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Abstract

Discretized versions of some central questions in geometric measure theory have
attracted recent attention; here we prove a Marstrand type slicing theorem for the
subsets of the integer square lattice. This problem is the dual of the corresponding
projection theorem, which was considered by Glasscock, and Lima and Moreira,
with the mass and counting dimensions applied to subsets of Zd. In this paper,
more generally we deal with a subset of the plane that is 1-separated, and the result
for subsets of the integer lattice follows as a special case. We show that the natural
slicing question in this setting is true with the mass dimension.

Mathematics Subject Classifications: 52C30, 28A75

1 Introduction and statement of results

1.1 Dimensions of subsets of R2 and Z2, and the slicing theorem

Dimensions of fractal subsets of R2 are standard objects quantifying how “large” such
fractals are (See for example, Chapter 4 of [13]). Here we briefly review the basic notions,
the classical Marstrand Slicing theorem, and then the corresponding natural analog of the
slicing theorem for infinite 1-separated subsets of R2.

Marstrand’s slicing theorem is a general result in geometric measure theory, which
states that for any Borel susbet E ⊂ R2,

Theorem 1. dimH(E ∩ l) 6 max(dimH(E) − 1, 0) for almost all straight lines l in the
plane.

Here, dimH(F ) denotes the Hausdorff dimension of any set F ⊂ R2.
Moreover, the bound on the right hand side of Theorem 1 is the smallest possible for

the statement to hold in general; i.e. for any small ε > 0, it is possible to construct a Borel
subset Eε ⊂ R2 such the set of lines satisfying dimH(Eε ∩ l) > max(dimH(E) − 1 − ε, 0)
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has positive Lebesgue measure. Here the set of lines in R2 is a two parameter set, where
the parameters can be chosen to be the slope and the y intercept.

In fact, Theorem 1 is a consequence of the following stronger statement, which is
stated in Theorem 1.6.1 in [3].

Theorem 2. Let E ⊂ R2 and let Ex = {y : (x, y) ∈ E}. If dimH(E) > 1, then
dimH(Ex) 6 dimH(E) − 1 for Lebesgue almost every x, and if dimH(E) < 1, then the
slices Ex are empty for Lebesgue almost every x.

Clearly, Theorem 2 implies Theorem 1: we can simply reorient the axes in the plane
and apply Theorem 2 to all the slices perpendicular to the rotated x axis, and in the
process get the statement for all possible lines in the plane. Theorem 2 follows from basic
considerations of the definition of the Hausdorff dimension.

In this paper, we are concerned with 1-separated sets in R2 ( These are sets whose every
pair of points is separated by a distance at least 1), and the natural notion of dimension is
in analogy with the box dimension of arbitrary subsets of R2. Dimensions of subsets of Z or
Zd have been studied by Barlow and Taylor [1, 2], Naudts [15, 16], Iosevich, Rudnev, and
Uriarte-Tuero [9], Lima and Moreira [12], and Glasscock [6]. In these papers parallels are
drawn between this infinite discrete setting and the classical setting of arbitrary subsets
of Rd. We define the mass and counting dimensions of 1-separated subsets of R2 below.
The definitions generalize in the obvious way to 1-separated subsets of Rd.

Definition 3. The mass and counting dimensions of any 1-separated set E ⊂ R2,
D(E), D(E), are respectively defined as:

D(E) = lim sup
l→∞

log |E ∩ [−l, l]2|
log(2l)

, D(E) = lim sup
||C||→∞

log |E ∩ C|
log ||C||

. (1)

Here, | · | represents the cardinality of a set. The limit supremum for the counting
dimension is taken over all possible cubes, with the side length ||C|| of the cubes going to
infinity. Thus in considering the mass dimension, we always consider cubes with centers
at the origin, while for the counting dimension, the limit supremum is taken over arbitrary
cubes whose lengths are going to infinity1. Thus in particular, we always have D(E) 6
D(E).

Two prototypical examples of “fractal” sets in the integers are values of polynomials
with integer coefficients at integer arguments, and restricted digit Cantor sets. The latter
are integer Cantor sets with restrictions on the digits that are permissible to be used.
These examples have been studied in detail in [6],[12] (see in particular Sections 3.1 and
3.2 of [12] and Section 2.2 of [6]), with the mass and counting dimensions as the natural
dimensional parameters. One is refereed to [7] for the question of slices of product sets in
the integer grid setting of this paper, where one considers two fractal sets with bases that
satisfy a natural multiplicative independence assumption in the spirit of the Shmerkin-

1Even in R2 we loosely refer to C as a cube.
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Wu theorem ([21, 23]), and one derives the natural upper bound of Theorem 8 below, for
every single slice of such a product set.

In our case, in place of lines it is natural to consider tubes of width 1, that extend to
infinity. For simplifying our arguments, we restrict our set of points to lie only in the first
quadrant. Qualitatively nothing changes, the set still extends to infinity inside the first
quadrant, and we modify the definition of the mass dimension to:

D(E) = lim sup
l→∞

log |E ∩ [0, l]2|
log(l)

. (2)

It is clear that this definition is equivalent to the earlier one; we only got rid of an additive
term of log 2 from the denominator, and since l→∞ the definitions are equivalent.

For E ⊂ N, the definition reduces to

D(E) = lim sup
N→∞

log |(E ∩ {1, 2, . . . , N})|
log(N)

. (3)

In place of 1-separated sets, one can consider an arbitrary δ-separated set, and then
consider tubes of width δ in our statements, and the arguments would essentially remain
the same. Our motivation for considering a general 1-separated set is to apply our results
to the integer grid which is naturally 1-separated. Finite δ-separated sets of arbitrary
dimensions have been considered by Katz and Tao [22] when they define δ- discretized
analogs of the Falconer distance conjecture, the Erdős Ring conjecture and the Furstenberg
set. Analogs of Marstrand’s classical projection theorem for a finite δ-discretized setting
have been obtained by Shmerkin [19, 20] and Rams [14]. This essentially involves using the
Riesz energy and a Tchebysheff type argument. The projection theorems in our general
setting, using both the mass and counting dimensions, have been earlier proven by Lima
and Moreira [12], and Glasscock [6]. 2

In this paper, we prove a Marstrand type slicing theorem for the mass dimension.
With an elementary Tchebysheff inequality argument, we first show that our result holds
true in a weaker “asymptotic” sense, a notion we define in the next section. This weaker
result only depends on the arithmetic properties of our sets in question, and we find an
elegant analogous result in the finite field setting as well, which we state in the next
subsection. Working in a finite field makes clear how one then tackles the corresponding
problem in R2.

