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Abstract

We investigate extreme values of Mahonian and Eulerian distributions arising
from counting inversions and descents of random elements of finite Coxeter groups.
To this end, we construct a triangular array of either distribution from a sequence
of Coxeter groups with increasing ranks. To avoid degeneracy of extreme values,
the number of i.i.d. samples kn in each row must be asymptotically bounded. We
employ large deviations theory to prove the Gumbel attraction of Mahonian and
Eulerian distributions. It is shown that for the two classes, different bounds on kn
ensure this.

Mathematics Subject Classifications: Primary: 60G70, 05A16; Secondary:
20F55, 62R01

1 Introduction

Statistics on random permutations, such as the number of inversions, descents, length and
number of cycles, have a long history and have also attracted recent interest [6, 8, 19].
These statistics can often be generalized from permutations to elements of finite Coxeter
groups, where the validity of results on the statistics may depend on group theoretic
properties. This is visible, for example, for the large rank asymptotics of the underlying
Coxeter groups, as central limit theorems do not hold if the variance of permutation
statistics is too small, which can happen in dihedral groups.

Central limit theorems (CLTs) for inversions and descents on finite Coxeter groups
were found by Kahle & Stump [19]. For the symmetric groups, a proof of the CLT for
both statistics was already given by Bender [2]. Chatterjee & Diaconis [8] used the method
of interaction graphs developed in [7] to prove a CLT for the sum of descents and inverse
descents. Röttger & Brück [6, 27] and Féray [16] extended this to other types of Coxeter
groups. The work of Conger & Viswanath [9] provides CLTs for permutations on multisets,
and He [18] studied a CLT for the two-sided descent statistic on a Mallows-distributed
permutation.
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In this paper, we initiate the study of extreme values of permutation statistics. That
is, we study the distribution of the maximum value of a permutation statistic over a
collection of independent samples. In extreme value theory, one seeks limit theorems in

the way of a−1
n (Mn − bn)

D−→ G, where Mn is the maximum of certain random variables,
G is a so-called extreme value distribution, and an, bn are deterministic sequences. If
Mn := max{X1, . . . , Xn} is based on a sequence (Xn)n∈N of i.i.d. random variables, then
G is either a Gumbel, a Fréchet, or a Weibull distribution, and (Xn)n∈N is said to be in
the max-domain of attraction (MDA) of G. The Fréchet distribution attracts heavy-tailed
distributions, and the Weibull distribution attracts smooth distributions with a finite right
endpoint, e.g., the uniform distribution. The Gumbel distribution is an intermediate
case that attracts many important distributions, such as the normal and exponential
distributions. See, e.g., [21, Chapter 1] or [31, Section 21.4] for comprehensive overviews.

If (Xn)n∈N follows a finitely supported discrete distribution, then there is a finite right
endpoint x∗ with P(X1 = x∗) > 0. Therefore, with probability 1 there is some N ∈ N
such that MN = MN+1 = . . . = x∗. Hence, no affine-linear rescaling can achieve a non-
degenerate limit behavior of the maxima. This also affects permutation statistics if we
consider them on a single Coxeter group. This lack of non-degenerate extreme value limits
for i.i.d. sequences also affects infinitely supported discrete distributions, e.g., the Poisson
and geometric distributions. A necessary condition for the existence of a non-degenerate
extreme value limit is given in [21, Theorem 1.7.13]. Another interesting work on discrete
distributions in MDAs is [30]. For the discrete distributions that are outside of all MDAs,
it is possible to construct a row-wise independent triangular array (Xnj)j=1,...,kn with row-
wise maxima Mn := max{Xn1, . . . , Xnkn} in order to cover entire classes of distributions.
This approach can also be used for permutation statistics over families of Coxeter groups.

To this day, there is no complete classification of non-degenerate limits of (Mn−bn)/an
for such triangular arrays. Several efforts have been made for triangular arrays consist-
ing of common probability distribution families, with the limit often being the Gumbel
distribution. One common technique, which we also employ, is to draw connections to
the i.i.d. extreme value behavior of the standard normal distribution. Anderson et al. [1]
proved a Gumbel limit for a uniform triangular array (Xnj)j=1,...,n of Poisson variables
(Rn,i) ∼ Po(λn), where the sequence (λn)n∈N ⊆ N satisfies a minimum growth rate.
Dkenge et al. [13] gave a characterization for the more general case of a row-wise station-
ary triangular array (ξnj)j=1,...,kn , using a suitable growth rate of kn and well-known mixing
conditions as stated, e.g., in Leadbetter et al. [21, Section 3.2]. However, the framework
of Dkenge et al. additionally requires that all ξnj have an infinite right endpoint. Recently,
Panov and Morozova [25] classified various mixture models with heavy-tailed impurity,
including situations where the extreme value limit is neither of the Gumbel, Fréchet or
Weibull distributions.

Regarding extreme value theory for permutation statistics, Mladenović [24] studied
the extreme value behavior of the largest gap statistic on the symmetric group. For a
permutation ω = (a1, . . . , an) ∈ Sn, there are the random variables Xnj(ω) := |aj − aj+1|,
j = 1, . . . , n, an+1 = a1. These form a triangular array whose row-wise maximum Mn :=
max{Xn1, . . . , Xnn} is the largest gap occurring in ω. Mladenović proved that the sequence
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(Mn)n∈N is attracted to the Weibull-2-distribution. However, all entries of this triangular
array are based on the same permutation in each row, and thus are not stochastically
independent.

