟨f ⊗H,∆(AI)(MJ ⊗MK)⟩BI by Equation (3)

=
∑
I

∑
Q=J ·K

⟨MJ (f)⊗MK(H),∆(AI)⟩BI by Lemma 5.4

=
∑
I

∑
Q=J ·K

⟨MJ (f)MK(H), AI⟩BI by Definition 2.12

=
∑
I

⟨
∑

Q=J ·K

MJ (f)MK(H), AI⟩BI =
∑

Q=J ·K

MJ (f)MK(H) by Definition 5.1

=
i∑

j=0

M(q1,...,qj)
(f)M(qj+1,...,qi)

(H).
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In the case of H = Hw, the term M(qj+1,...,qi)
(Hw) is 0 whenever i− (j+1) > 0 because

boxes corresponding to (qj, . . . , qi) must each be removed from separate rows but w has
only one row. Thus, the equation simplifies as

MQ(fHw) =MQ(f)Hw +M(q1,...,qi−1)
(f)Mqi

(Hw).

Definition 5.6. For a word v, the colored noncommutative Bernstein operator Bv is
defined to be

Bv =
∑
u

∑
w(Qr)=u

(−1)iHv·u

(∑
Q⪯S

MS

)
,

where the sums run over all words u, all sentences Q = (q1, . . . , qi) such that qi · . . . ·q1 = u,
and all sentences S that are coarsenings of Q.

Notice that, by the definition of M , the only values of u that could yield a nonzero
summand in Bv(HI) for a sentence I are those for which there is some permutation of the
letters in u that yields a subword of w(I). Thus, this sum always has a finite number of
terms.

Definition 5.7. For a sentence J = (v1, . . . , vh), we define the colored immaculate func-
tion SJ as

SJ = Bv1Bv2 . . .Bvh(1).

Example 5.8. The colored immaculate functions S(def) and S(abc,def) are obtained using
creation operators as follows:

S(def) = Bdef (1) =
∑
u

∑
w(Qr)=u

(−1)iH(def ·u)

(∑
Q⪯S

MS (1)

)
= (−1)0H(def)M∅ (1) = H(def).

S(abc,def) = Babc(S(def)) = Babc(H(def)) =
∑
u

∑
w(Qr)=u

(−1)iH(abc·u)

(∑
Q⪯S

MS (H(def))

)
= (−1)0H(abc)M∅ (H(def)) + (−1)1H(abcf)M(f)(H(def))

+ (−1)1H(abcef)M(ef)(H(def)) + (−1)2H(abcfe)M(ef)(H(def))

+ (−1)1H(abcdef)M(def)(H(def)) + (−1)2H(abcefd)M(def)(H(def))

+ (−1)2H(abcfde)M(def)(H(def)) + (−1)3H(abcfed)M(def)(H(def))

= H(abc,def) −H(abcf,de) −H(abcef,d) +H(abcfe,d) −H(abcdef) +H(abcefd)

+H(abcfde) −H(abcfed).

To get the term H(abcfe,d), for example, we look at u = fe. The possible values of
Q for this u are Q = (fe) and Q = (e, f), meaning the possible S values are S = (fe),
S = (e, f), and S = (ef). Observe that M(fe)(H(def)) and M(e,f)(H(def)) are both zero
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because S is not right-contained in def . Thus, the only remaining term for these values
is S = (ef) for which M(ef)(H(def)) = H(d). Thus the term of the sum given by u = fe,

Q = (e, f), and S = ef is (−1)2H(abcfe,d), which is also the only term for u = fe. Many
values of u will yield entirely zero terms.

Before proving that this basis is indeed analogous to the immaculate functions in
NSym, we must prove that it is dual to the colored dual immaculate basis. The following
property of the colored noncommutative Bernstein operators leads to a right Pieri rule
which illuminates the structure of the colored immaculate functions to this end.

Proposition 5.9. Let w = a1 . . . ak and f,H ∈ NSymA, then

Bv(f)Hw =
∑
0⩽j⩽k

B(v·(aj+1···ak))(fH(a1···aj)).

Proof. Given a sentence Q = (q1, . . . , qi), we write Q′ = (q1, . . . , qi−1). Let f ∈ NSymA

and let v and w = a1 . . . ak be words. Then,

Bv(fHw) =
∑
u

∑
w(Qr)=u

(−1)iHv·u

(∑
Q⪯S

MS (fHw)

)
by Definition 5.6

=
∑
u

∑
w(Qr)=u

(−1)iHv·u

(∑
Q⪯S

[
MS (f)Hw +MS′(f)Mst(Hw)

])
by Prop 5.5

= Bv(f)Hw +
∑
u

∑
w(Qr)=u

(−1)iHv·u

(∑
Q⪯S

MS′(f)Mst(Hw)

)
by factoring.

We want to consider the cases in whichMst(Hw) is non-zero. This only happens whenever
st ⊆R w because in our combinatorial interpretation, we visualizeMst as removing st from
the righthand side of w = a1 · · · ak to get H(a1...ah) for some h ⩽ k. Note that because
Q ⪯ S and qi and st are the final words in Q and S respectively, qi ⊆R st. It follows
that qi ⊆R w and thus qi = aj+1 · · · ak for a non-negative integer j < k. Recalling that
u = qi · · · q1, let u′ = qi−1 · · · q1 so that we can write u = aj+1 · · · ak ·u′. Rewriting the last
equation in terms of u′ and Q′ yields

Bv(fHw) = Bv(f)Hw+

+
∑

0⩽j<k

∑
u′

∑
Q′

(−1)iH(v·(aj+1···ak)·u′)

Ñ ∑
(Q′·(aj+1···ak))⪯S

MS′(f)Mst(H(a1···aj))

é
.

Next, the sum can be split into two parts by separating out the cases where qi = st and
those where qi ̸= st. If qi = st for qi = aj+1 · · · ak then Mst(Hw) = M(aj+1···ak)(Hw) =
H(a1···aj). Otherwise, there must exist a non-negative integer ι < i − 1 such that st =
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qι+1 · · · qi−1qi. We can rearrange the part of the sum by substituting st with qι+1 · · · qi and
summing over the possible ι. Then,

Bv(fHw) = Bv(f)Hw −
∑

0⩽j<k

∑
u′

∑
Q′

(
(−1)i−1H(v(aj+1···ak)u′)

[ ∑
Q′⪯S′

MS′(f)H(a1···aj)

]

+

[ ∑
0⩽ι<i−1

∑
(q1,...,qι)⪯S′

MS′(f)M(qι+1· ··· ·qi−1·(aj+1···ak))(Hw)

]é
.

Again thinking of the combinatorial visualization for the M operator, observe that
M(qι+1···qi−1(aj+1···ak))(Hw) =M(qι+1···qi−1)

(H(a1···aj)) and so

Bv(fHw) = Bv(f)Hw −
∑

0⩽j<k

∑
u′

∑
Q′

(
(−1)i−1H(v(aj+1...ak)u′)

[ ∑
Q′⪯S′

MS′(f)H(a1...aj)

]

+

[ ∑
0⩽ι<i−1

∑
(q1,...,qι)⪯S′

MS′(f)M(qι+1···qi−1)
(H(a1···aj))

]é
.

