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Abstract

A power is a concatenation of k copies of a word u, for a positive integer k; the
power is also called a k-power and k is its exponent. We prove that for any k > 2,
the maximum number of different non-empty k-power factors in a word of length
n is between n

k−1 − Θ(
√
n) and n−1

k−1 . We also show that the maximum number of
different non-empty power factors of exponent at least 2 in a length-n word is at
most n− 1. Both upper bounds generalize the recent upper bound of n− 1 on the
maximum number of different square factors in a length-n word by Brlek and Li
(2022).

Mathematics Subject Classifications: 68R15

1 Introduction

Let k be an integer greater than 1. The k-power (or simply the power) of a word u is a
word of the form uu . . . u︸ ︷︷ ︸

k times

. Here k is called the exponent of the power. We consider only

powers of non-empty words. A factor (subword) of a word is its fragment consisting of a
number of consecutive letters. In this paper, we investigate the bounds for the maximum
number of different k-power factors in a word of length n. This subject is one of the
fundamental topics in combinatorics on words [9]. For any pair of positive integers (n, k)
with k > 1, let N(n, k) denote the maximum number of different non-empty k-powers
that can appear as factors of a word of length n. For 2-powers (squares), the bounds for
N(n, 2) were studied by many authors; see [3, 4, 6, 2, 10, 1]. The best known lower bound
from [3] and a very recent upper bound from [1] match up to sublinear terms:

n− o(n) 6 N(n, 2) 6 n− 1.
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Actually, one can check that the lower bound from [3] is of the form n − Θ(
√
n). For

k = 3, it was proved in [5] that

1

2
n− 2

√
n 6 N(n, 3) 6

4

5
n.

More generally, for k > 3, it was studied in [7] and proved that

N(n, k) 6
n− 1

k − 2
,

with the same notation as above. Further in [5] it was shown that the maximum number
of different factors of a word of length n being powers of exponent at least 3 is n− 2.

In this article, we generalize the methods provided in [1] and [5] to give an upper and
a lower bound for the number of different k-powers in a finite word. The main result is
announced as follows:

Theorem 1. Let k be an integer greater than 1. For any integer n > 1, let N(n, k) denote
the maximum number of different k-powers being factors of a word of length n. Then we
have

n

k − 1
−Θ(

√
n) 6 N(n, k) 6

n− 1

k − 1
.

We also show the following result. It implies, in particular, that a word that contains
powers of exponent greater than 2 has fewer squares than n− 1.

Theorem 2. The maximum number of different factors in a word of length n being powers
of exponent at least 2 is n− 1.

2 Preliminaries

Let us first recall the basic terminology related to words. By a word we mean a finite
concatenation of symbols w = w1w2 · · ·wn, with n being a non-negative integer. The
length of w, denoted |w|, is n and we say that the symbol wi is at the position i. The set
Alph(w) = {wi|1 6 i 6 n} is called the alphabet of w and its elements are called letters.
Let |Alph(w)| denote the cardinality of Alph(w). A word of length 0 is called the empty
word and it is denoted by ε. Concatenation of two words u, v is denoted as uv.

A word u is called a factor of a word w if w = pus for some words p, s; u is called
a prefix (suffix) of w if p = ε (s = ε, respectively). The set of all factors of a word w is
denoted by Fac(w).

Two words u and v are conjugate when there exist words x, y such that u = xy and
v = yx. The conjugacy class of a word v is denoted by [v]. If v = v1v2 · · · vm is a word,
then for any i ∈ {1, . . . ,m}, we define vp(i) = v1v2 · · · vi and vs(i) = vi+1vi+2 · · · vm. Thus,
[v] = {vs(i)vp(i), i = 1, 2, . . . ,m}.

For any positive integer k, we define the k-power (or simply a power) of a word u to be
the concatenation of k copies of u, denoted by uk. Here k is the exponent of the power. In
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particular, εk = ε for any natural number k. A non-empty word w is said to be primitive
if it is not a power of another word, that is, if w = uk implies k = 1. For any non-empty
word w, there is exactly one primitive word u such that w = uk for integer k > 1; the
word u is called the primitive root of word w, see [8]. Furthermore, two words that are
conjugate are either both primitive or none of them is [8, Proposition 1.3.3]. For a given
word w, let Nk(w) denote the number of different non-empty k-power factors of w and
Prim(w) denote all primitive factors of w.