For the number of inversions and descents, no such approach is feasible. Instead, we
construct triangular arrays of independent samples from the Coxeter groups in each row.
This means that we consider sequences of Coxeter groups (Wn)n∈N with ranks n = rk(Wn)
and triangular arrays (Xnj)j=1,...,kn of permutation statistics. On each Coxeter group Wn,
we draw kn samples of the permutation statistics. To achieve a non-degenerate extreme
value behavior, the sequence (kn)n∈N must be divergent. If kn grows only slowly, then
the CLT suggests that the rows for which kn is large behave similarly to the standard
normal distribution. If kn grows too fast, then the discrete character of the permutation
statistics will be dominant. Therefore, the growth rate of kn is to be determined. In this
work, we prove that under suitable conditions on the growth of kn, the row-wise maximum
Mn := max{Xn1, . . . , Xnkn} is attracted to the Gumbel distribution.

This paper is structured as follows. Section 2 gives preliminaries about Coxeter group
theory and permutation statistics, including well-known representations of generating
functions for the numbers of inversions and descents. Section 3 reviews the main tool for
our results on extremes of permutation statistics. Section 4 gathers the main results. The
brief Section 5 discusses the growth rate of kn under the Berry–Esseen assumption.

Following the common O-notation, we express magnitude relations for positive se-
quences (an)n∈N, (bn)n∈N as follows:

• an = O(bn) or an 󰃙 bn means that the sequence an grows at most as fast as bn, i.e.,
lim supn→∞

an
bn

< ∞.

• an = o(bn) means that an grows slower than bn, or is negligible compared to bn, i.e.,
limn→∞

an
bn

= 0. This is also written as an ≺ bn or bn ≻ an.

• an = Θ(bn) means that an and bn have the same order of magnitude, i.e., both
an = O(bn) and bn = O(an) hold.

2 Preliminaries about Coxeter groups and permutation statis-
tics

Definition 1. Let Sn be the symmetric group on {1, . . . , n}. For any π ∈ Sn, the number
of inversions and the number of descents are

inv(π) := #{(i, j) | 1 󰃑 i < j 󰃑 n, π(i) > π(j)},
des(π) := #{i | 1 󰃑 i < n, π(i) > π(i+ 1)},

where # denotes cardinality of a set. If we interpret Sn as a probability space and
draw each permutation with uniform probability 1/n!, these two quantities yield random
variables that we denote by Xinv and Xdes. The probability distribution of Xinv is known
as the Mahonian distribution and that of Xdes is known as the Eulerian distribution.
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A Coxeter group W is a group generated by a set S whose elements satisfy the following
relations (and no further relations):

• s2 = e for all s ∈ S, where e denotes the neutral element.

• For any s, s′ ∈ S, s ∕= s′, there is a number M(s, s′) ∈ {2, 3, . . . ,∞} such that
(ss′)M(s,s′) = e. In other words, ss′ ∕= e and M(s, s′) denotes the order of ss′. Here,
∞ means that no such relation holds.

The cardinality of S is the rank rk(W ) = #S of the Coxeter group W and the pair (W,S)
is commonly called a Coxeter system.

Inversions and descents can be defined on any Coxeter system W = (W,S) using
the word length function l(w), which is the length of the shortest possible expression
w = s1 · · · sk with generators si ∈ S. Let T := {wsw−1 | w ∈ W, s ∈ S} be the set of
reflections of W .

• The (right) inversions of w ∈ W are the set {t ∈ T : l(wt) < l(w)}.

• The (right) descents of w ∈ W are the set {s ∈ S: l(ws) < l(w)}.

Again, the cardinalities of these sets are inv(w) and des(w), and the numbers of inversions
and descents of a random Coxeter group element are Xinv and Xdes, respectively.

Remark 2. A Coxeter group is irreducible if it is not a direct product of smaller Coxeter
groups. There is a complete classification of finite and irreducible Coxeter groups, see [10].
There are three important families of finite irreducible Coxeter groups with increasing
rank:

• the symmetric groups on {1, . . . , n} that are denoted by An−1 instead of Sn, because
An−1 = Sn is generated by the n−1 adjacent transpositions τi. Indeed, these satisfy
τ 2i = e for i = 1, . . . , n − 1, (τiτi+1τi)

3 = e for i = 1, . . . , n − 2 and (τiτj)
2 = e, if

|i− j| 󰃍 2.

• the groups Bn of signed permutations consisting of bijective maps π : {±1, . . . ,
±n} → {±1, . . . ,±n} that satisfy π(−i) = −π(i) for i = 1, . . . , n. In this model,
each element of Bn consists of a permutation and a sign for each i = 1, . . . , n, hence
the name. The group is generated by adjacent transpositions of An−1 together with
the map that inverts the sign of the first element, i.e., (1, . . . , n) 󰀁→ (−1, 2, . . . , n).

• the subgroups Dn ⊆ Bn of even-signed permutations consisting of elements with an
even number of negative signs. This group is generated by the adjacent transposi-
tions of An−1 together with the map that inverts the sign of the first two elements,
i.e., (1, . . . , n) 󰀁→ (−1,−2, 3, . . . , n).

There are also the dihedral groups I2(m),m ∈ N, known as the isometry groups of regular
m-gons. As all of these groups have rank 2, they are not a family of increasing rank. The
rank grows only if we build direct products of dihedral groups. Finally, there are eight
exceptional groups that are not addressed in this paper.
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Numerical information about inversions and descents on a Coxeter group (W,S) is
stored in the generating functions

Ginv(W ; z) :=
󰁛

w∈W

zinv(w), Gdes(W ; z) :=
󰁛

w∈W

zdes(w).

