
Constructing Maximal Pipedreams

of Double Grothendieck Polynomials

Chen-An Chou Tianyi Yu

Submitted: Dec 22, 2023; Accepted: Jun 21, 2024; Published: Aug 9, 2024

© The authors. Released under the CC BY-ND license (International 4.0).

Abstract

Pechenik, Speyer and Weigandt defined a statistic rajcode(·) on permutations
which characterizes the leading monomial in top degree components of double
Grothendieck polynomials. Their proof is combinatorial: They showed there ex-
ists a unique pipedream of a permutation w with row weight rajcode(w) and column
weight rajcode(w−1). They proposed the problem of finding a “direct recipe” for
this pipedream. We solve this problem by providing an algorithm that constructs
this pipedream via ladder moves.

Mathematics Subject Classifications: 05E05

1 Introduction

Let Sn be the set of permutations of {1, . . . , n}. For w ∈ Sn, the matrix Schubert variety
Xw is a determinantal variety that has been studied extensively (see for instance [FUL92,
KM05, KMY09, WY18]). Castelnuovo-Mumford regularity measures the algebraic com-
plexity of varieties. Since matrix Schubert varieties are Cohen-Macaulay [FUL92, KM05,
Ram85], the Castelnuovo-Mumford regularity of Xw is the difference between the top
and bottom degree of its K-polynomial. By the work of Knutson and Miller [KM05], the
K-polynomial of Xw is the Grothendieck polynomial Gw(x). This family of polynomi-
als, introduced by Lascoux and Schützenberger [LS82], represents K-classes of structure
sheaves of Schubert varieties in flag varieties. Their lowest degree components are the
Schubert polynomials whose degrees are known.

Consequently, determining the Castelnuovo-Mumford regularity of Xw reduces to com-
puting the degree of Gw(x). With this motivation, there has been a recent surge in the
study of top degree components of Gw(x) [DMSD22, Haf22, PSW21, PY23, RRR+21,
RRW23]. Pechenik, Speyer, and Weigandt [PSW21] defined a statistic rajcode(·) on Sn

using increasing subsequences of permutations. They showed xrajcode(w) is the leading

Department of Mathematics, UC San Diego, La Jolla, CA, U.S.A. (c1chou@ucsd.edu,
tiy059@ucsd.edu).

the electronic journal of combinatorics 31(3) (2024), #P3.15 https://doi.org/10.37236/12665

https://doi.org/10.37236/12665

monomial in the top degree components of Gw(x) with respect to the lexicographical or-
der where xn > · · · > x1. Pan and Yu [PY23] found a diagrammatic formula to compute
rajcode(w) (see Definition 12).

For w ∈ Sn, the double Grothendieck polynomial Gw(x,y) involves two sets of vari-
ables: x1, . . . , xn and y1, . . . , yn. It represents Schubert classes in the torus-equivariant
K-theory of flag varieties. After setting y1 = y2 = · · · = 0, the double Grothendieck poly-
nomial Gw(x,y) specializes to the usual Grothendieck polynomial Gw(x). The rajcode(·)
statistic also captures the leading monomial in top degree components of Gw(x,y).

Theorem 1 ([PSW21, Theorem 1.4]). The leading monomial of top degree components of
Gw(x,y) is xrajcode(w)yrajcode(w

−1) with coefficient 1 for any term order with xn > · · · > x1
and yn > · · · > y1.

A combinatorial formula of Gw(x,y) is given by pipedreams [BB93, BJS93, FK94,

KM05]: certain tilings of a staircase grid using , and (see Definition 5). The

row (resp. column) weight of a pipedream is a weak composition where the i
th

entry is

the number of in row (resp. column) i of the pipedream. Let PD(w) be the set of
pipedreams associated with the permutation w. Pechenik, Speyer, and Weigandt estab-
lished Theorem 1 by showing there exists a unique pipedream in PD(w) with row weight
rajcode(w) and column weight rajcode(w−1), which they call the maximal pipedream of
w. In Remark 7.2, they said:

“We find it frustrating that we do not have a direct recipe for the maximal
pipe dream in terms of w.”

The main goal of this paper is to relieve their frustration: We give an explicit algorithm
to construct the maximal pipedream P̂ (w) ∈ PD(w).

Theorem 2. For w ∈ Sn, the pipedream P̂ (w) we construct has row weight rajcode(w)
and column weight rajcode(w−1).

Our algorithm involves a local move. When row r column c of a pipedream P is ,

we write (r, c) ∈ P . We may apply the move on a in row r column c of a pipedream
P if all the following are satisfied:

• (r, c+ 1) /∈ P .

• There exists r′ < r such that (r′, c) /∈ P and (r′, c+1) /∈ P . In addition, (i, c), (i, c+
1) ∈ P for any r′ < i < r.

Now we perform the move at the in row r column c of P . First turn the at row r′

column c+ 1 into a . Then we may or may not turn the at row r column c into .
If we do that, the move is called a ladder move. Otherwise, the move is called a K-ladder
move. Locally, the moves look like the following:

the electronic journal of combinatorics 31(3) (2024), #P3.15 2

ladder move−−−−−−→ K-ladder move−−−−−−−−→

We use “(K-)ladder move” to denote either ladder move or K-ladder move. Clearly, a
(K-)ladder move does not change the permutation associated to a pipedream.

For w ∈ Sn, the statistic invcode(w) is a sequence of n numbers where the ith number
is the number of j > i such that w(j) < w(i). It is well-known that PD(w) contains the

pipedream with row weight invcode(w) where all are left-justified. By [BB93], elements

of PD(w) with lowest number of can be obtained from the left-justified pipedream via
ladder moves. It is also known that all elements in PD(w) can be obtained by performing
(K-)ladder moves from the left-justified pipedream. Due to the lack of references, we
prove this statement for completeness in §2 (see Lemma 8).

We now describe our algorithm that constructs the maximal pipedream of w. We start
from the left-justified Rothe(w) and perform an iterative algorithm. Each iteration places
a bar right above row i for i = n − 2, n − 3, . . . , 1. During each iteration, we only look
under the bar and imagine row i is the topmost row. Scan through the columns from

right to left. Within each column, scan through the from top to bottom. Whenever

we see a at which we can perform a ladder move, we perform a ladder move. After
going through a column, if we have performed ladder moves on this column, we turn the
last ladder move into a K-ladder move. We denote the final pipedream by P̂ (w).

Example 3. Take w ∈ S5 with one-line notation 14523. We start from the following
pipedream:

When i = 3 and 2, we do not make any moves. When i = 1, we perform:

−→ −→ −→

Dreyer, Mészáros, and St. Dizier [DMSD22] found the leading monomial in each
homogeneous component of Gw. Let reg(w) be the difference between the sum of entries
in rajcode(w) and the sum of entries in invcode(w). Define the map IR(·) that sends
w to a sequence of monomials m0,m1, . . . ,mreg(w). First, m0 := xinvcode(w). For i > 0,
mi := mi−1xp where p is the largest such that mi−1xp divides xrajcode(w). For each mi,
Dreyer, Mészáros, and St. Dizier [DMSD22] explicitly constructed a climbing chain,
another combinatorial model of Gw introduced in [LRS06], showing mi is the leading

the electronic journal of combinatorics 31(3) (2024), #P3.15 3

monomial in its degree of Gw. In our algorithm, we start from a pipedream with row
weight invcode(w). During the algorithm, we obtain the pipedreams corresponding to
m1, · · · ,mreg(w).