Next, rename every S ′ to R = (r1, . . . , rτ ) in the first section of the sum. In the second
section, rename S ′ to R′ = (r1, . . . , rτ−1) and let qι+1 · · · qi−1 = rτ .

Bv(fHw) = Bv(f)Hw −
∑

0⩽j<k

∑
u′

∑
Q′

(
(−1)i−1H(v(aj+1...ak)u′)

[ ∑
Q′⪯R

MR(f)H(a1...aj)

]

+

[ ∑
0⩽ι<i−1

∑
(q1,...,qι)⪯R′

MR′(f)Mrτ (H(a1···aj))

]é
.

In the second part of the sum, notice that considering R′ · rτ where R′ = (q1, . . . , qι) and
rτ = qι+1 · · · qi−1 for 1 ⩽ ι ⩽ i−1 is equivalent to considering R′ ·rτ = R ⪰ (q1, . . . , qi−1) =
Q′. Then,

Bv(fHw) = Bv(f)Hw −
∑

0⩽j<k

∑
u′

∑
Q′

(
(−1)i−1H(v(aj+1...ak)u′)

[ ∑
Q′⪯R

MR(f)H(a1...aj)

]

+

[ ∑
Q′⪯R

MR′(f)Mrτ (H(a1···aj))

])
.

Now in both parts of the sum, we are looking at sentences R such that Q′ ⪯ R, and
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combining them we get

Bv(fHw) = Bv(f)Hw −
∑

0⩽j<k

∑
u′

∑
Q′

(−1)i−1H(v(aj+1...ak)u′)

( ∑
Q′⪯R

[
MR(f)H(a1···aj)

+MR′(f)Mrτ (H(a1···aj))

])

= Bv(f)Hw −
∑

0⩽j<k

∑
u′

∑
Q′

(−1)i−1H(v(aj+1...ak)u′)

(∑
Q′⪯R

MR(fH(a1...aj))

)
= Bv(f)Hw −

∑
0⩽j<k

B(v·(aj+1···ak)(fH(a1···aj)) by Definition 5.6.

Theorem 5.10 (Right Pieri Rule). For the sentence J = (v1, . . . , vh) and the word
w = a1 . . . ai,

SJHw =
∑
J⊂wK

SK ,

where J ⊂w K = (u1, . . . , ug) if uj = vj · qj for 1 ⩽ j ⩽ g such that qg · qg−1 · . . . · q2 · q1 = w
and g ⩽ h+ 1 where vh+1 = ∅.

For a sentence I and word w, the product SIHw given by the Pieri rule can be
visualized in terms of the indices of colored immaculate functions in the resulting sum.
The indices correspond to all diagrams obtained by adding colored boxes below or to the
right of the diagram of I, such that when reading the colors of boxes left to right from
bottom to top they correspond exactly to w.

Example 5.11. The product below can be visualized using the following tableaux:

a b

b c

c a

a b

b c a

c

a b a

b c

c

a b

b c c a

a b a

b c c

a b c a

b c

S(ab,bc)H(ca) = S(ab,bc,ca) +S(ab,bca,c) +S(aba,bc,c) +S(ab,bcca) +S(aba,bcc) +S(abca,bc).

Proof of Theorem 5.10. We proceed by induction on |w|+ ℓ(J). There are two base cases
where |w|+ ℓ(J) = 1.

1. If |w| = 1 and ℓ(J) = 0, then S∅Hw =
∑

1⊂wK
SK = Sw = Hw.

2. If ℓ(J) = 1 and |w| = 0 then SJH∅ =
∑

J⊂∅K
SK = SJ .

Next, assume the statement is true when |w| + ℓ(J) ⩽ k and let J̄ = (v2, . . . , vh). Let
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|w|+ ℓ(J) = k + 1. Then,

SJHw = Bv1(SJ̄)Hw =
∑
0⩽j<i

B(v1·(aj+1···ai))
(
SJ̄Ha1...aj

)
by Def 5.7 and Prop 5.9,

=
∑
0⩽j<i

B(v1·(aj+1···ai))

Ñ ∑
J̄⊂a1...ajG

SG

é
by induction,

=
∑
0⩽j<i

Ñ ∑
J̄⊂a1...ajG

S((v1(aj+1···ai))·G)

é
=
∑
J⊂wK

SK .

The expansion of the colored complete homogeneous functions into the colored im-
maculate functions follows from repeated application of the right Pieri rule.

Theorem 5.12. For a sentence C, the colored complete homogeneous function expands
positively into the colored immaculate basis as

HC =
∑
J

KJ,CSJ ,

where the sum runs over sentences J such that |J | = |C|.

Proof. Let C = (t1, . . . , tk) and C
′ = (t1, . . . , tk−1). We claim that KJ,C =

∑
G⊂tk

J KG,C′

where the sum runs over sentences G such that G ⊂tk J . For any colored immaculate
tableau of shape J and type C, we can remove the boxes of T filled with the number k,
all of which will be on the right-hand side of T , to obtain a colored immaculate tableau
of shape G with type C ′. Thus the sum of KG,C′ for all the G ⊂tk J gives KJ,C . With
this fact, we proceed by induction on the length of C.

HC = HC′Htk =

(∑
G

KG,C′SG

)
Htk by induction,

=
∑
G

KG,C′SGHtk =
∑
G

KG,C′

∑
G⊂tk

J

SJ by Theorem 5.10,

=
∑
J

Ñ∑
G⊂tk

J

KG,C′

é
SJ by rearranging the sums,

=
∑
J

KJ,CSJ ,

where the final two sums run over all sentences J such that there exists a CIT of shape
J and type C. If there is no such CIT of shape J and type C then KJ,C = 0, and it is
equivalent to taking this sum over all sentences J such that |J | = |C|.
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Note that this unique expansion satisfies Proposition 2.14 and in fact verifies the
duality of the colored immaculate and colored dual immaculate bases.

Corollary 5.13. The colored immaculate basis of NSymA is dual to the colored dual
immaculate basis of QSymA.

With this duality verified, we can prove that the colored immaculate functions are
analogous to the original noncommutative Bernstein operators because they are isomor-
phic under υ in the case of a unary alphabet A.

Proposition 5.14. Let G ∈ NSymA and F ∈ QSymA. If A = {a}, then we have
⟨G,F ⟩ = ⟨υ(G), υ(F )⟩.

Proof. Let A = {a}, and let G =
∑

J cJHJ and F =
∑

I bIMI where the sums run over
all sentences I, J , respectively. Then,

⟨G,F ⟩ =

〈∑
J

cJHJ ,
∑
I

bIMI

〉
=
∑
I,J

cJbI ⟨HJ ,MI⟩ =
∑
I

cIbI .

Next, for υ(G) ∈ NSym and υ(F ) ∈ QSym, we have that

⟨υ(G), υ(F )⟩ =

〈∑
J

cJυ(HJ),
∑
I

bIυ(MI)

〉

=

〈∑
J

cJHwℓ(J),
∑
I

bIMwℓ(I)

〉
=
∑
I,J

cJbI⟨Hwℓ(J),Mwℓ(I)⟩.