Obviously, these are polynomials with integer coefficients. The generating function of
descents is known as the Eulerian polynomial.

The following explicit formula for Ginv is found in [3, Chapter 7]. The degrees appearing
in Theorem 3 are certain integers associated with W in the context of invariant theory.
For our purposes, it is sufficient to know that they exist, are known for all irreducible
finite Coxeter groups, and are easy to derive for products.

Theorem 3. Let W be a finite Coxeter group with rk(W ) = n. Then,

Ginv(W ; z) =
n󰁜

i=1

(1 + z + . . .+ zdi−1),

where d1, . . . , dn are the degrees of W .

The generating function Gdes also has a decomposition, even into linear factors. This
was proved by Brenti [5] for all irreducible types except D, and that case was resolved
by Savage & Visontai [29]. They proved that the Eulerian polynomial of these groups
is real-rooted. From this, it is trivial to conclude that the roots are negative, since all
coefficients of the Eulerian polynomial are positive. Apart from the sign, not much is
known about the roots.

Theorem 4. Let W be a finite Coxeter group with rk(W ) = n. Then,

Gdes(W ; z) =
n󰁜

i=1

(z + qi)

for some q1, . . . , qn > 0.

Whenever a generating function factors, the corresponding statistic is a sum of in-
dependent contributions corresponding to the factors. Therefore, Xinv and Xdes can be
written as sums of independent (but not identically distributed) variables, which prove to
be key for the extreme values of these statistics.

Corollary 5. Let W be a finite Coxeter group with rk(W ) = n. Then:

a) Xinv =
󰁓n

i=1 X
(i)
inv, where X

(i)
inv ∼ U {0, 1, . . . , di − 1} and d1, . . . , dn are the degrees

of W .

b) Xdes =
󰁓n

i=1 X
(i)
des, where X

(i)
des ∼ Bin (1, (1 + qi)

−1) and q1, . . . , qn are the negatives
of the zeroes of Gdes(W ).
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Remark 6. The means and variances of Xinv and Xdes have been listed by Kahle &
Stump [19, Corollary 3.2 and 4.2]. The essential magnitudes are as follows. Whenever
W ∈ {An}n∈N, {Bn}n∈N, {Dn}n∈N, then

E(Xinv) = Θ(n2), E(Xdes) = n/2,

Var(Xinv) = Θ(n3), Var(Xdes) = Θ(n).

3 Tail equivalence for non-i.d. sums

In what follows, let Φ(x) =
󰁕 x

−∞
1√
2π
e−x2/2dx be the cumulative distribution function

(CDF) of the standard normal distribution. It is well known (e.g., [21, Thm. 1.5.3])
that i.i.d. standard normal variables N1, N2, . . . are attracted to the Gumbel distribution
Λ(x) = exp(− exp(−x)) by virtue of

Mn − βn

αn

D−→ Λ, Mn := max{N1, . . . , Nn},

using the constants αn = (2 log n)−1/2, βn =
󰁳

2 log(n) − αn

󰀃
log log n + log(4π)

󰀄
/2. If a

family F1, F2, . . . of standardized distributions has tail equivalence in the sense that

1− Fn (xn) ∼ 1− Φ(xn) ⇐⇒ 1− Fn(xn)

1− Φ(xn)
= 1 + o(1), (1)

where (xn)n∈N ⊆ R is a sequence that is commonly limited in growth, then we can use
that for any fixed x,

n
󰀃
1− Φ(αnx+ βn)

󰀄
−→ e−x,

and we plug xn = αnx+ βn in (1). Then, if the sequence (αnx+ βn)n∈N does not violate
the conditions for xn required in (1), combining both limit processes yields

n
󰀃
1− Fn (αnx+ βn)

󰀄
∼ n

󰀃
1− Φ(αnx+ βn)

󰀄
−→ e−x.

The subject of tail equivalence is closely related to the field of large deviations theory.
Based on limit theorems such as the strong law of large numbers or the CLT, this theory
deals with bounds and asymptotic quantifications for the probabilities of large deviations
from the limit. See [12, Chapters 1 and 2] for an introduction. We assume the following
framework for all theorems in this section.

Framework

Let X1, X2, . . . be an at most countable sequence of independent (not necessarily i.d.)
random variables. Without loss of generality, assume that all Xk are centered. For n ∈ N,
let Sn := X1+. . .+Xn. Moreover, let σ2

k = E(X2
k) for all k = 1, . . . , n, let s2n := σ2

1+. . .+σ2
n,

and let Fn denote the CDF of Sn/sn. We aim to demonstrate tail equivalence between
Fn and Φ as described in (1). Upon additionally assuming that X1, X2, . . . are identically
distributed, a seminal result on large deviations of (1−Fn)/(1−Φ) is due to Cramér [11].
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Theorem 7 (cf. Cramér [11]). Under the above framework, assume that X1, X2, . . . are
i.i.d. and that the moment generating function of X1 exists in a neighborhood of the
origin. If x = o(

√
n), then

1− Fn(x)

1− Φ(x)
= exp

󰀕
x3

√
n
L
󰀕

x√
n

󰀖󰀖󰀃
1 + o(1)

󰀄
,

where L(x) =
󰁛∞

k=0
akx

k is a power series with coefficients depending on the cumulants

of X1.

