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Abstract

While discrete harmonic functions have been objects of interest for quite some
time, this is not the case for discrete polyharmonic functions, as appear for instance
in the asymptotics of path counting problems. In this article, a novel method to
compute all discrete polyharmonic functions in the quarter plane for non-singular
models with small steps and zero drift is proposed. In case of a finite group, an
alternative method using decoupling functions is given, which often leads to a basis
consisting of rational functions. In a similar manner one can obtain polyharmonic
functions in the continuous setting, and convergence between the discrete and con-
tinuous cases is proven. Lastly, using a concrete example it is shown why the
decoupling approach seems not to work in the infinite group case.

Mathematics Subject Classifications: 05A15, 05A16, 31A05, 31A25, 39A12,
44A10

1 Introduction and Motivation

Suppose we are given a weighted step set S ⊆ {−1, 0, 1}2, and we want to count the
(weighted) number q(0, x;n) of excursions in the quarter plane Z󰃍0 × Z󰃍0 of length n
from the origin to some point x = (i, j). For the simple walk for instance, we have
S = {↑,→, ↓,←}, where each step has weight 1

4
. In this case, the number q(0, x;n) can

be computed explicitly (see e.g. [4]) via

q(0, x;n) = 4−n (i+ 1)(j + 1)n!(n+ 2)!

m!(m+ i+ 1)!(m+ j + 1)!(m+ i+ j + 2)!
, (1.1)

where m = n−i−j
2

is an integer, and 0 otherwise (as the quarter plane is bipartite).
It is now fairly natural to ask about asymptotics of this expression, or more generally
about asymptotics of the number q(0, x;n) for an arbitrary step set S. In particular,
we consider (as proposed in [6]) asymptotic expansions such that there is a (strictly)
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increasing sequence (αp) such that for all p we have (again, up to some coefficients possibly
vanishing due to parity considerations)

q(0, x;n) = γn

󰀣
k󰁛

p=1

vp(x)

nαp
+O

󰀕
1

nαk+1

󰀖󰀤
. (1.2)

In case of the simple walk, (1.1) allows us to directly compute αp = p+ 2 and

v1 =(i+ 1)(j + 1), (1.3)

v2 =(i+ 1)(j + 1)(15 + 4i+ 2i2 + 4j + 2j2), (1.4)

v3 =(i+ 1)(j + 1)(317 + 16i3 + 4i4 + 168j + 100j2 + 16j3

+ 4j4 + 8i(21 + 4j + 2j2) + 4i2(25 + 4j + 2j2)).
(1.5)

It should be explicitly noted at this point that expansions of the form (1.2) are not
proven to exist for this type of problem. While for the simple walk and a few other
examples (e.g. the diagonal walk, tandem walk, see [5]) this can be shown using an
explicit representation similar as (1.1), in general it is not so clear. One-term expansions
of this form have been proven for many cases in [10], and more recently, using multivariate
analytic techniques, in [8, Thm. 1], [25, 6.1], while higher order asymptotics for the one-
dimensional case have been computed in [9].
It is now fairly natural to ask how the asymptotics depend on the finishing point of our
paths, which is to ask about the properties of the vp: whether they necessarily have a
particular structure, if there is a clear relation to our chosen step set, and how to compute
them. It is a very recent observation from the extended abstract [6] that each vp must be a
polyharmonic function of order p, which to a large extent answers the first two questions.
This can be shown by utilizing a recursive relation between the q(0, x;n+1) and q(0, x;n),
and showing that each function vp must be what is called a discrete polyharmonic function
of order p. This article aims to take a closer look at the structure of these functions and
give a method to construct them, which to the author’s knowledge has not been done
before, albeit in [6] the authors were able to compute some biharmonic functions using a
guessing approach which will be more closely examined in Section 7.

In the continuous case, given a covariance matrix Σ =

󰀕
σ11 σ12

σ12 σ22

󰀖
, we call a function f

polyharmonic of degree p if it is a solution of

△pf = 0, (1.6)

where △ is the Laplace-Beltrami operator △ = 1
2

󰀓
σ11

∂2

∂x2 + 2σ12
∂2

∂x∂y
+ σ22

∂2

∂y2

󰀔
. These

kinds of functions have already been studied in the late 19th century, notably by E. Al-
mansi, who proved in [1] that in a star-shaped domain containing the origin, any poly-
harmonic function of degree n can be written as

f(x) =
n󰁛

k=0

|x|2khk(x), (1.7)
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where the hk are harmonic (polyharmonic of degree 1). In particular harmonic and bi-
harmonic functions have by now seen plenty of applications in physics, see e.g. [21].
The discrete setting on the other hand has gained interest comparably recently. A (dis-
crete) function defined on a graph is called polyharmonic if it satisfies (1.6) as well, but
with a discretised version of the Laplacian. For this discretisation, given transition prob-
abilities px,y from any point x to any point y, one lets

△f(x) =
󰁛

y

px,yf(y)− f(x). (1.8)

There have been some results on polyharmonic functions on trees recently [7, 26], and
polyharmonic functions on subdomains of Zd have become an object of interest linked
in particular to the study of discrete random walks. In our case, this subdomain will be
the quarter plane and our walk homogeneous inside of it, i.e. the transition probabilities
ps := px,x+s, where the steps s are given by the set S of allowed steps, will be independent
of x. The discrete Laplacian thus reads

△f(i, j) =
󰁛

(u,v)∈S

pu,vf(i+ u, j + v)− f(i, j). (1.9)

One can immediately verify that the functions given by (1.3)-(1.5) are indeed polyhar-
monic of degrees 1, 2, 3 respectively. It is not at all obvious, however, how polyharmonic
functions in general can be found. In [29], a way to construct harmonic functions for
zero-drift models with small steps via a boundary value problem is given. This is utilized
in [18] to give a complete description of harmonic functions for symmetric step sets with
small negative steps, which has since been extended to results for the non-symmetric case
in [17]. The methods used in the latter two articles can be applied to compute harmonic
functions in the setting considered here (i.e. small steps, zero drift, non-degenerate mod-
els; see Section 4) with only minor adjustments. Very recently in the extended abstract
[6], the authors outline a way to compute biharmonic functions. They utilize a guessing
approach, which works – with some restrictions – in the finite group setting, which will
also be discussed in Section 7. Their main idea in doing so is to find a so-called ‘decoupling
function’, which was first introduced by W. T. Tutte in [30], and is discussed further in
[3]. There, this concept is utilized to give remarkably succinct proofs of the algebraicity
(or D-algebraicity) of the counting function of some models in the quarter plane. While
in [6] the authors guessed decoupling functions for some concrete examples, it is possible
to show for finite group models that they always exist, and describe them explicitly. This
will be done in Section 6.
What all these articles have in common and will be the same here is that instead of work-
ing directly with a polyharmonic function h(i, j), they consider its generating function
H(x, y) :=

󰁓
i,j x

i+1yj+1h(i, j). The main reason to do so is the functional equation

K(x, y)H(x, y) = K(x, 0)H(x, 0) +K(0, y)H(0, y)−K(0, 0)H(0, 0)− xy [△H] (x, y), (1.10)

which can be shown by straightforward computation to be satisfied by this generating
function (note that we have △H = 0 for harmonic H). Here, K(x, y), which will be
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defined in Section 2, is a the same kernel that usually appears in the study of random
walks except with the directions reversed. Note that the functional equations for counting
walks or the stationary distribution look strikingly similar, see e.g. [13, 5].

The goal of this article is to give an overview of the structure of the space of discrete
polyharmonic functions in the quarter plane for non-singular small-step models and an
algorithm to compute them. To illustrate the functional equation approach, we will first
treat the (much simpler) case of polyharmonic functions in the half-line.
There will be two main approaches discussed, one of them purely algebraic and more
general, but leading to a basis of functions which might not be combinatorially relevant
due to their bad behaviour with respect to a scaling limit. The other approach works for
models with a finite group, where one can expand on the idea in [6] and use decoupling
functions, resulting in many cases in a particularly nice basis consisting of rational func-
tions of a fairly simple shape. In this case, one also obtains a direct link to continuous
polyharmonic functions.
The structure of this article will be as follows:

• in Section 3, the one-dimensional case will be treated. In particular, a way to con-
struct of discrete polyharmonic functions on the half-line for step sets with finitely
many positive steps will be derived in Prop. 2.

• Starting from Section 4, the rest of this chapter will concern models with small steps
and zero drift in the quarter plane. In Section 4, we will give some properties of the
vector spaces of discrete polyharmonic functions in the quarter plane, construct a
basis of harmonic functions, and give a criterion for a set of discrete polyharmonic
functions to be a basis.

• In Section 5, a general algorithm to construct discrete polyharmonic functions in
the quarter plane is presented (Thm. 8), and it is shown that all possible discrete
polyharmonic functions can be constructed in this manner (Thm. 9). An analogue
of this method in the continuous case is presented in Section 5.2, and the relation
between the discrete and continuous functional equations as well as convergence in
terms of generating functions and Laplace transforms are discussed.

• In Section 6, an alternative construction utilizing decoupling functions is presented,
which is applicable to models with finite group only (Thm. 20). This method leads,
provided a certain parameter is integer, to a (Schauder) basis consisting of ratio-
nal functions. This construction is then translated to the continuous setting, and
convergence properties are shown (Thm. 24).

• In Section 7, the guessing approach mentioned (but not detailed) in [6] is discussed,
in which one uses an ansatz to try and find suitable decoupling functions. In partic-
ular, we deduce that the guessing approach works to decide if there is a decoupling
function of a particular shape.
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• In Section 8, a special case is examined in more detail, to show the relation between
the two approaches and in particular why it does not appear promising to extend
the notion of decoupling to the infinite group case.