Theorem 4. Let w ∈ Sn. Perform our algorithm to compute P̂ (w). The algorithm makes

reg(w) K-ladder moves. Right after the i
th

K-ladder move, we record the row weight of
the pipedream as ai(w). Then xai(w) = mi where IR(w) = (m0,m1, . . . ,mreg(w)).

The rest of the paper is structured as follows. In §2, we cover necessary background
regarding pipedreams and rajcode(w). In §3, we introduce recursive formulas to compute
rajcode(w), rajcode(w−1) and IR(w). In §4, we prove our main results using Proposition 23
and Corollary 25, whose proofs are in §5.

2 Background

For integer n, we let [n] := {1, . . . , n}.

2.1 Pipedreams and Grothendieck polynomials

Definition 5. Pipedreams of size n are tilings with n + 1− i left justified tiles in row i.

The rightmost tile in each row is and all other tiles can be or . For a pipedream
of size n, it is associated with a permutation w ∈ Sn. We label the pipes 1, 2, . . . , n along
the top edge and follow the pipes. Whenever two pipes cross more than once, we treat

all but the first crossing as . Let PD(w) be the set of the pipedreams associated with
w ∈ Sn.

Example 6. Pipedreams in Example 3 are all in PD(w) where w has one-line notation
14523.

Let P be a pipedream. We write (i, j) ∈ P if row i column j of P is . Fol-
lowing [KM05] and [FK94], double Grothendieck polynomial Gw(x,y) and Grothendieck
polynomial Gw(x) can be defined as

Gw(x,y) :=
∑

P∈PD(w)

∏
(i,j)∈P

(xi + yj − xiyj), Gw(x) :=
∑

P∈PD(w)

∏
(i,j)∈P

xi.

In the rest of the paper, we identify a pipedream with a diagram, which is a finite
subset of Z>0 × Z>0. We represent a diagram D by drawing a cell in row i column j for
each (i, j) ∈ D. We use the matrix coordinates: Row 1 is the topmost row and column
1 is the leftmost column. A weak composition is an infinite sequence of Z>0 with finitely
many positive entries. If α is a weak composition, we use αi to denote its ith entry. We
write α as (α1, . . . , αn) where αn is the last positive entry in α. The row weight (resp.
column weight) of a diagram D is a weak composition where the ith entry is the number
of cells in row i (resp. column i) of D. We denote the row weight of a diagram D by
wt(D).

the electronic journal of combinatorics 31(3) (2024), #P3.15 4

Pipedreams of size n are in bijection with diagrams contained in {(i, j) : 1 6 i 6
n− 1, 1 6 j 6 n− i}. Under this identification, PD(w) is a set of diagrams. The ladder
move is a move on diagrams and our algorithm is applying ladder moves to diagrams.

Example 7. We repeat Example 3 under our new convention:

−−−→ −−−→ −−−→

The last diagram is P̂ (w) when w has one-line notation 14523. Its row weight and column
weight are both (2, 2, 2).

We prove the following well-known result for completeness. Our proof is adapted from
an argument of Weigandt in a private communication.

Lemma 8. Any pipedream in PD(w) can be obtained from the left-justified pipedream via
a series of (K-)ladder moves.

Proof. We give a partial order on PD(w) by (K-)ladder move. In other words, P is weakly
less than P ′ if P can be obtained from P ′ via a series of (K-)ladder move. This is clearly
a partial order on PD(w). Our lemma reduces to showing that the maximal element in
PD(w) is left-justified. Take P ∈ PD(w) not left-justified. It is enough to find P ′ ∈ PD(w)
that is weakly larger than P . We may find (r, c) ∈ P such that (r, c − 1) /∈ P and r is
chosen to be maximal. Let r̂ > r be the smallest such that (r̂, c) /∈ P . Since r is chosen
to be maximal, for any r < r′ < r̂, we have (r′, c − 1), (r′, c) ∈ P . If (r̂, c − 1) ∈ P , we
let P ′ = P \ {(r, c)}. Then P is obtained from P ′ by a K-ladder move. Otherwise, we let
P ′ = P \ {(r, c)} t {(r̂, c− 1)}. Then P is obtained from P ′ by a ladder move.

2.2 Snow diagrams and rajcode

For any diagrams D, Pan and Yu defined dark(D) ⊆ D which can be computed as follows:
Scan through D from bottom to top. For each row r, if there exists (r, c) ∈ D such that
currently there is no cells in column c of dark(D), we find the largest such c and put (r, c)
in dark(D). Cells in dark(D) of D are called dark clouds of D.

Example 9. The following is a diagram D and dark(D)

There is an alternative characterization of dark(D).

Proposition 10. The diagram dark(D) is the unique subset of D such that

• There is at most one cell in each row or column of D.

the electronic journal of combinatorics 31(3) (2024), #P3.15 5

• For any (i, j) ∈ D, there is (i′, j) ∈ dark(D) with i′ > i or there is (i, j′) ∈ dark(D)
with j′ > j.

Proof. By Remark 3.4 of [PY23], dark(D) satisfies the two conditions. The uniqueness is
trivial.

The Rothe diagram of w, denoted as Rothe(w), is the following diagram:

{(i, w(j)) : i < j, w(i) > w(j)}.

For w ∈ Sn, the first n numbers in wt(Rothe(w)) form invcode(w). Let
←−−−−−−
Rothe(w) be the

diagram obtained by left-justifying all cells in Rothe(w). This is the diagram in PD(w)
that our algorithm starts with.

Example 11. Take w ∈ S7 with one-line notation 4617352. The following are Rothe(w)

and
←−−−−−−
Rothe(w).

For each w ∈ Sn, Pechenik, Speyer and Weigandt defined the weak composition
rajcode(w) using increasing subsequences of w. In this paper, we use a diagrammatic
definition of Pan and Yu [PY23]

Definition 12 ([PY23]). Take w ∈ Sn. For each cell in dark(Rothe(w)), we fill all the
empty cells above it in Rothe(w). The resulting diagram is the snow diagram of w. Define
rajcode(w) as the row weight of the snow diagram of w.

Example 13. Take w ∈ S7 with one-line notation 4617352. The following is its snow
diagram. For clarity, we represent dark clouds by a black circle and use ∗ to denote the
added cells.

∗ ∗

∗

Thus, rajcode(w) = (4, 4, 2, 3, 1, 1).

