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Abstract

In 2014, R.H. Hardin contributed a family of sequences about king-moves on an
array to the On-Line Encyclopedia of Integer Sequences (OEIS). The sequences were
recently noticed in an automated search of the OEIS by Kauers and Koutschan, who
conjectured a recurrence for one of them. We prove their conjecture as well as some
older conjectures stated in the OEIS entries. We also have some new conjectures
for the asymptotics of Hardin’s sequences.

Mathematics Subject Classifications: 05A15, 33F10

1 Introduction

The On-Line Encyclopedia of Integer sequences [15] contains over 350,000 sequences and
perhaps tens of thousands of conjectures about them. Here we resolve some of these
conjectures related to a family of sequences due to R.H. Hardin.

For any positive integer r, let Hr(n, k) be the number of n× k arrays which obey the
following rules:

• The entry in position (1, 1) is 0, and the entry in position (n, k) is max(n, k)−r−1.

• The entry in position (i, j) must equal or be one more than each of the entries in
positions (i− 1, j), (i, j − 1), and (i− 1, j − 1).

• The entry in position (i, j) must be within r of max(i, j)− 1.

We call such an arrangement of numbers a Hardinian array.
Equivalently, Hardinian arrays can be defined in terms of the king-distance between

entries, i.e., the length of the shortest path that a king on a chessboard can take to get
from one entry to the other. Using this notion, we can say that a Hardinian array has
a 0 at position at the top-left entry, the entry at the bottom-right entry is king-distance
between the top-left corner and the bottom-right corner minus r, every entry increases
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by either 0 or 1 taking a single step towards left, down, or south-east, and the entry at
every position is within r of the position’s king-distance from the top-left corner.

For r = 1, 2, 3, Hardinian arrays are counted by the tables A253026 [4], A253223 [5],
and A253004 [3], respectively. Below is an example for r = 1, n = 6, and k = 5.

0 1 2 2 3
1 1 2 2 3
2 2 2 3 3
3 3 3 3 4
4 4 4 4 4
4 4 4 4 4


Hardin noticed several interesting patterns. For example, for every fixed r and k, the
sequence Hr(n, k) seems to be a polynomial in n of degree r for sufficiently large n. He
also conjectured an evaluation of the diagonal for r = 1, namely

H1(n, n) =
1

3
(4n−1 − 1).

More recently, Kauers and Koutschan [8] performed an automated search for sequences in
the OEIS which satisfy linear recurrences with polynomial coefficients. Hardin happened
to submit the diagonal of r = 2 as its own sequence, which led Kauers and Koutschan to
conjecture a recurrence for f(n) = H2(n, n), namely

32(n+ 1)(2n+ 1)2(1575n6 + 21285n5 + 117954n4 + 343020n3 + 551943n2

+ 465785n+ 161046)f(n)

− 8(121275n9 + 1933470n8 + 13267683n7 + 51280818n6 + 122556360n5 + 186866686n4

+ 180574335n3 + 105734340n2 + 33718283n+ 4443102)f(n+ 1)

+ 2(294525n9 + 4763070n8 + 33170868n7 + 130145646n6 + 315713355n5 + 488415476n4

+ 478464380n3 + 283626704n2 + 91378536n+ 12137328)f(n+ 2)

+ (294525n9 + 4668570n8 + 31877118n7 + 122735586n6 + 292620525n5 + 445804136n4

+ 431097970n3 + 252913504n2 + 80866406n+ 10688508)f(n+ 3)

− (121275n9 + 1961820n8 + 13655808n7 + 53503836n6 + 129484209n5 + 199650088n4

+ 194784258n3 + 114948300n2 + 36871922n+ 4877748)f(n+ 4)

+ 2(2n+ 7)(1575n6 + 11835n5 + 35154n4 + 52554n3 + 41382n2

+ 16118n+ 2428)(n+ 3)2f(n+ 5) = 0.