The classical Marstrand projection and slicing theorems do not give any information
about the dimensions of specific projections or specific slices. In some situations, for
certain types of sets it is known that there is no dimension drop in a specific projection,
(see for example [19, 11]). It was a longstanding conjecture of Furstenberg that for p, q
multiplicatively independent, (i.e log p

log q
being irrational), if we consider two subsets A,B of

[0, 1) invariant under the ×p and ×q maps respectively, then every slice of A×B satisfies
the statement of the Slicing theorem.

2We could in principle consider an arbitrary point set in R2, but when we have some limit points in our
set, then the dimension of the set goes to infinity. For 1-separated sets in the plane, the dimension is
at most 2.
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Equivalently, if g is any affine transformation, under the assumptions stated above,
we have:

dimH(A ∩ g(B)) 6 max(dimH(A) + dimH(B)− 1, 0). (4)

Recently there have been two proofs of this celebrated conjecture [21, 23]. In the
integer setting there are longstanding analogous transversality questions for the particular
case of restricted digit Cantor sets. A discussion on this is found in the introduction in
[7]; there is a known conjecture [17] about the set of integers A that can be written
in bases 2, 3, 4, 5 with digits only 0, 1 being {0, 1, 82000}. This is obviously a question
about the intersections of multiple restricted-digit-Cantor-sets, which are sets respectively
invariant under×2,×3,×4,×5 maps. Recently, Burrell and Yu [24] showed that the above
defined set A is such that |A ∩ [0, N ]| 6 CεN

ε for any positive ε > 0, which shows that
the intersection set has mass dimension 0. This is another illustration where the mass
dimension is the natural dimensional quantifier. A well known conjecture of Erdős [5]
which states that except for finitely many natural numbers n, the integer 2n contains 1 in
its base 3 expansion, can also be naturally formulated in terms of intersections of specific
digit Cantor sets.

While this illustrates longstanding interest in upper bounds to the dimensions of in-
tersections of specific structured subsets of the integers, or more generally the intersection
of one such subset and with the other under a natural affine map, a more fundamental
question is whether such a natural upper bound can be obtained for almost all such affine
intersections in a Lebesgue sense, and this is the Marstrand type slicing theorem that we
prove in this paper.

We also remark that there is no analogous version to Theorem 2 stated earlier, for our
slicing theorem for the mass dimension. In fact, we will easily construct examples of a
set E where for a given projecting direction, every tube perpendicular to this projecting
direction has mass dimension greater than D(E) − 1. However, Theorem 1 holds true,
due to the fact we prove later, that if we consider a ray of tubes centered at some point,
Lebesgue almost all these tubes will have mass dimension less than or equal to (D(E)−1).

For an analogous version of our problem with finitely many points, the Szemeredi
Trotter theorem gives an upper bound to the number of incidences between points and
lines. This was generalized recently in [8] to the setting of δ-tubes and δ-balls, with some
restrictions on the spacing of the tubes. In our case, we are dealing with an infinitary
asymptotic analog of this problem with δ = 1.

1.2 Statement of results

We first prove a result in finite fields, where the result holds for almost every line of the
finite field in an asymptotic weaker sense. We replicate the same argument in the real
plane, and get a corresponding result in the real plane in the weak asymptotic sense. In
the real plane, care needs to be taken while dealing with a double limit when taking the
length of the grid of points as well as the parameter set of the lines to both go to infinity,
which is a subtlety averted in the finite field problem due to the fact that the set of lines
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as well as the set of points both grow as p2. These results are simpler but interesting in
that they are obtained by purely arithmetic manipulations using Fubini and Tchebycheff
type arguments; however our strongest result, Theorem 9 depends on the topology of the
plane.

Consider the finite field Fp with p prime; for subsets B ⊂ F2
p, we modify the definition

of the mass dimension in the natural way:

Dp(B) =
log |B ∩ {1, 2, . . . , p}2|

log p
.

For any (u, v) ∈ F2
p, we have the line `(u,v) := {(x, y) ∈ F2

p|y = ux + v}. In the real
plane the analog of this line is l(u,v) := {(x, y) ∈ R2|y = ux + v} with u, v ∈ R.3 For any
subset E ⊂ Z2, we define in the real plane the set E ∩ bl(u,v)c := {y ∈ R|(x, y) ∈ E, y =
bux + vc}. In particular, if there are multiple points of E in any horizontal strip of the
set {(x, y) ∈ R2|y = bux+ vc}, we only have a count of 1 in (E ∩ bl(u,v)c), for all of these
points.

Theorem 4. For all E ⊆ F2
p, the set U of parameters (u, v) ∈ F2

p, so that

Dp

(
E ∩ `(u,v)

)
6 max

(
0, D(E)− 1

)
+ op(1)

is such that lim
p→∞

|U∩F2
p|

p2
= 1, where the limit is taken along the sequence of primes.

This gives the following corollary:

Corollary 5. For all A,B ⊂ F2
p, the set U of parameters (u, v) ∈ F2

p, so that

Dp

(
A ∩ (uB + v)

)
6 max

(
0, Dp(A) +Dp(B)− 1

)
+ op(1)

is such that lim
p→∞

|U∩F2
p|

p2
= 1, where the limit is taken along the sequence of primes.

We now state the corresponding results in the real plane.

Theorem 6. For all E ⊆ N2, the set U of parameters (u, v), with u, v > 0, so that

D
(
E ∩ bl(u,v)c

)
6 max

(
0, D(E)− 1

)
is such that lim

M→∞
|U∩[0,M ]2|

M2 = 1.

This gives the following corollary for the Cartesian grid:

Corollary 7. For all A,B ⊆ N, the set U of parameters (u, v), with u, v > 0, so that

D
(
A ∩ buB + vc

)
6 max

(
0, D(A) +D(B)− 1

)
is such that lim

M→∞
|U∩[0,M ]2|

M2 = 1.

3We also define bl(u,v)c := {(x, y) ∈ R2|y = bux+ vc}
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We prove these results in Section 2.4

We now state the main result of this paper, which we will prove in Section 5. Here for
convenience, the parametrization (u, v) changes from that in the earlier theorems.

The tube tu,v is explicitly described as

tu,v =

{
(x, y) ∈ R2

∣∣∣∣∣ −1

u
x+ v

√
1 +

1

u2
< y 6 −1

u
x+ (v + 1)

√
1 +

1

u2

}
.

It is easily seen that this is a tube whose width is exactly of length 1. The perpendicular
line to this tube has slope u. Consider the line perpendicular to this tube passing through
the origin. The coordinate v gives us the displacement of the tube from the origin, along
this perpendicular line.

Theorem 8. Let E ⊆ R2 be a 1-separated set of mass dimension D(E). Then in the
Lebesgue sense, for almost every tube tu,v of width 1, slope u, and displacement v along
the projecting line, we have that D(E ∩ tu,v) 6 max(0, D(E)− 1).