It is well-known that Rothe(w) and Rothe(w−1) are conjugations of each other. By
Proposition 10, dark(Rothe(w)) and dark(Rothe(w−1)) are conjugations of each other.
Thus, we define the left snow diagram of w as the diagram where we fill empty spots
on the left of each dark cloud in Rothe(w). Its column weight will be the same as the row
weight of the snow diagram of w−1, which is rajcode(w−1).

the electronic journal of combinatorics 31(3) (2024), #P3.15 6

Example 14. Keep the same w as in Example 13. Its left snow diagram is

∗

∗

∗

Thus, rajcode(w−1) = (4, 5, 3, 1, 2).

3 Various recursions

We describe a recursive way to construct Rothe(w) and dark(Rothe(w)). Then we obtain
recursive formulas for rajcode(w) and rajcode(w−1). Notice that invcode(·) is a bijection
from Sn to weak compositions (α1, α2, . . .) where αi 6 n−i for i ∈ [n−1] and αn = αn+1 =
· · · = 0. We identify w ∈ Sn with (a, u) ∈ {0, 1, . . . , n− 1} × Sn−1 where a = invcode(w)1
and u is the unique permutation in Sn−1 with invcode(u) = (invcode(w)2, invcode(w)3, . . .).
We simply write w = (a, u). Then we may recursively construct Rothe(w) as follows. Start
from Rothe(u). Shift all cells downward by 1. Then shift all cells in columns a+1, a+2, . . .
to the right by 1. Finally, put cells at (1, 1), · · · , (1, a). The resulting diagram is Rothe(w).

Similarly, to construct dark(Rothe(w)), we can start from dark(Rothe(u)). Shift all
cells downward by 1. Then shift all cells in columns a + 1, a + 2, . . . to the right by 1.
Finally, find the largest c ∈ [a] such that dark(Rothe(u)) has no cells in column c. Put
(1, c) into dark(Rothe(u)).

Example 15. Keep w ∈ S7 with one-line notation 4617352. We have w = (a, u) where
a = 3 and u ∈ S6 has one-line notation 516342. We depict how Rothe(u) and Rothe(w)
as follows. The dark cells form dark(Rothe(u)) and dark(Rothe(w)) respectively.

−→

Consequently, we may compute rajcode(w) and rajcode(w−1) recursively. Let dc(u) be
the number of cells in dark(Rothe(u)) that are strictly to the right of column c.

Proposition 16. Take w = (a, u) ∈ Sn.

• We can get rajcode(w) by prepending a+ da(u) to rajcode(u).

the electronic journal of combinatorics 31(3) (2024), #P3.15 7

• To obtain rajcode(w−1), we just insert da(u) between the ath and (a+ 1)th entries of
rajcode(u−1). Then increase the first a entries by 1.

Consequently, reg(w)− reg(u) = da(u).

Proof. Follows directly from the recursive constructions of Rothe(w) and
dark(Rothe(w)).

Example 17. Keep w = (a, u) in Example 15. We show how the snow diagram and left
snow diagram of w differ from those of u:

∗ ∗ −→ ∗ ∗

∗

∗

∗

−→
∗

∗

∗

We have da(u) = 1. We obtain rajcode(w) = (4, 4, 2, 3, 1, 1) by prepending a + da(u) = 4
to rajcode(u) = (4, 2, 3, 1, 1). We obtain rajcode(w−1) = (4, 5, 3, 1, 2) by inserting da(u)
after the ath entry of rajcode(u−1) = (3, 4, 2, 2) and then increase the first a entries by 1.

Notice that when w = (a, u), invcode(w) can be obtained by prepending the number
a to invcode(u). Thus, we also have a recursive formula for IR(w). For a monomial m, let
−→m be the monomial obtained by turning each xi in m into xi+1.

Proposition 18. Take w = (a, u) ∈ Sn. Let

(M0, . . . ,Mreg(w)) = IR(w), (m0, . . . ,mreg(u)) = IR(u).

Then reg(w) = reg(u) + da(u) and

Mj =

{
xa1
−→mj if j = 0, 1, . . . , reg(u),

x
a+j−reg(u)
1 ×−−−−→mreg(u) if j = reg(u) + 1, . . . , reg(w).

Proof. Follows directly from the recursive formula of rajcode(w) and the definition of
IR(·).
Example 19. Keep w = (a, u) in Example 15. We have reg(u) = 2 and reg(w) =
reg(u) + da(u) = 3. Since

IR(u) = (x(4,0,3,1,1), x(4,1,3,1,1), x(4,2,3,1,1)),

we have

IR(w) = (x(3,4,0,3,1,1), x(3,4,1,3,1,1), x(3,4,2,3,1,1), x(4,4,2,3,1,1)).

the electronic journal of combinatorics 31(3) (2024), #P3.15 8

4 Proof of main theorems

To prove our main theorems, we need to introduce a new permutation statistic.

Definition 20. For w ∈ Sn, its movecode, denoted as movecode(w), is a weak composition
where movecode(w)i is the number of cells in column i of Rothe(w) with no dark clouds
strictly to its right.

Example 21. Take w ∈ S7 with one-line notation 4617352. The following is Rothe(w),
where the black cells are dark clouds and blue cells are non-dark cloud cells without dark
clouds to their right.

Then movecode(w) is the number of black and blue cells in each column. Thus, we know
it is (1, 3, 2, 0, 2).

We have the following observation regarding this permutation statistic.

Proposition 22. Take w ∈ Sn and c ∈ [n]. Then

rajcode(w−1)c+1 −max(movecode(w)c+1 − 1, 0) = dc(u) = rajcode(w−1)c −movecode(w)c.

Proof. We refer to cells in dark(Rothe(w)) as dark clouds. Consider the left snow diagram
of w. In the diagram, there are four types of cells.

• Type 1: Dark clouds.

• Type 2: Cells that do not belong to Rothe(w).

• Type 3: Cells in Rothe(w) with a dark cloud in its row on its right.

• Type 4: Cells in Rothe(w) that is not a dark cloud and has no dark cloud in its row
on its right.

The number of type 1, 2 and 4 cells in column c + 1 is dc(w). The number of all
cells in column c + 1 is rajcode(w−1)c+1. The number of type 3 cells in column c + 1 is
max(movecode(w)c − 1, 0), so we have the first equation.

The number of type 2 and 3 cells in column c is dc(w). The number of all cells in
column c is rajcode(w−1)c. The number of type 1 and 4 cells in column c is movecode(w)c,
so we have the second equation.

The main application of movecode(w) is to characterize the number of cells moved
when our algorithm processes each column.

the electronic journal of combinatorics 31(3) (2024), #P3.15 9

Proposition 23. Take v = (a, w) ∈ Sn. During the last iteration of the algorithm that

computes P̂ (v), the number of cells moved in column c is movecode(w)c if c > a and 0
otherwise.