This article is the complete version of the extended abstract [24].

2 Preliminaries

The following only serves as a very brief overview; for a more thorough introduction see
e.g. [29, 13]. Consider a homogeneous1 random walk in Z × Z with a step set S and
transition probabilities pi,j. We will now assume that:

(i) The walk consists of small steps only, i.e. S ⊆ {−1, 0, 1}2.

(ii) The walk is non-degenerate (or, equivalently, non-singular), that is, the list
p1,1,p1,0,p1,−1,p0,−1,p−1,−1,p−1,0,p−1,1,p0,1 does not contain three consecutive 0s.

(iii) The walk has zero drift, meaning that
󰁓

(i,j)∈S ipi,j =
󰁓

(i,j)∈S jpi,j = 0.

In the following, if not explicitly stated otherwise, we will always assume that
a given model satisfies the three conditions above.

Remark: while the drift condition might at first seem rather restrictive, this is in fact
not a big obstacle, as any model with non-zero drift can be reduced to a zero drift one
via a Cramér-transform (see for instance [10, 22]).

A standard object appearing in a variety of functional equations around random walks
(for example when one wants to compute a stationary distribution, or for counting walks,
see e.g. [13]) is the kernel of the walk, which is given by

K(x, y) = xy

󰀳

󰁃
󰁛

(i,j)∈S

pi,jx
−iy−j − 1

󰀴

󰁄 . (2.1)

Note that this kernel slightly differs from the one used for counting walks: on top of the
absence of the counting variable t, the directions of the steps is reversed (i.e. the monomial
xiyj is paired with the probability p−i,−j here instead of the other way around, as for in-
stance in [5]). This can be intuitively explained by the fact that when counting walks they
are commonly grouped by their previous step, whereas when looking at asymptotics we
build our recursions by looking forward. In [13], the kernel is examined quite thoroughly,
and we will in the following state a few of their results. Note that they are not affected
by reversing the directions of our steps.
As we consider non-degenerate walks with small steps, our kernel will necessarily be
quadratic in both x and y. Letting

K(x, y) = a(x)y2 + b(x)y + c(x) = ã(y)x2 + b̃(y)x+ c̃(y), (2.2)

1That is, the probability to jump from a point x to a point y depends on y − x only.
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(a) The simple walk: S = {→, ↓,←, ↑}
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(b) The tandem walk:
S = {↖,→, ↓}
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(c) The Gouyou-Beauchamps walk:
S = {←,→,↖,↘}

Figure 1: The shape of the contour Γ for different (unweighted) models. The angle θ can
be defined as the angle at which it intersects the real axis at the point (1, 1).

we can use the quadratic formula to find solutions of K(·, y) = 0 and K(x, ·) = 0, which
are given by

X±(y) =
−b̃(y)±

󰁴
b̃(y)2 − 4ã(y)c̃(y)

2ã(y)
, Y±(x) =

−b(x)±
󰁳

b(x)2 − 4a(x)c(x)

2a(x)
. (2.3)

Letting D(x) := b(x)2 − 4a(x)c(x), then one can show [29, 2.5], [13, 2.3.2] that given our
particular case of zero drift, D(x) = 0 has 3 solutions: the double root x = 1, a solution
x1 ∈ [−1, 1), and a solution x4 ∈ (1,∞) ∪ (−∞,−1]. Consequently, one can see that the
discriminant is negative for y ∈ [y1, 1], and therefore in this range we haveX+(y) = X−(y).
Analogous results hold for D̃(y) := b̃(y)2 − 4ã(y)c̃(y). This is in particular used in the
computation of harmonic functions, as in [29] or [18]. The idea is to define the domain
P as the area bounded by the curve Γ := X± ([y1, 1]), and notice that the functional
equation (1.10) leads to the boundary value problem

K(x, 0)H(x, 0)−K(x, 0)H(x, 0) = 0 (2.4)

on ∂Γ \ {1}, while K(x, 0)H(x, 0) is analytic in the interior of P and continuous on
P \ {1} (cf [6, 29]). A few examples of what Γ (and, correspondingly, P) can look like
are given in Fig. 1; in particular the case where P is the unit disk will be examined in
Section 8.
In order to solve the above boundary value problem, one can construct a mapping ω :
C → C̄ which is a fundamental solution in the sense that any other solution can be written
as some entire function applied to ω. An explicit formula for ω as well as some additional
informations are given in [29]. This ω satisfies

ω(0) = 0, ω(X+(y)) = ω(X−(y)) ∀y ∈ [y1, 1],
∂ω

∂x
(x) ∕= 0 ∀x ∈ P◦. (2.5)
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In particular, ω is a conformal mapping of the domain P. Furthermore, it has a pole-like
singularity of order π/θ at x = 1, where θ is the inner angle at which Γ intersects the
x-axis. Alternatively, θ can be computed via

θ = arccos

󰀣
−

󰁓
ijpi,j󰁳󰁓

i2pi,j
󰁳󰁓

j2pi,j

󰀤
, (2.6)

see e.g. [29, 2.15]. This angle θ happens to be closely related to the so-called group of
the walk; whenever the group is finite, the ratio π/θ must be rational. This group will be
defined in Section 6 and is by now a standard object of interest in the combinatorics of
lattice paths (see e.g. [5, 4]). Also, the angle θ is directly linked to the asymptotic growth
of harmonic functions, see e.g. [18, 17].
In the same manner as one has constructed the region P, one can obtain a P ′ by swapping
the roles of x and y. While it is possible to construct a second conformal mapping 󰁥ω for
P ′ in the same fashion as ω, one can also see that ω ◦X+ is a conformal mapping by [13,
Cor. 5.3.5], and it has the same behaviour around 1 as ω. Finally, we note that due to
(2.5), ω is an invariant in the sense of [3, Def. 4.3].

2.1 Discrete polyharmonic functions

Given a step set S and a discrete function f defined on the quarter plane Q, we can define
the Markov operator

Pf(x) :=
󰁛

s∈S

ωsf(x− s). (2.7)

If we take the discrete homogeneous random walk (Xn) with the transition probabilities
given by the reverse of S, and the induced Markov chain Mn := f(Xn), then we can
interpret the operator P as the expectation E [Mn+1 | Mn]. One can then proceed to look
at the expected change during a time step, which is given by

△f(x) := (P − t Id) f(x). (2.8)

We call a function (discrete) harmonic if

1. △f(x) = 0 for all x ∈ Q,

2. f(x) = 0 for all x ∈ Qc,

whereQc is the complement ofQ. Similarly, we call a function (discrete) polyharmonic
of degree p if

1. △pf(x) = 0 for all x ∈ Q,

2. f(x) = 0 for all x ∈ Qc.
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Instead of a (poly-)harmonic function h(i, j), we will in the following consider its gener-
ating function

H(x, y) :=
󰁛

i,j󰃍0

h(i, j)xi+1yj+1.

It turns out that this generating function then satisfies the functional equation

K(x, y)H(x, y) = K(x, 0)H(x, 0) +K(0, y)H(0, y)−K(0, 0)H(0, 0) + xy [△H] , (2.9)

where K(x, y) is the same kernel as defined in Section 2 above, and △H is the generating
function of △h(i, j). Correspondingly, we have △H(x, y) = 0 for harmonic functions
h(i, j).

The Dirichlet condition is a direct consequence of the probabilistic interpretation given
in the introduction; clearly there are no walks starting outside of the quarter plane which
are always inside it. We will now see that given combinatorial problems similar as the
path counting one mentioned in the introduction, it is not too far-fetched to expect
polyharmonic functions to appear in the asymptotics.

Lemma 1. Let q(x;n) be some combinatorial quantity depending on n and a point x ∈ Zd,
and let S ⊂ Zd be some step set. Furthermore, suppose that q(x;n) has an asymptotic
expansion of the form

q(x;n) =
∞󰁛

k=1

fk(n)vk(x), (2.10)

(2.11)

where limn→∞
fk+1(n)

fk(n)
= 0 and limn→∞

fk(n+1)
fk(n)

= 1 for all k 󰃍 1, and that it satisfies a
recursive relation of the form

q(x;n+ 1) =
󰁛

s∈S

psq(x− s;n). (2.12)

Then, for all k 󰃍 1, vk(x) is a polyharmonic function of degree k.

Proof. Suppose we already know that for p = 1, . . . ,m, vp is p-polyharmonic. We have

△mq(x;n+ 1) =
󰁛

s∈S

ps△mq(x− s;n) ⇔ (2.13)

∞󰁛

k=1

fk(n+ 1)△mvk(x) =
󰁛

s∈S

∞󰁛

k=1

psfk(n)△mvk(x) ⇔ (2.14)

∞󰁛

k=m+1

fk(n+ 1)△mvk(x) =
󰁛

s∈S

∞󰁛

k=m+1

psfk(n)△mvk(x) ⇒ (2.15)

∞󰁛

k=m+1

fk(n+ 1)

fm+1(n)
△mvk(x) =

󰁛

s∈S

∞󰁛

k=m+1

ps
fk(n)

fm+1(n)
△mvk(x− s) ⇒ (2.16)

△mvm+1(x) =
󰁛

s∈S

ps△mvm+1(x− s), (2.17)
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where in the last line we take the limit n → ∞. This tells us that △mvm+1(x) is harmonic,
which the same as vm+1(x) being m+ 1-polyharmonic.

