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Abstract

Let G be a bipartite graph with bipartition (X,Y ). Inspired by a hypergraph
problem posed by Kostochka et al. (2021), we seek an upper bound on the number
of disjoint paths needed to cover all the vertices of X. We conjecture that a Hall-
type sufficient condition holds based on the maximum value of |S| − |Λ(S)|, where
S ⊆ X and Λ(S) is the set of all vertices in Y with at least two neighbors in S. This
condition is also a necessary one for a hereditary version of the problem, where we
delete vertices from X and try to cover the remaining vertices by disjoint paths.
The conjecture holds when G is a forest, has maximum degree 3, or is regular with
high girth, and we prove those results in this paper.

Mathematics Subject Classifications: 05C38, 05C65

1 Introduction

1.1 Path covers of bipartite graphs

Problems regarding path covers of graphs are ubiquitous in graph theory. A path cover of
G is a collection of vertex-disjoint paths in G where the union of the vertices of the paths
is V (G). Certainly the most well-studied example looks for a single path covering all
vertices of G, i.e. a Hamiltonian path. Graphs with such a path are also called traceable.
See [8] for a survey of results in this area. Determining whether a graph has a Hamiltonian
path is NP-complete even for very restrictive classes of graphs; for example, Akiyama et
al. [1] prove that it is NP-complete for 3-regular bipartite graphs.

In graphs that are not traceable, we may seek a path cover with as few paths as
possible. For example, Magnant and Martin [13] conjecture that a d-regular graph G can
be covered with at most |V (G)|/(d + 1) paths, and prove this when d 6 5. Feige and
Fuchs [7] extend the result to d = 6. In [14], Magnant et al. conjecture that a graph with
maximum degree ∆ and minimum degree δ needs at most max

{
1
δ+1

, ∆−δ
∆+δ

}
· |V (G)| paths
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to cover its vertices, which they verify for δ ∈ {1, 2} and which Kouider and Zamime [11]
prove for ∆ > 2δ. For dense d-regular bipartite graphs, Han [9] proves that a collection
of |V (G)|/(2d) vertex-disjoint paths covers all but o(|V (G)|) vertices.

In this paper, we focus on a variant of the path cover problem for bipartite graphs:
collections of vertex-disjoint paths that cover one partite set of the bipartite graph. Let
an (X, Y )-bigraph be a bipartite graph with a specified ordered bipartition (X, Y ). If G
is an (X, Y )-bigraph, a path X-cover of G is a set of pairwise vertex-disjoint paths in G
that cover all of X.

We seek a Hall-type condition for the existence of a path X-cover of G with at most
k paths. For any S ⊆ X, let ΛG(S) be the set of all vertices in Y that have at least two
neighbors in S; in cases where there is only one graph G under consideration, we will write
ΛG(S) simply as Λ(S). We define the Λ-deficiency of S to be Λ-def(G,S) := |S| − |Λ(S)|,
and the Λ-deficiency of G to be

Λ-def(G) := max{Λ-def(G,S) : S ⊆ X}.

Note that Λ-def(G) > 1 for all graphs G, since Λ-def(G, {x}) = 1 for any vertex x ∈ X.
We conjecture the following:

Conjecture 1. Every (X, Y )-bigraph G has a path X-cover by at most Λ-def(G) paths.

If this conjecture holds, then for every S ⊆ X, there is a set of at most Λ-def(G)
vertex-disjoint paths whose intersection with X is precisely S. To see this, just delete all
the vertices in X − S from G, which can only decrease the Λ-deficiency.

Conversely, suppose it is true that for every S ⊆ X, there is a set of at most k
vertex-disjoint paths whose intersection with X is precisely S. Then for every S, these
paths have at least |S| − k internal vertices in Y that are all elements of Λ(S); therefore
|Λ(S)| > |S| − k for all S, which implies that Λ-def(G) > k. It follows that the condition
in our conjecture is a necessary one if we would like to draw the stronger conclusion in
the preceding paragraph.

Our conjecture is a slightly weakened form of a conjecture on cycle covers proposed
in [10]:

Conjecture 2 (Conjecture 5 in [10]). Let G be an (X, Y )-bigraph with the property that
for all S ⊆ X with |S| > 3, Λ-def(G,S) 6 0 and the induced subgraph between S and
Λ(S) is 2-connected. Then G contains a cycle that covers all of X.

The statement of Conjecture 2 considers only sets S with |S| > 3 because these
are more natural in the hypergraph setting described in Subsection 1.3. In the case of
graphs, it is more natural to start at |S| > 2, and then the 2-connectivity assumption is
unnecessary. This modification to the conjecture was proposed by Salia in [16]:

Conjecture 3 (Conjecture 1.8.23 in [16]). Let G be an (X, Y )-bigraph with the property
that for all S ⊆ X with |S| > 2, Λ-def(G,S) 6 0. Then G contains a cycle that covers all
of X.
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We claim that Conjecture 2 implies Conjecture 3, which in turn implies Conjecture 1.
To see the first implication, let G satisfy the hypotheses of Conjecture 3. Then for all
S ⊆ X with |S| > 3, the induced subgraph of G between S and Λ(S) is 2-connected: if
any vertex is deleted, then any two remaining vertices x, x′ ∈ S still have at least one
common neighbor (since |Λ({x, x′}| > 2) and any vertex in Λ(S) still has at least one
neighbor in S. Therefore G satisfies the hypotheses of Conjecture 2.