Example 24. Keep v ∈ S7 with one-line notation 4617352. We have v = (a, w) where
a = 3 and w ∈ S6 has one-line notation 516342. We have movecode(w) = (0, 2, 1, 2).
During the last iteration of the algorithm, the bar is right above row 1. The algorithm
moves 0 cells in column c > 4, since movecode(w)c = 0. The algorithm moves 2 cells in
column 4 since 4 > a and movecode(w)4 = 2. It moves 0 cells in column 3, 2, and 1 since
1, 2, 3 6 a.

−−−→

We prove this proposition in §5. Our proof requires a few technical lemmas which also
lead to the following result:

Corollary 25. Consider the iteration when the bar is right above row i in our algorithm.
Let D1 (resp. D2) be the diagram before (resp. after) processing one column. If the
algorithm makes a move in this column, then wt(D2) is obtained from increasing ith entry
of wt(D1) by 1.

Using Proposition 23 and Corollary 25, we can prove our main results. We start with
Theorem 4.

Proof of Theorem 4. We induct on n. The base case (n = 1) is trivial. Let w = (a, u) ∈ Sn

with n > 1. By our inductive hypothesis, the algorithm made reg(u) K-ladder moves
before the last iteration. By Proposition 23, in the last iteration of the algorithm, it
makes a K-ladder move in column c if and only if c > a and movecode(u)c > 0. This
is exactly the number da(u), which equals reg(w) − reg(u) by Proposition 16. Thus, the

algorithm to compute P̂ (w) makes reg(w) K-ladder moves in total.
Let

IR(w) = (M0, . . . ,Mreg(w)), IR(u) = (m0, . . . ,mreg(u)).

By Proposition 18, for i = 0, . . . , reg(u), we have Mi = xa1
−→mi. When the algorithm makes

the ith K-ladder move, the bar has not reached row 1. Before the bar reaches row 1,
the algorithm ignores the first row of the diagram, which has a cells, and behaves as
if computing P̂ (u). Thus, the statement holds for i = 0, 1, . . . , reg(u) by our inductive
hypothesis.

For i = reg(u) + 1, . . . , reg(w), the ith K-ladder move happens when the bar is above
row 1. Let D be the diagram right after the (i−1)th K-ladder move and D′ be the diagram
right after the ith K-ladder move. By Corollary 25, xwt(D

′) = x1 · xwt(D), which concludes
the proof.

the electronic journal of combinatorics 31(3) (2024), #P3.15 10

Proof of Theorem 2. By Theorem 4, the row weight of P̂ (w) is rajcode(w). For the column
weight, we prove by induction on n. The base case n = 1 is trivial. Now assume n > 1
and w = (a, u) ∈ Sn. Let D be the diagram we have right before the last iteration of

the algorithm computing P̂ (w). It can be obtained by shifting P̂ (u) downward by 1 and

append a left-justified cells in the first row. By our inductive hypothesis, P̂ (u) has column
weight rajcode(u−1). Now take c ∈ [n− 1] and consider three cases:

• Suppose c > a + 1. Consider the last iteration of the algorithm. By Proposi-
tion 23, the algorithm makes movecode(u)c (resp. movecode(u)c−1) moves in column
c (resp. c− 1). Thus, column c loses max(movecode(u)c − 1, 0) cells and then gain

movecode(u)c−1 cells. By Proposition 22, P̂ (w) has

rajcodec(u
−1)−max(movecode(u)c − 1, 0) + movecode(u)c−1 = rajcodec−1(u

−1)

cells in column c. Finally, by Proposition 16, rajcodec−1(u
−1) is just rajcodec(w

−1).

• Suppose c = a + 1. By Proposition 23, the algorithm makes movecode(u)c moves
in column c, and makes 0 moves in column c − 1 if it exists. Thus, column c loses
max(movecode(u)c − 1, 0) cells. By Proposition 22, P̂ (w) has

rajcodec(u
−1)−max(movecode(u)c − 1, 0) = da(u)

cells in column c. Finally, by Proposition 16, da(u) is just rajcodec(w
−1).

• Suppose c ∈ [a]. By Proposition 23, the algorithm makes 0 moves in column c, and

makes 0 moves in column c − 1 if it exists. Thus, P̂ (w) has rajcode(u−1)c + 1 cells
in column c. Finally, by Proposition 16, rajcode(u−1)c + 1 is just rajcodec(w

−1).

5 Proof of Proposition 23 and Corollary 25

Following §3, we derive a recursive way to compute movecode(w).

Lemma 26. For w ∈ Sn, we write w = (a, u). Then movecode(w) can be determined
starting from movecode(u). First, insert a 0 between movecode(u)a and movecode(u)a+1.
Then start from the ath entry and increase each entry by 1 from right to left. Whenever we
change a 0 into a 1, we stop immediately. The resulting weak composition is movecode(w).

Proof. Follows directly from the recursive constructions of Rothe(w) and dark(Rothe(w)).

Example 27. Take w ∈ S7 with one-line notation 4617352. We have w = (3, u) where
u ∈ S6 has one-line notation 516342. We have movecode(u) = (0, 2, 1, 2). Then we insert
a 0 between movecode(u)3 and movecode(u)4, obtaining (0, 2, 1, 0, 2). We then increase
entries by 1 from right to left, starting from the thrid entry. When we turn the 0 in the
first entry into 1, we stop, obtaining (1, 3, 2, 0, 2).

the electronic journal of combinatorics 31(3) (2024), #P3.15 11

Our proofs rely on a simple operator on diagrams. We may break the algorithm into
a sequence of this operator.

Definition 28. We define the operator Li,c on diagrams. Take diagram D and put a bar
above row i in D. We ignore everything above the bar, imagining row i is the top-most
row. Then we scan through cells in column c from top to bottom. Whenever we see a cell
at which we can perform a ladder move, we perform a ladder move. After going through
this column, if we made a move, turn the last move into a K-ladder move.

With this notion, applying the algorithm on w ∈ Sn can be rewritten as

P̂ (w) = (L1,1 · · ·L1,n−2) · · · (Ln−3,1Ln−3,2)(Ln−2,1)(
←−−−−−−
Rothe(w)). (1)

In words, we iterate through i = n − 2, . . . , 2, 1. For each i, we iterate through c =
n− 1− i, . . . , 2, 1 and apply Li,c.

We start by observing a straightforward recursive property of this operator.

Remark 29. Fix i, c ∈ Z>0 and let D be a diagram. Suppose (i, c) /∈ D and (i, c+ 1) /∈ D.

• Suppose (i + 1, c) ∈ D and (i + 1, c + 1) /∈ D. Let D′ be the diagram obtained by
moving (i+1, c) to (i, c+1) in D. If Li+1,c(D

′) 6= D′, we know Li,c(D) = Li+1,c(D
′).

Otherwise, Li,c(D) = D′ t {(i + 1, c)}. Informally, in this case, Li,c behaves as if
Li+1,c after the ladder move on (i+ 1, c).