Remarks:

1. While this shows us that vk(x) is k-polyharmonic, it does not imply that△vk+1(x) =
vk(x).

2. Asymptotics of this form appear for orbit-summable models (with fk(n) = nc−k,
see [23]), and for a certain subclass of models with infinite group (with the fk(n)
additionally containing powers of log n, see [11]). To the author’s knowledge there
is no example of lattice path asymptotics in the quarter plane which take a shape
where the above lemma does not apply.

2.2 Continuous polyharmonic functions

The scaling limit of a random walk in the quarter plane is a Brownian motion in W :=
R󰃍0 × R󰃍0 with (positive semidefinite) covariance matrix

Σ =

󰀕
σ11 σ12

σ12 σ22

󰀖
,

whose infinitesimal generator is Laplace-Beltrami operator

△ =
1

2

󰀕
σ11

∂2

∂x2
+ 2σ12

∂2

∂x∂y
+ σ22

∂2

∂y2

󰀖
.

The coefficients σ11, σ12, σ22 can be directly computed via EX2 = σ11,EXY = σ12,EY 2 =
σ22 [20]. As in the discrete setting, we call a function f (continuous) polyharmonic
of degree k, if

△kf(x) = 0 ∀x ∈ W ,

f(x) = 0 ∀x ∈ ∂W ,

where △ is the Laplace-Beltrami operator defined above. Note that this definition is
exactly the same as for discrete polyharmonic functions, except for the different Laplacian.
Note as well that, as previously, we always impose a Dirichlet condition, which is due to the
combinatorial background of the functions considered here. Also, while in the following
there might be technically an ambiguity due to the same symbol △ used for both the
continuous and discrete Laplacian, it should always be clear from the context which one
is to be used.
In [29, App. A], it was shown that a continuous polyharmonic function satisfies the func-
tional equation

γ(x, y)L(f)(x, y) = 1

2
[σ11L1(f)(y) + σ22L2(f)(x)] + L(△f)(x, y), (2.18)
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where we have

γ(x, y) =
1

2

󰀃
σ11x

2 + 2σ12xy + σ22y
2
󰀄
, L(f)(x, y) =

󰁝 ∞

0

󰁝 ∞

0
e−ux−vyf(u, v)dudv, (2.19)

L1(f)(y) =

󰁝 ∞

0

∂f

∂x
(0, v)e−vydv, L2(f)(x) =

󰁝 ∞

0

∂f

∂y
(u, 0)e−uxdu, (2.20)

see also [6, 2.2].

3 Constructing discrete polyharmonic functions on the half-line

In this section, the (much easier) example of polyharmonic functions on the half-line is
treated. Unlike in the quarter plane case, the only assumption we need is for the step set
S to have finitely many steps in the positive direction.
Fundamentally, the approach we utilize in this case is the same as in the quarter plane: we
deduce a functional equation which any generating function of a polyharmonic function
has to satisfy, which we can then solve. So suppose that we are given a function g : Z󰃍0 →
C, and a function f : Z → C which satisfies

△f(n) =g(n) ∀n 󰃍 0 (3.1)

f(n) =0 ∀n < 0. (3.2)

Let H(x), G(x) be their respective generating functions. We can then write

󰁛

i∈S

ωih(n+ i)− h(n) = g(n) ∀n 󰃍 0 ⇒ (3.3)

󰁛

n󰃍0

󰁛

i∈S

x−iωix
i+nh(i+ n)−H(x) = G(x) ⇔ (3.4)

󰁛

i∈S

x−iωi

󰁛

n󰃍0

xi+nh(i+ n) = G(x) +H(x). (3.5)

Looking at the left-hand side of (3.5), since h(n) = 0 for n < 0 we can see that for any
i < 0, the second sum will simply be H(x). For i > 0, however, in the latter sum we are
missing the first i terms in comparison. In order to write down a more concise formula
of (3.5), we want to define a one-dimensional kernel analogously to the ‘standard’ one as
in Section 2. As we want our kernel to be a polynomial, let d := max (i ∈ S). As we
assumed our step set to have only finitely many positive steps, we know that d is finite.
We then let

K(x) = xd

󰀣
1−

󰁛

i∈S

x−iωi

󰀤
.

Furthermore, let H[k](x) :=
󰀅
x<k

󰀆
H(x), i.e. H[1](x) = h(0), H[2](x) = h(0) + xh(1), and

so on. As
󰁓

n󰃍0 x
i+nh(i+ n) = H(x)−H[i](x), we can rewrite (3.5) and thus obtain:
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Proposition 2. Let S ⊂ Z be a step set with associated weights ωi and the additional
condition that max(s : s ∈ S) = d < ∞. Let g : Z󰃍0 → C, and let G(x) be its generating
function Using the definition for the kernel K(x) and the Hi(x) as above, we can construct
all solutions of (3.1)–(3.2) via

K(x)H(x) = −xdG(x)− xd
󰁛

0<i,i∈S

ωi

H[i](x)

xi
, (3.6)

where H(x) is the generating function of h.

Remarks:

• Iterative application of Prop. 2 allows us to construct discrete polyharmonic func-
tions of arbitrarily high order.

• By the definition of d, the sum on the right-hand side of (3.6) is a polynomial. As
K(0) ∕= 0 by definition, we therefore obtain proper power series solutions for H(x).

• The right-hand side of (3.6) depends on the values of h(0), . . . , h(d). These are
parameters which we can choose freely, therefore the space of harmonic functions
will be d-dimensional (as a vector space over C). For polyharmonic functions of
degree k the solution space will be d × k-dimensional (we utilize Prop. 2 k times,
where we can choose d parameters each time).

Proof. The fact that any solution of (3.1)–(3.2) has the form as in Prop. 2 is a direct
consequence of the above computation. The fact that the inverse holds, i.e. that each
solution of (3.6) also solves (3.1)–(3.2) can be checked directly.

While the derivation of this functional equation is essentially the same as that of 1.10,
seeing as we only have a single boundary term there is no need to bother with the zero
set of the kernel curve since we can just solve it directly. The appearance of multiple
boundary terms is what makes the solution so much more involved in the quarter plane
(or generally in the higher-dimensional) case.

An example with small steps

First, we will look at the model with step set S = {−1, 1}. We have

K = x
󰀓
1− xω−1 −

ω1

x

󰀔
.

As d = 1, we have, up to multiples, only one harmonic function H1(x). So let us compute
it. For a harmonic function, we have G(x) = 0 in 3.6, so it takes the form

K(x)H1(x) = −ω1h(0).

This immediately leads to

H1(x) =
−ω1h(0)

K(x)
.
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Choosing the harmonic function with h1(0) = 1, we obtain

H1(x) =
−ω1

K(x)
=

1

1− x 1
ω1

+ x2 ω−1

ω1

,

with coefficients

1,
1

ω1

,
ω1ω−1 − 1

ω2
1

,
1− 2ω1ω−1

ω3
1

, . . .

Wanting to compute a biharmonic function H2(x), we only need to substitute G(x) =
H1(x) in (3.6), giving us

H2(x) = −xH1(x)−
ω1h2(0)

K(x)

Choosing once again h2(1) = 1, we now find

H2(x) =
ω1(ω1 + ω−1x

2)

ω1 + x(ω−1x− 1))2
,

leading to the coefficients

1,
2

ω1

,
3− ω−1ω1

ω2
1

,
4− ω1ω−1

ω3
1

, . . .

An example with larger steps

Consider now the model with step set S = {−1, 1, 2}. In this case we have

K(x) = x2
󰀓
1− ω−1x− ω1

x
− ω2

x2

󰀔
,

and (3.6) for a harmonic function H1(x) reads

K(x)H1(x) = −x2

󰀗
ω1

h1(0)

x
+ ω2

h1(0) + xh1(1)

x2

󰀘
.

We see now that depending on the choice of h1(0) and h1(1), we can find different harmonic
functions. Letting h1(0) = 1, h1(1) = 0, for example, we have

H1(x) =
ω2 + ω1x

ω2 + ω1x− x2 + ω−1x3
.

This leads to the coefficients

1, 0,
1

ω2

,−ω1 + ω2ω−1

ω2
2

,
ω2
1 + ω2 + ω1ω2ω−1

ω3
2

. . .

Choosing h1(0) = 0, h1(1) = 1, on the other hand, we obtain

H1(x) =
ω2x

ω2 + (ω1 − 1)x+ ω−1x2
,

with coefficients

0, 1,−ω1

ω2

,
ω2
1 + ω2

ω2
2

,−ω3
1 − 2ω1ω2 − ω2

2ω−1

ω3
2

, . . .

In order to compute higher order polyharmonic functions, one can proceed just as in the
previous example by iteratively utilizing (3.6).
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4 General observations about a basis

From now on, we will always consider the setting of the quarter plane as in Section 2.
The goal of this section is twofold: firstly in Lemma 3 we show that the discrete harmonic
functions constructed in the sammer manner as in [29, 17, 18] are indeed a basis of the
space of discrete harmonic functions for our class of models. Secondly, we give a criterion
for a set of discrete polyharmonic functions to be a basis in Lemma 5.

4.1 Constructing a basis of discrete harmonic functions

In [29], discrete harmonic functions are computed via a boundary value problem, and
in [18, 17], it is shown that an analogous construction gives a basis in singular and sym-
metric cases. In the following lemma, we will see that essentially the same construction
as in [29, 18] also yields a basis in our case.