A similar theorem that omits the assumption of identical distribution was developed
by Feller [15]. This theorem imposes boundedness assumptions on the random variables,
therefore it is not a generalization of Theorem 7.

Theorem 8 (cf. Feller [15]). Let (λn)n∈N be a sequence of constants such that λn −→ 0
and

∀k = 1, . . . , n: |Xk| < λnsn . (2)

Let x > 0 be fixed and assume that

∀n ∈ N: 0 < λnx < (3−
√
5)/4 ≈ 0.19.

Then, there is a constant ϑ and a power series Qn(x) =
󰁛∞

ν=1
qn,νx

ν with coefficients

qn,ν depending on the first ν + 2 moments of Xn such that

1− Fn(xsn) = exp

󰀕
−1

2
x2Qn(x)

󰀖󰀓
1− Φ(x) + ϑλne

−x2/2
󰀔
.

If, in particular, 0 < λnx < 1/12, then |qn,ν | < 1
7
(12λn)

ν.

Remark 9. Theorem 8 concerns finite sequences of random variables and does not contain
any asymptotic statement. Nevertheless, it can be applied for each n ∈ N on a uniform
triangular array (Xnj)j=1,...,n to draw asymptotic conclusions. As stated by Feller [15], if
it is possible to choose a sequence (λn) with λn = O(n−1/2), and if x = xn = o(n1/6), then

Qn(x) = qn,1x+
∞󰁛

ν=2

qn,νx
ν 󰃑 12

7
λnx+O(n−2/3) = O(n−1/3)

=⇒ exp

󰀕
−x2

2
Qn(x)

󰀖
−→ 1.

Furthermore, e−x2/2 is bounded by 1 and ϑ is a constant, so ϑλne
−x2/2 −→ 0. Thus,

whenever the aforementioned conditions are satisfied, we have 1− Fn(x) ∼ 1−Φ(x), the
desired tail equivalence.

In comparison, Cramér’s Theorem 7 allows for the broader regime x = o(n1/2), and it
has also been generalized to non-i.d. independent random variables. We now introduce a
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large deviations theorem of Petrov & Robinson [26], which is, to the best of our knowledge,
the weakest known generalization of Theorem 7.

Under the above framework, let Lj be the cumulant generating function of Xj, that
is, Lj(z) = log

󰀃
E
󰀃
ezXj

󰀄󰀄
. We assume that for some H > 0, all functions Lj are analytic

within the circle {z ∈ C : |z| < H}. Moreover, we assume the existence of constants
(cj)j∈N such that ∀|z| < H, j ∈ N: |Lj(z)| < cj and

lim sup
n→∞

n󰁛

j=1

cj
n

< ∞ . (3)

At last, we require that the variances s2n grow at least linearly, that is,

lim inf
n→∞

s2n
n

> 0 . (4)

Theorem 10 (see Petrov & Robinson [26], Theorem 2.1). Given the conditions (3) and
(4), it holds that for x = o(

√
n),

1− Fn(x)

1− Φ(x)
= exp

󰀕
x3

√
n
Ln

󰀕
x√
n

󰀖󰀖󰀃
1 + o(1)

󰀄
,

where Ln(x) =
󰁛∞

k=0
aknx

k is a power series with coefficients akn expressed in terms of

the cumulants of X1, . . . , Xn of order up to and including n+ 3.

Remark 11. For the extended regime n1/6 ≺ x ≺ n1/2, it is not trivial to obtain tail
equivalence from Theorems 7 and 10. To do so, we additionally need to demonstrate

exp

󰀕
− x3

√
n
Ln

󰀕
x√
n

󰀖󰀖
= 1 + o(1)

⇐⇒ − x3

√
n
Ln

󰀕
x√
n

󰀖
= o(1) .

The term −x3/
√
n can become as large as o(n). It is controlled only if x = o(n1/6), which

is the same regime as in Theorem 8. For broader regimes, we need to control the power
series Ln. For j, k ∈ N, let γkj be the k-th cumulant of Xj and let

Γkn =
n󰁛

i=1

γki
n

.

According to [26, p. 2985], the first coefficient of Ln is

a0,n =
Γ3,n

6Γ
3/2
2,n

.

If a0,n is non-zero, then it is impossible to control Ln(x/
√
n) for any n1/6 ≺ x ≺ n1/2. To

obtain tail equivalence from Theorem 10 within the extended regime n1/6 ≺ x ≺ n1/2, it
is necessary that a0,n = o(n−1). In the intermediate case of a0,n = o(1) and a0,n = Ω(n−1),
the regime of x can be extended at least partially. In that case, further coefficients of Ln

may have to be taken into account.
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4 Results for extremes of permutation statistics

Using the techniques discussed in the previous section, we can derive the extreme value
behavior of triangular arrays on sequences of Coxeter groups. Let (kn)n∈N be a divergent
sequence of natural numbers. We consider a triangular array where in the n-th row, we
have kn i.i.d. samples Xn1, . . . , Xnkn with Xn1 being the number of inversions or descents
on some finite Coxeter group of rank n. We suppose that the triangular array contains
only samples of either Xinv or Xdes, but not both.

It is important to distinguish whether dihedral groups are involved or not. For sim-
plicity, we refer to finite irreducible Coxeter groups of A-, B- or D-type as the classical
Weyl groups since they are the Weyl groups of the classical groups.