• Suppose (i+1, c) ∈ D and (i+1, c+1) ∈ D. Then intuitively, Li,c behaves as if row
i+1 is ignored: Let D′ be obtained from D by removing (i+1, c) and (i+1, c+1). If
(i+1, c+1) /∈ Li+1,c(D

′), Li,c(D) = Li+1,c(D
′)t{(i+1, c), (i+1, c+1)}. Otherwise,

Li,c(D) = Li+1,c(D
′) t {(i+ 1, c), (i, c+ 1)}.

We are primarily interested in applying Li,c to a diagram in the following case.

Definition 30. We say the operator Li,c acts initially on D if D is fixed by Li+1,c.

Eventually, we will show all Li,c in our algorithm acts initially. We first derive a few
properties when Li,c acts initially on D.

Lemma 31. Suppose Li,c acts initially on D and Li,c moves at least one cell. We let
(r1, c), . . . , (rk, c) be the cells moved where r1 < · · · < rk. Let r0 = i. Then we know the
cell (rj, c) is moved to (rj−1, c+ 1) for j ∈ [k]. Thus, wt(Li,c(D)) is obtained from wt(D)
by adding 1 to the ith entry.

Proof. If Li,c moves (r1, c) to (r′, c + 1) for some r′ > i, then Li+1,c will also move (r1, c)
to (r′, c + 1). This contradicts our assumption that Li,c acts initially on D. Thus, Li,c

moves (r1, c) to (i, c+ 1).
For j > 1, when (rj, c) moves, (rj−1, c) and (rj−1, c+ 1) must both be empty since the

cell in (rj−1, c) just performed a ladder move. Therefore (rj, c) must be moved to (r′, c+1)
for some r′ > rj−1. However, r′ > rj−1 contradicts the assumption that Li,c acts initially
on D, so r′ = rj−1.

the electronic journal of combinatorics 31(3) (2024), #P3.15 12

To better describe the effect of Li,c when it acts initially, we introduce the following
notion.

Definition 32. The (i, c)-initial segment of a diagram D is the set of (r, c) such that
(r′, c) ∈ D for all i 6 r′ 6 r.

This notion characterizes the destination of cells moved by Li,c when it acts initially.

Lemma 33. Suppose Li,c acts initially on D. Then it moves cells to the (i, c+ 1)-initial
segment of Li,c(D).

Proof. Let (r1, c), (r2, c), . . . , (rk, c) where r1 < r2 < · · · < rk be the cells of D moved by
Li,c. Let r0 = i. By Lemma 31, for j ∈ [k], (rj, c) is moved to (rj−1, c + 1). We show
(rj−1, c) is in the (j, c+ 1)-initial segment of Li,c(D) by induction on j. For the base case,
(r0, c+ 1) = (i, c+ 1) is clearly in the (j, c+ 1)-initial segment of Li,c(D)

For j > 1. assume (rj−2, c + 1) is in the (i, c + 1)-initial segment of Li,c(D). Since
(rj−1, c) is moved to (rj−2, c + 1), we know (r′, c + 1) ∈ Li,c(D) for any rj−2 < r′ < rj−1.
Thus, (rj−1, c+ 1) is in the (i, c+ 1)-initial segment of Li,c(D).

We can also use “initial segment” to characterize what cells can be moved by Li,c when
it acts initially.

Lemma 34. Suppose Li,c acts initially on D. If (i, c) ∈ D, then D is fixed by Li,c.
Otherwise, a cell (r, c) ∈ D is moved by Li,c if and only if it is in the (i + 1, c)-initial
segment of D and (r, c+ 1) /∈ D.

Proof. The lemma is immediate when (i, c) ∈ D. Otherwise, let (r1, c), . . . , (rk, c) ∈ D be
the cells moved by Li,c where r1 < · · · < rk. Let r0 = i. Clearly, (rj, c + 1) /∈ D for each
j ∈ [k]. We prove (rj, c) is in the (i + 1, c)-initial segment of D by induction. First, by
Lemma 31, (r1, c) is moved to (r0, c + 1), so (r′, c) ∈ D for r0 = i < r′ < r1. In other
words, (r1, c) is in the (i + 1, c)-initial segment of D. For j > 1, by Lemma 31, (rj, c) is
moved to (rj−1, c + 1), so (r′, c) ∈ D for rj−1 < r′ < rj. The inductive step is finished
since (rj−1, c) is in the (i+ 1, c)-initial segment of D.

Now assume (r, c) is a cell in the (i + 1, c)-initial segment of D and (r, c + 1) /∈ D.
Assume toward contradiction that (r, c) is not moved by Li,c. Take the smallest such r.
Since Li,c moves (rj, c) to (rj−1, c), we know (r′, c+ 1) ∈ D for any rj−1 < r′ < rj. Thus,
we cannot have rj−1 < r < rj for j ∈ [k]. Since (r, c) is not moved, we know r is not
r1, . . . , rk. Thus, r > rk. By the minimality of r, (r′, c), (r′, c + 1) ∈ D for rk < r′ < r.
Thus, Li,c moves (rk, c), it can perform a ladder move at (r, c). Contradiction.

The following example is a demonstration of the previous two lemmas related to initial
segments.

Example 35. Let D be a diagram whose column 3 and 4 look like the picture on the
left. Notice that D will be fixed by L2,3. After applying L1,3, these two columns look like

the electronic journal of combinatorics 31(3) (2024), #P3.15 13

the picture on the right:
3 4

L1,3−−−−−−→

3 4

We color the (2, 3)-initial segment of D and (1, 4)-initial segment of L1,3(D). Notice that
L1,3 moves cells to the (1, 4)-initial segment of L1,3(D). Also notice that a cell in column
3 is moved if and only if it is in the (2, 3)-initial segment of D and has no cell on its right.

We also have the “converse statement” of Lemma 34.

Lemma 36. Suppose (i, c) /∈ D. If Li,c only moves cells in the (i + 1, c)-initial segment
of D, then it acts initially on D.

Proof. Suppose to the contrary that D is not fixed by Li+1,c. Let (r, c) be the first cell
moved by Li+1,c. Clearly, (r, c) is not in the (i+ 1, c)-initial segment of D and it will also
be moved by Li,c.

We introduce more definitions that capture the structure of columns for intermediate
diagrams during our algorithm.

Definition 37. We say a diagram D is (i, c)-paired if the following are satisfied:

• Take any cell (R, c) ∈ D with i 6 R and (R, c+ 1) /∈ D. There exists (r, c+ 1) ∈ D
with i 6 r < R and (r, c) /∈ D. Moreover, (r′, c), (r′, c+ 1) ∈ D for any r < r′ < R.

• Take any cell (r, c+ 1) ∈ D with i 6 r and (r, c) /∈ D. There exists (R, c) ∈ D with
r < R and (R, c+ 1) /∈ D. Moreover, (r′, c), (r′, c+ 1) ∈ D for any r < r′ < R.

Remark 38. Notice that if D is (i, c)-paired, then Li,c fixes D.

Example 39. Consider the following diagram D.