We choose the tube in this manner, closing the upper edge and keeping the lower
edge open, since we eventually wish to apply this theorem to the broken line of the form
blu,vc = {(x, y) : y = bux + vc} with u > 0, and so for such a tube (whose width is less
than 1 but the vertical intercepts are 1), we should include the top edge and keep the
bottom edge open.

We will prove a stronger statement than Theorem 8:

Theorem 9. Let E ⊆ R2 be a 1-separated set of mass dimension D(E). Then for all
v ∈ R, for Lebesgue-a.e. u ∈ R+,

D(E ∩ tu,v) 6 max(0, D(E)− 1).

Upon integrating over all v ∈ R, Theorem 9 implies Theorem 8.
We will get the following corollary specific to the Cartesian grid:

Corollary 10. Let A,B ⊂ N. For almost every u, v ∈ R2,

D
(
A ∩ buB + vc

)
6 max

(
0, D(A) +D(B)− 1

)
.

The formulation in the above corollary is how we immediately apply the theorem to
specific subsets of N such as polynomials or restricted-digit-Cantor-sets.

In essence, the purpose of dealing with 1-separated sets and tubes is to be able to
make a statement about the dimension of the lines within the integer grid, as above. The
whole argument also works with δ-separated sets and δ tubes.

While we prove Theorem 9 in R2, the analogous result in higher dimension should
follow in the same way by contradiction, and our method of integration should apply

4These conclusions above have the same structure as the hypothesis in the geometric Ramsey theory
results in [10] and [4] where sets with such asymptotic full density in the plane are shown to always
contain certain geometric configurations.
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in essentially the same manner. We also do not study the question of how large the
dimension of the set of exceptional tubes can be, for any given set. In Examples 1 and
2 of Section 4, we construct sets where this set of exceptional tubes is of dimension one,
but it remains open to construct examples where the dimension of this set of exceptional
tubes is greater than 1.

Since the preparation of this manuscript, there has been further work [18] showing
that similar Marstrand type slicing results are not true when one considers the counting
dimension (as defined in Theorem 3) in place of the mass dimension that has been used
throughout this paper. In fact, it is shown that not even the weaker Theorem 6 holds
true when one considers the counting dimension and there are counterexamples.

1.3 Outline of proof of Theorem 9

We now outline the proof of the main result of this paper, Theorem 9. The proof runs by
contradiction. Assume to the contrary that there is some set E, some v0 ∈ R such that
there is a positive Lebesgue measure set of u’s such that D(E∩ tu,v0) > max(0, D(E)−1).
This clearly implies that there is some ε > 0 such that there is some positive measure set
U of u’s such that D(E ∩ tu,v0) > max(0, D(E)− 1) + ε.

The idea is to restrict U to some small interval, say U ′ and without loss of generality
consider v0 = 0. Thus all the tubes parametrized by values in U ′ pass through the origin,
and lie within a small cone, corresponding to the interval. The area of a cone grows as
the square of the length of the edge of the cone, and it is thus a two dimensional object
(unlike a vertical strip of finite horizontal width, which is essentially a one dimensional
object). A positive Lebesgue measure of the tubes within this cone have an exceptionally
high dimension. So the idea is to carefully ‘integrate’ the number of points across each
of these tubes, so that the cone in itself has an exceptionally high number of points and
thus has dimension greater than E itself, giving a contradiction.

In order to perform this ‘integration’ within the cone, we will show that for each of the
exceptional tubes, there exist heights Hl,t, indexed by the integers, so that in the upper
half of the tube till these heights in the range [Hl/2, Hl], we have an exceptional number
of points. We then carefully choose a positive Lebesgue measure subset of the tubes so
that these special heights of all these tubes in this specific subset are in a quantifiably
similar height range. Now within this subset of tubes, we choose a well spaced set of
tubes so that the upper halves of all these tubes are mutually disjoint, so there is no
double counting of any point. We add up all the points in the upper halves of all these
well spaced tubes of this subset, which are all this the approximately similar height range.
This would imply that the intersection of the cone with a suitable square whose one side
extends vertically from the x axis till anywhere in this approximate height range, in itself
has an exceptionally large number of points. This process can be repeated for a countably
infinite number of such height ranges. This then shows that the intersection of the cone
with E in itself has dimension greater than dim(E) which gives us the contradiction.

To simplify the argument, without loss of generality, we choose the cone to be pointed
vertically upward, when we prove the result in Section 4. This same argument does
not work if instead of the cone, we work with an exceptional set of tubes that belong
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within a fixed strip, i.e. with fixed u coordinates but varying v coordinates. The reason
essentially boils down to the fact that the strip under consideration is essentially a one
dimensional object, and it cannot guarantee that we find a subset of E with exceptionally
large dimension. In fact in Section 4, we give a simple example of a set where every
single tube with a fixed u coordinate but varying v coordinates has an exceptionally high
dimension.

In Section 2 of the paper, we prove the asymptotic results in finite fields and in the
real plane. In Section 3, we prove Theorem 9 and then Theorem 10. In Section 4, we give
examples of several different sets to illustrate that Theorem 9 is optimal, and that the
inequality cannot be made stronger.(Note that this does not prove that the inequality in
the weaker result that is Theorem 8, is optimal). Throughout the paper, as used earlier,
we use Dp, D to denote respectively the mass dimension in the finite filed F2

p, the mass
dimension in the real plane R2.

2 Asymptotic results for F2
p and Z2

First we prove Theorem 4 for the case of finite fields, and then Theorem 5.

Proof of Theorem 4. Consider the function k(p) = log p. We show with the basic Fubini
and Tchebysheff type arguments that for at least p2(1− 1

k(p)
) of all the possible lines lu,v

in F2
p we have |E ∩ lu,v| 6 k(p)

p
|E|. Thus, from here we conclude our result for the fraction

(1− 1
log p

)
(
→ 1 as p→∞

)
of all possible lines in F2

p. This is clearly a satisfactory “almost
every” line description as p→∞.

Given any pair (x, y) ∈ E, clearly for any u ∈ Fp, there is exactly one v ∈ Fp so that
y = ux + v, and so for each pair (x, y) ∈ E, we have exactly p possible pairs so that
y = ux + v (and furthermore, we cannot have two pairs of the form (u, v1), (u, v2) with
v1 6= v2 in this set of pairs, nor two pairs of the form (u1, v), (u2, v) with u1 6= u2, as p is a
prime). We have |E| possible points (x, y) ∈ E, and for each of them we have p possible
pairs (u, v) with the above property. Since there are p2 possible pairs (u, v) ∈ F2

p, this

implies that on average over F2
p, the set |E ∩ lu,v| has |E|p

p2
= |E|

p
number of elements, with∑

(u,v)∈F2
p

|E ∩ lu,v| = |E|p.