4.1 Sequences of classical Weyl groups

We consider a sequence of classical Weyl groups (Wn)n∈N with rk(Wn) = n ∀n ∈ N. Let

X
(n)
inv , X

(n)
des be the number of inversions and descents on Wn, respectively. With Corollary 5

we write

X
(n)
inv =

n󰁛

i=1

X
(n,i)
inv and X

(n)
des =

n󰁛

i=1

X
(n,i)
des ,

where X
(n,i)
inv ∼ U

󰁱
0, 1, . . . , d

(n)
i − 1

󰁲
and X

(n,i)
des ∼ Bin

󰀕
1,
󰀓
1 + q

(n)
i

󰀔−1
󰀖
.

Remark 12. Since Theorem 10 permits a broader regime of x than Theorem 8, it is
preferable to apply Theorem 10 for both Xinv and Xdes. However, it turns out that the

conditions of Theorem 10 are not satisfied for Xinv. For X
(n,i)
inv ∼ U

󰁱
0, 1, . . . , d

(n)
i − 1

󰁲
,

the cumulant generating function is

Li(z) = log

󰀳

󰁃 1

d
(n)
i

d
(n)
i −1󰁛

k=0

ezk

󰀴

󰁄 = log

󰀣
1− ed

(n)
i z

d
(n)
i (1− ez)

󰀤
.

For some H > 0, we need to find ci such that Li(z) < ci ∀|z| < H. In particular,

ci 󰃍 Li(H) = log

󰀣
1− (eH)d

(n)
i

d
(n)
i (1− eH)

󰀤
.

Due to eH > 1, we have that Li(H) grows linearly in i, as its argument grows exponentially

in i. Therefore,
󰁛n

j=1
cj/n grows linearly as well and is not bounded, so condition (3)

is violated. In the case of descents, condition (3) is not violated. However, we need to
examine the power series Ln in order to determine the appropriate regime of x. The

second, third, and fourth cumulants of X
(n,i)
des ∼ Bin

󰀓
1,
󰀃
1 + q

(n)
i

󰀄−1
󰀔
=: Bin(1, pi) are

γ2,i = pi(1− pi),

γ3,i = pi(1− pi)(1− 2pi),

γ4,i = pi(1− pi)(1− 6γ2,i).
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Recall that a0,n = Γ3,n/Γ
3/2
2,n . Due to γ3,i ∈ (−1, 1) and γ2,i ∈ (0, 1), we have γ3,i < γ2,i =⇒

Γ3,n < Γ2,n as well as |Γ3,n| < |Γ2,n|, giving a0,n = O(n−1/2). In light of Remark 11, we
can extend the regime of x as far as x3/

√
n = o(n1/2) ⇐⇒ x = o(n1/3). Moreover, the

second coefficient of Ln is

a1,n =
Γ4,nΓ2,n − 3Γ2

3,n

24Γ3
2n

according to [26, p. 2985]. Due to similar arguments, we see that a1,n = O(n−1). It
follows that Ln(x/

√
n) = O(n−1/2) for x = o(n1/3).

Since Theorem 10 cannot be applied to inversions, we need to use Theorem 8 to achieve
tail equivalence. Indeed, this is successful because the components X

(n,i)
inv are bounded and

the variance of Xinv is of appropriate magnitude. This argument also works for descents,
but for these, we can use the broader regime x = o(n1/3) according to Remark 12. We
summarize these observations for the numbers of inversions and descents on classical Weyl
groups as follows.

Theorem 13. Let (Wn)n∈N be a sequence of classical Weyl groups with rk(Wn) = n for

all n ∈ N. Let (Xnj)j=1,...,kn be a row-wise i.i.d. triangular array with either Xn1
D
= Xinv

∀n ∈ N or Xn1
D
= Xdes ∀n ∈ N, where:

(a) If Xn1
D
= Xinv ∀n ∈ N, then we assume kn = exp

󰀃
o(n1/3)

󰀄
.

(b) If Xn1
D
= Xdes ∀n ∈ N, then we assume kn = exp

󰀃
o(n2/3)

󰀄
.

Let Mn := max{Xn1, . . . , Xnkn}. Let µn := E(Xn1), s
2
n := Var(Xn1), and

αn =
1√

2 log kn
, βn =

1

αn

− 1

2
αn

󰀃
log log kn + log(4π)

󰀄
.

Put an := αnsn and bn := βnsn + µn. Then, for all x ∈ R we have

P(Mn 󰃑 anx+ bn) −→ exp
󰀃
− exp(−x)

󰀄
.

Proof. Let Fn be the CDF of Xn1. Each Fn is a sum of n summands by Corollary 5. In
the case of (Xnj)j=1,...,kn being numbers of inversions, applying Theorem 8 separately for
each n ∈ N gives

1− Fn(xsn) = exp

󰀕
−1

2
x2Qn(x)

󰀖󰀓
1− Φ(x) + ϑλne

−x2/2
󰀔
, n = 1, 2, . . . .