Lemma 3. Let

Hm
1 (x, y) :=

Pm(ω(x))− Pm(ω(X+))

K(x, y)
, (4.1)

where

Pm(z) := zm if K(0, 0) = 0, (4.2)

P2m(z) := zm(z − d0)
m

P2m+1(z) := zm+1(z − d0)
m

󰀬
if K(0, 0) ∕= 0, (4.3)

where ω is the conformal mapping defined in Section 2, and d0 = ω(X+(0)). Then the
functions Hm

1 (x, y) form a Schauder basis2 of the space of discrete harmonic functions.

Proof (outline). The arguments are mostly the same as in [18, Thm. 2]. From (1.10), it
follows thatK(x, y)H(x, y) is already uniquely defined by the (univariate) boundary terms
K(x, 0)H(x, 0) and K(0, y)H(0, y). The idea is to construct, using appropriate power
series Pm(x) in (4.1), a harmonic function for any given possible boundary condition. If
K(0, 0) = 0, which is the same as saying that our model does not include a North-East
step, then we cannot write 1/K(x, y) as a power series, but we can instead choose X+(0)
such that X+(0) = 0, i.e. we can substitute X+ into another power series. Therefore, we
will consider two cases:

1. K(0, 0) = 0:
In this case, substituting X+ for x in (1.10) gives

0 = K(X+, 0)H(X+, 0) +K(0, y)H(0, y). (4.4)

2That is, we can uniquely express any function not necessarily via finite, but via countable sums.
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Utilizing this to substitute for K(0, y)H(0, y) in (1.10), we obtain

K(x, y)H(x, y) = K(x, 0)H(x, 0)󰁿 󰁾󰁽 󰂀
=:P (x)

−K(X+, 0)H(X+, 0)󰁿 󰁾󰁽 󰂀
=:P (X+)

. (4.5)

Setting

Hm
1 (x, y) =

ω(x)m − ω(X+)
m

K(x, y)
, (4.6)

and utilizing that around 0 we have (after scaling and potentially switching x, y)

ω(x) = x(1+p(x))

(1−x)π/θ (see [13, 5.3]; use that our walk is not singular), we can iteratively

compute coefficients ak such that
󰁓

ajω(x)
k = P (x). To see that at the end we

indeed obtain a power series, one can apply the Weierstraß preparation theorem.

2. K(0, 0) ∕= 0:
In this case, the previous approach does not work anymore since substitution of
X+ into an arbitrary power series fails. Instead, let now ω(x) =

󰁓
xncn,ω (X+) =󰁓

yndn. We know that c1, d1 ∕= 0, c0 = 0 (see [13, 5.3], and notice that p−1,−1 ∕= 0).
We can now proceed by defining

P2m(z) = zm(z − d0)
m, (4.7)

P2m+1(z) = zm+1(z − d0)
m. (4.8)

Letting

Hm
1 (x, y) :=

Pm (ω(x))− Pm (ω(X+))

K(x, y)
, (4.9)

one can check that the monomial with non-zero coefficient with minimal degree in
the series representation of Hm

1 (x, y) around 0 occurs for k = l = m for m even,
and k = l + 1 = m otherwise. Note here that ω(x),ω(X+) have non-vanishing
derivatives at 0 as 0 ∈ P◦, see [6, 5.3]. From there, given arbitrary power series
Q(x), R(y) with Q(0) = R(0), one can again iteratively build coefficients an such
that

󰁓
anPn(ω(x)) = Q(x),

󰁓
bnPn (ω(X+)) = R(y). We have thus constructed a

harmonic function with boundary terms Q(x), R(y); since these were arbitrary we
are done. Note that as K(0, 0) ∕= 0, the division by K(x, y) is not an issue here.

As a corollary, we immediately obtain

Corollary 4. For the space H1 of discrete harmonic functions in the quarter plane, we
have

H1
∼= C[[z]].
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4.2 A basis criterion for polyharmonic functions

Having found a basis of all discrete harmonic function, we will now want to proceed
iteratively to construct a basis of all discrete polyharmonic functions. The following
Lemma 5 shows that to find such a basis, all we need to do is to keep finding preimages
under △ of the base functions.

Lemma 5. Let
󰀃
Hk

n

󰀄
n,k∈N be a family of discrete polyharmonic functions, such that

1. Hk
1 (x, y) =

Pk(ω(x))−Pk(ω(X+))
K(x,y)

as in (4.1),

2. △Hk
n+1 = Hk

n,

Then, the (Hk
n), 1 󰃑 k, 1 󰃑 n 󰃑 m form a Schauder basis of Hm, that is, given any

Hm ∈ Hm there are unique an,k, 1 󰃑 k, 1 󰃑 n 󰃑 m ∈ N such that

Hm =
m󰁛

n=1

∞󰁛

k=1

an,kH
k
n. (4.10)

Proof. We do not a priori assume that sums of the form
󰁓

n󰃍0 H
k
n converge as formal power

series. Therefore, we will first modify our family (Hk
n), forcing this type of convergence.

The main issue here is that we do not have any handle on the order of Hk
n at 0, written

in the following as deg0 H
k
n := min{u + v | the term xuyv has non-zero coefficient }.

However, (1.10) implies that if Hk
n+1 has vanishing boundary terms up to a sufficiently

high order – which we can force by adding a suitable harmonic function, as in the proof of
Lemma 3 –, then we have deg0 H

k
n+1 > deg0 H

k
n. We will utilize this in order to construct

a family (Ĥk
n) such that, for each n, we have

1. Ĥk
1 = Hk

1 ,

2. △Ĥk
n+1 = Ĥk

n,

3. each Ĥk
m can be written as a countable sum of the Hk

n for n 󰃑 m,

4. deg0 Ĥ
k
n+1 is at least deg0 Ĥ

k
n + 1 󰃍

󰀅
k
2

󰀆
+ n− 1,

5. the Ĥk
n with n 󰃑 m form a Schauder basis of Hm.

From this, the statement follows immediately.
We proceed by induction. For m = 1, we know that all the conditions are satisfied due to
Lemma 3 (the part about the order at 0 is follows from the construction of the Hk

1 ). Now
suppose we have found a suitable family (Ĥk

n) for k ∈ Z+, n = 1, . . . ,m, and pick any k.

We want to construct a suitable Ĥk
m+1. As H

k
1 = Ĥk

1 , we know that

△n−1Hk
n = △n−1Ĥk

n, (4.11)
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that is, Gk
m−1 := Hk

m − Ĥk
m ∈ Hm−1. By the induction hypothesis, we can therefore write

Gk
m−1 as some countable sum of the Ĥ l

n, n 󰃑 m− 1, l ∈ Z+, for which we can then find a
pre-image Gk

m under △ by substituting n for n−1 in that sum representation. Note that,
again by the induction hypothesis, in this representation we do not have any convergence
issues. By definition of Gk

m, we have

△
󰀅
Hk

m+1 −Gk
m

󰀆
= Hk

m −
󰀓
Hk

m − Ĥk
m

󰀔
= Ĥk

m. (4.12)

The idea in order to get the bound on deg0 Ĥ
k
m+1 is to utilize the functional equation (1.10),

which essentially tells us that, if the boundary terms are well enough behaved, then the
degree at 0 of discrete polyharmonic functions will increase with their order (note that
deg0 K(x, y) 󰃑 1 because the model is non-singular). But due to the proof of Lemma 3
we already know that we can find harmonic functions where we can freely choose the
boundary terms, so all we need to do is to select a suitable harmonic function Jm,k killing
the boundary terms up to sufficiently high order, and then, letting

Ĥk
n+1 := Hk

n+1 −Gk
n − Jn,k (4.13)

we see that the first four conditions are satisfied. All that remains to show is therefore
that the Ĥk

n with 1 󰃑 n 󰃑 m + 1, k 󰃍 1 form a Schauder basis of Hm+1. First, we will
show that this family generates Hm+1. To see this, pick any element H ′

m+1 ∈ Hm+1. By
induction, we know that we can write

△H ′
m+1 =

m󰁛

n=1

󰁛

k󰃍1

an,kH
k
n. (4.14)

However, letting Hm+1 :=
󰁓m

n=1

󰁓
k󰃍1 an,kH

k
n+1, we have

△
󰀅
H ′

m+1 −Hm+1

󰀆
= 0, (4.15)

thus H ′
m+1 −Hm+1 ∈ H1. Hence, up to addition of a harmonic function (remember that

by Lemma 3 they can all be written as countable sum of the Hk
1 ), we know that our

chosen H ′
m+1 can already be written as countable sum of the Ĥk

n, and we are done.
To show uniqueness of the coefficients, suppose we have two representations

Hm+1 =
m+1󰁛

n=1

∞󰁛

k=1

an,kĤ
k
n =

m+1󰁛

n=1

∞󰁛

k=1

bn,kĤ
k
n. (4.16)

As

0 = △m [Hm+1 −Hm+1] =
∞󰁛

k=1

(am+1,k − bm+1,k)H
k
1 = 0, (4.17)

we know by the basis property for H1 that am+1,k = bm+1,k for all k. For n 󰃑 m the
equality then follows from the induction hypothesis, and we thus obtain am,k = bm,k for
all 1 󰃑 m 󰃑 n+ 1, k 󰃍 1.
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Remarks:

• If instead of defining the Hk
1 as in Lemma 3 one allows for any Schauder basis of H1,

then via Lemma 5 one obtains not only a sufficient, but also a necessary condition
for a family of polyharmonic functions to form a Schauder basis.

• In the constructions of polyharmonic functions given below, it will often be the
case that it is clear from construction that for any given n, any sum of the form󰁓

k󰃍1 akH
k
n converges as power series. In this case, we can let Ĥk

n := Hk
n, and the

proof boils down to the very last step.