We see that at least p2(1− 1
k(p)

) of the pairs are such that |E ∩ lu,v| 6 k(p)|E|
p

. If not,

at least p2

k(p)
of the pairs are such that |E ∩ lu,v| > k(p)|E|

p
and these alone would sum to

> |E|p, and we have a contradiction.
It’s easy to see upon taking logarithms, that the above means that for a (1− 1/k(p))

proportion of the pairs (u, v),

Dp

(
E ∩ lu,v)

)
6 Dp(E)− 1 +

log k(p)

log p
.

Now since k(p) = log p, as alluded to in the beginning of the proof, this shows that for
almost all pairs (u, v) in the asymptotic sense, Dp

(
E ∩ lu,v)

)
6 max(0, Dp(E) − 1) +

op(1).
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Note that the set (A ∩ (uB + v)) is the same set as the intersection of the affine line
`u,v which is {(x, y) ∈ F2

p : y = ux+ v}, with A×B. The proof of Theorem 5 thus follows
by simply considering in place of E the Cartesian grid A×B.

Now we prove Theorem 6 and then Theorem 7.

Proof of Theorem 6. Suppose E ⊆ N2. For N ∈ N, let EN = E ∩ {1, . . . , N}2, let for
(a, b) ∈ E,

T(a,b) = {(u, v) ∈ [0,M ]2 | a = bub+ vc}.
It is easily seen that when u > 1, each horizontal strip of the broken line segment

can contain at most one point belonging to EN ⊂ N2, and so we have the basic counting
identity: ∣∣EN ∩ bl(u,v)c∣∣ =

∑
(a,b)∈EN

χT(a,b)(u, v)

where χT(a,b) is the indicator function of the set T(a,b).
Otherwise when 0 < u 6 1, we clearly have:∣∣EN ∩ bl(u,v)c∣∣ 6 ∑

(a,b)∈EN

χT(a,b)(u, v).

More generally we can simply use this inequality above for all u > 0.
We employ the double counting plus Tchebysheff inequality technique in this problem,

similar to the finite field case.
Consider for some large M > 0, the integral,

1

M2

∫∫
(0,M ]2

∑
(a,b)∈EN

χT(a,b)(u, v) dudv =
1

M2

∑
(a,b)∈EN

∫∫
(0,M ]2

χT(a,b)(u, v) dudv

Consider some fixed (a, b) ∈ EN . If the integral on the right side, for this given
(a, b) ∈ EN , were to be taken over the entire (u, v) plane, and not just restricted to
(0,M ]2, then we observe that for any u0 ∈ R, χT(a,b)(u0, v) = 1 whenever a = bu0b + vc,
i.e. whenever a 6 u0b + v < a + 1, or in other words whenever v lies in the interval
[a− u0b, a+ 1− u0b) of width 1.

When v is bounded in the interval (0,M ] as is the case here, then given any u0 ∈ [0,M ],
clearly the set of values of v so that χT(a,b)(u0, v) = 1, has width less than or equal to 1.
Thus on the integral on the right, we just integrate over the u variable, noting that for
such a fixed value of u, the integrand takes the value 1 in a set of width at most one.

Thus the upper bound comes to,

1

M2

∫∫
(0,M ]2

|EN ∩ bl(u,v)c|dudv 6
1

M2

∑
(a,b)∈EN

∫∫
(0,M ]2

χT(a,b)(u, v) dudv 6
1

M
|EN |.

The Tchebysheff argument now applies as in the finite field case, and clearly the area
of (0,M ]2 which consists of pairs (u, v) such that |EN ∩ bl(u,v))c| 6 k(M,N)

M
|EN | is at least
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M2(1 − 1
k(M,N)

), where k(M,N) is any positive function of M,N which goes to infinity
sublinearly in both M,N .

Now we would take the limit of N,M both going to infinity, seemingly having freedom
over both M,N while doing so. However, if we always choose M � N in the process
of taking the simultaneous limits M,N → ∞, then in each step of the limiting process,
except a small fraction O(N

M
), all of the other lines would have v � N . In that case

each of these lines would have no intersection with the set EN in each step of the limiting
process, and this is an incorrect way of taking the limit5. On the other hand, while taking
the limit if we always choose N � M , then the upper bound for |EN ∩ bl(u,v)c| becomes
far weaker than optimal, although there is no counting error.

Optimally we take M = N
α

, where α > 1 and α = O(1). In that case, all the lines
under consideration during each step of the limiting process intersects EN , and when we
take the limit of N → ∞, we would get the correct limiting value for each pair (u, v)
with u > 1 and v > 1. We consider k(M,N) =

√
logM logN . For the purpose of taking

the limit, we might as well take α = 1, and the result we have is that for asymptotically
almost every line bl(u,v)c,

log(|EN ∩ bl(u,v)c|)
logN

6
log(logN)

log(N)
+

log |EN |
logN

− 1

and upon taking the limit as N →∞ we would get

D
(
E ∩ bl(u,v)c

)
6 max

(
0, D(E)− 1

)
.

Now, Theorem 7 is a special case of Theorem 6, specializing to a rectangular grid
A×B ⊂ N2, since it is clear that (A×B) ∩ bl(u,v)c = A ∩ buB + vc.

3 Proof of the slicing theorem

Here we prove Theorem 9. As noted in the introduction, Theorem 8, the main slicing
theorem, is an immediate consequence of this, upon integrating over the v parameters.

Preliminaries: We denote by µ the Lebesgue measure on the u parameter space. We
will always be working with a fixed value ṽ on the v parameter space, and will suppress the
dependence of the measure µ on the fixed ṽ, which will be understood from the context.

We need to show there cannot exist for any fixed ṽ, any subset U of the u parameter
space with µ(U) > 0 so that

D(E ∩ tu,ṽ) > max(0, D(E)− 1), when (u, ṽ) ∈ U.

Suppose to the contrary that there does exist some ṽ, and a subset L of u values with
µ(L) > 0, so that for all (u, ṽ), with u ∈ L, we have dim(E ∩ tu,ṽ) > max(0, dim(E)− 1).

5if M � N2 we would conclude that for the majority of the lines blu,v ∩ Ec has zero cardinality, since

the upper bound is k(M,N)
M EN 6 k(M,N)

M N2 → 0 in this case if M � N2.
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We will show that this implies there exists a subset E ′ ⊂ E with dim(E ′) > dim(E)
which is a contradiction.