1 2 3 4 5 6 7 8 9 10
1
2
3
4
5
6
7
8

Then D has the following properties: (1, 5)-paired, (1, 9)-paired, (4, 1)-paired, (6, 1)-
paired.

the electronic journal of combinatorics 31(3) (2024), #P3.15 14

We have the following lemma regarding this new notion.

Lemma 40. Let diagram D be (3, c)-paired and (2, c+ 1) /∈ D. We consider the actions
of L1,c+1L2,cL3,c−1 on D. Assume L3,c−1 and L2,c act initially. Let (r1, c), . . . , (rm, c) be
the cells moved by L2,c with r1 < · · · < rm and let r0 = 2. We further assume L1,c+1

moves (r′1, c + 1), . . . , (r′m, c + 1) with ri−1 6 r′i < ri. Then D′ = L1,c+1L2,cL3,c−1(D) is
(2, c)-paired.

Example 41. Consider the action of L1,c+1L2,cL3,c−1 on D whose column c and c+ 1 are
depicted in the left-most figure. We see D is (3, c)-paired. The action of L2,c and L1,c+1

satisfy the condition in Lemma 40: For instance, L2,c moves (5, c) to (2, c+ 1) and there
is a unique cell (r, c + 1) moved by L1,c+1 with 2 6 r < 5, namely (3, c + 1). Then by
the Lemma, we know L1,c+1L2,cL3,c−1(D), whose column c and c + 1 are depicted in the
right-most figure, is (2, c)-paired.

c
1
2
3

L3,c−1−−−→

c
1
2
3

L2,c−−→

c
1
2
3

L1,c+1−−−→

c
1
2
3

Proof. Say (t, c) is the bottom-most cell in the (2, c)-initial segment of L3,c−1(D). Since
L3,c−1 acts initially on D, it will only move cells to the (2, c)-initial segment by Lemma 33.
Since L2,c acts initially on D, it will only move cells in the (2, c)-initial segment by
Lemma 34. Then by our assumption in the lemma, L1,c+1 also moves cells above row
t. Thus, D and D′ agreed under row t in column c and c + 1. Now we check D′ is
(2, c)-paired.

Take (R, c) in D′ such that R > 2 and (R, c + 1) /∈ D′. We find the r satisfying the
condition in the definition of (2, c)-paired by considering two cases.

• If R > t, then (R, c) ∈ D and (R, c + 1) /∈ D. Since D is (3, c)-paired, we can
find (r, c + 1) ∈ D such that 2 6 r < R, (r, c) /∈ D and (r′, c), (r′, c + 1) ∈ D for
r < r′ < R. It remains to show r > t. If not, (r, c) is in the (2, c)-initial segment of
L3,c−1(D), then so is (R, c), contradicting R > t.

• If R 6 t, then (R, c) ∈ L3,c−1(D). If (R, c + 1) /∈ L3,c−1(D), by Lemma 34, L2,c

moves (R, c). Since (R, c) is in D′, we know it is the last cell moved by L2,c, so
R = rm. By Lemma 31, L2,c moves (rm, c) to (rm−1, c+ 1). We have (rm−1, c) /∈ D′.

the electronic journal of combinatorics 31(3) (2024), #P3.15 15

By our assumption on L1,c−1, it does not make a ladder move on cells between row
rm−1 and row rm. Thus, we may pick r = rm−1.

Now assume (R, c + 1) ∈ L3,c−1(D). Then, L1,c+1 moves (R, c + 1), so R = r′i for
some i ∈ [m− 1]. We know L2,c moves (ri, c) to (ri−1, c+ 1). By our assumption on
L1,c+1, ri−1 < r′i and L1,c+1 does not make a move between row ri−1 and r′i. Thus,
we may pick r = ri−1.

Take (r, c + 1) in D′ such that r > 2 and (r, c) /∈ D′. We find the R satisfying the
condition in the definition of (2, c)-paired by considering two cases.

• If r > t, then (r, c + 1) ∈ D and (r, c) /∈ D. Moreover, since (2, c + 1) /∈ D, we
know r > 3. Since D is (3, c)-paired, we can find R > r > t such that (R, c) ∈ D,
(R, c+ 1) /∈ D and (r′, c), (r′, c+ 1) ∈ D for r < r′ < R.

• If r 6 t, then (r, c) ∈ L3,c−1(D). We know L2,c performs a ladder move on (r, c),
so r = ri for some i ∈ [m − 1]. We know ri < r′i+1 < ri+1 and (r′, c), (r′, c + 1) ∈
L2,cL3,c−1(D) for ri < r′ < ri+1. If i + 1 < m, then L1,c+1 makes a ladder move on
(r′i+1, c + 1). We have (r′i+1, c) ∈ D′ and (ri+1, c + 1) /∈ D′. We may pick R = r′.
If i + 1 = m, then L1,c+1 makes a K-ladder move on (r′i+1, c + 1). We may pick
R = ri+1.

The last piece of our preparation work is the following observation.

Remark 42. Notice that Li,c and Li′,c′ commute if |c−c′| > 1. Therefore, we know applying

L1,1L1,2 · · ·L1,n−2 L2,1L2,2 · · ·L2,n−3

is the same as applying

L1,1 L1,2L2,1 L1,3L2,2 · · · L1,n−4L2,n−3 L1,n−2L2,n−3.

Moreover, each Li,c behaves the same in both expressions.

Now we embark on proving Proposition 23 and Corollary 25. We start by introducing
two claims which will imply Proposition 23 and Corollary 25 respectively. For a diagram
D, let D↓k be the diagram obtained by shifting all cells of D downward by k. We claim:

• Claim 1: Take N ∈ Z>0 and w ∈ SN . Consider

(L1,2L2,1) · · · (L1,N−2L2,N−3)(L1,NL2,N−1)(P̂ (w)↓2). (2)

Take any c ∈ [N − 1]. Then L2,c and L1,c+1 move the same number of cells. More
specifically, suppose L2,c moves a cell (r, c) to (r̂, c+ 1). Then there exists a unique
r′ such that r̂ 6 r′ < r and (r′, c + 1) is moved by L1,c+1. In addition, after the
action of L1,c+1, the diagram is (2, c)-paired.

• Claim 2: Take N ∈ Z>0 and w ∈ SN . Consider

L1,1 · · ·L1,N−1(P̂ (w)↓1).

Each L1,c acts initially.

the electronic journal of combinatorics 31(3) (2024), #P3.15 16

We will inductively show both claims hold for all N . The induction is based on
Lemma 43 and Lemma 44.

Lemma 43. Suppose Claim 1 and Claim 2 hold for N 6 n, then Claim 2 holds for
N = n+ 1.