Our main results are that many of these conjectures are correct. In Section 2 we will
prove Hardin’s conjectured closed form for H1(n, n) and extend this to a closed form for
the rectangular case H1(n, k). In Section 3 we will prove that the conjectured recurrence
of Kauers and Koutschan for H2(n, n) is correct, and in fact that every Hr(n, n) satisfies
a linear recurrence with polynomial coefficients. We conjecture asymptotic estimates for
Hr(n, n) for all r ⩾ 2.
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2 The case r = 1

This case can be settled by an elementary combinatorial argument. Let us first consider
the diagonal and confirm the closed form representation conjectured by Hardin. In the
following proof we index our arrays beginning from 0 rather than 1.

Theorem 1. H1(n, n) =
1
3
(4n−1 − 1) for all n ⩾ 1.

Proof. Consider a valid n× n array. Above the upper diagonal, draw a dividing path be-
tween row entries which are equal to their king-distance and less than their king-distance.
Draw the same path below the diagonal, but make it with respect to columns. See Figure 1
for an example.

By the monotonicty rule, the upper path can only move down and to the right. Further,
if the first entry to its right in row i is (i, j), then the first entry to its right in row i+ 1
is either (i+ 1, j) or (i+ 1, j + 1). Thus the upper-path essentially consists of two kinds
of steps: down and right-down. The situation is mirrored in the lower path.

If the upper path does not divide row i just after the row’s entry on the main diagonal,
then the row is determined from the diagonal to the right endpoint. Entries between the
diagonal and the path equal their king-distance, entries after the path equal one less
than their king-distance, and the diagonal must equal i as its king-distance is i and to
its right is an i + 1. The analogous statement is true for the lower path with respect
to columns. Thus every entry is determined except for when both paths divide the ith
row and column just after the diagonal. In fact, the first time this happens, the diagonal
entry is still determined, as one of the entries above or to the left of the diagonal entry
equals i.

In summary, the only entries not determined by these paths are the diagonal entries
which both paths are adjacent to, except the first one and last one (by rule). If one path
first touches the diagonal at position i, and the other at position j > i, then there are
n − j − 2 diagonal entries not determined. Of these entries, we may choose at most one
to be the first less than its king-distance. After this choice all later entries must do the
same. Thus each such pair of paths generates n− j − 1 valid arrays.

If C(k) is the number of paths which are first adjacent to the diagonal at position k,
then

H1(n, n) = 2
n−1∑
j=0

j−1∑
i=0

C(i)C(j)(n− j − 1) +
n−1∑
j=0

C(j)2(n− j − 1).

Because each path essentially has two steps to choose from, both of them moving one step
closer to their end, we have C(k) = 2k−1 if k > 0 and C(0) = 1. Evaluating the above
summations and simplifying produces H1(n, n) = (4n−1 − 1)/3.

The double-path idea used in the proof above extends to the case of rectangular Har-
dinian arrays. The closed form expression for H1(n, k) shown next confirms conjectures
stated by Hardin for H1(n, 1), H1(n, 2), . . . , H1(n, 7).

Theorem 2. H1(n, k) = 4k−1(n− k) + 1
3
(4k−1 − 1) for all n ⩾ k ⩾ 1.
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


0 1 1 2 3
1 1 2 2 3
1 1 2 2 3
2 2 2 ∗ 3
3 3 3 3 3

Figure 1: A generic 5×5 matrix with two specific paths as constructed in the combinatorial
proof of Theorem 1. Every entry is determined by the paths except the one labeled ∗,
which may be 3 or 2. 


Figure 2: The generic picture for paths in the proof of Theorem 2. The lower two paths
are examples of the two possible cases.

Proof. Draw the same paths indicated in the proof of Theorem 1. See Figure 2 for an
example.

A lower path now is either adjacent to the diagonal at some point or not. The number
of valid arrays where the lower path is adjacent to the diagonal at some point is H1(k, k).
All other pairs of paths contribute only one valid array. There are n− k possible ending
positions for a lower path which is never adjacent to the diagonal and 2k−1 paths originat-
ing from each. Thus this case contributes (n − k)4k−1 valid arrays. Together this yields
H1(n, k) = 4k−1(n− k) +H1(k, k).