Given the above assumption, we must have some fixed ψ > 0 so that there is some
subset L′ ⊂ L with µ(L′) > 0 where L′ is the set of exceptions where

D(E ∩ tu,ṽ) > max(0, D(E)− 1) + ψ for u ∈ L′.
Henceforth, we work with this set L′ and just call it L itself.
For any ε > 0, there is an open subset O with L ⊂ O and µ(O − L) < ε. Thus, less

than an ε width of the angles within this open set are not covered by angles in L.6

Without loss of generality, we can consider O to be an open interval. This will cor-
respond to an open cone pointing up and to the right and eventually intersecting the
first quadrant where the 1-separated set E lies. It is enough to consider the case ṽ = 0.
The argument for any other ṽ follows in a similar manner, the only difference being there
is some finite initial region within the cone that does not intersect the first quadrant
and which is thus empty; this initial empty space makes no difference as far as the mass
dimension is concerned.

For convenience, we rotate our coordinates so that the cone corresponding to O, con-
taining this exceptional set of angles, points vertically upward and is symmetric about
the y axis. This simplification helps later for calculating the mass dimension by taking
boxes whose edges are parallel to the axes and hence also cutting perpendicularly across
the cone, something that we are implicitly always doing throughout in our arguments.

We denote the square box of length n that is symmetric about the y axis and that
lies in the upper half plane, as Bn, with one of the horizontal sides of Bn lying along the
x-axis. We denote the square box of length n, but whose one side is slanted parallel to
the direction of the tube t(u,0) (i.e one side with slope −(1/u)), symmetric about the tube
t(u,0), the other side of the box Bn(u) lies along the line y = ux symmetrically about the
line y = − 1

u
x, as Bn(u). This is illustrated in Figure 2.

Thus all the tubes under consideration are such that their right edges pass through
the origin, and except for a small area O(1) just near the origin, the tubes entirely lie
within the cone.

Lemma 11. We write α = max(0, dim(E) − 1). For any exceptional tube tu,0 with
u ∈ L ∩ O, there are heights ml(u), with l ∈ N, such that from the origin till ml(u), the
upper half of the tube contains an exceptionally high number of points. Precisely,

|(Bml(u)(u) \Bml(u)/2(u)) ∩ E ∩ t(u,0)| >
(ml(u)

2

)α+ψ/2
. (5)

Proof. For any exceptional tube tu,0, start with any arbitrary level n1(u) large enough so
that n1(u)α+ψ > K · n1(u)α+ψ/2 and

log |Bn1(u)(u) ∩ E ∩ t(u,0)|
log(n1(u))

> α + ψ

6It’s not necessary to make ε as small as possible; the cone is just a convenient set within which all the
exceptional tubes lie.
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θ

Figure 1: The tube t(u,0) and the ‘box’ Bn(u) are illustrated; here u ∈ O and the lines l1
and l2 are the delimiting lines of the open cone of width θ corresponding to O.

that is,

|Bn1(u)(u) ∩ E ∩ t(u,0)| > n1(u)α+ψ

where K = 1
2α−1 .

Choose the next level n2(u) so that n2(u) > en1(u) and large enough that n2(u)α+ψ >
K(u) · n2(u)α+ψ/2 + log n2(u), and where

|Bn2(u)(u) ∩ E ∩ t(u,0)| > n2(u)α+ψ.

This implies there has to be some k2(u) ∈ N, so that n2(u)/2k2(u) > n1(u) and so that,

|
(
Bn2(u)/2k2(u)−1(u) \Bn2(u)/2k2(u)

(u)
)
∩ E ∩ t(u,0)| >

(n2(u)

2k2(u)

)α+ψ/2
since otherwise, the total number of points within the tube from the origin to the

n2’th level is bounded above by:

∞∑
k=1

(n2(u)

2k

)α+ψ/2
+ n1(u) 6 K · n2(u)α+ψ + log(n2(u)),

and we get a contradiction given our previous assumption.
Now we relabel the level n2(u) by the level m′2(u) := n2(u)/2k2(u)−1 we got from

above. Next, by induction, we would find a level n3(u) and a positive integer k3(u) so
that n3(u)/2k3(u) > n2(u) and that

|
(
Bn3(u)/2k3(u)−1(u) \Bn3(u)/2k3(u)

(u)
)
∩ E ∩ t(u,0)| >

(n3(u)

2k3(u)

)α+ψ/2
.
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Again we replace the level n3(u) by the level m′3(u) := n3(u)/2k3(u)−1. We further
iterate the levels nl(u), for l > 4, by induction in the same way and find the corresponding
levels m′l(u) so that

|(Bm′l(u)
(u) \Bm′l(u)/2

(u)) ∩ E ∩ t(u,0)| >
(m′l(u)

2

)α+ψ/2
. (6)

So for any exceptional tube tu,0 within the cone with u ∈ L, we have found heights m′l(u),
with l ∈ N, such that from the origin till m′l(u), the upper half of the tube contains an
exceptionally high number of points. For each tube t(u,0) with u ∈ L and for each l ∈ N,
we inductively define the least integer greater than ml−1(u) that satisfies Eq. (6) (and
which clearly exists) as ml(u).

Next, we have the following result:

Lemma 12. We have a subset of L of positive measure on which for any fixed l ∈ N, the
set of values taken by the function u→ ml(u) is bounded.

We rename this aforementioned subset of L as L itself.

Proof. For a specific u0, for any l ∈ N, consider the level ml(u0) that has been attained
along the tube t(u0,0). Since we have a 1-separated set, till the height nk there are only
finitely many points within the cone, which thus subtend finitely many angles at the
origin. There are also a finite number of points contained in tu0,0. We can thus slightly
perturb t(u0,0) to the left by a certain finite amount, and no point will exit or enter the
tube when this perturbation happens, when we restrict to looking at points only till the
height ml(u0). Once a point

(
till height ml(u0)

)
exits the tube for the first time and we

are at some perturbed angle ũ0 ∈ L near u0, while no new point has entered the tube, the
ml(ũ0) value has to be equal or higher than ml(u0): it cannot decrease since all the points
in t(ũ0,0) till height ml(u) are also in t(u0,0) and so ml(u0) value would have to be lower,
which by definition is not possible. Similarly, it is verified that if a new point enters while
no point has left the tube as the tube is rotated to the left, then the new ml value has to
be equal or lower.

The same argument applies when we rotate the tube slightly to the right and we are
considering the finite height ml as before; the only difference being that for certain angles
of the tube, it might happen that a new point lies on the right edge or on the left edge of
the tube which immediately enter and leave the tube respectively, as the tube is perturbed
to the right. There being only finitely many points till any height ml, the total number
of such special angles of the tube when the above happens, is at most countable. (It only
matters that the function u 7→ ml(u) changes in discrete steps.)