The condition λn = O(n−1/2) can be equivalently expressed as |Xk| = O(n−1/2sn). The
degrees of finite Coxeter groups are bounded by 2n, and the values of the centered variables

X
(n,i)
inv − E

󰀓
X

(n,i)
inv

󰀔
are bounded by n. Furthermore, sn = O(n3/2) holds. Therefore, the

choice of λn = O(n−1/2) is possible. Upon undoing the centering assumed in Theorem 8,
we obtain according to Remark 9:

1− Fn(µn + sny) ∼ 1− Φ(y), whenever y = o(n1/6).
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Plugging in y = αnx + βn and treating x as a constant, the condition αnx + βn ≺ n1/6

in Feller’s theorem is satisfied due to n ≻ log(kn)
3 by assumption (a). In the case of

(Xnj)j=1,...,kn being numbers of descents, Theorem 10 and Remark 12 give 1 − Fn(µn +
sny) ∼ 1 − Φ(y) for y = o(n1/3), which is satisfied for y = αnx + βn by assumption (b).
Hence,

kn
󰀃
1− Fn(anx+ bn)

󰀄
= kn

󰀓
1− Fn

󰀃
µn + sn(αnx+ βn)

󰀄󰀔
−→ e−x,

proving the Gumbel attraction of the row-wise maxima Mn in both cases.

Remark 14. The proof of Theorem 13 fails when we try to further extend the regime of
kn. According to [15], if λn = O(n−1/2) and if x is chosen in a way that n1/6 ≺ x ≺ n1/4

in Theorem 8, then we have

1− Fn(xsn) ∼ exp

󰀕
−1

2
qn,1x

3
󰀃
1− Φ(x)

󰀄󰀖
, (5)

as Qn(x) = qn,1x+
󰁓∞

ν=2 qn,νx
ν with qn,1 = o(n−1/2). However, n1/2 ≺ x3 ≺ n3/4, giving

exp

󰀕
−1

2
x2Qn(x)

󰀖
= exp

󰀕
−1

2
qn,1x

3 + o(1)

󰀖
,

from which (5) follows. The first coefficient qn,1 is explicitly stated by Feller [15, Eq.
(2.18)] as

qn,1 =
1

3s3n

n󰁛

i=1

E
󰀃
X3

ni

󰀄
.

Considering the number of inversions on classical Weyl groups, we have s3n = Θ(n9/2) and
Xni ∼ U({0, 1, . . . , di − 1}). For a discrete uniformly distributed random variable, the
third moment is

E
󰀃
X3

ni

󰀄
=

di󰁛

j=0

1

di + 1
j3 =

1

di + 1

d2i (di + 1)2

4
=

d2i (di + 1)

4
= Θ(d3i ) .

As the degrees of the classical Weyl groups are evenly spread across 2, . . . , n + 1 or
2, 4, . . . , 2n, respectively, we conclude that

n󰁛

k=1

E
󰀃
X3

ni

󰀄
= Θ(n4) =⇒ qn,1 = Θ(n−1/2) .

In order to eliminate −(1/2)qn,1x
3 in (5), we need x3 = o(n1/2) =⇒ x = o(n1/6), which

contradicts the assumption of x ≻ n1/6.
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4.2 Arbitrary finite Coxeter groups

The EVLT for Xdes is based only on the application of Theorem 10 to the representation
of Xdes in Corollary 5b). These arguments also hold on arbitrary finite Coxeter groups,
therefore, we can state:

Theorem 15. Let (Wn)n∈N be a sequence of finite Coxeter groups with rk(Wn) = n ∀n ∈
N. Let kn = exp

󰀃
o(n2/3)

󰀄
, let (Xnj)j=1,...,kn be a row-wise i.i.d. triangular array with

Xn1
D
= Xdes and let Mn := max{Xn1, . . . , Xnkn}. Let an, bn be as in Theorem 13. Then,

P(Mn 󰃑 anx+ bn) −→ exp
󰀃
− exp(−x)

󰀄
∀x ∈ R .

The EVLT for inversions is based on Theorem 8. For arbitrary finite Coxeter groups,
the condition |Xk| = O(n−1/2sn) in the proof of Theorem 8 is not trivially satisfied. For

inversions, the Xk = X
(n,i)
inv − E

󰀓
X

(n,i)
inv

󰀔
can be bounded by the maximum degree dmax of

the n-th Coxeter group Wn. Therefore, this condition is written more descriptively as

dmax 󰃙
sn√
n
. (6)

Using the method of Theorem 13, we can state a general EVLT for Xinv on sequences
of finite Coxeter groups. Together with Theorem 15, this is our main result as it gives
sufficient conditions for the Gumbel attraction of Xinv and Xdes.

Theorem 16. Let (Wn)n∈N be any sequence of finite Coxeter groups with n = rk(Wn). Let

kn = exp
󰀃
o(n1/3)

󰀄
, let (Xnj)j=1,...,kn be a row-wise i.i.d. triangular array with Xn1

D
= Xinv

and let Mn := max{Xn1, . . . , Xnkn}. Let an, bn be as in Theorem 13. If condition (6)
holds, then

P(Mn 󰃑 anx+ bn) −→ exp
󰀃
− exp(−x)

󰀄
.

In the following subsections, we rephrase condition (6) more descriptively for certain
products of finite irreducible Coxeter groups.

4.3 Sequences of products of classical Weyl groups.

Let Wn =
󰁔ln

i=1 Wn,i, where each component Wn,i is a classical Weyl group, and let
n = rk(Wn,1) + . . .+ rk(Wn,ln) denote the total rank. Then,

Var(XWn
inv ) =

ln󰁛

i=1

Var(X
Wn,i

inv ).