As these combinatorial arguments do not seem to extend to r > 1, we give some
alternative proofs of Theorem 1. They all rely on the theorem of Gessel and Viennot [11,
Theorem 10.13.1], which translates the counting problem into a determinant evaluation
problem. We will evaluate the determinant in three different ways. The following notation
will be used.

Definition 3. 1. For each positive integer n, let M(n) be the n×n matrix of binomial
coefficients {(

u+ v

u

)}
0⩽u,v<n

.

Observe that rows and columns are indexed starting from zero.
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

0 1 1 2 3 4 5
1 1 2 2 3 4 5
2 2 2 2 3 4 5
2 2 3 3 3 4 5
3 3 3 3 3 4 5
4 4 4 4 4 4 5
5 5 5 5 5 5 5


Figure 3: The contiguous regions of a Hardinian array are separated by a tuple of nonin-
tersecting lattice walks starting on the left and ending at the top.

2. For any n× n matrix A, any distinct row indices i1, i2, . . . , ir ∈ {0, . . . , n− 1} and
distinct column indices j1, j2, . . . , jr ∈ {0, . . . , n− 1}, let Aj1,j2,...,jr

i1,i2,...,ir
be the (n− r)×

(n− r) matrix obtained from A by deleting rows i1, . . . , ik and columns j1, . . . , jk.

3. For every n ⩾ 1, define

∆(n) = detM(n)

∆(n)j1,j2,...,jri1,i2,...,ir
= detM(n)j1,j2,...,jri1,i2,...,ir

.

Lemma 4. ∆(n) = 1 for all n.

Proof. Observe that M(n) = AB where A is the matrix whose entry at (u, v) is
(
u
v

)
and

B is the matrix whose entry at (u, v) is
(
v
u

)
. This follows from Vandermonde’s identity(

u+v
v

)
=
∑

k

(
u
k

)(
v
k

)
. As A and B are triangular matrices with 1’s on the diagonal, the

claim follows from ∆(n) = det(M(n)) = det(A) det(B).

The key observation is that the valid n× n arrays can be partitioned into contiguous
regions, as shown in Figure 3. There is a region for 0, a region for 1, a region for 2, and so
on. In the n×n case, the region corresponding to k is obtained by beginning at the lowest
occurrence of k in the first column, moving as far right as possible while only passing k’s,
and moving up when stuck. For an n× n Hardinian array this process always terminates
in the first row.

Proposition 5. H1(n, n) =
n−2∑
i=0

n−2∑
j=0

∆(n− 1)ji for all n ⩾ 1.

Proof. The n− 1 contiguous regions in a Hardinian array of size n× n are separated by
n− 2 nonintersecting lattice paths. These paths begin on one of the n− 1 edges between
entries in the first column and end on one of the n− 1 edges between entries in the first
row, using only steps to the right (→) and upwards (↑). Each Hardinian array corresponds
to exactly one such set of paths.

In the other direction, each such set of paths corresponds to a Hardinian array. Given
such a set, assign the induced regions the values 0, 1, . . .n − 2 in order from the top-
left to the bottom-right. The top left will contain a 0, the bottom right will contain an
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n − 2, and adjacent entries differ by no more than 1. To see that the king-distance rule
is not violated, note that it is not violated at the entries before the boundaries on the
first column and first row—because at most one entry does not have a path just before
it—and that these points have the largest king-distance of any entry reached using the
available steps.