Thus in summary, for a fixed l ∈ N, values taken by the function u 7→ ml(u) as u
varies in L, is discrete, hence the total number of values taken by this function u 7→ ml(u)
for fixed l, is countable as u varies in L.

If the total number of values taken by the function u 7→ ml(u) is finite for some
particular l ∈ N, then we keep all these tubes under consideration. If the total number
of values taken by u 7→ ml(u) for some fixed l is countably infinite, we enumerate these
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Figure 2: For a fixed l ∈ N, an example of an ml ‘profile’ is shown with the u-coordinates
restricted to the subset L ∩ O, where O corresponds to the cone illustrated above. The
function u→ ml(u) for a fixed l is discrete as explained in the proof, thus takes countable
many values. There may be instances of the values diverging, for example to some line l3
from the left as shown above, in which case by removing from the domain of the function
arbitrarily small neighborhoods around these diverging points (By removing a set of tubes
whose u values lie in a set of measure ε/2l, the above function is bounded).

values in increasing order of their ml values, and we can choose any arbitrarily small
enough ε < µ(L) and discard a total ε/2l width of tubes in L, and so the values taken
by the function in the remaining set of values in L is bounded.(Once the range of the
function u 7→ ml0(u) is countably infinite, the range of all the functions u 7→ ml(u) for
l > l0 is also countably infinite.) We do this for every single integer value of l, with the
widths taken out being in a geometric progression, so that eventually we have taken out

a total width at most
∞∑
l=1

ε
2l

= ε from L and still we are left with a positive measure set

L′′ ⊂ L, and we simply rename this L. (In Section 4 we outline examples where the levels
ml diverge to infinity; and indeed since the functions u → nk(u) are locally constant,
the number of such diverging limiting angles are also countable. For the purposes of the
slicing theorem, we are excising arbitrarily small neighborhoods around these diverging
points and don’t require a more detailed study of the structure of this set of diverging
points.)

So finally we have a subset L of positive measure on which all the ml(u) ‘profiles’ are
bounded.

With Theorem 11 and Theorem 12 in hand, we complete the proof of Theorem 9.

Proof of Theorem 9. We construct a subset E ′ of E which has dimension greater than
the dimension of E itself, which gives us the contradiction we need. As stated before, our
cone points vertically upward and is centered around the y axis, with vertex at the origin.

Let µ(L) = β > 0. For any l ∈ N, let the supremum of the values of ml(u) as u ∈ L,
be eHl . We start with a value l0 so that the minimum height hl0 of the ml0 profile is
some arbitrary large number, say 100, and from now on we consider l > l0(We can always
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find such a level l0.). We divide the range [0, eHl ] into Hl distinct parts of equal height,
so for 1 6 i 6 dHle, the i’th interval corresponds to the height range [ i−1

Hl
eHl , i

Hl
eHl ].

By the pigeonhole principle, for any l ∈ N, the pre-image of at least one of these dHle
height-ranges under the map u 7→ ml(u), u ∈ L, has measure greater than β/dHle. Call
this preimage set Tl ⊂ L. First we outline our argument when for any l ∈ N the height
range of Tl is some [ j−1

Hl
eHl , j

Hl
eHl ] for 2 6 j 6 dHle. The case j = 1 is treated later.

Consider the arc Al inside the cone at height j−1
2Hl

eHl from the origin, and the subset A′l
of Al which corresponds to the intersections of Al with tubes in Tl(We mean intersections
of the right edge of the tube with Al, since the tubes are prametrized by the angles of
the right edges.). The set A′l has Lebesgue measure greater than (j−1)β

2(Hl+1)2
eHl , since the

pre-image set has measure greater than β/dHle. We split A′l into disjoint consecutive arcs
each of Lebesgue measure 1, and color these disjoint lengths alternately blue and red. We
consider the union of the blue arcs, and the union of the red arcs. Then the intersection
of the tubes in Tl with at least one of these two arcs has measure greater than or equal
to (j−1)β

4(Hl+1)2
eHl . Call this the good arc. Thus, per unit length of the good arc if we just

counted one exceptional tube, we have (j−1)β
4(Hl+1)2

eHl many distinct tubes belonging to Tl.

Call this set of tubes T ′l . These tubes have been chosen so that beyond the height j−1
2Hl

eHl ,
they are all mutually disjoint, so when we add all the points within all these tubes, there
is no double counting.

Because of the way the levels ml have been defined, we must have more than(
(j−1)

2(Hl+1)
eHl
)α+ψ/2

many points in each of the tubes of T ′l , in the height range [ j−1
2Hl

eHl , j
Hl
eHl ].

Thus in this height range, there are strictly more than:

(j − 1)β

4(Hl + 1)2
eHl ·

( (j − 1)

2(Hl + 1)
eHl
)α+ψ/2

= eHl·(1+α+ψ/2)
β(j − 1)1+α+ψ/2

22+α+ψ/2 · (Hl + 1)2+α+ψ/2
(7)

many points, where now: 1 + α+ ψ/2 = max(1, dim(E)) + ψ/2. Thus within this set, at
height j

Hl
eHl , the expression in the formula for mass dimension is:(

Hl(1 + α + ψ/2) + log(β) + (1 + α + ψ/2) log(j − 1)
− (2 + α + ψ/2) log(2)− (2 + α + ψ/2) log(Hl + 1)

)
Hl + log(j)− log(Hl)

. (8)

The leading terms in both the numerator and denominator above contain a factor of Hl,
and when Hl is sufficiently large, this expression approaches (1+α+ψ/2) which is strictly
greater than dim(E).

However if j = 1, the above process fails since there is no lower bound to the ml profile,
and we cannot choose a lower cut off height to perform the integration as we did above.

In this case, we subdivide again and write 1
Hl
eHl = eH

(1)
l where H

(1)
l = Hl− log(Hl) < Hl.

Now, if for any 2 6 j 6 dHle, we take out a pre-image set of measure at least β/dHle3,
it is clear from Eq. (8) that upon taking logarithms we still get a dimension greater than
dim(E) when the heights are sufficiently large, since the only change is an additive term
in the coefficient of log(Hl + 1) in the numerator.
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So we assume that for 2 6 j 6 dHle, at most β/dHle3 measure of the set has been

taken out, and so we are left with at least (1− (dHle−1)
dHle3

)β > (1− 1
dHle2

)β measure for the

pre-image set of the range [0, 1
Hl
eHl ] = [0, eH

(1)
l ].