For each n and i, we have Var(X
Wn,i

inv ) = Θ(rk(Wn,i)). However, the total variance
Var(XWn

inv ) is not of cubic order with respect to n. By Corollary 5a), Var(XWn
inv ) still

has an independent sum representation of n summands. The maximum degree dmax 󰃑
2max{rk(Wn,1), . . . , rk(Wn,ln)} bounds these summands. Therefore, omitting the factor
2 without asymptotic consequences, condition (6) can be written as

dmax 󰃙
1√
n

󰁴
rk(Wn,1)3 + . . .+ rk(Wn,ln)

3. (7)
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Theorem 17. Let Wn =
󰁔ln

i=1 Wn,i be a sequence of direct products of classical Weyl

groups, and let (Xnj)j=1,...,kn be a row-wise i.i.d. triangular array with Xn1
D
= Xinv. Let

kn,Mn, an, bn be as in Theorem 13. If condition (7) holds, then for all x ∈ R:

P(Mn 󰃑 anx+ bn) −→ exp
󰀃
− exp(−x)

󰀄
.

4.4 Sequences involving dihedral groups

In the following, we consider sequences of finite Coxeter groups consisting of dihedral
components and classical Weyl group components. Here, it is more convenient to drop
the convention rk(Wn) = n. Some care can be necessary when applying Theorem 13.

Example 18. We consider a sequence of products of dihedral groups. Such a sequence
consists of groups of even rank. We write

Wn =
hn󰁜

i=1

I2(mn,i) (8)

for some (mn,i)n∈N,i=1,...,n and a growing sequence (hn)n∈N. Then, rk(Wn) = 2hn. Now,
the condition for applying Theorem 13 is hn ≻ log(kn)

3.

Remark 19. It has been stated by Kahle & Stump [19] that for products of dihedral
groups,

E(Xinv) =
hn󰁛

i=1

mn,i

2
, Var(Xinv) =

hn󰁛

i=1

m2
n,i + 2

12
,

Further, I2(mn,i) has degrees 2,mn,i. Therefore, the degrees of Wn are
2, . . . , 2, mn,1, . . . ,mn,hn with hn twos. These formulas are now used to rephrase the
condition (6) for mixed products of dihedral groups and classical Weyl groups.

Let (Wn)n∈N be a sequence of finite Coxeter groups and write Wn = Gn×In, where Gn

contains only classical components and In contains only dihedral components as in (8).
We use the following additional notation:

rn := rk(Gn) , Rn := rk(Wn) = rn + 2hn ,

Gn :=
ln󰁜

i=1

Gn,i , In :=
hn󰁜

i=1

I2(mn,i) ,

rmax := max{rk(Gn,1), . . . , rk(Gn,ln)} , R2
n :=

ln󰁛

i=1

rk(Gn,i)
3 ,

mmax := max{mn,1, . . . ,mn,hn} , M2
n :=

hn󰁛

i=1

m2
n,i .
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Furthermore, we writeXG
inv andXI

inv for the number of inversions in the classical Weyl part
and the dihedral part of Wn, respectively. As rk(Wn) = rn + 2hn, the growth condition
is that at least one of rn ≻ log(kn)

3 or hn ≻ log(kn)
3 holds, i.e., log(kn)

3 ≺ max{rn, hn}.
Regardless of how Gn is composed, Remark 6 tells us that

E(XG
inv) = Θ(r2n) , Var(XG

inv) = Θ(r3n) ,

Combining this with Remark 19, we obtain Var(Xinv) = Θ(R2
n +M2

n). By Theorem 3,

Ginv(Wn; x) =
Rn󰁜

i=1

(1 + x+ . . .+ xdi−1) ,

where the degrees di encompass the degrees of the classical Weyl group parts (bounded by
2rmax), hn twos, and the numbers mn1, . . . ,mnhn (bounded by mmax). For such composed
groups, the sufficient condition (6) for the Gumbel behavior of Xinv is

max{nmax,mmax} = O
󰀓󰁳

R−1
n (R2

n +M2
n)
󰀔
. (9)

These observations are summarized as follows:

Theorem 20. Let Wn = Gn×In be a sequence of finite Coxeter groups, where the classical
components are pooled in Gn and the dihedral components are pooled in In. Let kn be a

sequence of integers satisfying kn = exp
󰀓
o
󰀃
max{rn ∨ hn}1/3

󰀄󰀔
. Let (Xnj)j=1,...,kn be a

row-wise i.i.d. triangular array with Xn1
D
= Xinv and let Mn := max{Xn1, . . . , Xnkn}. Let

an, bn be as in Theorem 13. If condition (9) holds, then

P(Mn 󰃑 anx+ bn) −→ exp
󰀃
− exp(−x)

󰀄
∀x ∈ R.

In the case of direct products consisting only of dihedral groups, i.e., Gn = ∅ and
Wn =

󰁔hn

i=1 I2(mn,i), the statement of Theorem 20 is simplified as follows.

Corollary 21. Let Wn =
󰁔hn

i=1 I2(mn,i) be a product of dihedral groups and

kn = exp
󰀓
o
󰀃
h
1/3
n

󰀄󰀔
. Let (Xnj)j=1,...,kn , Mn, an, bn be as in Theorem 20. If

mmax 󰃙 h
−1/2
n Mn, then P(Mn 󰃑 anx+ bn) −→ exp

󰀃
− exp(−x)

󰀄
∀x ∈ R.