To see the second implication, let G satisfy the hypothesis of Conjecture 1, and let H
be the graph obtained from G by adding Λ-def(G) more vertices to Y , each of which is
adjacent to every vertex in X. Then for all S ⊆ X with |S| > 3 (and even with |S| = 2),
we have Λ-def(H,S) 6 0, since all the new vertices of H are in ΛH(S). Therefore H
satisfies the hypotheses of Conjecture 3. Now a cycle in H covering all of X yields a path
X-cover of G by at most Λ-def(G) paths by deleting all the new vertices.

1.2 Previous results for these conjectures

In [10], Kostochka et al. prove that Conjecture 2 holds if |X| 6 6, which implies that the
other two conjectures hold if |X| 6 6 as well. They also prove that Conjecture 2 holds if

all vertices in X have degree at least max{|X|, |Y |+10
4
}.

Conjecture 3 is considered by Barát et al. in [3], where it is proved in a number of
special cases, with the degree of vertices in Y restricted: either if all vertices in Y have
degree at most 1

4

√
|X|, for |X| sufficiently large, or if all vertices in Y have degree either

2 or |X|. The first of these results does not imply any corollary for Conjecture 1, since
the reduction in the previous subsection adds many vertices of degree |X| to Y . However,
the second result implies that Conjecture 1 holds if all vertices in Y have degree 2. Barát
et al. also prove that if the condition of Conjecture 3 holds, then G has a collection of
pairwise vertex-disjoint cycles covering X (but with no restriction on their number).

1.3 Hypergraphs and the Gallai–Milgram theorem

The setting of Conjecture 1 can be translated into the language of hypergraphs and Berge
paths in hypergraphs, and here we see the motivation for focusing on a path cover of X.

Following the terminology of Berge [4], a hypergraph H consists of a set of vertices
V (H) and a set of edges E(H) where each edge e ∈ E(H) is a subset of V (H). (We
allow edges of any size.) The subhypergraph of H generated by a set S ⊆ V (H) is the
hypergraph with V (H) = S and

E(H) = {e ∩ S : e ∈ E(H), e ∩ S 6= ∅}.

There are several notions of paths in hypergraphs that generalize paths in graphs. One
such notion is that of a Berge path: a sequence

(v0, e1, v1, e2, v2, . . . , e`, v`)

where v0, v1, . . . , v` are distinct vertices in V (H), e1, e2, . . . , e` are distinct edges in E(H),
and {vi−1, vi} ⊆ ei for all i = 1, . . . , `.
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Given a hypergraph H, we can define its incidence graph to be the (X, Y )-bigraph G
with X = V (H) and Y = E(H) such that xy ∈ E(G) if and only if x ∈ X, y ∈ Y , and
x ∈ y. Berge paths in H correspond to paths in G that begin and end in X; these are
vertex-disjoint in G if and only if they are both vertex-disjoint and edge-disjoint in H.

If we define a Berge path cover of the hypergraph H to be a set of pairwise vertex-
and edge-disjoint paths that cover all of V (H), then Conjecture 1 proposes a sufficient
condition for H to have a Berge path cover of size at most k. Moreover, the proposed
sufficient condition is a necessary condition for every subhypergraph of H to have a Berge
path cover of size at most k.

This statement is reminiscent of the Gallai–Milgram theorem ([6], p. 298 in [4]), which
states that the vertices of any directed graph D can be covered by at most α(D) dis-
joint paths, where α(D) is the independence number of D. (The weaker statement for
undirected graphs clearly follows.) For a hypergraph H, let a set I ⊆ V (H) be strongly
independent (following the terminology of Berge) if |e∩ I| 6 1 for all e ∈ E(H); let α(H),
the strong independence number of H, be the size of a largest strongly independent set in
H. It would be natural to hope that H has a path cover by at most α(H) pairwise-disjoint
paths. In [15], Müller proves such a generalization of the Gallai–Milgram theorem (and,
in fact, a generalization of it to directed hypergraphs), but in a slightly different setting:
Müller does not require the edges of a path to be distinct, and does not require the paths
in the cover to be edge-disjoint, merely vertex-disjoint.

In our setting, the corresponding generalization is false. Translating from hypergraphs
back into the language of graphs: a set I ⊆ V (H) is strongly independent if and only if, in
the incidence graph of H, Λ(I) = ∅. Generalizing to an arbitrary (X, Y )-bigraph G, let
S ⊆ X be Λ-independent if Λ(S) = ∅, and let the Λ-independence number αΛ(G) be the
size of a largest Λ-independent set. Note that if S is Λ-independent, then Λ-def(G,S) =
|S|, so αΛ(G) is always at most Λ-def(G).