It follows that the number of Hardinian arrays of size n×n equals the number of sets
of nonintersecting lattice paths we have described. If we label the possible starting and
ending positions 0, 1, . . . , n− 2, then there are altogether

(
u+v
v

)
paths from u to v, for any

u and v.
Consider the set of paths where i is the unique unchosen startpoint and j the unique

unchosen endpoint. In this case the kth path (k = 0, . . . , n− 3) starts at k + [i ⩽ k] and
ends at k + [j ⩽ k]. By the theorem of Gessel and Viennot, the number of such sets of
paths is the determinant of the (n− 2)× (n− 2) matrix whose entry at position (u, v) is(
u+v+[i⩽u]+[j⩽v]

v+[j⩽v]

)
. This determinant equals ∆(n − 1)ji . It follows that H1(n, n) is the sum

of ∆(n− 1)ji over all possible rows i and columns j.

The proposition reduces the enumeration problem to the problem of evaluating a sum
of determinants. This can be done as follows.

Second proof of Theorem 1. Let M̃(n) be the (n+1)×(n+1) matrix obtained from M(n)
by first attaching an additional row 1,−1, 1,−1, . . . at the top and then an additional
column 0,−1, 1,−1, 1, . . . at the left, e.g.,

M̃(5) =

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 −1 1 −1 1
−1 1 1 1 1 1
1 1 2 3 4 5
−1 1 3 6 10 15
1 1 4 10 20 35
−1 1 5 15 35 70

∣∣∣∣∣∣∣∣∣∣∣∣
.

By expanding along the first row and then along the first column, we have det M̃(n) =∑n−1
i=0

∑n−1
j=0 ∆(n)ji .

It remains to determine the determinant of M̃(n).
Subtract the (n−2)nd row from the (n−1)st, then the (n−3)rd row from the (n−2)nd,
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and so on, and analogously for the columns, e.g.,

∣∣∣∣∣∣∣∣∣∣∣∣

y−1 +

y−1 +

y−1 +

y−1 +

0 1 −1 1 −1 1
−1 1 1 1 1 1
1 1 2 3 4 5
−1 1 3 6 10 15
1 1 4 10 20 35
−1 1 5 15 35 70

∣∣∣∣∣∣∣∣∣∣∣∣ ←−−1

+

←−
−1

+

←−
−1

+

←−
−1

+

=

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 −2 2 −2 2
−1 1 0 0 0 0
2 0 1 1 1 1
−2 0 1 2 3 4
2 0 1 3 6 10
−2 0 1 4 10 20

∣∣∣∣∣∣∣∣∣∣∣∣
In general, the proposed row and column operations replace the entry

(
u
v

)
by(

u+ v

v

)
−
(
u− 1 + v

v

)
− (

(
u+ v − 1

v − 1

)
−
(
u− 1 + v − 1

v − 1

)
) =

(
u− 1 + v − 1

v − 1

)
.

Now expand along the second row (or column) to obtain

det M̃(n) = ∆(n− 1) + 4 det M̃(n− 1) = 4 det M̃(n− 1) + 1

for every n. Together with the initial value det M̃(1) = 1, it follows by induction that
det M̃(n) = 1

3
(4n− 1). In view of Prop. 5, Theorem 1 follows by replacing n by n− 1.

Third proof of Theorem 1. This proof uses computer algebra, in the spirit of an approach
proposed by Zeilberger [17]. Because of ∆(n) = 1 and Cramer’s rule, (−1)i+j∆(n)ji is the
entry of M(n)−1 at position (i, j). For n ⩾ 1 and i, j = 0, . . . , n− 1, define

c(n, i, j) = (−1)i+j

n−1∑
ℓ=0

(
ℓ

i

)(
ℓ

j

)
.

Using symbolic summation algorithms (as implemented, e.g., in Koutschan’s package [9]),
it can be easily shown that

n−1∑
k=0

(
i+ k

k

)
c(n, k, j) = δi,j

for all n ⩾ 1 and all i, j ⩾ 0. Therefore, c(n, i, j) is the entry at (i, j) of M(n)−1, and
thus equal to (−1)i+j∆(n)ji .

Applying summation algorithms once more, we can prove that the sum

s(n) =
∑
i,j

(−1)i+jc(n, i, j)
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satisfies the recurrence
s(n+ 2) = 5s(n+ 1)− 4s(n)

for all n ⩾ 1. Together with the initial values s(1) = 1 and s(2) = 5, the claimed closed
form expression now follows again by induction.