The inner product ⟨Hwℓ(J),Mwℓ(I)⟩ is zero unless wℓ(I) = wℓ(J) which happens exactly
when I = J because the alphabet A is made up of only one color. In other words, there
is exactly one sentence I such that wℓ(I) = α for each composition α in this case. Thus,

⟨υ(G), υ(F )⟩ =
∑
I

cIbI = ⟨G,F ⟩.

Proposition 5.15. Let A = {a}, and let I be a sentence. Then, υ(SI) = Swℓ(I).
Moreover, {SI}I in NSymA is analogous to {Sα}α in NSym.

Proof. Let A = {a} and let I and J be sentences. By Proposition 5.14,

⟨SI ,S
∗
J⟩ = ⟨υ(SI), υ(S

∗
J)⟩ = ⟨υ(SI),S

∗
wℓ(J)⟩.

Because A is unary, I = J if and only if wℓ(I) = wℓ(J) and thus δI,J = δwℓ(I),wℓ(J). As a
result,

⟨SI ,S
∗
J⟩ = ⟨Swℓ(I),S

∗
wℓ(J)⟩ = ⟨υ(SI),S

∗
wℓ(J)⟩,

for all sentences I and J . Therefore, υ(SI) = Swℓ(I).
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The expansion of the colored ribbon functions into the colored immaculate functions
now follows from the application of Proposition 2.14 to Theorem 4.25.

Corollary 5.16. For a sentence C, the colored ribbon noncommutative symmetric func-
tions expand positively into the colored immaculate functions as

RC =
∑
J

LJ,CSJ ,

where the sum runs over all sentences J such that |J | = |C|.

This corollary allows us to define the expansion of the colored immaculate function
indexed by a sentence of the form (a1, . . . , ak) in terms of the {HI} basis.

Proposition 5.17. For a sentence (a1, . . . ak) where a1, . . . , ak ∈ A are colors,

S(a1,...,ak) =
∑

(a1,...,ak)⪯J

(−1)k−ℓ(J)HJ .

Proof. Let C = (a1, . . . , ak), and notice that LJ,(a1,...,ak) = 0 unless J = (a1, . . . , ak) in
which case L(a1,...,ak),(a1,...,ak) = 1. Then by Corollary 5.16, we have S(a1,...,ak) = R(a1,...,ak).
Then, expanding R(a1,...,ak) into the {HI}I basis yields the desired formula.

Applying Proposition 2.14 to Theorem 4.29 also yields an expansion of the colored
immaculate functions into the colored ribbon basis using the colored immaculate descent
graph of Definition 4.27.

Corollary 5.18. For a sentence J , the colored immaculate functions expand into colored
ribbon functions as

SJ =
∑
I

L−1
I,JRI with coefficients L−1

I,J =
∑
P

(−1)ℓ(P)prod(P),

where the first sum runs over sentences I and the second runs over directed paths P from
I to J in Dn

A.

Example 5.19. The colored immaculate function S(a,cb,b) expands in to the colored rib-
bon functions as

S(a,cb,b) = R(a,cb,b) −R(ab,cb) +R(abb,c) −R(ab,c,b).

The term R(abb,c), for example, has a coefficient of 1 because the only path from (abb, c)
to (a, cb, b) is

(abb, c)
1−→ (ab, cb)

1−→ (a, cb, b).

the electronic journal of combinatorics 31(2) (2024), #P2.7 39



Proposition 2.14 can be applied to Corollary 4.31 to get a result in NSym analogous to
Corollary 5.18. It is actually an open question to find a cancellation-free combinatorial way
of expanding immaculate functions into the ribbon basis. Campbell defines formulas for a
few special cases in [9]. In [1], Allen and Mason give a complete combinatorial description
of the expansion of immaculate functions into the complete homogeneous basis in terms of
tunnel hooks, which generalize the special rim hooks of Eğecioğlu and Remmel [13]. This
becomes a somewhat complicated expansion of any immaculate function into the ribbon
basis, but for certain immaculate functions, the expression simplifies to a Jacobi-Trudi-
Like formula. While our formula is not cancellation-free, it does provide a concise way
to compute the coefficients in the expansion for every case. Additionally, it is relatively
easy to compute a single coefficient without calculating the entire expression or the entire
transition matrix.

Corollary 5.20. For a composition β |= n, the immaculate functions expand into the
ribbon functions as

Sβ =
∑
α|=n

L−1
α,βRα with coefficients L−1

α,β =
∑
P

(−1)ℓ(P)prod(P),

where the first sum runs over compositions α and the second runs over directed paths P
from α to β in Dn.

Applying the forgetful map χ to Corollary 5.20 produces a new expansion of the Schur
functions into ribbon Schur functions. The question of expressing Schur functions in terms
of ribbon Schur functions was notably studied by Lascoux and Pragacz in [24] as well as
Hamel and Goulden in [21]. One advantage of this expression compared to the matrix
determinant expressions of Lascoux and Pragacz or Hamel and Goulden is that we can
compute single coefficients without computing the entire expansion.

Corollary 5.21. For a partition λ ⊢ n, a Schur function can be decomposed into ribbon
Schur functions as

sλ =
∑
α|=n

L−1
α,λrα with L−1

α,λ =
∑
P

(−1)ℓ(P)prod(P),

where the first sum runs over compositions α and the second runs over directed paths P
from α to λ in Dn.

While the colored immaculate functions mirror many of the properties of the immacu-
late functions, the Jacobi-Trudi formula does not generalize naturally. This is in part due
to the challenges of a deletion operation on words which would be needed to generalize
integer subtraction. Future work may investigate such a formula.

6 The colored immaculate poset and skew colored immaculate
tableaux

Colored composition diagrams admit a natural partial ordering similar to that of Young’s
lattice and the immaculate poset. The elements of this poset can be thought of as sen-
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tences or colored composition diagrams, which gives a more visual representation. This
poset has a combinatorial relationship with standard colored immaculate tableaux and
leads to a natural definition of skew colored immaculate tableaux which in turn leads to
the skew colored dual immaculate functions. Additionally, the right Pieri rule on col-
ored immaculate functions connects this poset and these skew functions to the structure
constants of the colored immaculate functions as it does in the non-colored case.

Definition 6.1. The colored immaculate poset PA is the set of all sentences on A with
the partial order defined by the cover relation that I covers J if J ⊂a I for some a ∈ A.

This cover relation means that I covers J if I differs from J by the addition of a box
colored with a placed on the right side of, or below, J . In this case, arrows from J to I
in the Hasse diagram of PA are labeled with (m, a) where m is the number of the row to
which a is added in J .

∅

a

a a

aa
a a a

b

b
b

b b
b b b

b
a

a

a

a

a

a

a a

a
a

a
ab bbbb

b

b

b

b

b

b
b

b

(1, a) (1, b)

(2, a)
(2, b)

(1, b)

(1, a)

(2, a)

(2, b) (1, a)

(1, b)

(3, b) (2, a) (3, a)

(2, b)

(3, b)(1, b)
(1, a)

(2, b)

(1, b)

(1, a)

Figure 2: A portion of the colored immaculate poset PA on the alphabet A = {a, b}.