To see that an (X, Y )-bigraph G may not have a path X-cover with at most αΛ(G)
paths, even if G is balanced and has a high connectivity, consider the following family
of examples. Fix an integer k between 1 and n, and let X = {x1, . . . , xn} and Y =
{y1, . . . , yn} with xiyj ∈ E(G) when i 6 k or j 6 k. Then αΛ(G) = 1, since any two
vertices share the neighbor y1, but Λ-def(G) = n−2k+1 (choose S = {xk, xk+1, . . . , xn}),
and in fact it can be checked that a minimum path X-cover contains n− 2k + 1 paths.

However, in all the cases of Conjecture 1 we consider where G is a regular graph,
αΛ(G) paths suffice for a path X-cover of G. Whether this holds for all regular bigraphs G
is an open question that would have far-reaching consequences. For example, a result of
Singer [17] states that the incidence graph of any classical projective plane is Hamiltonian.
The proof relies on algebra over finite fields, but the claim above would give a purely graph-
theoretic reason that these incidence graphs are always traceable, since the incidence graph
G of any projective plane must have αΛ(G) = 1.

More generally, a hypergraph H is covering if every pair of vertices of H lie on a
common edge: in other words, α(H) = 1. Lu and Wang [12] prove that every {1, 2, 3}-
uniform covering hypergraph has a Hamiltonian Berge cycle. This implies Conjecture 1
for (X, Y )-bigraphs G with maximum degree 3 in Y and αΛ(G) = 1.
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1.4 Our results

Our first result states that Conjecture 1 holds for forests:

Proposition 4. If G is an (X, Y )-bigraph with no cycles, then G has a path X-cover of
size at most Λ-def(G).

To strengthen Proposition 4, we go in two directions: we consider graphs with low
maximum degree and graphs with high girth. In the first case, we begin by proving:

Theorem 5. If G is a 3-regular (X, Y )-bigraph, then G has a path X-cover of size at
most αΛ(G).

The proof of Theorem 5 begins by taking a 2-factor of G, covering the graph (and,
in particular, X) with pairwise vertex-disjoint cycles. If we generalize to graphs with
maximum degree 3, we are unable to do this, but if we cover as much of G with cycles as
possible, we are left with a forest. Once we deal with the interaction between the forest
and the cycles, we can combine the arguments of Theorem 5 with Proposition 4 to prove
a result for all graphs with maximum degree 3:

Theorem 6. If G is an (X, Y )-bigraph with maximum degree at most 3, then G has a
path X-cover of size at most Λ-def(G).

It is particularly interesting to strengthen Theorem 5 to Theorem 6 because if G has
maximum degree at most 3, then so does every subgraph of G. As a result, we obtain a
necessary and sufficient condition for an (X, Y )-bigraph G of maximum degree 3 to have
the property that for all S ⊆ X, there is a set of at most Λ-def(G) pairwise vertex-disjoint
paths whose intersection with X is precisely S.

Conjecture 1 holds for regular bigraphs of any degree if we add a condition on the
girth of G, that is, the length of the shortest cycle in G.

Theorem 7. Let G be an (X, Y )-bigraph with maximum degree at most d and girth at
least 4ed2 + 1, and assume that there exists a collection of pairwise vertex-disjoint cycles
in G that cover all of X. (In particular, such a collection is guaranteed to exist if G is
d-regular.) Then G has a path X-cover of size at most αΛ(G).

2 Forests

Proof of Proposition 4. We may assume that G has no leaves in Y , since a vertex in Y of
degree 1 does not contribute to Λ-def(G,S) for any S, and it does not help cover more of
X by paths. We may also assume that G is a tree; if G has multiple components, we can
solve the problem on each component separately.

We induct on |X|. When |X| = 1, we have Λ-def(G) = Λ-def(G,X) = 1, and we can
cover X by a single path of length 0.

When |X| > 1, consider G as a rooted tree with an arbitrary root in X. Let x ∈ X
be a leaf of G at the furthest distance possible from the root, and let y ∈ Y be the parent
vertex of x.
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Case 1: y has other children.
Let x1, . . . , xk be all the children of y (including x); by the case, k > 2. Since x was

chosen to be as far from the root as possible, each xi must be a leaf. Delete x1, x2, . . . , xk, y
from G to get G′.

Let S ⊆ X − {x1, . . . , xk} be the set such that Λ-def(G′) = Λ-def(G′, S). We claim
that

Λ-def(G,S ∪ {x1, . . . , xk}) = Λ-def(G′, S) + k − 1.

On one hand, |S ∪ {x1, . . . , xk}| = |S| + k. On the other hand, ΛG(S ∪ {x1, . . . , xk}) =
ΛG′(S) ∪ {y}, so |ΛG(S ∪ {x1, . . . , xk})| = |ΛG′(S)| + 1. In particular, Λ-def(G) >
Λ-def(G′, S) + k − 1.

By the inductive hypothesis, G′ has a path X-cover by at most Λ-def(G′, S) paths.
Add k−1 more paths to that set: the path (x1, y, x2) and the length-0 paths (x3), . . . , (xk).
This is a path X-cover of G by at most Λ-def(G′, S)+k−1 6 Λ-def(G) paths, completing
the case.