Proof. Suppose w = (b, u) ∈ Sn+1. Let D be the diagram obtained by putting b left-

justified cells in the second row of P̂ (u)↓2. Then P̂ (w)↓1 = L2,1L2,2 · · ·L2,n−1(D) and each

L2,c acts initially by Claim 2 for u. By Remark 42, we may write L1,1 · · ·L1,N−1(P̂ (w)↓1)
as

L1,1 · · ·L1,N−1 L2,1 · · ·L2,n−1(D) = (L1,2L2,1) · · · (L1,N−2L2,N−3)(L1,NL2,N−1)(D). (3)

Clearly, for c 6 b, L1,c acts initially on P̂ (w)↓1. Now take c > b. We know the L1,c

behaves the same in both sides of (3). By Lemma 36, it is enough to show each L1,c on
the right hand side moves cells in the (2, c)-initial segment. Since L2,c−1 acts initially, by
Lemma 33, L2,c−1 moves cells into the (2, c)-initial segment. Then by Claim 1 of u, L1,c

moves cells in the (2, c)-initial segment.

Lemma 44. Suppose Claim 1 holds for N 6 n and Claim 2 holds for N 6 n + 1, then
Claim 1 holds for N = n+ 1.

Proof. Since Claim 2 holds for N 6 n + 1, each L1,c and L2,c in (2) acts initially by
Remark 42. We prove Claim 1 by induction on c = n, . . . , 2, 1. The base case with c = n
is trivial.

Suppose c ∈ [n − 1]. Let D′ be the diagram right before applying L2,c in (2). By
our inductive hypothesis for c + 1, D′ is (2, c + 1)-paired. Now apply L2,c to D′. Let
(r1, c), · · · , (rk, c) be the cells moved by L2,c. Let r0 = 2. For j ∈ [k], by Lemma 31, (rj, c)
is moved to (rj−1, c+ 1). By Lemma 33, (rj−1, c+ 1) is in the (2, c+ 1)-initial segment of
L2,c(D). We consider two cases.

• If (rj−1, c + 2) /∈ D′, then (rj−1, c + 1) will be moved by L1,c+1 by Lemma 34. For
rj−1 < r′ < r, by D′ is (2, c + 1)-paired, we know (r′, c + 1), (r′, c + 2) ∈ D′. By
Lemma 34, L1,c+1 will not move (r′, c+ 1).

• Now assume (rj−1, c+ 2) ∈ D′. Since D′ is (2, c+ 1)-paired and (rj−1, c+) /∈ D′, we
can find R > rj−1 such that (R, c+1) ∈ D′, (R, c+2) /∈ D and (r′, c+1), (r′, c+2) ∈
D′ for any rj−1 < r′ < R. We know (rj, c + 1) /∈ D′, so R < rj. For R < r′ < rj,
since (r′, c+1) ∈ D′ and D′ is (2, c+1)-paired, we must have (r′, c+2) ∈ D′. By 34,
(R, c+ 1) is the unique cell moved during L1,c+1 between row rj−1 and row rj.

Now we show L1,c+1 and L2,c move the same number of cells, we already know L1,c+1

makes exactly one move between row rj−1 and row rj inclusively for j ∈ [k]. We just need
to show L1,c+1 does not move any (r, c+1) for any r > rk. Notice that (rk, c+1) /∈ L2,c(D

′),
so (r, c + 1) is not in the (2, c + 1)-initial segment of L2,c(D

′). By Lemma 34, (r, c + 1)
will not be moved.

the electronic journal of combinatorics 31(3) (2024), #P3.15 17

It remains to check L1,c+1L2,c(D
′) is (2, c)-paired. Write w as (b, u). Let D be the

diagram obtained by putting b left-justified cells in row 3 of P̂ (u)↓3. Then

P̂ (w)↓2 = L3,1L3,2 · · ·L3,n−1(D).

By Remark 42,

(L1,2L2,1) · · · (L1,n+1L2,n)(P̂ (w)↓2)

=(L1,2L2,1) · · · (L1,n+1L2,n)(L3,1L3,2 · · ·L3,n−1)(D)

=(L1,2L2,1)(L1,3L2,2L3,1) · · · (L1,n+1L2,nL3,n−1)(D).

If c > b, then (3, c) /∈ D. By claim 1 of u, after L2,c+1 the diagram is (3, c)-paired.
Therefore, by Lemma 40, after L1,c+1 the diagram is (2, c)-paired.

Now consider c 6 b, so (3, c) ∈ D. We consider three cases:

• Case 1: (3, c) is moved by L2,c and not the last cell moved by L2,c. Then L2,c

performs a ladder move on (3, c) moving it to (2, c + 1). Later, L1,c+1 will move
(2, c + 1). Since L1,c+1 and L2,c moves the same number of cells, we know L1,c+1

makes a ladder move on (2, c + 1). By Remark 29, the action of L1,c+1L2,c is the
same as first moving (3, c) to (1, c+ 2), and then perform L2,c+1L1,c+2. By Claim 1
of u, the diagram after applying L1,c+1 is (3, c)-paired. Since (2, c), (2, c+ 1) are not
in the diagram, it is (2, c)-paired.

• Case 2: (3, c) is the last cell moved by L2,c. Then L2,c performs a K-ladder move on
(3, c) moving it to (2, c+ 1). Later, L1,c+1 will move (2, c+ 1). Since L1,c+1 and L2,c

moves the same number of cells, we know L1,c+1 makes K-ladder move on (2, c+ 1).
By Remark 29, the action of L1,c+1L2,c can be described as follows: Remove (3, c),
perform L2,c+2L3,c, and then add cells (3, c), (2, c+ 1) and (1, c+ 2). By Claim 1 of
u, before adding those three cells, the diagram is (3, c)-paired. Thus, after adding
these three cells, the diagram is (2, c)-paired.

• If (3, c) is not moved by L2,c, then (3, c+1) ∈ D. By Remark 29, applying L1,c+1L2,c

is the same as applying L2,c+2L3,c while ignoring row 3. By Claim 1 of u, after the
action of L1,c+1, the diagram is (2, c)-paired.

Lemma 45. Claim 1 and 2 hold for all N ∈ Z>0.

Proof. The claims are obvious when N = 1. Then we prove by induction on N . The
inductive step is given by Lemma 43 and Lemma 44.

Corollary 46. In (1), each Li,c acts initially.

Proof. Suppose w ∈ Sn and we prove the corollary by induction on n. Suppose w = (b, u).
Since the corollary holds for u, we know Li,c in (1) acts initially when i > 2. Finally, each
L1,c acts initially by Claim 2.

Now we may prove the main results of this subsection using the two claims.

the electronic journal of combinatorics 31(3) (2024), #P3.15 18

Proof of Proposition 23. We induct on n. The base case n = 2 is trivial. Now suppose
n > 2 and take v = (a, w) ∈ Sn. Let D be the diagram obtained by putting a left-justified

cells in row 1 of P̂ (w)↓1. The last iteration to compute P̂ (v) is to apply L1,1 · · ·L1,n−2L1,n−2
on D. For c ∈ [a], since L1,c acts initially and (1, c) ∈ D, L1,c does not move any cells.