Now we divide this range again as before, and then if there is some j > 2 for which

the preimage set of [ j−1
H

(1)
l

eH
(1)
l , j

H
(1)
l

eH
(1)
l ] has measure at least β/d(H(1)

l )e3, then we can

count the number of points as in the previous case. If not, we have a preimage set

of measure at least (1 − 1
dHle2

− 1
dH1

l e2
)β for the range [0, 1

H
(1)
l

eH
(1)
l ] = [0, eH

(2)
l ] where

H
(2)
l = H

(1)
l − log(H

(1)
l ) < H

(1)
l . Eventually we would reach the minimum height hl of

this profile and still be left with a set of measure at least (1− ( 1
1002

+ · · · 1
H2
l
))β > Cβ for

some constant C ≈ (1− 1
100

) independent of l.

At this very end for any l ∈ N, we reach a final height range H
t(l)
l for some t(l) ∈ N, so

that the minimum of the ml profile is some height p(l) so that p(l) > 1

H
t(l)
l

eH
t(l)
l in which

case p(l) ∈ [ j−1
H
t(l)
l

eH
t(l)
l , j

H
t(l)
l

eH
t(l)
l ], for some j > 2(If we were to hit the j = 1 range here,

then by definition we would reach a lower height range than H
t(1)
1 ).

Thus, the total number of points in this height range is at least

(j − 1)CβeH
t(l)
l

4(H
t(l)
l + 1)

·

(
(j − 1)eH

tl
l

2(H
t(l)
l + 1)

)α+ψ/2

. (9)

From the construction, it is apparent that the function l 7→ H
t(l)
l is strictly increasing.

Looking at the structure of Eq. (8), we see that the analogous expression here would also
only involve changes by some additive term in the coefficient of the log(H tl

l ) terms, and

so as H
t(l)
l →∞, the mass dimension still approaches 1 + α + ψ/2.

It is clear that in the worst case, even if we were always reduced to this lowest height
range for each l, since the minimum height profiles hl → ∞ as l → ∞, we always get
an increasing sequence of squares Bnl with nl → ∞, and by considering its intersections
with the cone ensure that E has an exceptionally high dimension. For every l we get the
required height profile at which the mass dimension is close to (max(1, dim(E))+ψ/2) and
thus we can choose a subsequence from these profiles for each l value, and conclude that
the dimension is exactly (max(1, dim(E)) + ψ/2) (We will eventually always find a sub-
sequence along which the dimension becomes exceptionally large). Thus we constructed
the set E ′ ⊂ E whose mass dimension is greater than the mass dimension of E itself,
which is the required contradiction.

Now the proof of Theorem 10 follows immediately from Theorem 9:

Proof of Theorem 10. In this case, we take E = A × B, a Cartesian product. We note
that the set {(x, y) ∈ R2|y = bux + vc} for u > 0 always lies inside a tube of width less
than one. In fact, the vertical cross section of the set blu,vc is always 1, and the width is
clearly less than one. Thus the result follows from Theorem 8.
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4 Mass dimensions of specific sets and their slices

1. We first give a trivial example illustrating that the statement of Theorem 9 would
not hold if the parameters u, v were interchanged, i.e. one can construct a set E
so that for a fixed u, for every v > 0, the tubes tu,v have dimension greater than
D(E) − 1. Simply consider the line y = ux for any u > 0, in the first quadrant,
and put points at intervals of length 1 on this line. This is clearly a set of mass
dimension one. Moreover, every tube t(− 1

u
,v), where v lies in the interval [0, 1) also

intersects every point on this line, and thus also has mass dimension exactly 1.
2. We give a second less trivial example illustrating that Theorem 9 would not hold if

the parameters u, v were interchanged in the statement of the theorem. Without loss
of generality, consider u =∞, that is, all the horizontal tubes of width 1. Consider
the set E := {(m2, n)|m ∈ Z+, 0 < n 6 m}. Thus inside a square box with one side

of length N2 along the x−axis, there are 1 + 2 + · · · + N = N(N+1)
2

many points
belonging to the set E. It is not hard to see that the mass dimension of the set is
given by:

lim
N→∞

log(N(N + 1)/2)

log(N2)
= 1.

Each horizontal tube is initially empty, but then contains a point for every square
value of the x−coordinate, for every sufficiently large square. This is the number of
points in the intersection of the tube with the square [0, N ]2. Thus for sufficiently
large N , there are effectively

√
N many points in each tube, and thus each tube has

mass dimension 1/2, and thus each of these tubes is an exceptional tube.
However, for a fixed value of v0, we cannot have a positive Lebesgue measure set of
values of u so that the tubes t(u,v0) are exceptional, as stated in Theorem 9. This is
proven in Section 4.

Next we show several examples (Examples 3-6) where equality is attained in the state-
ment of Theorem 9, illustrating that the inequality cannot be strengthened in general.
Example 3, which we state below, illustrates that if one attempts to construct a 1 di-
mensional set and then find a ray of tubes whose v coordinates are in a set of positive
Lebesgue measure, and each tube with positive mass dimension, one will fail and the ray
of tubes will all end up having 0 dimension. On the other hand, going from Example 4 to
Example 6 is a prototypical illustration of the fact that if one attempts to construct a ray
of tubes whose u coordinates are in a set of positive Lebesgue measure, with each tube
having an exceptionally high dimension, one will fail and that eventually the set itself will
be forced to have a high enough dimension so that statement of Theorem 9 holds true.
We also note that for a tube of width 1 in any direction, the intersection of the integer
lattice with a length m of this tube has between m and 2m many points.

3. The following example exhibits a set E of mass dimension 1, a fixed value v0, and
an open set of u’s so that every slice by tubes tu,v0 has mass dimension exactly 0.
Consider the slanted closed cone with vertex at the origin, the right edge being
the line y = x and the left edge being the line y = x tan(π/4 + δ) for some small
δ. Begin at the point (1, 1) and consider all the integer points on the vertical line
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Figure 3: The set used in Example 3 depicted in the figure with the dark dashed line. It
has alternate horizontal and vertical parts within the annual region depicted in the figure,
all points of the set belonging to the integer lattice.

starting from (x1, y1) = (1, 1) to (1, tan(π/4 + δ)). From here we take a ‘right turn’
along the horizontal line and consider all the integer points on it, till it hits the line
y = x, and then again consider the alternate vertical and horizontal lines (with a
succession of ‘up’ and ‘right’ turns). This ‘zig-zag’ growing sequence of points is our
set E. The growth of this set is linear, and it is not hard to verify that the mass
dimension of this set is exactly 1. Consider the points (xn, yn), n ∈ N, where the
horizontal segments of our ‘zig-zag’ line intersects the line y = x ( and thus always
xn = yn).
Consider all the tubes of width 1, whose right edge passes through the origin and
with these right edges being within the cone. It is clear that for each of these
tubes, for any given n ∈ N there are two points of the set E that lie within this
tube, corresponding to the horizontal and vertical lines that emanate from the point
(xn, yn). So we need to check how fast the coordinates of the points (xn, yn) grow.
With some elementary trigonometry, it can be verified that the growth can be
written iteratively, for some small positive constants A = (cot(π/4)−cot(π/4+δ)) >
0, B = (tan(π/4 + δ)− tan(π/4)) > 0 independent of n, in the following way.(

xn+1

yn+1

)
=

[
1 A
0 1

] [
1 0
B 1

](
xn
yn

)
=

[
1 + AB A
B 1

](
xn
yn

)
.