Case 2: y has no other children.
Let x∗ ∈ X be the parent vertex of y.
Case 2a: deg(x∗) 6 2 (this includes the case where x∗ is the root and deg(x∗) = 1).
Delete x and y from G to get G′. For every S ⊆ X − {x}, we have Λ-def(G,S) =

Λ-def(G′, S), since y cannot be in ΛG(S) and all other vertices of Y are still inG′. Therefore
Λ-def(G) > Λ-def(G′).

By the inductive hypothesis, G′ has a path X-cover by at most Λ-def(G′) paths. By
the case, x∗ is a leaf of G′ (or an isolated vertex), so the path that covers x∗ must begin
or end at x∗. Extend that path to go through y and x, and we get a path X-cover of G
by Λ-def(G′) 6 Λ-def(G) paths, completing the case.

Case 2b: deg(x∗) > 3.
Let y1, . . . , yk be all of the children of x∗ (including y); by the case, k > 2. No vertices

of Y are leaves, so each has a child. By our choice of x, those children are all as far from
the root as possible, so they must all be leaves. If any of y1, . . . , yk have multiple children,
then we can proceed as in Case 1, so assume each yi has a single child xi. Delete xk and
yk from G to get G′.

Let S ⊆ X − {xk} be the set such that Λ-def(G′) = Λ-def(G′, S). We may assume
that x∗ /∈ S by one of the following modifications:

• If x∗ ∈ S and x1 /∈ S, replace S by S ′ = S ∪ {x1} − {x∗}. Then |S ′| = |S| and
|ΛG′(S ′)| 6 |ΛG′(S)|: y1 is in neither ΛG′(S) nor ΛG′(S

′), and no other vertices
in Y have any neighbors in S ′ that they did not have in S. So Λ-def(G′, S ′) >
Λ-def(G′, S).

• If x∗ ∈ S and x1 ∈ S, replace S by S ′ := S − {x∗}. Then |S ′| = |S| − 1,
but |ΛG′(S ′)| 6 |ΛG′(S)| − 1 as well, since y1 ∈ ΛG′(S) but y1 /∈ ΛG′(S

′). (No
other vertices in Y have any neighbors in S ′ that they did not have in S.) So
Λ-def(G′, S ′) > Λ-def(G′, S).
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When x∗ /∈ S, we have Λ-def(G,S∪{xk}) = Λ-def(G′, S)+1, because |S∪{xk}| = |S|+1,
while ΛG(S ∪ {xk}) = ΛG′(S). Therefore Λ-def(G) > Λ-def(G′) + 1.

By the inductive hypothesis, G′ has a path X-cover by at most Λ-def(G′) paths. Add
the path (xk) to get a path X-cover of G by Λ-def(G′) + 1 6 Λ-def(G) paths, completing
the case and the proof.

3 3-regular graphs

It is a standard result (Corollary 3.1.13 in [18]) that every regular bipartite graph has a
perfect matching. Removing a perfect matching from a d-regular bipartite graph leaves
a (d − 1)-regular bipartite graph, which also has a perfect matching. The union of the
two matchings provides a cover of G by vertex-disjoint cycles, giving the following lemma
(which is also well-known):

Lemma 8. If G is a regular bipartite graph, then G has a cycle cover.

The existence of this lemma is the primary reason that this proof is simpler than the
proof of Theorem 6 in the next section. That proof begins with the same ideas, but must
deal with vertices of X that are not part of the initially chosen collection of cycles.

Proof of Theorem 5. By Lemma 8, we can take a cycle cover C of G.
Of all Λ-independent subsets of X containing at most one vertex of each cycle in C,

let S be one with the maximum possible size. Since |S| 6 αΛ(G), it suffices to construct
a path cover of G with exactly |S| paths. We give an algorithm for this below.

Let H be the subgraph of G consisting of the |S| cycles in C which contain a vertex
of S; together, these cycles include all vertices of S. Over the course of the algorithm, we
will modify H, ultimately extending it to a spanning subgraph of G, while maintaining
two properties: (1) H has |S| components, and (2) each component of H is traceable.

In the first step of the algorithm, choose a cycle C ∈ C that is not yet contained in
H, and x(C) ∈ V (C) ∩ X. By the maximality of S, we have Λ(S ∪ {x(C)}) 6= ∅, so
there is some vertex s ∈ S such that x(C) and s have a common neighbor y. Let C(s) be
the cycle in C containing s. The vertex y must lie on either C or C(s), since otherwise y
would have four neighbors: x(C), s, and its two neighbors on the cycle in C containing y.
We extend H by adding cycle C to H, and either the edge x(C)y (if y lies on C(s)) or sy
(if y lies on C). This ends one step of the algorithm.

This step maintains the property that H has |S| components, since cycle C has been
joined to an existing component of H. Furthermore, after this first step, each component
of H remains traceable.