For any word u and any rational number α, the α-power of u is defined to be uau0
where u0 is a prefix of u, a is the integer part of α, and |uau0| = α|u|. The α-power of u
is denoted by uα. If α is a rational number greater than 1 and there exists a word u such
that w = uα, then the word w is said to have a period |u|.

3 Rauzy graphs of a finite word

In this section, we recall the notion of Rauzy graph and some results obtained in [1]. Let
w be a word of length n. For any integer ` ∈ {1, . . . , n}, let L`(w) be the set of all length-`
factors of w. For any integer ` ∈ {1, . . . , n}, let the Rauzy graph Γ`(w) be an oriented
graph whose set of vertices is L`(w) and the set of edges is L`+1(w) (here Ln+1(w) = ∅);
an edge e ∈ L`+1(w) starts at the vertex u and ends at the vertex v, if u is a prefix and v
is a suffix of e. Let us define Γ(w) = ∪n`=1Γ`(w).

Let Γ`(w) be a Rauzy graph of w. A sub-graph in Γ`(w) is called an elementary
circuit if there are j distinct vertices v1, v2, . . . , vj and j distinct edges e1, e2, . . . , ej for
some integer j, such that for each t with 1 6 t 6 j − 1, the edge et starts at vt and ends
at vt+1, and for the edge ej, it starts at vj and ends at v1; further, j is called the size
of the circuit. The small circuits in the graph Γ`(w) are those elementary circuits whose
sizes are no larger than `.

Lemma and Notation 3 (Brlek and Li [1]). Let w be a word and let Γ`(w) be a Rauzy
graph of w for some ` ∈ {1, . . . , |w|}. Then for any small circuit C on Γ`(w), there exists
a unique primitive word q, up to conjugacy, such that |q| 6 ` and the vertex set of C is{
p

`
|p| |p ∈ [q]

}
and its edge set is

{
p

`+1
|p| |p ∈ [q]

}
.

Further, each small circuit can be identified by an associated primitive word q and an
integer ` such that Γ`(w) is the Rauzy graph in which the circuit is located. Let each small
circuit be denoted by C(q, `) with the parameters defined as above.

Lemma 4 (Brlek and Li [1]). Let w be a word. Then there are at most |w| − |Alph(w)|
small circuits in Γ(w).

4 Upper bound for N(n, k)

Let w be a word and let v ∈ Prim(w). A factor u ∈ Fac(w) is said to be in the class of
factor v ∈ Fac(w) if there is a (primitive) word y ∈ [v] and an integer p > 2 such that
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u = yp. Let Classw(v) denote the set of all factors of w in the class of v. By |Classw(v)|
we denote the cardinality of Classw(v).

For a factor v of w, let us define mw(v) = max {n|vn ∈ Fac(w), n ∈ N+}. Now given
Classw(v), let us define its index to be an integer Indexw(v) such that Indexw(v) =
max {mw(u)|u ∈ [v]}. From the definition, the elements in Classw(v) are all of the form
vs(i)v

j−1vp(i) with 1 6 i 6 |v| and 1 6 j 6 Indexw(v). By Prim′(w) we denote the set of
primitive words v such that vn is in the class of v, where n is the index of this class. In
other words,

Prim′(w) = {v ∈ Prim(w)|vIndexw(v) ∈ Classw(v)}.
For v ∈ Prim′(w), let MaxPoww(v) =

{
uIndexw(v)|u ∈ [v]

}
∩ Fac(w) and mpw(v) denote

the cardinality of MaxPoww(v).

Example 5. Let w = (00001)32(00100)32(01000)3 and v = 00001. Then Classw(v) has
8 elements:

Classw(v) = {(00001)2, (00010)2, (00100)2, (01000)2, (10000)2,

(00001)3, (00100)3, (01000)3}.

In this case, we have Indexw(v) = 3, MaxPoww(v) = {(00001)3, (00100)3, (01000)3},
and mpw(v) = 3 is the cardinality of MaxPoww(v). Moreover, the only words that are
conjugate with v in Prim′(w) are 00001, 00100, 01000.

Lemma 6. Let u and v be primitive words. If words u and v are conjugate, then
Classw(u) = Classw(v). Otherwise, classes Classw(u) and Classw(v) are disjoint.