The maximal chains on PA from ∅ to I are equivalent to the standard colored immac-

ulate tableaux of shape I. The maximal chain C = {∅ = J0
(m1,a1)−−−−→ J1

(m2,a2)−−−−→ · · · (mk,ak)−−−−→
Jk = I} is associated with the standard colored immaculate tableau of shape I whose
boxes are filled with the integers 1 through n in the order they appear in the path. That

is, the box added from Jj
(mj+1,aj+1)−−−−−−−→ Jj+1, which is added to row mj+1 and colored with

aj+1, is filled with the integer j + 1.

Example 6.2. The maximal chain C = {∅ (1,a)−−→ [a]
(2,d)−−→ [a, d]

(2,e)−−→ [a, de]
(1,b)−−→

[ab, de]
(2,f)−−→ [ab, def ]

(1,c)−−→ [abc, def ]} is associated with the following tableaux:
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a, 1 b, 4 c, 6

d, 2 e, 3 f, 5

Maximal chains starting from a non-empty sentence J going to I lead to a natural
definition of skew standard colored immaculate tableaux.

Definition 6.3. For sentences I and J = (v1, . . . , vh) with J ⊆L I, the colored skew shape
I/J is the colored composition diagram of I where, for 1 ⩽ i ⩽ h, the first |vi| boxes of
the ith row are inactive. The inactive boxes are shaded gray to indicate that they have in
a sense been “removed”, however the colors filling them are still relevant.

Definition 6.4. For sentences I and J with J ⊆L I, a skew colored immaculate tableau
of shape I/J is a colored skew shape I/J filled with integers such that the sequence
of integer entries in the first column is strictly increasing from top to bottom and the
sequence of integer entries in each row is weakly increasing from left to right. Here the
inactive boxes of I/J are not filled, and we consider the first column of a colored skew
shape I/J to be the column corresponding to the first column of I.

The maximal chain C = {J = J0
(m1,a1)−−−−→ J1

(m2,a2)−−−−→ · · · (mk,ak)−−−−→ Jk = I} is associated
with the skew standard colored immaculate tableau of shape I/J whose boxes are filled
with the integers 1, . . . , k in the order they appear in the path.

Example 6.5. The maximal chain

C = {[a, de] (1,b)−−→ [ab, de]
(2,f)−−→ [ab, def ]

(1,c)−−→ [abc, def ]}

is associated with the following skew colored immaculate tableau:

a b, 1 c, 3

d e f, 2

Definition 6.6. For sentences I, J such that J ⊆L I, define the skew colored dual im-
maculate function as

S∗
I/J =

∑
K

⟨SJHK ,S
∗
I⟩MK ,

where the sum runs over all sentences K ∈ PA such that |I| − |J | = |K|.

Proposition 6.7. The coefficient ⟨SJHK ,S
∗
I⟩ is equal to the number of skew colored

immaculate tableaux of shape I/J with type K.

Proof. Let K = (u1, . . . , ug) be a sentence. Notice that SJHK = (((SJHu1)Hu2) · · ·Hug)
and by Theorem 5.10, we have

SJHK =
∑

J⊆u1J1⊆u2 ...Jg−1⊆ugL

SL,
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for some sentences J1, . . . Jg−1. Thus,

⟨SJHK ,S
∗
I⟩ =

∞ ∑
J⊆u1J1⊆u2 ...Jg−1⊆ugL

SL,S
∗
I

∫
=

∑
J⊆u1J1⊆u2 ...Jg−1⊆ugL

⟨SL,S
∗
I⟩,

for some sentences J1, . . . , Jg−1. Therefore, for J1, . . . , Jg−1, this inner product is equiva-
lent to the number of times that the sentence I appears when summing over all sentences
L such that J ⊆u1 J1 ⊆u2 . . . Jg−1 ⊆ug L. Each occurrence of I can be associated with a
unique sequence of sentences (J, J1, . . . , Jg−1) that appear in the sum, and each sequence
can be associated with a unique skew colored immaculate tableau of shape I/J and type
K. Starting with the colored skew shape I/J , first fill the boxes corresponding to those
in J1/J with 1’s. Then fill the boxes corresponding to J2/J1 with 2’s and continue re-
peating this process until the remaining boxes in I/Jg−1 are filled with (g − 1)’s. Note
that because J ⊆u1 J1 ⊆u2 . . . Jg−1 ⊆ug I, the colors of the boxes filled with each num-
ber j, read from left to right and bottom to top, correspond exactly to the word uj.
Through this construction, each sequence J, J1, . . . , Jg−1 corresponds to a unique skew
colored immaculate tableau of shape I/J and type K. Additionally, each skew CIT T
of shape I/J and type K can be associated with a unique sequence J, J1, . . . , Jg−1 such
that J ⊆u1 J1 ⊆u2 . . . Jg−1 ⊆ug I by taking T and removing all boxes filled with integers
greater than j, for each 1 ⩽ j < g, to get a colored tableau of shape Jj. Therefore,
⟨SJHK ,S

∗
I⟩ counts the number of skew CIT with shape I/J and type K.

The use of linear functionals and properties of duality allows for the expansions of
the skew colored dual immaculate functions into the colored fundamental basis and the
colored dual immaculate basis with inner product coefficients.

Proposition 6.8. For an interval [J, I] in PA,

S∗
I/J =

∑
K

⟨SJRK ,S
∗
I⟩FK =

∑
K

⟨SJSK ,S
∗
I⟩S∗

K ,

where the sums run over all sentences K such that |I| − |J | = |K|. The coefficients
⟨SJSK ,S

∗
I⟩ are equal to the structure coefficients cIJ,K for colored immaculate multipli-

cation,

SJSK =
∑
I

cIJ,KSI =
∑
I

⟨SJSK ,S
∗
I⟩SI ,

where the sums run over all sentences I.

Proof. Observe that by Definition 5.1,

S∗
I/J =

∑
K

⟨SJHK ,S
∗
I⟩MK = S⊥

J (S
∗
I) =

∑
K

⟨SJRK ,S
∗
I⟩FK =

∑
K

⟨SJSK ,S
∗
I⟩S∗

K .

The skew colored dual immaculate functions can also be defined explicitly in terms of
skew colored immaculate tableaux following Definition 6.6.
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Proposition 6.9. Let I = (w1, . . . , wk) and J = (v1, . . . , vh) be sentences such that
J ⊆L I. Then

S∗
I/J =

∑
T

xT ,

where the sum is taken over all skew colored immaculate tableaux of shape I/J .

Proof. By Definition 6.6, S∗
I/J =

∑
K⟨SJHK ,S

∗
I⟩MK , where the sum runs over all sen-

tences K ∈ PA. By Proposition 6.7, ⟨SJHK ,S
∗
I⟩ is equal to the number of skew col-

ored immaculate tableaux of shape I/J and type K. Thus, following Proposition 4.18,
⟨SJHK ,S

∗
I⟩MK =

∑
T ′ xT ′ where the sum runs over all skew CIT T ′ of shape I/J and

flat type K. Therefore,

S∗
I/J =

∑
K

∑
T ′

xT ′ =
∑
T

xT

where the sums run over sentences K such that |I| − |J | = |K|, skew CIT T ′ of shape
I/J and flat type K, and all skew CIT T of shape I/J and type T .