Subsequent steps of the algorithm iterate this step, although we must choose C care-
fully to maintain the property that each component of H is traceable. To do this, we
define the idea of a dangerous vertex. Consider an arbitrary s ∈ S; let C(s) be the cycle
of C containing s, and let y1, y2 be the two neighbors of s along C(s). Initially, the com-
ponent of H containing s is just C(s). There are three ways that C(s) can potentially be
extended in H, namely via an edge from any of s, y1, or y2 going to another cycle in C.
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The component remains traceable if any one of these edges is used to extend it: in that
case, we can extend that edge to a Hamiltonian path by going the long way around both
cycles. The component also remains traceable if it is extended both using an edge from s
and using an edge from y1. In that case, delete edge sy1, obtaining a long path containing
s and y1 joining two cycles; extend that path by going the long way around both of those
cycles. The same is true if y1 is replaced by y2.

However, we must ensure that the component of H containing s is never extended
by using edges from both y1 and y2. Suppose that a step of the algorithm extended the
component of H containing s via an external edge to y1, and y2 has a neighbor w in some
C ∈ C not yet contained in H. In this situation, say w is dangerous, and we select C in
the subsequent step of the algorithm, and choose x(C) 6= w. This ensures the component
of H containing s cannot be extended using edges from both y1 and y2, because one of
those edges goes to C, and C will become part of H in the next step of the algorithm and
hence will not be considered at later stages of the algorithm. As a result, no component
of H is ever prevented from being traceable.

If there is no dangerous cycle at a particular step of the algorithm, then we may select
C arbitrarily.

At the end of the algorithm, we have a spanning subgraph H with |S| traceable
components. By taking a Hamiltonian path in each component, we obtain a path cover
of G with |S| paths, completing the proof.

4 Graphs with maximum degree 3

Proof of Theorem 6. We will prove the theorem by describing an algorithm that con-
structs a path X-cover P and a set S ⊆ X with |P| = Λ-def(G,S).

To begin the algorithm, let C be a collection of vertex-disjoint cycles in G satisfying
the following conditions:

1. The union of the cycles contains as many vertices of G as possible.

2. Subject to condition 1, there are as few cycles as possible.

As a consequence of condition 1, deleting the vertices in C from G leaves a forest, which
we call F .

In the next phase of the algorithm, we process the cycles in C, one at a time. This phase
has two goals. First, for each C ∈ C, we will choose a designated vertex x(C) ∈ V (C)∩X.
Intuitively, x(C) will be the only vertex of C which may become part of the high-Λ-
deficiency set S we construct. We define y+(C) and y−(C) to be the two neighbors of
x(C) along C. Second, we will split C into three sets: Cgood, Cbad, and Cugly. Intuitively, if
C ∈ Cgood, then x(C) is far from any problems; if C ∈ Cbad, then x(C) is too close to the
forest F ; finally, if C ∈ Cugly, then x(C) is too close to x(D) for some D ∈ Cgood ∪ Cbad.

As in the proof of Theorem 5, processing a cycle in C will sometimes yield a dangerous
vertex w on an unprocessed cycle C which must never become x(C). In this case, we
select C to be processed next, and we choose an arbitrary vertex in V (C)∩X other than
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w to be x(C); after this is done, w is no longer dangerous. If there is no dangerous vertex
(such as, for example, at the start of this phase), then we choose an unprocessed C and
a vertex x(C) ∈ V (C) ∩X arbitrarily.

To decide what to do with a cycle C as we process it, we consider the following cases,
in order, choosing the first that applies:

Case 1: x(C) has a common neighbor with x(D) for some D ∈ Cgood ∪ Cbad, and that
common neighbor lies on either C or D. In other words, at least one edge

e(C) ∈ {x(C)y+(D), x(C)y−(D), y+(C)x(D), y−(C)x(D)}

must exist in G. (If multiple choices of D or of e(C) are possible, then fix one of them.)
In this case, we place C in Cugly; we say that C attaches to D at u, where u is the endpoint
of e(C) in D. We save the edge e(C) for reference; later, we will use it to extend a path
covering D to also cover C.

Additionally, if e(C) = x(C)y±(D) and the vertex y∓(D) (that is, whichever of
y+(D), y−(D) is not an endpoint of e(C)) is adjacent to a vertex w on an unprocessed
cycle, we mark w as dangerous, and choose the next cycle to be processed accordingly
(that is, process w’s cycle C ′ next, and choose x(C ′) 6= w).

Case 2: At least one of x(C), y+(C), or y−(C) has a neighbor in F . In this case, we
place C in Cbad. Additionally, if y±(C) has a neighbor in F and y∓(C) has a neighbor
w on an unprocessed cycle, we mark w as dangerous, and choose the next cycle to be
processed accordingly.

Case 3: Neither case 1 nor case 2 occurs. In this case, we simply place C in Cgood.
This concludes the second phase (or the processing phase) of the algorithm.
In the third phase of the algorithm, we create an auxiliary graph F ∗ (which is not

precisely a subgraph of G) containing F and some extra vertices representing the elements
of Cbad. For each C ∈ Cbad:

• We add x(C) to F ∗, together with the edge to its neighbor in F , if there is one.