• In Sections 5 and 6, different bases will be constructed, and it is not obvious how to
switch between them. Combinatorially it is odd to construct polyharmonic functions
eliminating the boundary terms, which are also generally not easy to write down
explicitly. One could argue that the basis constructed in Section 6 is therefore in
some sense a more canonical one, seeing as it has a particularly nice shape, but it
is not clear whether something comparable exists in the infinite group case.

If we compare the functional equation (1.10) for harmonic and polyharmonic functions,
then the only difference lies in the additional term of xyHn(x, y) on the right-hand side
not vanishing for the latter. In terms of the boundary value problem, this means that we
now want to solve

K (X+, 0)Hn (X+, 0)−K (X−, 0)Hn (X−, 0) = X+yHn−1(X+, y)−X−yHn−1(X−, y). (4.18)

In an ideal world, the right-hand side of the latter equation would be 0 as in the harmonic
case, and this is indeed what happens for the simple walk (and, more generally, if ever
π/θ = 2 and the group is finite, as will be discussed in Section 8). In this case, we can
proceed as before, and obtain an explicit formula for polyharmonic functions, see Thm. 31.

4.2.1 Example: the simple walk

The simple walk has the step set S = {↑,→, ↓,←}, each with probability 1
4
. We have

K(x, y) = xy − xy

4

󰀃
x+ y + x−1 + y−1

󰀄
, ω(x) =

−2x

(1− x)2
, ω (X+) = −ω(y). (4.19)

It turns out that the right-hand side of (4.18) keeps vanishing, and thus one can iteratively

construct polyharmonic functions via Hn+1(x, y) :=
xyHn(x,y)−X+yHn(X+,y)

K(x,y)
. This allows us

to find an explicit expression for all resulting polyharmonic functions. This property is
directly tied to the fact that π/θ = 2, where θ is given by (2.6), which will be discussed
in more detail in Section 8.
We therefore obtain a basis of all polyharmonic functions by letting

Hk
n+1(x, y) =

xyHk
n(x, y)−X+yH

k
n(X+, y)

K(x, y)
. (4.20)
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For an explicit formula as well as a proof, see Thm. 31. We can for instance compute
H1

1 = 8
(1−x)2(1−y)2

, H2
1 = 32y

(x−1)2(y−1)4
, H3

1 = 128y2

(x−1)2(y−1)6
. One can show by induction that

we have Hk
1 = 2·22k

(x−1)2(y−1)2k
.

5 A first way to construct polyharmonic functions

The goal of this section is to give a first method of computing a basis of discrete polyhar-
monic functions directly via manipulation of the functional equation (1.10), which will be
done in Section 5.1. After looking at the examples of the tandem and the king’s walk, we
will then discuss in Section 5.2 why this method might not be ideal from a combinatorial
perspective, which one can see by comparison with continuous polyharmonic functions
and taking the scaling limit. This is then illustrated by the example of the tandem walk.

5.1 Construction of polyharmonic functions

While the computation for the simple walk turned out to be fairly simple, this was mainly
due to the right-hand side of (4.18) consistently vanishing. This does not happen in
general. For the tandem walk, for instance, we arrive at

K(X+, 0)H
1
1 (X+, 0)−K(X−, 0)H

1
1 (X+, 0) =

y3
√
1− 4y

(y − 1)5
. (5.1)

The direct approach using a boundary value problem like in the harmonic case does not
generally yield an explicit solution as easily as before. One could modify the structure in
order to obtain a similar boundary value problem as before, using a decoupling function,
which is the approach which works with finite group models and will be discussed in
Section 6. However, we will first construct polyharmonic functions directly utilizing the
functional equation (1.10), independently of whether or not the group is finite. The main
idea again utilizes that in Lemma 3, we showed that given any power series P (x) ∈ C[[x]],
we can construct a harmonic function H(x, y) such that K(x, 0)H(x, 0) = P (x). Now
suppose that for one of the Hk

1 constructed in the aforementioned theorem, there is a Hk
2

such that △Hk
2 = Hk

1 . Then, subtracting a harmonic function with the same values on the
boundary, we know that there is also a Ĥk

2 , such that△Ĥk
2 = Hk

1 andK(x, 0)Ĥk
2 (x, 0) = 0.

By Lemma 5, if we know this Ĥk
2 then we can reconstruct Hk

2 (or indeed any other
biharmonic function with image Hk

1 under △). Therefore, our strategy will be to utilize
(1.10) in order to find this particular Ĥk

2 , where the assumption that K(x, 0)Ĥk
2 (x, 0) = 0

simplifies the equation immensely. While the construction itself is not very complicated,
we will need a small technical lemma to make sure we will indeed end up with bivariate
power series.

Lemma 6. Suppose we have a model such that K(0, 0) = 0, ∂
∂x
K
󰀏󰀏
x=y=0

∕= 0, and select

X+(y) such that 0 = X+(0). Furthermore, let F (x, y) be a bivariate power series, such
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that F (X+(y), y) = 0 and that F (x, 0) ∕= 0. Then,

F (x, y)

K(x, y)
(5.2)

is a bivariate power series in x, y.

Proof. By the Weierstraßpreparation theorem, we can write

K(x, y) = e(x, y)(x− g(y)), (5.3)

with e being an invertible bivariate power series, and g(y) ∈ C[[y]], with g(0) = 0.
We can also rewrite

F (x, y) = f(x, y)(xk + xk−1fk−1(y) + · · ·+ f0(y)) =: f(x, y)P (x, y), (5.4)

where again f is an invertible bivariate power series, the fi(y) ∈ C[[y]] satisfy fi(0) = 0,
and P (x, y) ∈ C[[y]][x] is a polynomial in x over the ring C[[y]]. Consequently, we have

F (x, y)

K(x, y)
=

f(x, y)

e(x, y)
· P (x, y)

x− g(y)
. (5.5)

Since e(x, y) is invertible, it remains to show that the second factor is a power series in
x, y. To do so, all we need to do is to show that g(y) is a zero of the polynomial P (x, y),
i.e. that P (g(y), y) = 0.
By (5.4), we know that P (X+(y), y) = 0 locally around 0, and by (5.3) we see that we
also have X+(y) = g(y). The statement follows.

Remark: In case K(0, 0) ∕= 0 (which is equivalent to our model having a North-East
step) we do not need any additional tools, as in this case 1/K(x, y) is a power series
anyway, so division by the kernel does not pose any problem. Also note that we must

have either K(0, 0) ∕= 0, ∂
∂x
K
󰀏󰀏
x=y=0

∕= 0 or ∂
∂y
K
󰀏󰀏󰀏
x=y=0

∕= 0, because otherwise our model

could have no North, North-East or East steps and would therefore be singular.

Lemma 7. Suppose we have a model such that either K(0, 0) ∕= 0 or ∂
∂x
K(x, y) |x=y=0 ∕= 0.

Given any bivariate power series G(x, y) which is analytic around (0, 0), we can then
construct a power series H(x, y) such that

1. H(x, y) is analytic around (0, 0),

2. △H(x, y) = G(x, y), and

3. K(x, 0)H(x, 0) = 0

by letting

H(x, y) :=
X+yG(X+, y)− xyG(x, y)

K(x, y)
if K(0, 0) = 0, (5.6)

H(x, y) :=
xyG(x, y)

K(x, y)
if K(0, 0) ∕= 0, (5.7)

where we select X+(y) such that X+(0) = 0.
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Proof. The property △H = G can be written in terms of the functional equation (1.10):

K(x, y)H(x, y) = K(x, 0)H(x, 0) +K(0, y)H(0, y)−K(0, 0)H(0, 0)− xyG(x, y). (5.8)

The case K(0, 0) ∕= 0 is easy, because then 1/K(x, y) is a power series around (0, 0) and
one can directly check that (1.10) is satisfied. Consider now the case K(0, 0) = 0, and
define K(x, y)H(x, y) via (5.6). The substitution G(X+, y) is valid because X+(0) = 0.
One can check immediately that K(x, 0)H(x, 0) = 0, and that (1.10) is satisfied.
All that therefore remains to do is to show that we can divide the thusly obtained power se-
ries K(x, y)H(x, y) by K(x, y). To do so, we can utilize Lemma 6. To check the conditions
to apply this lemma, note that K(X+, y)H(X+, y) = 0 by construction. In order to satisfy
the second condition, let H ′(x, y) be a harmonic function such that K(x, 0)H ′(x, 0) ∕= 0.
We then have

1. K(X+, y)H(X+, y)+K(X+, y)H
′(X+, y) = 0, as is clear for the first summand from

(5.6) and for the second due to the fact that K(X+, y) = 0,

2. K(x, 0)H(x, 0) +K(x, 0)H ′(x, 0) ∕= 0.

We can therefore apply Lemma 6 to the function K(x, y)H(x, y) +K(x, y)H ′(x, y). This
tells us that the expression

K(x, y)H(x, y) +K(x, y)H ′(x, y)

K(x, y)
=
K(x, y)H(x, y)

K(x, y)
+

K(x, y)H ′(x, y)

K(x, y)
(5.9)

=H(x, y) +H ′(x, y) (5.10)

is a power series in x, y around (x, y) = (0, 0). As we already know that H ′(x, y) is a
power series, by consequence so is H(x, y). Hence, we are done.

As previously remarked, after potentially swapping x and y such that ∂
∂x
K
󰀏󰀏
x=y=0

∕= 0, this

covers all non-singular models with small steps and zero drift. Therefore, in the following
we can assume without loss of generality that if K(0, 0) = 0, then ∂

∂x
K(x, y) |x=y=0 ∕= 0.