Additionally, comultiplication on the colored dual immaculate basis can be defined in
terms of skew functions following Propositions 2.15 and 6.8.

Proposition 6.10. For a sentence I,

∆(S∗
I) =

∑
J

S∗
J ⊗S∗

I/J ,

where the sum runs over all sentences J such that J ⊆L I.

Proof. Let J and K be sentences, and observe that SJSK =
∑

I⟨SJSK ,S
∗
I⟩SI . By

Proposition 2.15, this implies

∆(S∗
I) =

∑
J,K

⟨SJSK ,S
∗
I⟩S∗

J ⊗S∗
K =

∑
J

(
S∗
J ⊗

∑
K

⟨SJSK ,S
∗
I⟩S∗

K

)
=
∑
J

S∗
J ⊗S∗

I/J by Proposition 6.8.

As in the non-colored case, finding general combinatorial formulas for multiplication
and the antipode of the colored dual immaculate functions remains an open problem. As
shown in the example below, the product of two colored dual immaculate functions does
not have exclusively positive structure constants, and their combinatorial description is
not yet evident.

S∗
(ab)S

∗
(c) = S∗

(abc) +S∗
(c,ab) +S∗

(ac,b) −S∗
(a,bc)
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7 A partially commutative generalization of the row-strict dual
immaculate functions

Niese, Sundaram, Van Willigenburg, Vega, and Wang define a pair of dual bases in QSym
and NSym in [30] by applying an involution ψ to the immaculate and dual immaculate
bases. The row-strict dual immaculate basis has extensive representation theoretic ap-
plications, specifically to 0-Hecke algebras [29]. The combinatorics of this basis involve
a variation of immaculate tableaux with different conditions on the rows and columns.
Note that the original paper uses French notation for diagrams (the bottom row is row 1)
so the definitions here have been adapted to English notation. We first review the theory
of these two bases, then define their colored generalizations, and finally extend our earlier
results using a lift of the original ψ.

7.1 Row-strict immaculate and dual immaculate functions

We begin by recalling several definitions and results from [30].

Definition 7.1. Given a composition α, a row-strict immaculate tableau T is a filling of
the diagram of α such that the entries in the leftmost column weakly increase from top
to bottom and the entries in each row strictly increase from left to right. A row-strict
immaculate tableau with n boxes is standard if each integer 1 through n appears exactly
once. The type of a row-strict immaculate tableau is defined the same way as the type of
an immaculate tableau.

Monomials are associated with row-strict immaculate tableaux according to their type
in the same fashion as immaculate tableaux.

Definition 7.2. For a composition α, the row-strict dual immaculate function is defined
as

RS∗
α =

∑
T

xT ,

where the sum runs over all row-strict immaculate tableaux T of shape α.

To standardize a row-strict immaculate tableau T , replace the 1’s in T with 1, 2, . . .
moving left to right and top to bottom, then continue with the 2’s, etc. Note also that
the set of standard row-strict immaculate tableaux is the same as the set of standard
immaculate tableaux.

Definition 7.3. A positive integer i is a row-strict descent of a standard row-strict im-
maculate tableau U if U contains the entry i+1 in a weakly higher row than entry i. The
row-strict descent set of a standard row-strict immaculate tableau U is

Desrs(U) = {i : i+ 1 is weakly above i in U}.

The row-strict descent composition of a standard row-strict immaculate tableaux U is
defined as

cors(U) = comp(Desrs(U)).
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Following these definitions, the row-strict dual immaculate function for a composition
α can also be defined as

RS∗
α =

∑
S

Fcors(S),

where the sum is taken over all standard row-strict immaculate tableaux of shape α.

Definition 7.4. The dual involutions ψ : QSym→ QSym and ψ : NSym→ NSym are
defined as

ψ(Fα) = Fαc and ψ(Rα) = Rαc .

Note that there are two separate ψ involutions, although they are often referred to
together as if they are one map.

Theorem 7.5. [30] Let α be a composition. Then, ψ(S∗
α) = RS∗

αc .

Since ψ is an involution and S∗
α is a basis, {RS∗

α}α is a basis for QSym.

Definition 7.6. For a composition α and weak composition β, let Krs
α,β be the number

of row-strict immaculate tableaux of shape α and type β, and Lrsα,β be the number of
standard row-strict immaculate tableaux of shape α with descent composition β.

Theorem 7.7. [30] For α |= n, the row-strict dual immaculate function expands as

RS∗
α =

∑
β

Krs
α,βMβ =

∑
γ

Lrsα,γFγ.

where the sums run over compositions β and γ such that |β| = |α| and |γ| = |α|.

The row-strict dual immaculate functions have a dual basis that can be constructed
similarly to the immaculate basis.

Definition 7.8. For m ∈ Z, the noncommutative row-strict Bernstein operator Brsm is
defined by

Brsm =
∑
i⩾0

(−1)iEm+iF
⊥
(i), and Brsα = Brsα1

. . .Brsαk
for α ∈ Zk.

For a composition α, the row-strict immaculate function RSα is defined as

RSα = Brsα (1).

These functions are dual to the row-strict dual immaculate basis, ⟨RSα,RS∗
β⟩ = δα,β,

and they are the image of the immaculate basis under ψ.

Applying ψ to various results from [4] yields similar results for the row-strict im-
maculate and row-strict dual immaculate bases, which are summarized in the following
result.
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Theorem 7.9. [30] For compositions α, β |= n, s ∈ Z⩾0, m ∈ Z, and f ∈ NSym,

(1) Bm(f)Hs = Bm+1(f)Hs−1 + Bm(fHs)
ψ⇐==⇒ Brsm+1(f)Es−1 + Brsm(fEs).

(2) Multiplicity-free right Pieri rule:

SαHs =
∑
α⊂sβ

Sβ
ψ⇐==⇒ RSαEs =

∑
α⊂sβ

RGβ.

(3) Multiplicity-free right Pieri rule:

SαS(1s) = SαEs =
∑
β

Sβ
ψ⇐==⇒ RSαRG(1s) = RSαHs =

∑
β

RSβ,

where the sum runs over compositions β |= |α| + s such that αi ⩽ βi ⩽ αi + 1 and
αi = 0 for i > ℓ(α).

(4) S(1n) =
∑

α|=n(−1)n−ℓ(α)Hα = En
ψ⇐⇒ RG(1n) =

∑
α|=n(−1)n−ℓ(α)Eα = Hn.

(5) Complete homogeneous and elementary expansions:

Hβ =
∑
α⩾ℓβ

Kα,βSα
ψ⇐==⇒ Eβ =

∑
α⩾ℓβ

Kα,βRSα,

Hβ =
∑
α⩾ℓβ

Krs
α,βRSα

ψ⇐==⇒ Eβ =
∑
α⩾ℓβ

Krs
α,βSα.