• We add an artificial vertex y∗(C) to F ∗ that is adjacent to x(C) and to the neighbors
of both y+(C) and y−(C) in F , if these exist.

Before we continue, we must show that F ∗ is a forest. Suppose for the sake of contradiction
that F ∗ contains a cycle. Since F is acyclic, this cycle must contain either x(C) or y∗(C)
for at least one C ∈ Cbad.

First, consider the case that the cycle only includes the vertex y∗(C) for a single
C ∈ Cbad. This means that there is a path P from y+(C) to y−(C) of length at least 3,
whose internal vertices are in F . Now we can modify C, replacing x(C) and the edges
y+(C)x(C), x(C)y−(C) by P . The resulting cycle contains more vertices that C, violating
condition 1 in the definition of C.

Similarly, if the cycle in F ∗ includes only the vertices x(C) and y∗(C) for a single
C ∈ Cbad, we can expand C to include some vertices in F . This also violates condition 1
in the definition of C.

the electronic journal of combinatorics 31(3) (2024), #P3.1 9



Finally, consider the case that the cycle in F ∗ includes vertices x(C) and/or y∗(C)
for multiple C ∈ Cbad. In this case, we can extend it to a cycle in G: every time the
cycle in F ∗ visits y∗(C), we can replace that visit by a path that enters C via y±(C),
goes around C, and leaves via either y∓(C) or x(C). This cycle in G contains at least as
many vertices as the cycles from C it uses: it misses at most the vertex x(C) from each of
them, but includes a vertex in F between any two of the cycles in C. Therefore, we can
replace multiple cycles in C by a single cycle through at least as many vertices, violating
condition 2 in the definition of C.

In all cases, we arrive at a contradiction, so we can conclude that F ∗ is a forest. We
give it the structure of an (X ′, Y ′)-bigraph by defining:

X ′ = (X ∩ V (F )) ∪ {x(C) : C ∈ Cbad},
Y ′ = (Y ∩ V (F )) ∪ {y∗(C) : C ∈ Cbad}.

By Proposition 4, we can find a path X ′-cover P ′ of F ∗ and a set S ′ ⊆ X ′ such that
Λ-def(F ∗, S ′) > |P ′|. We may assume that both endpoints of every path in P ′ are in X ′,
not Y ′.

Let S ′′ be obtained from S ′ by deleting each vertex of the form x(C) for which y∗(C) ∈
ΛF ∗(S

′). Because X ′ ⊆ X, we have S ′′ ⊆ S ′ ⊆ X as well.

Claim 9. ΛG(S ′′) ⊆ V (F ).

Proof. Suppose for the sake of contradiction that y ∈ ΛG(S ′′) but y /∈ V (F ). Then y lies
on some cycle C ∈ C, and therefore has at most one neighbor not on C; in order to have
y ∈ ΛG(S ′′), we must have y ∈ {y+(C), y−(C)}, with x(C) ∈ S ′′. Additionally, y must
have a second neighbor x′ ∈ S ′′ outside C. To have x′ ∈ S ′′, either x′ = x(D) for some
other cycle D ∈ C, or x′ ∈ V (F ).

If x′ = x(D) for some other cycle D ∈ C, then since x(C), x(D) ∈ S ′′ ⊆ X ′, we must
have C,D ∈ Cbad. But then, whichever of C and D is considered second, it would have
fallen under Case 1 when processed due to the common neighbor y, and then it would
be placed in Cugly instead. Therefore this cannot occur. If x′ ∈ V (F ), then x(C) and x′

have a common neighbor in F ∗ as well: vertex y∗(C). But then, by the definition of S ′′,
x(C) /∈ S ′′, so this also cannot occur.

Claim 9 implies that ΛG(S ′′) ⊆ ΛF ∗(S
′): if y ∈ V (F ), then the neighbors of y are the

same in G and F ∗, so the vertices of S ′′ adjacent to y in G are vertices of S ′ adjacent
to y in F ∗. Moreover, there are at least |S ′| − |S ′′| vertices in ΛF ∗(S

′) that are not in
ΛG(S ′′): for each vertex x(C) in S ′ but not in S ′′, y∗(C) ∈ ΛF ∗(S

′), but y∗(C) /∈ V (G), so
y∗(C) /∈ ΛG(S ′′).

It follows that |ΛG(S ′′)| 6 |ΛF ∗(S ′)| − |S ′| + |S ′′|, and therefore Λ-def(G,S ′′) >
Λ-def(F ∗, S ′) > |P ′|.

We are now ready to construct the path X-cover P in G and a set S ⊆ X with
|P| 6 Λ-def(G,S). Let S = S ′′ ∪ {x(C) : C ∈ Cgood}. The vertices {x(C) : C ∈ Cgood}
have no common neighbors with each other or with any vertex in S ′′. This is ensured by
Case 1 and Case 2 of the processing phase, where any cycle C for which x(C) did have
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such a common neighbor would be placed in Cbad or Cugly instead. Therefore Λ-def(G,S) =
Λ-def(G,S ′′) + |Cgood|. We transform P ′ into P with |Cgood| additional paths.