Proof. The first part of the statement is obvious. Assume to the contrary that y ∈
Classw(u) ∩ Classw(v) for primitive words u and v. This means that there exist words
u′ ∈ [u] and v′ ∈ [v] and integers k, t > 1 such that y = (u′)k = (v′)t. However, in this
case, u′ and v′ are powers of the same word (see [8, Proposition 1.3.1]). Moreover, since
u′ and v′ are conjugate to primitive words, they are both primitive. Thus, u′ = v′ and
Classw(u) = Classw(v).

In this section we give an upper bound for Nk(w). The strategy is as follows: first, we
compute the exact number of powers in each class Classw(v) of w; second, we prove that
there exists an injection from ∪v∈Prim′(w)Classw(v) to the set of small circuits in Γ(w);
third, we conclude by using the properties of Rauzy graphs introduced in the previous
section.

Lemma 7. Let w be a word and v ∈ Prim′(w). If Indexw(v) > 2, then we have
|Classw(v)| = |v|(Indexw(v)− 2) + mpw(v). Further, we have

Classw(v) =
{
uk|u ∈ [v], 2 6 k 6 Indexw(v)− 1

}
∪MaxPoww(v).

Proof. We only need to prove that for any u ∈ [v] and any integer k satisfying 2 6 k 6
Indexw(v)− 1, uk ∈ Fac(w). We can easily check that uk ∈ Fac(vk+1). However, from the
hypothesis, k+1 6 Indexw(v) and vIndexw(v) ∈ Fac(w), thus, vk+1 ∈ Fac(w). Consequently,
uk ∈ Fac(w).
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Example 9 below shows the main ideas from the proof of the following lemma for a
concrete class.

Lemma 8. Let w be a word and v ∈ Prim′(w) such that |v| = ` and Indexw(v) > 2. For
any integer t satisfying 1 6 t 6 |Classw(v)|, there exists a small circuit C(v, t+ `− 1) in
the Rauzy graph Γt+`−1(w). Hence, there exists a bijective function fv which associates
each word in Classw(v) to a small circuit in the set {C(v, t+ `− 1)|1 6 t 6 |Classw(v)|}.

Proof. To prove the existence of the circuit C(v, t+`−1) for any t ∈ {1, . . . , |Classw(v)|},
it is enough to prove that

St(v) :=
{
u

t+`
` |u ∈ [v]

}
⊂ Fac(w).

If this is the case, then there exists a circuit in Γt+`−1(w) such that its edge set is St;
further, it can be identified by C(v, t+ `− 1).

If integers t′, t satisfy 1 6 t′ < t 6 |Classw(v)|, then each word in St′(v) is a prefix of
a word in St(v). Hence, it is enough to prove that St(v) ⊂ Fac(w) for t = |Classw(v)|.
From Lemma 7, we have t = `(Indexw(v)− 2) + mpw(v), so t+`

`
= Indexw(v)− 1 + mpw(v)

`
.

Let i = Indexw(v) and j = mpw(v). For any ui−1+
j
` ∈ St(v), the word ui−1+

j
` =

ui−1up(j) is a factor of the word us(m)ui−1up(m) = (us(m)up(m))i for all m ∈ {j, . . . , `}.
Hence, there are at most j−1 distinct words y that are conjugate with u such that ui−1+

j
` 6∈

Fac(yi). In particular, there are at most j − 1 distinct words yi ∈ MaxPoww(v) which do

not contain ui−1+
j
` as a factor. However, there are exactly j elements in MaxPoww(v), so

there exists at least one word in MaxPoww(v) containing ui−1+
j
` . Thus, St(v) ⊂ Fac(w).

The existence of the bijective function fv is from the fact that the cardinalities of
Classw(v) and {C(v, t+ |v| − 1)|1 6 t 6 |Classw(v)|} are the same.

Example 9. Let us consider the class from Example 5. All words in the set S8(v) ={
u

13
5 |u ∈ [v]

}
, for v = 00001, are factors of w. For example, let us consider u

13
5 =

(00010)
13
5 = 0001000010000 ∈ S8(v). It is a factor of three words y3, where u and y are

conjugate:

(10000)3 = 100001000010000

(00001)3 = 000010000100001

(00010)3 = 000100001000010

and is not a factor of the two remaining such words. The set MaxPoww(v) contains three

words and indeed u
13
5 is a factor of y3 for y being one of them, y = 00001.