(6) Ribbon basis expansions:

Rβ =
∑
α⩾ℓβ

Lα,βSα
ψ⇐==⇒ Rβc =

∑
α⩾ℓβ

Lα,βRSα.

The immaculate poset also represents a poset of the standard row-strict immacu-
late tableaux as a result of the equivalence between standard immaculate tableaux and
standard row-strict immaculate tableaux, thus results for the row-strict skew case follow
closely to those of the dual immaculate functions.

Definition 7.10. Let α and β be compositions with β ⊆ α. A skew row-strict immaculate
tableau is a skew shape α/β filled with positive integers such that the entries in the first
column are weakly increasing from top to bottom and the entries in each row strictly
increase from left to right.
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Definition 7.11. For compositions α, β such that β ⊆ α, the skew row-strict dual im-
maculate functions are defined as

RS∗
α/β =

∑
γ

⟨RSβHγ,RS∗
α⟩Mγ,

where the sum runs over all γ ∈ P such that |α| − |β| = |γ|.

As with the skew dual immaculate functions, these functions connect to the multipli-
cation of the row-strict immaculate functions and the comultiplication of the row-strict
dual immaculate functions.

Theorem 7.12. [30] Let α and β be compositions with β ⊆ α. Then,

RS∗
α/β =

∑
T

xT ,

where the sum runs over all skew row-strict immaculate tableaux T of shape α/β. More-
over,

RS∗
α/β = ψ(S∗

α/β) =
∑
γ

⟨RSβRγ,RS∗
α⟩Fγ =

∑
γ

⟨RSβRSγ,RS∗
α⟩RS∗

γ,

where the sums run over all compositions γ ∈ P such that |α| − |β| = |γ|.

Comultiplication on the row-strict dual immaculate functions is also defined in terms
of skew shapes.

Definition 7.13. For a composition α,

∆(RS∗
α) =

∑
β

RG∗
β ⊗RS∗

α/β,

where the sum runs over all compositions β such that β ⊆ α.

7.2 Colored row-strict dual immaculate functions in QSymA

To generalize these definitions and results to the colored case, we first define a lift of the
involution ψ to QSymA and NSymA. Note that we technically define two separate dual
involutions ψ, one on QSymA and one on NSymA, but we treat them as a single map
that works on both spaces.

Definition 7.14. For a sentence J , define the linear maps ψ : QSymA → QSymA and
ψ : NSymA → NSymA by

ψ(FJ) = FJc and ψ(RJ) = RJc .
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Proposition 7.15. The maps ψ are involutions, and the duality between QSymA and
NSymA is invariant under ψ, meaning that

⟨G,F ⟩ = ⟨ψ(G), ψ(H)⟩.

Furthermore, the map ψ : NSymA → NSymA is an isomorphism.

Proof. To see that ψ is invariant under duality, it suffices to observe that ⟨RI , FJ⟩ =
⟨RIc , FJc⟩ = ⟨ψ(RI), ψ(FJ)⟩. The map ψ is an involution because ψ(ψ(FI)) = F(Ic)c = FI
and ψ(ψ(RI)) = R(Ic)c = RI and the map extends linearly. Next, we show that ψ is an
isomorphism on NSymA. For sentences I and J , we have RIRJ = RI·J + RI⊙J [12] and
thus ψ(RIRJ) = ψ(RI·J)+ψ(RI⊙J). Observe that (I ·J)c = Ic⊙J c and (I⊙J)c = Ic ·J c.
Therefore, ψ(RIRJ) = RIc⊙Jc +RIc·Jc = RIcRJc = ψ(RI)ψ(RJ).

Note that ψ : QSymA → QSymA is not an isomorphism because it fails to preserve
multiplication. Now, we prove that ψ maps the complete homogenous basis to the el-
ementary basis in NSym and vice versa, which will allow us to apply ψ to both these
bases.

Proposition 7.16. For a sentence J , ψ(EJ) = HJ .

Proof. First, for a sentence J , we expand EJ in terms of the colored ribbon basis as

EJ =
∑
K⪯J

(−1)|J |−ℓ(K)HK =
∑
K⪯J

(−1)|J |−ℓ(K)

[∑
I⪰K

RI

]
=
∑
I

[ ∑
K⪯J,I

(−1)|J |−ℓ(K)

]
RI .

Next, we split the sum into two pieces according to I: one where I ≻ J c and the other
where I ⪯ J c,

EJ =
∑
I≻Jc

[ ∑
K⪯J,I

(−1)|J |−ℓ(K)

]
RI +

∑
I⪯Jc

[ ∑
K⪯J,I

(−1)|J |−ℓ(K)

]
RI .

In the first case, observe that I ≻ J c implies that J ≻ I. Thus, K ⪯ J, I becomes
K ⪯ J . Also notice that because J is constant we can write (−1)|J | = (−1)|J |−ℓ(J)(−1)ℓ(J)
and factor the first term out of the sum. In the second case, I ⪯ J c means that K ⪯
I, J becomes K ⪯ J, J c. The only way for K to be a refinement of a sentence and its
complement is if K is a sentence made up of only single letters. That is, |K| = ℓ(K).
Thus the inner sum has only one summand, which is (−1)|J |−ℓ(K) = (−1)|J |−|K| = 1. As a
result, the equation simplifies as

EJ =
∑
I≻Jc

(−1)|J |−ℓ(J)
[ ∑
Jc⪯K⪯I

(−1)ℓ(J)−ℓ(K)

]
RI +

∑
I⪯Jc

RI .

By properties of the Möbius function [12], the coefficient of first section is 0 for all K and
we are left with

EJ =
∑
I⪯Jc

RI .
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Therefore, applying ψ to EJ and noticing that I ⪯ J c if and only if J ⪯ Ic, yields

ψ(EJ) =
∑
I⪯Jc

ψ(RI) =
∑
I⪯Jc

RIc =
∑
J⪯Ic

RIc = HJ .

We continue by defining and studying colored row-strict immaculate tableaux. Their
combinatorics in relation to those of the colored immaculate tableaux will allow us to
define the colored row-strict dual immaculate basis and verify its relationship to the
colored dual immaculate basis via ψ.

Definition 7.17. A colored row-strict immaculate tableau (CRSIT) of shape I is a col-
ored composition diagram of shape I in which the sequence of integer entries is strictly
increasing from left to right in each row, and weakly increasing top to bottom in the
leftmost column. The type of a colored row-strict immaculate tableau T is the sentence
C = (u1, . . . , ug) such that for each i ∈ [g] the word ui lists the colors of all boxes in T
filled with the integer i in the order they appear when entries in T are read from left to
right and top to bottom. A standard colored row-strict immaculate tableau is a colored
row-strict immaculate tableau of size n with the integer entries 1, . . . , n each appearing
exactly once. To standardize a colored row-strict tableau, replace its integer entries with
the numbers 1, 2, . . . based on the order they appear in the type, first replacing all entries
equal to 1, then 2, etc. just as in the standardization of non-colored row-strict immaculate
tableaux.

We also use the same notion of row-strict descents and the row-strict descent set
Desrs from row-strict immaculate tableaux, but define an additional concept of colored
row-strict descent composition.