Remark 22. The condition mmax 󰃙 h
−1/2
n Mn in Corollary 21 is not trivial. Writing the

orders of the dihedral group as a vector mn = (mn,1, . . . ,mn,hn), we get

󰀂mn󰀂∞ 󰃙 1√
n
󰀂mn󰀂2,

where, as usual, 󰀂·󰀂∞ is the maximum norm and 󰀂·󰀂2 is the euclidean norm. Since
󰀂mn󰀂∞ 󰃍 1√

n
󰀂mn󰀂2 always holds, the condition can be stated more precisely as

󰀂mn󰀂∞ = Θ

󰀕
1√
n
󰀂mn󰀂2

󰀖
.
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5 Universal extreme value limit theorem for triangular arrays

As seen in the previous sections, large deviations theory can be employed to derive extreme
value limit theorems for triangular arrays of exponential length. However, these tools
require assumptions that are not satisfied in many situations. If the number of samples
in the rows of the triangular arrays is strongly reduced, then the Gumbel extreme value
limit can already be derived from the Berry–Esseen bound in the CLT. This allows to
obtain a weaker but universal version of Theorem 13 for any family of distributions that
satisfies the classical Berry-Esseen bound.

Theorem 23. Let F1, F2, . . . be a sequence of distributions which satisfy the Berry–Esseen
bound

sup
x∈R

󰀏󰀏󰀏󰀏
Fn(x)− E(Fn)

σ(Fn)
− Φ(x)

󰀏󰀏󰀏󰀏 = O(n−1/2) ,

where Φ is the CDF of N(0, 1). Let (Xnj)j=1,...,kn be a triangular array with Xn1 ∼ Fn and
let Mn,αn, βn, an, bn be as in Theorem 13. If kn = O(nε) for some ε < 1/2, then

P(Mn 󰃑 anx+ bn) −→ exp(− exp(−x)) .

Proof. Let Yn := σ(Xn1)
−1 (Xn1 − E(Xn1)) and N ∼ N(0, 1). Then, the Berry–Esseen

bound is equivalent to

sup
x∈R

|P(Yn > x)− P(N > x)| = O(n−1/2) . (10)

Now, replace x with xn := αnx + βn for fixed x. For monotonicity reasons, we can also
assume that kn = Ω(nδ) for some δ > 0. From Mill’s Ratio (see [23]), we can deduce

P(N > xn) = 1− Φ(αnx+ βn) ∼
1

αnx+ βn

ϕ(αnx+ βn)

= O

󰀣
1󰁳

log(n)

󰀤
ϕ

󰀣
x󰁳

2ε log(n)
+
󰁳

2ε log(n)− log(4πε log(n))

2
󰁳

2ε log(n)

󰀤

= O

󰀣
1󰁳

log(n)

󰀤
exp

󰀕
−ε log(n)− 1

2
log(4πε log(n)) +O

󰀕
log(log(n))2

log(n)

󰀖󰀖

= O

󰀣
1󰁳

log(n)

󰀤
n−ε(1 + o(1)) ,

from which it follows that P(N > xn) ≻ n−1/2. From here, the proof continues the same
way as in Theorem 13.

In particular, there is no asymptotically normal permutation statistic whose row-wise
maximum is never attracted to Gumbel’s distribution. Since permutation statistics are
defined on finite probability spaces, the CLT commonly implies the Berry-Esseen bound.
Even in exceptional cases, we can still find an error bound in the CLT which allows to
state a corresponding bound for kn.
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6 Outlook

There are several interesting ways to extend these results to other statistics and settings.
However, the requirements of the specific proof methods based on Theorems 8 and 10 are
an obstacle to such extensions. For these methods, it is essential to know a factorization
of the generating function, since it corresponds to an independent sum decomposition of
the permutation statistic. Furthermore, the variances must be of appropriate magnitude
to satisfy the control condition |Xk| < λnsn in Theorem 8. While CLTs can be proved
without additive decompositions (e.g., those on the two-sided Eulerian statistic XT (w) :=
Xdes(w) +Xdes(w

−1) in [6]), they are crucial for our analysis of extreme values.
An elaborate list of permutation statistics is provided within the database [28]. Many

of these are asymptotically normal and satisfy the Berry–Esseen bound, which gives a
Gumbel statement by Theorem 23 with a low bound of kn. In each of these cases, it is an
open question to obtain a subexponential bound of kn, or at least one that permits the
uniform triangular array (Xnj)j=1,...,n.

There is also interest in joint distributions of two or more permutation statistics,
e.g., (inv(w), des(w)) or (des(w), des(w−1)). The main challenge here is the dependence
structure between the components, which means that new methods are necessary. Since
the first posting of this paper, this problem has been addressed in [14]. Similar challenges
arise when investigating the numbers of inversions or descents within other structures and
distributions on permutation groups, such as conjugacy classes [17, 20], multisets or the
Mallows distribution [18].

A more general concept combining inversions and descents is that of d-inversions
and d-descents. This concept was originally introduced only for permutation groups An.
Inversions compare all pairs of indices, while descents compare only adjacent indices.
Now, generalized d-inversions compare indices of distance at most d, with d < n fixed,
while d-descents compare indices of distance exactly d. A CLT was proved by Bona [4]
using a dependency graph criterion on indicator random variables Yij := 1{(i, j) forms a
d-inversion}. A generalization to signed and even-signed permutations can be achieved
by transferring from index pairs to roots derived from the corresponding standard basis
vectors (see Meier & Stump [22]). Again, knowledge of generating functions is missing,
but the extreme value theory of d-inversions is still interesting.

The proofs of large deviation theorems such as Theorems 8 and 10 are very laborious.
Besides, sum representations of permutation statistics with dependent summands are
more readily available and proving dependence conditions may be more feasible than
factorizations of generating functions. Therefore, it may be worth investigating if the
independence condition in Theorem 8 can be relaxed to weak dependence conditions.
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