Utilizing Lemma 7, it is now easy to construct a Schauder basis of all polyharmonic
functions.

Theorem 8. Let

Hk
1 (x, y) :=

Pk(ω(x))− Pk (ω(X+))

K(x, y)
, (5.11)

where the polynomials Pk are defined as in the proof of Lemma 3. Then we can inductively
construct bivariate power series Hk

n via

Hk
n+1(x, y) :=

X+yH
k
n(X+, y)− xyHk

n(x, y)

K(x, y)
if K(0, 0) = 0, (5.12)

Hk
n+1(x, y) :=

xyHk
n

K(x, y)
if K(0, 0) ∕= 0. (5.13)

Each Hk
n is n-polyharmonic, and we have △Hk

n+1 = Hk
n.
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Proof. By iterative application of Lemma 7, one sees that the resulting expressions are
power series in x, y. One can then easily check that the functional equation (1.10) is
satisfied.

Remark: instead of using the two different definitions (5.12), (5.13) depending on
whether or not K(0, 0) = 0, one could just use (5.12) in any case. The disadvantage
of that would be, however, fairly obvious: the resulting expressions are a bit more un-
wieldy, and we lose a bit of niceness (i.e. if H1

1 (x, y) is rational, we would normally end
up with an algebraic H1

2 (x, y)). Also, to make things work out formally one would still
have to argue why all substitutions are valid.

Theorem 9. The polyharmonic functions (Hk
m)m,k∈N constructed in Thm. 8 form a basis

of the space H of all polyharmonic functions.

Proof. By Lemma 5.

By Thm. 9, we know that we can iteratively construct preimages of all our base elements
of the space of harmonic functions. This allows us to describe the structure of the spaces
of n-polyharmonic functions a bit more closely.

Proposition 10. Suppose we have a non-singular model with small steps and zero drift.
Let Hn be the space of real-valued, discrete n-polyharmonic functions in the quarter plane.
Then we have an isomorphy of vector spaces

Hn
∼= (H1)

n . (5.14)

Proof. Suppose the statement holds for k = 1, . . . , n and we have Hn+1, H
′
n+1 ∈ Hn+1

such that Hn = H ′
n. Then we have

△
󰀅
Hn+1 −H ′

n+1

󰀆
= Hn −H ′

n = 0, (5.15)

thusHn+1−H ′
n+1 ∈ H1. Therefore (by utilizing Thm. 8), we can construct an isomorphism

Hn+1
󰀑
H1

→ Hn, and the proof is complete.

Corollary 11. We have
Hn

∼= (C[[x]])n .

5.1.1 Example: the tandem walk

The tandem walk is the model with step set S = {↖,→, ↓}, each with weight 1
3
. We find

K(x, y) = xy − x2 + y + xy2

3
, H1

1 (x, y) =
81(1− xy)

4(x− 1)3(y − 1)3
, (5.16)

leading to the harmonic function h(i, j) = (i+ 1)(j + 1)(i+ j + 2). We now want to find
a biharmonic function H1

2 such that △H1
2 = H1

1 . To do so, we apply the procedure from
Thm. 9. First, we notice that K(0, 0) = 0, and that ∂K

∂x

󰀏󰀏
x=y=0

= 0, while on the other

the electronic journal of combinatorics 31(3) (2024), #P3.18 21



hand we have ∂K
∂y

󰀏󰀏󰀏
x=y=0

= −1
3
∕= 0. This is due to the fact that our model has no West,

but a South step. Therefore, we need to swap the roles of x and y in (5.6). We pick our
Y+ such that Y+(0) = 0; which gives us

Y+(x) =
3x− 1 + (1− x)

√
1− 4x

2x
, (5.17)

and obtain

H1
2 (x, y) =

243x(3x2 + ax2 + 2y − 4xy − 7x2y − 3ax2y − 2xy2 + 13x2y2 + 3ax2y2 − 2x3y2 − 3x2y3 − ax2y3

8(1− x)5(1− y)3(x2 + y + xy2 − 3xy)
,

(5.18)

where a :=
√
1− 4x. One can check that this expression is indeed a power series which

satisfies △H1
2 (x, y) = H1

1 (x, y), and that H1
2 (0, y) = 0. In particular, we have

H1
2 (x, y) =

243

4
x+

729

4
xy +

729

2
x2 +

729

2
xy2 + 972x2y + . . . (5.19)

As we already know, H1
2 (x, y) is unique with the property △H1

2 = H1
1 only up to harmonic

functions. And indeed, we will see in Section 6 that instead of this algebraic function,

there is a much nicer rational biharmonic function Ĥ1
2 with △Ĥ1

2 = H1
1 .

5.1.2 Example: the king’s walk

The king’s walk is the model with step set S = {↑,↗,→,↘, ↓,↙,←,↖}, each with
probability 1

8
. We find

K(x, y) = xy − 1 + x+ y + x2 + y2 + x2y + xy2 + x2y2

8
, (5.20)

H1
1 (x, y) =

1

16(x− 1)2(y − 1)2
. (5.21)

As K(0, 0) ∕= 0, we can utilize (5.7) and have

H1
2 (x, y) =

128xy

(x− 1)2(y − 1)2 [8xy − (1 + x+ y + x2 + y2 + x2y + xy2 + x2y2)]
. (5.22)

5.2 Relations between discrete and continuous cases

For continuous harmonic functions, since the last term of the functional equation (2.18)
vanishes, everything works as in the discrete case, except the calculations turn out to be
a lot simpler: we can define continuous versions x± of X±, which satisfy γ(x±(y), y) = 0.
It turns out that we have

x±(y) = c±y, (5.23)

c± = ce±iθ, (5.24)

ω̂(x) =
1

xπ/θ
, (5.25)
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where θ is the arctangent of the correlation coefficient as introduced in Section 2 and
c ∈ R+. We can then construct (continuous) harmonic functions via

L(hn
1 )(x, y) :=

ω(x)n − ω(x+(y))
n

γ(x, y)
, (5.26)

see also [6, Thm. 2.4]. Not very surprisingly, there is a relation between the discrete and
continuous polyharmonic functions constructed in this manner. For the computations
here as well as in later sections, the following lemma will be useful:

Lemma 12. We have

lim
µ→0

K (e−µx, e−µy)

µ2
= γ(x, y), (5.27)

lim
µ→0

X±
󰀃
e−µy

󰀄
= 1 + c±y +O(y2). (5.28)

Proof. Both of the results follow by a direct computation, which however in the second
case is somewhat tedious. The main idea there is to write

X+(e
−z)X−(e

−z) =
c̃(e−z)

ã(e−z)
, (5.29)

X+(e
−z) +X−(e

−z) = − b̃(e−z)

ã(e−z)
, (5.30)

with X±(y) the solutions of K(·, y) = 0 as defined in Section 2, and then use the fact
that X+(1) = X−(1) = 1 in order to obtain defining equations for the first coefficients in
a series expansion of X±(e

−z).

Remark: While for (5.27) it can be seen that this is a direct consequence of the drift
being zero, it would be interesting to know if there is a more intuitive, or geometric way
to obtain (5.28) as well.

Comparing the discrete and continuous constructions of harmonic functions (4.1) and
(5.26), it is not very surprising that there is a clear relation between them.

Lemma 13. We have

lim
µ→0

µkπ/θ−2Hk
1

󰀃
e−µx, e−µy

󰀄
= αL(hk

1)(x, y) (5.31)

for some non-zero constant α.

Proof. Using Lemma 12, all we need to show is that

lim
µ→0

µkπ/θ
󰀅
Pk

󰀃
ω
󰀃
e−µx

󰀄󰀄
− Pk

󰀃
ω
󰀃
X+

󰀃
e−µy

󰀄󰀄󰀄󰀆
= ω̂(x)k − ω̂(x+)

k. (5.32)

But this follows immediately from the fact that ω(x) = α+o(1)

(1−x)π/θ in a neighbourhood of

x = 1 [12, 2.2] and the fact that [zk]Pk(z) = 1 (see the construction of Pk(z) in the proof
of Lemma 3), as well as for the second term once again Lemma 12.
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Knowing that, in the sense of a scaling limit as in Lemma 13, we know that the discrete
kernel K corresponds to the continuous kernel γ, and that the Laplace transform can be
understood as the continuous analogue of a generating function, it would be reasonable
to expect that the boundary term K(x, 0)H(x, 0) corresponds in the same fashion to
σ22

2
L2(h)(x). In the following, we will see that this is indeed the case.

Lemma 14. Suppose h(u, v) and its derivatives up to order 2 are of exponential order,
i.e. their absolute value is asymptotically bounded by ec(u+v) for some constant c, with
h(u, 0) = h(0, v) = 0. Then we have

L2(h)(x) = lim
y→∞

y2L(h)(x, y), (5.33)

L1(h)(y) = lim
x→∞

x2L(h)(x, y). (5.34)

Proof. We will only show the first equality, the second follows by symmetry. From the
computation in [29, App. A], we see that

L(h)(x, y) = 1

y2

󰀗
L
󰀕
∂2h

∂v2

󰀖
(x, y) + L2(h)(x)

󰀘
⇔ (5.35)

y2L(h)(x, y) = L
󰀕
∂2h

∂v2

󰀖
(x, y) + L2(h)(x). (5.36)

Therefore, all that remains to show is that limy→∞ L
󰀓

∂2h
∂y2

󰀔
= 0. Writing this Laplace

transform as an integral, it follows from the growth condition that for y → ∞ the integrand
goes to 0 pointwise. By dominated convergence, we can then conclude that the same holds
for the entire integral.