Definition 7.18. The colored row-strict descent composition of a standard colored row-
strict immaculate tableau U , denoted corsA (U), is the sentence obtained by reading the
colors in each box in order of their number and splitting into a new word after each
row-strict descent.

Example 7.19. A few CRSIT of shape (ab, bca) along with their types and standardiza-
tion, as well as the row-strict descent sets and colored row-strict descent compositions of
these standardizations, are:

T1 =
a, 1 b, 2

b, 1 c, 3 a, 4
T2 =

a, 1 b, 3

b, 1 c, 2 a, 4
T3 =

a, 1 b, 4

b, 2 c, 3 a, 3

(ab, b, c, a) (ab, c, b, a) (a, b, bc, a)

U2 =
a, 1 b, 3

b, 2 c, 4 a, 5
U3 =

a, 1 b, 4

b, 2 c, 3 a, 5
U4 =

a, 1 b, 5

b, 2 c, 3 a, 4

Desrs(U2)={2,4}
corsA (U2)=(ab,bc,a)

Desrs(U3)={2,3}
corsA (U3)=(ab,c,ba)

Desrs(U4)={2,3,4}
corsA (U4)=(ab,c,a,b)
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Definition 7.20. For a sentence J, the colored row-strict dual immaculate function is
defined as

RS∗
J =

∑
T

xT ,

where the sum is taken over all colored row-strict immaculate tableaux T of shape J .

Example 7.21. For J = (ab, bca), the colored row-strict dual immaculate function is

RS∗
(ab,bca) = xab,1xb,2xc,3xa,4 + xab,1xc,2xb,3xa,4 + . . .+ 2xa,1xb,2xb,3xc,4xa,5 + . . . .

Proposition 7.22. For a sentence J ,

RS∗
J =

∑
S

FcorsA (S),

where the sum runs over standard colored row-strict immaculate tableaux S of shape J .

Proof. Let T be a colored row-strict immaculate tableau of shape J that standardizes to
the standard colored row-strict immaculate tableau S. The flattening of the type of T
must be a refinement of the colored row-strict descent composition of S, which can be
shown by applying the same reasoning used in the proof of Proposition 4.14. In fact,
each sentence B that flattens to a refinement of corsA (S) corresponds to a unique colored
row-strict immaculate tableau of type B that standardizes to S. Therefore,

FcorsA (S) =
∑
TS

xTS ,

where the sum runs over all colored row-strict immaculate tableaux TS of shape J that
standardize to S. It follows that

RS∗
J =

∑
T

xT =
∑
S

∑
TS

xTS =
∑
S

FcorsA (S),

where the sums run over all CRSIT T of shape J , all standard CRSIT S of shape J , and
all CRSIT TS of shape J that standardize to S.

Theorem 7.23. Let J be a sentence. Then,

ψ(S∗
J) = RS∗

J .

Proof. For a sentence J ,

ψ(S∗
J) = ψ(

∑
U

FcoA(U)) =
∑
U

F(coA(U))c .

The complement of the colored descent composition of a standard colored immaculate
tableau U splits exactly where U does not have a descent. These are exactly the locations
of the row-strict descents in U , thus (coA(U))

c = corsA (U), and

ψ(S∗
J) =

∑
U

F(corsA (U)) = RS∗
J .
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Because {S∗
J}J is a basis and ψ is an involution, Theorem 7.23 implies the following.

Corollary 7.24. {RS∗
J}J is a basis for QSymA.

Using ψ, we extend each of our results on the colored dual immaculate functions to
the colored row-strict dual immaculate functions.

Definition 7.25. For sentences J,C and weak sentence B, define Krs
J,B as the number of

colored row-strict immaculate tableaux of shape J and type B, and LrsJ,C as the number
of standard colored row-strict immaculate tableaux of shape J with row-strict descent
composition C.

Proposition 7.26. For a sentence J ,

RS∗
J =

∑
B

Krs
J,BMB and RS∗

J =
∑
C

LrsJ,CFC ,

where the sums run over sentences B and C such that |B| = |J | and |C| = |J |.
The above proposition follows from Definition 7.20 in the manner of Theorem 4.20.

The results of Section 4.3 also extend to the row-strict case under the involution ψ.

Definition 7.27. The colored row-strict immaculate descent graph, denoted rsDn
A is the

edge-weighted directed graph with the set of sentences on A of size n as its vertex set and
an edge from each sentence I to J if there exists a standard colored row-strict immaculate
tableau of shape I with colored row-strict descent composition J . The edge from I to J
is weighted with the coefficient LrsI,J .

Due to the differing definitions of descents and descent compositions in row-strict
tableaux, the neighbors of I in rsDn

A are exactly the (sentence) complements of I’s neigh-
bors in Dn

A and the complement of I itself. Here, we say two vertices are neighbors if they
are adjacent by an edge in either direction.

Example 7.28. The standard colored row-strict immaculate tableaux of shape (ab, cbb)
have colored row-strict descent compositions (a, bc, b, b), (ac, bb, b), (ac, b, bb) and (ac, b, bb),
so (ab, cbb) has outgoing edges to these sentences in rsD5

{a,b,c}. Notice that if we take the

complement of each of these sentences we get (ab, cbb), (a, cb, bb), (a, cbbb), and (a, cbb, b)
which are exactly (ab, cbb) itself and the sentences to which it has outgoing edges to in
D5

{a,b,c}, as seen in Figure 1.

Proposition 7.29. For a sentence I, the colored fundamental functions expand into the
colored row strict immaculate basis as

FI =
∑
J

L
rs(−1)
I,J RS∗

J with coefficients L
rs(−1)
I,J =

∑
P

(−1)ℓ(P)prod(P),

where the sums run over all sentences J below I in rsDn
A and all directed paths P from I

to J in rsDn
A.

The proof follows that of Theorem 4.29 using Proposition 7.26 in place of Theorem
4.25. Similarly, this proposition specializes to the non-colored case in the same manner
as Corollary 4.31.
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7.3 Colored row-strict immaculate functions

We define the colored row-strict immaculate functions as the image of the colored immac-
ulate functions under ψ, and thus also as the basis dual to the colored row-strict dual
immaculate functions.

Definition 7.30. For a sentence J , the colored row-strict immaculate function is defined

RSJ = ψ(SJ).

Equivalently, due to the invariance of ψ under duality, we have ⟨RSI ,RS∗
J⟩ = δI,J .

Applying ψ to the colored immaculate functions yields row-strict versions of our earlier
results and colored generalizations of the results in Theorem 7.9. Note that certain results
from Theorem 7.9 are not generalized here because we lack the corresponding result on
the colored immaculate functions or due to the fact that ψ is not an isomorphism on
QSymA. The non-colored analogues of ψ are automorphisms on both QSym and NSym.

Theorem 7.31. For words w and v, sentences J and C, and f ∈ NSymA

(1) Right Pieri rule:

SJHw =
∑
J⊂wK

SK
ψ⇐==⇒ RSJEw =

∑
J⊂wK

RSK .

(2) Colored complete homogeneous and colored elementary expansions:

HC =
∑
J

KJ,CSJ
ψ⇐==⇒ EC =

∑
J

KJ,CRSJ ,

HC =
∑
J

Krs
J,CRSJ

ψ⇐==⇒ EC =
∑
J

Krs
J,CSJ .