While the sum ∆(n)ji =
∑n−1

ℓ=0

(
ℓ
i

)(
ℓ
j

)
does not have a hypergeometric closed form,

it does simplify in the special case j = n − 1. For this special case, it is obvious that
∆(n)n−1

i =
∑n−1

ℓ=0

(
ℓ
i

)(
ℓ

n−1

)
=
(
n−1
i

)
, because only the summand with ℓ = n− 1 is nonzero.

Taking the knowledge of this special case for granted, we can give a fourth proof of
Theorem 1.

Fourth proof of Theorem 1. Dodgson’s identity (cf. Prop. 10 of Krattenthaler’s tutorial
on evaluating determinants [10]) says that

det(A) det(Aj,n−1
i,n−1) = det(Aj

i ) det(A
n−1
n−1)− det(An−1

i ) det(Aj
n−1)

for every n × n matrix A. (Actually, Krattenthaler states the equation for i = j = 0,
but it is easily seen that it holds for arbitrary i and j, because we can multiply A with
suitable permutation matrices from the left and the right in order to reduce to the case
i = j = 0.)

Consider A = M(n) and observe that An−1
n−1 = M(n − 1). Then, because of ∆(n) =

∆(n− 1) = 1 it follows that

∆(n− 1)ji = ∆(n)ji −∆(n)n−1
i ∆(n)jn−1.

Using the identities ∆(n)n−1
i =

(
n−1
i

)
and ∆(n)jn−1 =

(
n−1
j

)
observed just before this proof,

it follows that

∆(n)ji = ∆(n− 1)ji +

(
n− 1

i

)(
n− 1

j

)
.

Summing over all i and j gives

s(n) = s(n− 1) + 4n−1,

and with s(1) = 1, the claim follows again by induction.

3 The case r ⩾ 2

Via the theorem of Gessel and Viennot, we also have access to the sequences Hr(n, n) for
r > 1. The argument is the same as for r = 1, except that now a Hardinian array of size
n× n consists of n− r contiguous regions, separated by n− r − 1 nonintersecting lattice
paths, whose start points and end points are taken from the set {0, . . . , n−2}. According
to Gessel and Viennot, ∆(n− 1)j1,...,jri1,...,ir

is the number of sets of n− r − 1 nonintersecting
lattice walks whose start points are {0, . . . , n− 2} \ {i1, . . . , ir} and whose end points are
{0, . . . , n− 2} \ {j1, . . . , jr}.
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In order to deal with these determinants, it helps to observe that Dodgson’s identity
quoted in the fourth proof of Theorem 1 is a special case of a more general identity due
to Jacobi [6, 14, 1]: For an n × n matrix A and two choices 0 ⩽ i1 < i2 < · · · < ir < n
and 0 ⩽ j1 < j2 < · · · < jr < n of indices, form the r × r matrix B whose entry at (u, v)
is defined as det(Ajv

iu
). Then Jacobi’s identity says

det(A)r−1 det(Aj1,...,jr
i1,...,ir

) = det(B).

For example, for r = 2 we obtain

det(A) det(Aj1,j2
i1,i2

) =

∣∣∣∣det(Aj2
i2
) det(Aj1

i2
)

det(Aj2
i1
) det(Aj1

i1
)

∣∣∣∣ = det(Aj1
i1
) det(Aj2

i2
)− det(Aj2

i1
) det(Aj1

i2
),

and setting i2 = j2 = n− 1 gives Dodgson’s version.

Theorem 6. For every r ⩾ 2, the sequence Hr(n, n) is D-finite. In particular, the
sequences A253217 (r = 2) and A252998 (r = 3) are D-finite.

Proof. For A = M(n), Jacobi’s identity implies

∆(n)j1,...,jri1,...,ir
=

∣∣∣∣∣∣∣
∆(n)j1i1 · · · ∆(n)jri1

...
. . .