Remark: The condition that h(u, v) and its derivatives are of exponential order will
hold true for those polyharmonic functions which have their origins in asymptotics of exit
times of Brownian motions, see e.g. [2, 6].

Lemma 15. Let α ∈ R, and H(x, y),L(h)(x, y) be polyharmonic such that

lim
µ→0

µα+2H
󰀃
e−µx, e−µy

󰀄
= L(h)(x, y). (5.37)

Assume furthermore that H(x, y) is algebraic, and that the restrictions of H(x, y) at x = 0
and y = 0 are well-defined. Then we have

lim
µ→0

µαK(e−µx, 0)H(e−µx, 0) =
σ22

2
L2(h)(x), (5.38)

lim
µ→0

µαK(0, e−µy)H(0, e−µy) =
σ11

2
L1(h)(y). (5.39)

Proof. Using Lemma 14, we have

lim
µ→0

µαKH(e−µx, 0) = lim
µ→0

lim
y→∞

µαKH(e−µx, e−µy), (5.40)

σ22

2
L2(h)(x) = lim

y→∞
γ(x, y)L(h)(x, y) (5.41)

= lim
y→∞

lim
µ→0

µαKH(e−µx, e−µy). (5.42)
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Thus, all we need to show is that we can exchange the order of the two limits. But this
follows by the algebraicity of H(x, y).

Remark: There is a marked difference between the discrete and continuous cases in
terms of the value of formal solutions. In the discrete case we work with formal power
series, i.e. every formal solution of the functional equation (1.10) leads to an actual
solution since we can just extract coefficients. In the continuous case, however, this is
not so simple: there are formal solutions of (2.18) which turn out not to have an inverse
Laplace transform. It is always possible to utilize the method given in Section 5 to obtain
continuous (formal) solutions, by simply defining L(hk

n) as the scaling limit – with an
appropriate scaling factor – of the discrete polyharmonic function Hk

n, and then by some
computations using Lemmas 14 and 15 one can check that (2.18) is indeed satisfied. But
the resulting solutions do generally not allow for an inverse Laplace transform: due to
the shape of the kernel, which we repeatedly divide by, we cannot usually find a region
of the form {ℜ(x) 󰃍 u,ℜ(y) 󰃍 v} where L(hk

i )(x, y) is finite. By [27], this implies that
L(hk

i )(x, y) is not the Laplace transform of any function, nor of any distribution. This
will be different for the method presented in Section 6.

5.2.1 Example: the scaling limit of the tandem walk

For the scaling limit of the tandem walk (see Example 5.1.1), we have

γ(x, y) =
1

3

󰀃
x2 − xy + y2

󰀄
, c± =

1± i
√
3

2
, ω̂(x) =

1

x3
. (5.43)

We obtain L(h1
1)(x, y) =

ω̂(x)−ω̂(c+y)
γ(x,y)

= 3(x+y)
x3y3

, and one can check immediately that

lim
µ→0

µ5H1
1

󰀃
e−µx, e−µy

󰀄
= L(h1

1)(x, y) (5.44)

for H1
1 computed in Section 5.1.1. We can then proceed to the scaling limit of H1

2 , which
gives us the formal solution of (2.18)

L(h1
2)(x, y) =

3x3 + 2xy2 + 2y3

x3y5(x2 − xy + y2)
, (5.45)

of which one can check directly that there is no inverse Laplace transform. We will see
in Section 6.2.1 that an advantage of the construction done in Section 6 using decoupling
functions is that the scaling limit of the resulting discrete polyharmonic functions will
always be the Laplace transform of a continuous polyharmonic function.

6 A second way to construct polyharmonic functions

While the method given in Section 5 gives us a Schauder basis of all polyharmonic func-
tions, the resulting basis is not ideal in two senses:
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1. They do not have a continuous analogue, as discussed at the end of Section 5.2;

2. They are often more complicated than necessary; for the king’s walk we obtained
a rational function which is singular on some not so easily described curve in Sec-
tion 5.1.2, and for the tandem walk the functions constructed in Section 5.1.1 were
not even rational. We will see that both of these models have a basis which is a lot
nicer to work with.

The goal of this section is to present an alternative method to construct discrete polyhar-
monic functions using a decoupling approach, similar as in [3, 6, 30]. This will allow us to
give a basis of polyharmonic functions for all models with finite group such that π/θ ∈ Z
in Thm. 20 in Section 6.1. We will see in Section 6.2 that an analogous method works for
continuous models. Lastly, in Section 6.3 it will be shown that the discrete polyharmonic
functions obtained via the decoupling approach behave nicely with respect to the scaling
limit.

6.1 An approach via decoupling functions

Remember that the main issue why computing polyharmonic functions is not as easy
as computing harmonic functions is that the right-hand side of (4.18) does not usually
vanish, and therefore the boundary value problem approach does not immediately work.
But in some cases, one can circumvent this problem by utilizing what is called a decoupling
function in [3, Def. 4.7].

Definition 16. Let M(x, y) be a rational function in x, y. If we can find F (x), G(y) such
that

F (x) +G(y) ≡ M(x, y) modK(x, y), (6.1)

then we say that F is a decoupling function of M .

Here, we say that A(x, y) ≡ B(x, y)modK(x, y) if there are polynomials N(x, y), D(x, y)

such that D(x, y) is not divisible by K(x, y) and A(x, y)− B(x, y) = N(x,y)
D(x,y)

K(x, y).

These decoupling functions are closely related to the concept of invariants as in [3,
Def. 4.3]. An example of a decoupling function will for instance be given in Section 6.1.1.
The reason why such decoupling functions are useful can be seen directly from (4.18): if
F (x) is a decoupling function of xy△H(x, y), then we have

K(X+, 0)H(X+, 0)− F (X+)− [K(X−, 0)H(X−, 0)− F (X−)] = 0. (6.2)

In other words, if one knows how to compute a decoupling function of xyH ′(x, y), then
one can again let K(x, 0)H(x, 0) − F (x) = P (ω) for some entire function P ; by the
same arguments as for the BVP outlined in Section 4 one will then eventually arrive at a
solution for H(x, y). Note in particular by doing so, the function G(y) cancels out – so
while we can compute it given the function F (x) (by the substitution x 󰀁→ X±), we are
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usually not interested in its exact shape. In [6, App. C], a decoupling function is guessed
using an ansatz (as illustrated in Section 7) in order to compute a biharmonic function for
the tandem walk. It turns out, however, that such a decoupling function can be explicitly
computed for any model as long as the so-called group of the corresponding step set is
finite. This group G is generated by the mappings

Φ : (x, y) 󰀁→
󰀕
x−1 c̃(y)

ã(y)
, y

󰀖
, Ψ : (x, y) 󰀁→

󰀕
x, y−1 c(x)

a(x)

󰀖
. (6.3)

One can easily see that Φ,Ψ are involutions, and depending on the order of Θ := Φ ◦ Ψ,
the group can be either finite or infinite. This group has been of interest in the study of
random walks for some time now, see e.g. [5, 13, 16]. In particular, every group element
γ has a representation either of the form γ = Θk or γ = Φ ◦Θk. We can define sgn γ = 1
in the first, and sgn γ = −1 in the second case.

Theorem 17 (see [3, Thm. 4.11]). Suppose we are given a model which has a finite group
of order 2n, and that M(x, y) is a rational function such that

󰁛

γ∈G

sgn(γ)γ (M(x, y)) = 0. (6.4)

Then a rational decoupling function of M(x, y) is given by

F (x) = − 1

n

n−1󰁛

i=1

Θi [M(x, Y+) +M(x, Y−)] . (6.5)

In the following, we will show that xyHn(x, y) will turn out to have an orbit sum of 0
for any polyharmonic Hn. This is in particular independent of whether or not the given
model has a vanishing orbit sum as in [3].

Corollary 18. Suppose the group of the step set is finite and has a series representation
around (0, 0). Then any algebraic function M(x, y) of the form

M(x, y) = xy
u(x) + v(y)

K(x, y)
, (6.6)

with u(x), v(y) algebraic functions, allows for a decoupling function via (6.5).

Proof. For any point (x, y) such that K(x, y) ∕= 0, (6.4) is satisfied, seeing as the denomi-
nator 1

xy
K(x, y) is invariant under G, and alternating orbit summation over the numerator

leads to a telescopic sum. As the set {(x, y) : K(x, y) ∕= 0} is dense in C2 and M(x, y)
is algebraic, this implies that (6.4) is satisfied everywhere. By Thm. 17, we can therefore
construct a decoupling function via (6.5).

If a model has a finite group, then it can be shown that π/θ ∈ Q (cf [13, 7.1]). The
main difference between π/θ being integer or not is that in the former case, the conformal
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mapping ω(x) will be rational, and thus we can construct a basis consisting of rational
functions.
To make things work out nicely in this case, we need to start wich a small technical
lemma.

Lemma 19. Let N(x, y) be a polynomial such that N(X+, y) = N(X−, y) = 0. Then,
K(x, y)|N(x, y).