Now assume c > a. We want to show L1,c moves exactly movecode(w)c cells. Let
w = (b, u) and let D′ be the diagram obtained by putting b left-justified cells in the row

2 of P̂ (u)↓2. Then,

L1,1 · · ·L1,n−2L1,n−1(D)

=(L1,1 · · ·L1,n−2L1,n−1)(L2,1 · · ·L2,n−3L2,n−2)(D
′)

=(L1,1)(L1,2L2,1) · · · (L1,n−1L2,n−2)(D
′).

For c > b, by our induction hypothesis, applying L2,c moves exactly movecode(u)c cells.
Then by Claim 1, applying L1,c+1 to D also moves exactly movecode(u)c cells. Therefore
the number of cells moved by L1,c+1 is movecode(u)c = movecode(w)c+1. Now clearly each
L2,c does not move any cells for c ∈ [b]. We know L1,b+1 also moves no cells since the
(2, b+ 1)-initial segment is empty. Therefore L1,b+1 moves 0 = movecode(w)b+1 cells.

Let c0 be the largest in [b] such that movecode(u)c0 = 0. Say c0 = 0 if no such c0
exists. For c ∈ [b], by Lemma 26, we have

movecode(w)c =

{
movecode(u)c + 1 if c > c0.

movecode(u)c otherwise.

We first inductively show that for c = b, . . . , c0 + 1, there is no cell at (2, c + 1) right
before the action of L1,c, so L1,c moves (2, c). Moreover, L1,c moves movecode(w)c > 2
cells, so the move on (2, c) is a ladder move. For c = b, we know (2, b + 1) is always
empty. For c0 < c < b, we know L1,c+1 makes a ladder move on (2, c + 1), so (2, c + 1)
is empty right before the action of L1,c. Now for c = b, . . . , c0 + 1, after L1,c moves
(2, c), it behaves as if L2,c by Remark 29. Thus, the total number of cells moved is
movecode(u)c + 1 = movecode(w)c.

Now consider L1,c0 when c0 > 0. Right before its action, (2, c0 + 1) is empty. Thus,
L1,c0 will first move (2, c0) to (1, c0 + 1). After that, the number of cells it moves is
movecode(u)c0 , which is zero. Thus, the move on (2, c0) is a K-ladder move. Also, L1,c0

moves 1 = movecode(w)c0 cell.
Finally, we prove by induction that for c = c0 − 1, . . . , 1, right before the action of

L1,c, the diagram contains (2, c) and (2, c+ 1). For the base case, right before the action
of L1,c0−1, we know (2, c0) is in the diagram. Now assume right before the action of L1,c,
the diagram contains (2, c) and (2, c+ 1) for some c < c0. Then L1,c will not move (2, c).
After the action of L1,c, we know (2, c) is still in the diagram. The inductive step is
finished. Now by Remark 29, the action of L1,c moves the same number of cells as L2,c on
the diagram without (2, c) and (2, c+1). Thus, L1,c makes movecode(u)c = movecode(w)c
moves.

Proof of Corollary 25. Implied by Corollary 46 and Lemma 31.

the electronic journal of combinatorics 31(3) (2024), #P3.15 19

Acknowledgements

We thank Jianping Pan and Brendon Rhoades for carefully reading an earlier version of
this paper and giving many useful comments. We are especially grateful to Anna Weigandt
for suggesting this problem. This project was performed as a Research Experience for
Undergraduates at UC San Diego in summer 2023.

References

[BB93] Nantel Bergeron and Sara Billey. RC-graphs and Schubert polynomials. Ex-
perimental Mathematics, 2(4):257–269, 1993.

[BJS93] Sara C Billey, William Jockusch, and Richard P Stanley. Some combinato-
rial properties of Schubert polynomials. Journal of Algebraic Combinatorics,
2(4):345–374, 1993.

[DMSD22] Matt Dreyer, Karola Mészáros, and Avery St. Dizier. On the degree of
Grothendieck polynomials. arXiv:2209.00687, 2022.

[FK94] Sergey Fomin and Anatol N Kirillov. Grothendieck polynomials and the Yang-
Baxter equation. In Proc. formal power series and alg. comb, pages 183–190,
1994.

[FUL92] W FULTON. Flags, Schubert polynomials, degeneracy loci, and determinantal
formulas. Duke Math. J., 65:381–420, 1992.

[Haf22] Elena S Hafner. Vexillary Grothendieck polynomials via bumpless pipe
dreams. arXiv:2201.12432, 2022.

[KM05] Allen Knutson and Ezra Miller. Gröbner geometry of Schubert polynomials.
Annals of Mathematics, pages 1245–1318, 2005.

[KMY09] Allen Knutson, Ezra Miller, and Alexander Yong. Gröbner geometry of vertex
decompositions and of flagged tableaux. 2009.

[LRS06] Cristian Lenart, Shawn Robinson, and Frank Sottile. Grothendieck polyno-
mials via permutation patterns and chains in the Bruhat order. American
Journal of Mathematics, 128(4):805–848, 2006.

[LS82] Alain Lascoux and Marcel-Paul Schützenberger. Structure de Hopf de l’anneau
de cohomologie et de l’anneau de Grothendieck d’une variété de drapeaux. C.
R. Acad. Sci. Paris Sér. I Math., 295(11):629–633, 1982.

[PSW21] Oliver Pechenik, David E Speyer, and Anna Weigandt. Castelnuovo-Mumford
regularity of matrix Schubert varieties. arXiv:2111.10681, 2021.

[PY23] Jianping Pan and Tianyi Yu. Top-degree components of Grothendieck and
Lascoux polynomials. arXiv:2302.03643, 2023.

[Ram85] Annamalai Ramanathan. Schubert varieties are arithmetically Cohen-
Macaulay. Inventiones mathematicae, 80(2):283–294, 1985.

the electronic journal of combinatorics 31(3) (2024), #P3.15 20

https://arxiv.org/abs/2209.00687
https://arxiv.org/abs/2201.12432
https://arxiv.org/abs/2111.10681
https://arxiv.org/abs/2302.03643

[RRR+21] Jenna Rajchgot, Yi Ren, Colleen Robichaux, Avery St. Dizier, and Anna
Weigandt. Degrees of symmetric Grothendieck polynomials and Castelnuovo-
Mumford regularity. Proceedings of the American Mathematical Society,
149(4):1405–1416, 2021.

[RRW23] Jenna Rajchgot, Colleen Robichaux, and Anna Weigandt. Castelnuovo-
Mumford regularity of ladder determinantal varieties and patches of Grass-
mannian Schubert varieties. J. Algebra, 617:160–191, 2023.

[WY18] Anna Weigandt and Alexander Yong. The prism tableau model for Schubert
polynomials. Journal of Combinatorial Theory, Series A, 154:551–582, 2018.

the electronic journal of combinatorics 31(3) (2024), #P3.15 21

	Introduction
	Background
	Pipedreams and Grothendieck polynomials
	Snow diagrams and

	Various recursions
	Proof of main theorems
	Proof of Proposition 23 and Corollary 25