...

∆(n)j1ir · · · ∆(n)jrir

∣∣∣∣∣∣∣
For every fixed r, the determinant on the right is D-finite because it depends polynomially
on quantities which we have recognized in the previous section as being D-finite. It follows
that the left hand side is D-finite, and consequently,

Hr(n, n) =
∑

0⩽i1<···<ir⩽n−2

∑
0⩽j1<···<jr⩽n−2

∆(n− 1)j1,...,jri1,...,ir

is D-finite, too.

Theorem 6 is not quite enough to confirm the correctness of the recurrence equation
Kauers and Koutschan obtained for H2(n, n) via guessing [8]. The theorem only implies
that the sequence satisfies some recurrence. In order to explicitly construct a recurrence,
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we have to evaluate the two 6-fold sums

S1(n) =
∑
i1⩾0

∑
i2>i1

∑
j1⩾0

∑
j2>j1

n∑
u=0

n∑
v=0

(
u

i1

)(
u

j1

)(
v

i2

)(
v

j2

)

=
n∑

u=0

n∑
v=0

(∑
i1⩾0

∑
i2>i1

(
u

i1

)(
v

i2

)
︸ ︷︷ ︸

=:s(u,v)

)(∑
j1⩾0

∑
j2>j1

(
u

j1

)(
v

j2

)
︸ ︷︷ ︸

=s(u,v)

)
and

S2(n) =
∑
i1⩾0

∑
i2>i1

∑
j1⩾0

∑
j2>j1

n∑
u=0

n∑
v=0

(
u

i1

)(
u

j2

)(
v

i2

)(
v

j1

)

=
n∑

u=0

n∑
v=0

(∑
i1⩾0

∑
i2>i1

(
u

i1

)(
v

i2

)
︸ ︷︷ ︸

=s(u,v)

)(∑
j1⩾0

∑
j2>j1

(
v

j1

)(
u

j2

)
︸ ︷︷ ︸

=s(v,u)

)
.

It seems best to do this using generating functions. We have

∞∑
u=0

∞∑
v=0

s(u, v)xuyv =
y

(1− x− y)(1− 2y)
.

The generating functions of s(u, v)2 and s(u, v)s(v, u) can be expressed as Hadamard prod-
ucts. As explained in [2], Hadamard products can be rephrased as residues, and residues
can be computed via creative telescoping [16]. Using Koutschan’s implementation [9], it
is easy to prove

y

(1− x− y)(1− 2y)
⊙x,y

y

(1− x− y)(1− 2y)

=
y

2x+ 2y − 1

(
1√

x2 − 2x(y + 1) + (y − 1)2
+

2

4y − 1

)
y

(1− x− y)(1− 2y)
⊙x,y

x

(1− x− y)(1− 2x)

=
1

2(2x+ 2y − 1)

(
x+ y − 1√

x2 − 2x(y + 1) + (y − 1)2
+ 1

)
,

respectively. Summing u from 0 to n and v from 0 to m amounts to multiplying these
series by 1

(1−x)(1−y)
, and setting m to n amounts to taking the diagonals of the resulting

bivariate series:

diag
1

(1− x)(1− y)

y

2x+ 2y − 1

(
1√

x2 − 2x(y + 1) + (y − 1)2
+

2

4y − 1

)
,

diag
1

(1− x)(1− y)

1

2(2x+ 2y − 1)

(
x+ y − 1√

x2 − 2x(y + 1) + (y − 1)2
+ 1

)
,
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respectively. As diagonals can also be rephrased as residues (cf. again [2] for a detailed
discussion), we can apply creative telescoping to obtain linear differential operators anni-
hilating these series. Their least common left multiple is an annihilator of the generating
function of H2(n, n).

In the end, we obtained a linear differential operator of order 10 with polynomial
coefficients of degree 43. With this certified operator at hand, we can prove that the
guessed recurrence of Kauers and Koutschan is correct.