Now, since S8(v) ⊂ Fac(w), we have St(v) =
{
u

5+t
5 |u ∈ [v]

}
⊂ Fac(w), for all in-

teger 1 6 t 6 8. Moreover, each St(v) is the edge set of the circuit C(v, t + 4).
Thus, there exists a bijective function from the class Classw(v) to the set of circuits
{C(v, t+ `− 1)|1 6 t 6 |Classw(v)|} since the cardinalities of these sets are both 8.
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For a word w, let Powers(w) denote the set of all powers of exponent at least 2 that
are factors of w, i.e. Powers(w) = {ut|t > 2, ut ∈ Fac(w)}.

Lemma 10. There exists an injective function f from the set Powers(w) to the set of
small circuits in Γ(w).

Proof. Each power factor of w of exponent at least 2 belongs to some class. Hence,
Powers(w) = ∪v∈Prim′(w)Classw(v). For any v ∈ Prim′(w), from Lemma 8, there is a
bijection fv from Classw(v) to {C(v, t+ |v| − 1)|1 6 t 6 |Classw(v)|}. Let us define the
function f as follows: for any Classw(v), we set f |Classw(v) = fv with fv defined as above.
This function is well defined by Lemma 6. Now we prove that f is injective. Let y, z be
two powers such that f(y) = f(z) = C(v, t+ |v|−1) for some v and t. In this case, y, z are
both in Classw(v). However, for a given class Classw(v), fv is bijective, thus y = z.

The function f from Lemma 10 does not need to be a bijection; see Fig. 1.

abc bca

cab abd bdc

dca

Figure 1: Rauzy graph Γ3(w) of word w = abcabdcabc (edge labels omitted) contains a
small circuit (in bold) even though the word w is square-free.

Example 11. Let us consider a word w = 10101001001000 (it is a prefix of the family
of words considered in Section 5). Fig. 2 shows the Rauzy graphs Γ1(w), . . . ,Γ8(w). The
graph Γ8(w) is acyclic, so the remaining graphs Γi(w), for i ∈ {9, . . . , 14}, are acyclic
as well. Small circuits in the Rauzy graphs are drawn in thick using different colors,
depending on the class that they correspond to (as in the proof of Lemma 10):

• two blue circuits C(0, i), i ∈ {1, 2}, corresponding to Classw(0) = {02, 03},

• three green circuits C(10, i), i ∈ {2, 3, 4}, corresponding to Classw(10) =
{(10)2, (01)2, (10)3}, and

• five red circuits C(100, i), i ∈ {3, 4, 5, 6, 7}, corresponding to Classw(100) =
{(100)2, (010)2, (001)2, (100)3, (010)3}.

In total |Powers(w)| = 10 and there are 10 small circuits in the Rauzy graphs. We note
that not all circuits in this example are small; see the graphs Γ1(w) and Γ2(w).

We are ready to prove the upper bounds.

Lemma 12. For any non-empty word w, |Powers(w)| 6 |w| − |Alph(w)|.

Proof. It is a direct consequence of Lemmas 10 and 4.
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Γ1(w)

1 0

Γ2(w)

10 01

00

Γ3(w)

101 010

100001

000

Γ4(w)

1010 0101

0100 1001

00101000

Γ5(w)

10101 01010

10100

01001

10010

00100

01000

Γ6(w)

101010 010100

101001

010010100100

001001

001000

Γ7(w)

1010100 0101001 1010010

01001001001001

0010010

1001000

Γ8(w)

10101001 01010010 10100100

010010011001001000100100

01001000

Figure 2: Rauzy graphs Γ1(w), . . . ,Γ8(w) of word w = 10101001001000 (edge labels
omitted).

the electronic journal of combinatorics 31(3) (2024), #P3.14 7



Theorem 2 follows directly from Lemma 12.

Theorem 13 (Upper bound).
Let k be an integer greater than 1. For any word w, we have

Nk(w) 6
|w| − |Alph(w)|

k − 1
.

Consequently, for any integer n > 1, we have

N(n, k) 6
n− 1

k − 1
.