(3) Colored ribbon expansions:

RC =
∑
J

LJ,CSJ
ψ⇐==⇒ RCc =

∑
J

LJ,CRSJ .

The application of Proposition 2.14 to Proposition 7.29 also yields the following result.
The analogous result is also true in NSym, as in Corollary 5.20.

Corollary 7.32. For a sentence J , the colored row-strict immaculate functions expand
into the colored ribbon basis as

RSJ =
∑
I

L
rs(−1)
I,J RI with coefficients L

rs(−1)
I,J =

∑
P

(−1)ℓ(P)prod(P)

where the sums run over all I above J in rsDn
A and all paths P from I to J in rsDn

A.
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7.4 The colored immaculate poset and skew colored row-strict dual immac-
ulate functions

The set of standard colored immaculate tableaux is equal to the set of standard col-
ored row-strict immaculate tableaux, meaning that many of our results on the colored
immaculate poset immediately extend to the row-strict setting.

Definition 7.33. For sentences I and J where J ⊆L I, a skew colored row-strict immac-
ulate tableau of shape I/J is a colored skew shape I/J filled with positive integers such
that the sequences of entries in the first column is weakly increasing top to bottom and
the sequence of integers in each row is strictly increasing left to right.

Definition 7.34. For sentences I and J where J ⊆L I, define the skew colored row-strict
dual immaculate function as

RS∗
I/J =

∑
K

⟨RSJHK ,RS∗
I⟩MK ,

where the sum runs over all sentences K ∈ PA such that |I| − |J | = |K|.

Applying ψ to the equations in Proposition 6.8 yields the following results.

Theorem 7.35. For sentences I and J with J ⊆L I,

RS∗
I/J =

∑
K

⟨RSJRK ,RS∗
I⟩FK =

∑
K

⟨RSJRSK ,RS∗
I⟩RS∗

K ,

where the sums run over all sentences K ∈ PA such that |I| − |J | = |K|.

Proposition 7.36. For sentences I and J such that J ⊆L I,

ψ(S∗
I/J) = RS∗

I/J .

Proof. Let I and J be sentences such that J ⊆L I. Then,

ψ(RS∗
I/J) =

∑
K

⟨RSJRK ,RS∗
I⟩ψ(FK) =

∑
K

⟨RSJRK ,RS∗
I⟩FKc

=
∑
K

⟨ψ(SJRKc), ψ(S∗
I)⟩FKc by Theorem 7.23

=
∑
K

⟨SJRKc ,S∗
I⟩FKc = S∗

I/J . By Proposition 7.15

Comultiplication on the colored row-strict immaculate basis can be defined in terms
of skew colored row-strict immaculate functions. The proof follows that of Proposition
6.10 using Theorem 7.35.
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Proposition 7.37. Let I be a sentence. Then,

∆(RS∗
I) =

∑
J

RS∗
J ⊗RS∗

I/J ,

where the sum runs over all sentences J such that J ⊆L I.

Multiplication and antipode of the colored row-strict dual immaculate functions are
closely related to the multiplication and antipode of colored dual immaculate functions,
and thus also remain open.

7.5 Future work

Our future work on this project will take three directions. First, we hope to continue
exploring properties of the colored immaculate and dual immaculate bases by looking at
multiplicative structures, potential Jacobi-Trudi formulas, possible rim hook generaliza-
tions, and expansions to and from more bases. Second, we will continue to generalize
other Schur-like bases to QSymA and NSymA, specifically the quasisymmetric shin func-
tions and Young quasisymmetric Schur functions, as well as their duals. Finally, we are
interested in defining and studying the colored generalization of the symmetric functions
that would be a subset of QSymA and the image of NSymA under a forgetful map.
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8 Appendix

Let A be a finite alphabet with a total order ⩽. Let I = (w1, . . . , wk) and J = (v1, . . . , vh)
be sentences and K = (u1, . . . , ug) a weak sentence. Let w = a1 . . . an and v = b1 . . . bm.
Let U be a standard colored immaculate tableau and thus also a standard colored row-
strict immaculate tableau.

|w| = n (size)
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w · v = a1 . . . anb1 . . . bm (concatenation of words)

w ⪯ℓ v if ai < bi for the first positive integer i such that ai ̸= bi (lexicographic)

|I| =
∑k

i=1 |wi| (size)

ℓ(I) = k (length)

w(I) = w1 · w2 · · ·wk (maximal word)

wℓ(I) = (|w1|, |w2|, . . . , |wk|) (word lengths)

J ⪯ I for w(I) = w(J), if J splits at each location that I splits (refinement)

µ(J, I) = (−1)ℓ(J)−ℓ(I) for J ⪯ I

J ⊂w I if wi = viqi such that qk · · · q1 = w and k ⩽ h+ 1 where vh+1 = ∅

I · J = (w1, . . . , wn, v1, . . . , vm) (concatenation of sentences)

I ⊙ J = (w1, . . . , wn−1, wn · v1, v2, . . . , vm) (near-concatenation)

Ir = (wk, . . . , w2, w1) (reversal)

Ic the sentence with w(Ic) = w(I) that splits where I does not (complement)

K̃ the sentence obtained by removing all empty words from K (flattening)

K ⊆L I there exists a weak sentence I/LK as defined below (left-containment)

I/LK = (q1, . . . , qt) such that wi = uiqi for all i ∈ [k]

K ⊆R I there exists a weak sentence I/RK as defined below (right-containment)

I/RK = (q1, . . . , qt) such that wi = qiui for all i ∈ [k]

{MI}I =
∑

1⩽j1<j2<...<jk
xw1,j1xw2,j2 · · ·xwk,jk (the monomial basis of QSymA)
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{FI}I =
∑

J⪯IMJ (the fundamental basis of QSymA)

{HI}I (the complete homogeneous basis of NSymA)

{RI}I =
∑

I⪯J(−1)ℓ(J)−ℓ(I)HJ (the ribbon basis of NSymA)

{EI}I =
∑

J⪯I(−1)|I|−ℓ(J)HJ (the elementary basis of NSymA)

⟨·, ·⟩ : NSym⊗QSym→ Q ⟨HI ,MJ⟩ = δI,J (inner product)

Colored immaculate tableau (CIT) a colored composition diagram filled with inte-
gers such that rows are weakly increasing left to right and the first column is strictly
decreasing top to bottom

shape(T ) = (w1, . . . , wk) where the colors of row i read left to right give wi

type(T ) = (v1, . . . , vh) where the colors of boxes filled with i read from left to
right, bottom to top give vi

Des(U) = {i : i+ 1 is on a strictly lower row of U than i} (descent set)

CoA(U) a sentence formed by reading the color in each box of U in order of
number, splitting into a new word when moving to a strictly lower row (colored
descent composition)

std(T ) (the standardization of a tableau T )

{S∗
I}I (the colored dual immaculate basis of QSymA)

{SI}I (the colored immaculate basis of NSymA)

PA (the colored immaculate poset)

Dn
A (the colored immaculate descent graph)
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