For each C ∈ Cgood, we add a single path to P that covers the vertices of X on both
C and any cycles in Cugly that attach to C. There are three possibilities:

• If there are no cycles in Cugly that attach to C, we take a path that goes around C.

• If there is one cycle C1 ∈ Cugly that attaches to C, we obtain a path that covers
both C and C1 by taking both cycles, adding edge e(C1), and deleting an edge
incident on e(C1) from both cycles.

• If there are two cycles C1, C2 ∈ Cugly that attach to C, then e(C1) and e(C2) cannot
both have endpoints in {y+(C), y−(C)}, because once one such cycle is added to
Cugly in Case 1, we mark the appropriate vertex as dangerous to prevent a second
cycle of this type from appearing. (This is also why three cycles in Cugly cannot
attach to C.) Without loss of generality, C1 and C2 attach to C at x(C) and y+(C).

We obtain a path that covers C, C1, and C2 by taking all three cycles, adding edges
e(C1) and e(C2), deleting edge x(C)y+(C) from C, and deleting an edge from each
of C1 and C2 incident on e(C1) and e(C2), respectively.

Finally, we must transform the paths in P ′ that use the vertices x(C) or y∗(C) for
some C ∈ Cbad into paths in G that cover the cycles in Cbad, as well as any cycles in Cugly

that attach to them.
We do this by considering the cycles in Cbad one at a time. For each C ∈ Cbad, there

are either one or two paths in P ′ that need to be transformed: the path Px ∈ P ′, and
possibly a path Py ∈ P ′ that passes through y∗(C), if there is such a path and it is distinct
from Px.

To transform Px and Py, we replace x(C) in Px and y∗(C) in Py by segments in G that
cover C and any cycles in Cugly that attach to C. There are multiple possibilities for how
the transformation is done, depending on how x(C) and y∗(C) appear on paths in P ′:

• Px contains x(C) but not y∗(C), and no path in P ′ uses the vertex y∗(C).

In this case, x(C) must be an endpoint of Px, since x(C) has only one neighbor
in F ∗ other than y∗(C). We extend Px to go around the cycle C, ending at either
y+(C) or y−(C).

If there is a cycle C1 ∈ Cugly that attaches to C at y±(C), we choose Px to go around
C so that it ends at the endpoint of e(C1); then, extend Px to use e(C1) and go
around C1. As before, there cannot be two cycles C1, C2 ∈ Cugly that attach to C
at y+(C) and y−(C), since we mark the appropriate vertex as dangerous to prevent
this.

• Px contains both x(C) and y∗(C).

In this case, if we orient Px to visit x(C) before y∗(C), then it must use edge
x(C)y∗(C) to arrive at y∗(C): there is no other x(C) − y∗(C) path, since F ∗ is a
forest.
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The edge Px uses to leave y∗(C) comes from an edge inG from y±(C) to F ; we modify
Px to go around the cycle C from x(C) to y±(C). If there is a cycle C1 ∈ Cugly that
attaches to C at x(C), then x(C) cannot have a neighbor in F , so it is an endpoint
of Px. We extend x(C) in the other direction, prepending a path that goes around
C1 and takes edge e(C1) to x(C). There cannot be a cycle C2 ∈ Cugly that attaches
to C at y∓(C), again because we mark a vertex as dangerous to prevent it.

• Px contains x(C), and a different path Py contains y∗(C).

In this case, x(C) must be an endpoint of Px. We leave Px unchanged, unless there
is a cycle C1 ∈ Cugly that attaches to C at x(C). In this case, x(C) has no neighbors
in F , so Px must be a path of length 0. We replace Px by a path that covers C1 and
ends with e(C1), also covering x(C).

Meanwhile, Py must enter and leave y∗(C) by edges other than x(C)y∗(C); in G,
these correspond to two edges between {y+(C), y−(C)} and F . We modify Py, re-
placing y∗(C) by the y+(C), y−(C)-path that goes around C, covering all its vertices
except the previously covered x(C).

Once a path P ∈ P ′ has been transformed once for every cycle C ∈ Cbad such that P
contains x(C) or y∗(C), it is a path in G (since it no longer contains any vertex y∗(C) for
C ∈ Cbad) and we add it to P .

After all transformations of P ′ are complete, the collection P is a path X-cover.
The |Cgood| paths first added to P ensure that P covers all vertices of X on Cgood. The
paths transformed from paths in P ′ ensure that P covers all vertices of X on Cbad, as
well as all vertices of X ′. Finally, for each C ∈ Cgood ∪ Cbad, the path in P that covers
C also covers each cycle in Cugly that attaches to C. This completes the proof, since
|P| = |P ′|+ |Cgood| 6 Λ-def(G,S ′) + |Cgood| = Λ-def(G,S).

5 Graphs with high girth

We will use the Lovász Local Lemma [5] to prove Theorem 7, in the form stated below.