Proof. To each k-power factor in Powers(w) we can assign at least k − 2 powers in the
set Powers(w) that are not k-powers. More precisely, if the k-power factor is vkp, for
positive integer p and primitive word v, then the words vkp−1, . . . , vkp−k+2 are elements
of Powers(w) and are not k-powers by uniqueness of primitive roots. (If p > 1, we could
also assign vkp−k+1 to vkp; however, for p = 1 this would be a 1-power.) Moreover, this
way the sets of powers assigned to different k-powers are disjoint. By Lemma 12,

Nk(w) 6
|Powers(w)|

k − 1
6
|w| − |Alph(w)|

k − 1
.

Example 14. For the word w from Example 11, we have N3(w) 6 |Powers(w)|/2 = 5.
Actually, N3(w) = 4 and N2(w) = 6.

5 Lower bound for N(n, k)

We show a family of binary words which yields a lower bound of n
k−1 − Θ(

√
n) for the

number of different factors which are k-powers, for an integer k > 2.
For integers i > 1 and k > 2 we denote

q
(k)
i = (10i)k−1.

Let r
(k)
m be the concatenation

r(k)m = q
(k)
1 q

(k)
2 · · · q(k)m 10m.

E.g., for k = 2, we obtain the family of words:

1010, 10100100, 1010010001000, 1010010001000010000, . . .

and for k = 3, the family:

101010, 1010100100100, 1010100100100010001000, . . .

Lemma 15. The length of r
(k)
m is (k − 1)

(
m2

2
+ 3m

2

)
+m+ 1.
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Proof. The length of q
(k)
i is (k − 1)(i+ 1), so

|r(k)m | =

(
m∑
i=1

(k − 1)(i+ 1)

)
+m+ 1 = (k − 1)

(
m2

2
+

3m

2

)
+m+ 1.

Lemma 16. Nk(r
(k)
m ) > m2

2
+ m

2
+
⌊
m
k

⌋
.

Proof. Let us note that for a positive integer i, the concatenation 0i−1q
(k)
i 10i = 0i−1(10i)k

contains as factors all the k-powers that are conjugate with the k-power (0i1)k that are

different from this k-power. Let us note that this concatenation is a factor of r
(k)
m for each

i ∈ {1, . . . ,m}. Indeed, for i ∈ {1, . . . ,m}, the factor q
(k)
i in r

(k)
m is preceded by 0i−1 (for

i = 1 this is the empty string, and otherwise it is a suffix of q
(k)
i−1) and followed by 10i (for

i < m it is a prefix of q
(k)
i+1, and for i = m it is a suffix of r

(k)
m ).

Additionally, in r
(k)
m there are

⌊
m
k

⌋
unary k-powers 0k, 02k, . . . In total we obtain(

m∑
i=1

i

)
+
⌊m
k

⌋
=
m2

2
+
m

2
+
⌊m
k

⌋
k-powers, all pairwise different.

Theorem 17 (Lower bound).
Let k > 2 be an integer. For infinitely many positive integers n there exists a word w of
length n for which Nk(w) > n

k−1 − 2.2
√
n.

Proof. Due to Lemmas 15 and 16, for any word r
(k)
m we have:

|r(k)m |
k − 1

−Nk(r
(k)
m ) 6

m2

2
+

3m

2
+
m+ 1

k − 1
− m2

2
− m

2
−
⌊m
k

⌋
= m+

m+ 1

k − 1
−
⌊m
k

⌋
6 m+

m+ 1

k − 1
− m− k + 1

k

= m+
m+ 1

k(k − 1)
+ 1 6 m+

m+ 1

2
+ 1 =

3

2
m+

3

2
.

This value is smaller than c

√
|r(k)m | for c2 > 9

2
; indeed, in this case, we have:(

3

2
m+

3

2

)2

=
9

4
m2 +

9

2
m+

9

4
< c2

(
1

2
m2 +

5

2
m+ 1

)
6 c2|r(k)m |.

Hence, for c > 2.2 we conclude that:

|r(k)m |
k − 1

−Nk(r
(k)
m ) < c

√
|r(k)m | ⇒ Nk(r

(k)
m ) >

|r(k)m |
k − 1

− c
√
|r(k)m |.
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Note. For k = 2 we obtain a family of words containing n − o(n) different squares
that is simpler than the example by Fraenkel and Simpson [3]: we concatenate the words

q
(2)
i = 10i whereas they concatenate the words q′i = 0i+110i10i+11.

Proof of Theorem 1. It is a direct consequence of Theorems 13 and 17.
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