From the point (xn, yn), till we hit the line y = x tan(π/4 + δ) the x-coordinate
remains constant while the increment in the y-coordinate is exactly xn · (tan(π/4 +
δ) − tan(π/4))). Further, from this point, the next time we hit the line y = x
the y-coordinate remains constant while the x-coordinate increased by exactly yn ·
(cot(π/4)− cot(π/4 + δ).
Thus, (

xn
yn

)
=

[
1 + AB A
B 1

]n(
1
1

)
.

The eigenvalues of the matrix above are λ1 = 1 + 1
2
(
√
AB(AB + 4) + AB) > 1,

λ2 = 1− 1
2
(
√
AB(AB + 4)−AB) < 1, and thus we have hyperbolicity, and conclude
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that xn has an additive term with a factor that grows like λn1 , that is the growth is
exponential. Thus till the height xn, for each of the tubes within the cone, we have
∼ 4O(log(xn)) elements within the tube. The additional factor of 2 comes from the
fact that each tube within the cone contains two points ‘near’ each xn, one each
from the horizontal and vertical strips which intersect the point (xn, yn). Thus the
mass dimension of each tube is exactly:

lim
n→∞

log(2 log(xn))

log(xn)
= 0.

4. This is a simple example of a set E that has mass dimension 3/2 while a set of tubes
of the form t(u,v) with fixed u, and the v parameter lying in an interval, intersects
E in dimension 1/2. Consider a cone of arbitrary small angular width θ, centered
around the y−axis, with vertex at the origin and pointing up(Even though we
originally restricted our set to the first quadrant, we can through a suitable rotation
of coordinates ensure that the cone under consideration is symmetric about the y
axis, and lies above the x axis.). In this case, for some large k0 > 0, 7 for each
k > k0, we fill the annular region inside the cone between the heights 22k+1

and
22k + 22k+1

with all the points belonging to Z2 within the annular region. In this
way, we would have a set with mass dimension 3/2 since we effectively have the area
≈ (θ) · 42k · 22k = θ.23.2k covered just above the height 22.2k , by the integers, the
mass dimension of the set being given by:

lim
k→∞

log(θ.23.2k)

log(22.2k)
=

3

2
.

However, every tube contains at most 2 ·22k many points just above the height 22k+1
,

and thus the mass dimension of each of these tubes is 1/2.
5. This is a second example of a set E that has mass dimension 1 and where an open

cone of tubes has mass dimension 0. We try to modify the previous example in
order to reduce the dimension of E from 3/2 to 1, however as it turns out in this
specific case, each tube then only contains a finite number of points. Here assume
that the cone is bounded by the angles π/2 and (π/2−θ) for some small θ. Consider
the set E where starting with k > 0 just above the height 22k+1

, we have an annular
integer grid chunk of height 22k , and radial width θ · 22k from the left edge of the
cone, so that the area covered is exactly θ · 22k+1

. This covers an angular width
of (θ · 22k)/22k+1

= θ/22k . We do this for successive values of k starting at k = 0,
at each step subtending an angle just to the right of the angle subtended in the
previous case. At the height 22k+1

we put a square annular chunk as before of total

area 22k+1
, and in the process the total angle subtended as k →∞ is θ ·

∞∑
k=1

1/22k < θ.

7We choose a scale 22
k

instead of 2k since if we have a range of k values from 1 to some k0, the levels
are so sparse that only the last level k0 is relevant when counting the points for the mass dimension

till height 22
k0

. With the scaling 2k0 we would need to add up all the points in all the lower levels as
well.
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It is clear that this set E has mass dimension 1 since there are heights 22k+1
just

above which an integer grid of area approximately θ · 22k+1
is filled, but each tube

with the right edge within the cone either has a finite positive number of points in
it, or is empty, and thus has dimension 0.

6. If we tried to avoid the infinite progression of angles that we got in the previous
example, we can fix an angular width θ/22k0 for each of the levels from heights 22k0+1

to the height 22k0+22
k0

, and put the annular chunk of integers of area θ · 22k0+1
just

above the height 22k0+1
as before, so at this height the dimension of the set is close

to 1.
At the height 22k0+2

, we put a chunk of width θ · (1/22k0 )22k0+2
= θ · 23.2k0 and

height 22k0+1
and thus an area of θ · 2(22+2−1).2k0 . In the next stage, we have a

covered area of θ.27.2k0 .22k0+2
= θ.2(23+22−1).2k0 . just above the height 22k0+3

. Con-

tinuing this way, in the end we have above the height 22k0+22
k0

, a covered area of

θ.22k0 .(22
2k0

+22
2k0−1−1). Thus the expression in the mass dimension (prior to taking

the limit) when considering a box till this last height, would be:

log(θ · 22k0 ·(222
k0

+22
2k0−1−1)

log(22k0+22
2k0

)
=

log(θ) + log(2).2k0 · (222
k0

+ (1
2
)222

k0 − 1)

(log 2 · 2k0 · 222
k0

)
.

When k0 is large enough, this expression tends to 3/2 from below and thus we have
a set of dimension almost 3/2 at this height. As we take the limit of k0 → ∞, the
dimension of the set becomes exactly 3/2. In this case, we don’t have an infinite
progression of angles; the full angle θ is covered after 22k0 steps, however, the price

to pay is that the dimension of E increases to 3/2. Above the height 22k0+22
k0

we
can repeat the same process infinitely often, and then we end up having a set of
dimension 3/2 and where each of the tubes has dimension 1/2 like before.

In the Examples 3 and 5, we can clearly also modify the examples in a simple way so
that instead of having sets E of mass dimension 3/2 and E ∩ tu,v having mass dimension
1/2, the sets and tubes have mass dimension (1+η) and η respectively, for any 0 < η < 1.

5 Future directions

In a companion manuscript, we intend to study the Hausdorff dimensions of the ex-
ceptional sets of u-parameters that violate the inequality of Theorem 9, for specific 1-
separated sets E. The proof of the Theorem 9 does not follow along the lines of the proof
of the classical Marstrand slicing theorem, as Examples 1 and 2 in Section 4 demonstrate,
and the exceptional sets also do not behave in classically expected ways.

One should also naturally be able to extend the slicing theorem to higher dimensions.
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