Lemma 10 (The Local Lemma; Lemma 5.1.1 in [2]). Let A1, A2, . . . , AN be events in
an arbitrary probability space. A directed graph D = (V,E) on the set of vertices V =
{1, 2, . . . , N} is called a dependency digraph for the events A1, . . . , AN if for each i,
1 6 i 6 N , the event Ai is mutually independent of all the events {Aj : (i, j) /∈ E}.
Suppose that D = (V,E) is a dependency digraph for the above events and suppose there
are real numbers x1, . . . , xN such that 0 6 xi < 1 and Pr[Ai] 6 xi

∏
(i,j)∈E(1− xj) for all

1 6 i 6 N . Then

Pr

[
N∧
i=1

Ai

]
>

N∏
i=1

(1− xi).

In particular, with positive probability, no event Ai holds.

the electronic journal of combinatorics 31(3) (2024), #P3.1 12



A symmetric version of Lemma 10 is often used, where Pr[Ai] = p for all i; by setting
xi = e · Pr[Ai] for all i, and using the inequality (1 − 1

x+1
)x > 1

e
, valid for all x > 0, the

hypotheses of the lemma are satisfied. In our case, the probabilities of our events Ai will
vary, but we will pursue mostly the same strategy. We will still set xi = e · Pr[Ai] for all
i; because event Ai will depend on two types of other events, we will use the inequality
(1− 1

2x+1
)x > e−1/2 (also valid for all x > 0) on two parts of the product, instead.

Proof of Theorem 7. Let G be an (X, Y )-bigraph with maximum degree at most d and
girth g > 4ed2 + 1. Additionally, let C be a collection of pairwise vertex-disjoint cycles
in G that cover X. This collection exists either by assumption or (if G is taken to be
d-regular) by Lemma 8. The girth condition on G guarantees that the cycles in C are
relatively long, so there cannot be too many of them; in fact, we will show that there
cannot be more than αΛ(G) of them.

If v ∈ X, we will write C(v) for the cycle in C containing v. Furthermore, if v1, v2 ∈ X,
we will write v1 ∼ v2 to mean that C(v1) 6= C(v2) and v1 and v2 have a common neighbor
in Y .

We choose a set S randomly, by selecting one vertex of X uniformly at random from
each cycle in C. Let {u1, v1}, . . . , {uN , vN} be an enumeration of the (unordered) pairs
of vertices in X such that ui ∼ vi. For each i, 1 6 i 6 N , we let Ai be the event that
ui ∈ S and vi ∈ S. As a result, the conjunction A1∧· · ·∧An is exactly the claim that S is
Λ-independent. If we can satisfy the hypotheses of Lemma 10 for the events A1, . . . , AN ,
then this conjunction occurs with positive probability, and therefore |C| = |S| 6 αΛ(G),
proving the theorem.

We define the dependency digraph D to include an edge (i, j) whenever the four
vertices ui, vi, uj, and vj do not lie on four distinct cycles. If C(ui) has length 2`1 and
C(vi) has length 2`2, we define xi = e

`1`2
; for reference, Pr[Ai] = 1

`1`2
.

We will show that the hypotheses of Lemma 10 hold with the choices made above. To
do this, we must put a lower bound on

xi
∏

(i,j)∈E(D)

(1− xj)

for an arbitrary event Ai.
This product consists of two types of events Aj. The first type consists of those Aj for

which either uj or vj lies on C(ui) (including uj = ui or vj = ui). Since C(xi) contains
`1 vertices of X, there are at most `1d

2 events Aj of this type. For each of them, one of
C(uj), C(vj) is the same as C(ui) and has length 2`1, and the other has length 2`′ > g.
Therefore 1− xj = 1− e

`1`′
> 1− 2e

`1g
, for an overall product of at least (1− 2e

`1g
)`1d

2
.

The second type of events Aj such that (i, j) ∈ E(D) consists of those Aj for which
either uj or vj lies on C(vi). By a similar argument, there are at most `2d

2 events Aj of
this type, and for each of them, 1− xj > 1− 2e

`2g
, so

xi
∏

(i,j)∈E(D)

(1− xj) >
e

`1`2

(
1− 2e

`1g

)`1d2 (
1− 2e

`2g

)`2d2
.
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Recall that g > 4ed2 + 1; a lower bound on `1g
2e

> 2`1d
2 + `1

2e
is 2`1d

2 + 1. Applying
(1− 1

2x+1
)x > e−1/2, we get(

1− 2e

`1g

)`1d2
>

(
1− 1

2`1d2 + 1

)`1d2
> e−1/2

and similarly
(

1− 2e
`2g

)`2d2
> e−1/2. Therefore

e

`1`2

(
1− 2e

`1g

)`1d2 (
1− 2e

`2g

)`2d2
>

e

`1`2

· e−1/2 · e−1/2 =
1

`1`2

= Pr[Ai]

and the conditions of Lemma 10 are satisfied.
We conclude that with positive probability, S is Λ-independent, and therefore |C| =

|S| 6 αΛ(G). The theorem follows, since we can find a path X-cover of G of size |C| by
removing a vertex of Y from each cycle in C.
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