In principle, we could derive a recurrence for Hr(n, n) for any r ⩾ 2 in the same way,
but already for r = 3 the computations become too costly. We can however use the
formula

Hr(n, n) =
∑

0⩽i1<···<ir⩽n−2

∑
0⩽j1<···<jr⩽n−2

∆(n− 1)j1,...,jri1,...,ir

to compute some more terms of the sequences. In order to do this efficiently, we can
recycle the idea of the second proof of Theorem 1 and translate some of the summation
signs into additional rows and columns of the determinant. For example, for r = 3 we
have

Hr(n, n) =
n−2∑
i=0

n−2∑
j=0

| det(Ai,j)|

where Ai,j is the matrix obtained from M(n − 1) by removing the ith row and the jth
column and adding a row with alternating signs in the column range 0 . . . j − 1 followed
by zeros and an additional row with zeros in the column range 0 . . . j − 1 followed by
alternating signs; and similarly two additional columns. For example, for n = 8, i =
4, j = 5 we have

Ai,j =





0 0 0 0 0 0 1 −1
0 0 −1 1 −1 1 0 0
0 −1 1 1 1 1 1 1
0 1 1 2 3 4 6 7
0 −1 1 3 6 10 21 28
−1 0 1 5 15 35 126210
1 0 1 6 21 56 252462
−1 0 1 7 28 84 462924
extra

columns

extra
rows

ith row
deleted

jth column
deleted

With this optimiziation, it is not difficult to compute the first 100 terms, and using
these, the technique of [7] is able to guess a convincing recurrence equation of order 9 and
degree 36. It is not reproduced here.

For r = 4, we explicitly delete two rows and columns and add two rows and columns
with alternating signs, as shown in Figure 4 on the left. This allows us to reduce the
original 8-fold sum to a 4-fold sum. A 4-fold sum is also sufficient for r = 5, where we can
even eliminate six summations by adding extra rows and columns, as shown in Figure 4 on
the right. By computing the sums over all these determinants, we were able to determine
the first 70 terms of the sequences H4(n, n) and H5(n, n). Unfortunately, these terms
were not sufficient to find a recurrence by guessing.
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extra

extra

j1 j2

i1

i2

extra

extra

j1 j2

i1

i2

Figure 4: Left: the computation of
∑

i1<i2<i3<i4

∑
j1<j2<j3<j4

∆(n−1)j1,j2,j3,j4i1,i2,i3,i4
is equivalent

to the computation of the sum over i1, i2 and j1, j2 of the determinants constructed as
shown in the figure. Light dots indicated omitted rows and columns; strong dots indicate
regions filled with alternating signs.
Right: the computation of

∑
i1<i2<i3<i4<i5

∑
j1<j2<j3<j4<j5

∆(n− 1)j1,j2,j3,j4,j5i1,i2,i3,i4,i5
is equivalent

to the computation of the sum over i1, i2 and j1, j2 of the determinants constructed as
shown in the figure.

However, the terms are enough to obtain convincing conjectured expressions for their
asymptotics. We obtained the following conjectures:

r asymptotics remark
0 1 trivial
1 1

223
4n by Theorem 1

2 1
2234π

16n n−1 from the proven recurrence
3 1

2239π
64n n−3 from the guessed recurrence

4 22

316π2 256
n n−6 from the first 70 terms

5 24

323π2 1024
n n−10 from the first 70 terms

Altogether, it seems that for every r ⩾ 0, we have

Hr(n, n) ∼ c 22rnn−(r2) (n→∞)

for some constant c that can be expressed as a power product of 2, 3, and π.
At least for specific values of r, it might be possible to prove these conjectured asymp-

totic formulas using the powerful techniques of analytic combinatorics in several vari-
ables [13, 12]. However, in order to invoke these techniques, we would need to know
more about the bivariate sequences Hr(n, k). Unfortunately, while we found an explicit
expression for H1(n, k), we were not able to show that Hr(n, k) is D-finite as a bivariate
sequence in n and k for any r ⩾ 2, although we suspect it to be.
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