Proof. First we note that N(X+, y) = N(X−, y) = 0 implies that also N(x, Y+) =
N(x, Y−) = 0 via the substitution x 󰀁→ X±(y). Using the notation of Section 2.2 of
σ11 = E(X2), σ22 = E(Y 2), we can therefore assume that σ11 󰃍 σ22, else we switch the
roles of x and y in the following.
We write K(x, y) = (x −X+)(x −X−)ã(y). As N(X+, y) = N(X−, y) = 0 for any y, we
know that N(x, y) contains a factor (x − X+)(x − X−) = x2 − (X− +X+)x +X−X+ =

x2 + b̃(y)
ã(y)

x + c̃(y)
ã(y)

∈ C(y)[x]. By assumption, N(x, y) is a polynomial; thus it must also

contain a factor ã(y)

gcd(ã(y),b̃(y),c̃(y))
. Therefore, it suffices to show that ã(y), b̃(y), c̃(y) have no

common zero. We have

ã(y) = p1,1y
2 + p1,0y + p1,−1, (6.7)

b̃(y) = p0,1y
2 − y + p0,−1, (6.8)

c̃(y) = p−1,1y
2 + p−1,0y + p−1,−1. (6.9)

Now suppose there is an u such that ã(u) = b̃(u) = c̃(u) = 0. Adding the three previous
equations yields

0 = u2 [p1,1 + p0,1 + p−1,1]− u [1− p1,0 − p−1,0] + [p1,−1 + p0,−1 + p−1,−1] . (6.10)

As the drift is 0, we know that the coefficient of u2 is the same as the constant, namely
1
2
σ11, and the coefficient of u is σ22. Since our model is non-singular, we have σ11, σ22 > 0.

We can therefore rewrite (6.10) as

σ11u
2 − 2σ22u+ σ11 = 0. (6.11)

Using the quadratic formula, we obtain

u =
σ22

σ11

±

󰁶󰀕
σ22

σ11

󰀖2

− 1. (6.12)

If σ11 = σ22, then u = 1, but we see that b̃(1) < 0 󰃑 ã(1), b̃(1).
Therefore we must have σ11 > σ22, so we have two complex conjugate solutions for u.
However, as b̃(0) > 0 and b̃(1) < 0, we know that b̃(y) can only have real solutions (note
in particular that this does not change if p0,1 = 0, in which case b̃(y) is linear), so b̃(u) = 0
cannot hold.
Hence, ã(y), b̃(y), c̃(y) cannot have a common factor, and the statement follows.
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Using the above lemma, we can now use decoupling functions to construct, in the case
of a finite group with π/θ ∈ Z, rational discrete polyharmonic functions of a particularly
nice shape.

Theorem 20. Suppose we have a step set with finite group and π/θ ∈ Z. Let Hk
1 (x, y)

be defined by (5.11). We can then define inductively

Hk
n(x, y) =

xyHk
n−1(x, y)− F k

n−1(x)−
󰀅
X+yH

k
n−1(X+, y)− F k

n−1(X+, y)
󰀆

K(x, y)
, (6.13)

where F k
n (x) is the decoupling function of xyHk

n(x, y) defined by (6.5), which in particular
exists. Then, Hk

n(x, y) is a rational function in Hn for all n, k, which satisfies △Hk
n+1 =

Hk
n. For each n, k we can write

Hk
n(x, y) =

pn,k(x, y)

(1− x)α(1− y)α
, (6.14)

where pn,k(x, y) is a polynomial and α ∈ N.

Remarks:

• In Thm. 24 we will see that α 󰃑 kπ/θ + 2(n− 1).

• Defining decoupling functions and utilizing them in order to compute polyharmonic
functions works, as long as the group is finite, for any π/θ (which must then au-
tomatically be rational). In particular, one can check that an analogous version of
(6.5) holds. However, in the non-integer case we do not obtain polynomial functions
anymore, and in particular we will not have a representation like (6.14); the main
reason being that an equivalent of Lemma 19 does not hold. Therefore we lose infor-
mation about the positioning of singularities, which will generally not only be where
x = 1 or y = 1. The rest one can prove in the same manner as the corresponding
points in the proof of Thm. 20.

Proof. We proceed by induction. In each step, we will show that:

• Hk
n(x, y) is rational,

• Hk
n(x, y) has its only poles at x = 1 or y = 1,

• xyHk
n(x, y) does not have a pole at x = ∞ or y = ∞,

• xyHk
n(x, y) has orbit sum 0 and thus admits a decoupling function F k

n (x),

• F k
n (x) has its only pole at x = 1.
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To see that △Hk
n+1(x, y) = Hk

n(x, y), one can simply plug (6.13) into the functional
equation (1.10).
So consider first the case n = 1. Hk

1 (x, y) being rational follows immediately from π/θ ∈ Z,
and thus ω being rational (see [29, (3.12)]). As by construction the numerator Nk

1 (x, y) of
xyHk

1 (x, y) as defined in (6.13) satisfies Nk
1 (X±) = 0, it must according to Lemma 19 be a

multiple ofK(x, y), thus the only poles of Hk
1 (x, y) can be those coming from ω(x),ω(X+).

Since ω(x) has its only pole at x = 1 and X+(y) = 1 only if y = 1, Hk
1 (x, y) can only have

poles at x = 1, y = 1. Similarly, we check by a direct computation that xyHk
1 (x, y) does

not have a pole at x = ∞, y = ∞. The existence of a decoupling function F k
1 (x) follows

immediately from Cor. 18. Finally, we can deduce from (6.5), utilizing that xyHk
1 (x, y)

does not have poles at infinity and noting that (1, 1) is a fixed point under the group,
that F k

n (x) has its only pole at x = 1, thus the case n = 1 is done.
Now let n 󰃍 2 and assume the theorem is already shown up to n− 1. We then formally
define as in (6.13)

Hk
n(x, y) :=

xyHk
n−1(x, y)− F k

n−1(x)−
󰀅
X+yH

k
n−1(X+, y)− F k

n−1(X+, y)
󰀆

K(x, y)
. (6.15)

First, we need to argue that Hk
n(x, y) is rational. By assumption, we know that Hk

n−1(x, y)
is rational. To see that the remaining part of the numerator, that is, X+yH

k
n−1(X+, y)−

F k
n−1(X+), is rational, we use the defining property (6.1) of the decoupling function F k

n ,
rewriting

G(y) = X+yH
k
n−1(X+, y)− F k

n−1(X+) ⇒ (6.16)

xyHk
n−1(x, y) ≡ F k

n−1(x) +X+yH
k
n−1(X+, y)− F k

n−1(X+) mod K(x, y), (6.17)

and since xyHk
n−1(x, y), F

k
n−1(x) as well as K(x, y) are rational, so is X+yH

k
n−1(X+, y)−

F k
n−1(X+). Next, we consider the poles of Hk

n(x, y). Again, by construction we have that
the numerator Nk

n(X±, y) = 0, and thus by Lemma 19 the K(x, y) in the denominator
cancels. As we know by assumption that F k

n−1(x) has its only pole at x = 1, and as
X+(y) = 1 if and only if y = 1, there will be no new poles coming from the F k

n−1-parts.
The same goes for Hk

n−1(x, y) and Hk
n−1(X+, y), and therefore the only poles of Hk

n(x, y)
can be at x = 1, y = 1.
To check that xyHk

n(x, y) does not have a pole at infinity, we utilize (1.10):

K(x, y)Hk
n(x, y) = K(x, 0)Hk

n(x, y) +K(0, y)Hk
n(0, y)− xyHk

n−1(x, y).

If xyHk
n(x, y) had a pole at infinity, then so would K(x, y)Hk

n(x, y). But as by the in-
duction hypothesis, xyHk

n−1(x, y) does not have a pole at infinity; so the pole for, say,
x → ∞ of the left-hand side would need to cancel with K(x, 0)Hk

n(x, 0) on the right-hand
side. But the left-hand side depends on y while the K(x, 0)Hk

n(x, 0) doesn’t, so the poles
cannot cancel for all values of y; a contradiction.
To see that a decoupling function of xyHk

n(x, y) exists, we split xyHk
n(x, y) in two parts.

First, we notice that

xy
xyHk

n−1(x, y)

K(x, y)
=

xy

K(x, y)
xyHk

n−1(x, y), (6.18)
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and since xy
K(x,y)

is invariant under the group and we already know that xyHk
n−1(x, y) has

a decoupling function (and thus its orbit sum is 0), we deduce that this part as well has
orbit sum 0, and thus it can be decoupled by Thm. 17. For the rest, we notice that

xy
−F k

n−1(x)−
󰀅
X+yH

k
n−1(X+, y)− F k

n−1(X+, y)
󰀆

K(x, y)
(6.19)

has the form xyA(x)+B(y)
K(x,y)

(note that X+(y) does in fact not depend on x), and thus its

orbit sum is 0 by Cor. 18. Therefore, Thm. 17 gives us a decoupling function F k
n (x) of

xyHk
n(x, y) via (6.5). As each summand has its poles at x = 1 only, and Θ leaves the

point (1, 1) invariant, we know that F k
n has its only pole at x = 1.

It remains to show that the order of the poles at x, y = 1 is at most k · π/θ + 2(n − 1).
For n = 1 this can again be verified directly; afterwards it follows by induction: by
a short computation one can see that the order of the pole of F (x) compared to the
one at x = 1 of xyH(x, y) increases at most by 2, and by a similar argument for the
G(y) in (6.1) (see [3, Thm. 4.11] for an explicit formula) one can show the same for
X+yH(X+, y)− F (X+) = G(y). Using (6.13) finally yields the statement.

By Lemma 5, it therefore follows that the thusly constructed polyharmonic functions form
a Schauder basis of the space of all polyharmonic functions.

6.1.1 Example: the tandem walk revisited

To illustrate the results from Section 6, consider once again the tandem walk, which has
the step set S = {→, ↓,↖}, with weights 1

3
each. As in Example 5.1.1, we have

K(x, y) = xy − xy

3

󰀃
x−1 + y + xy−1

󰀄
, H1

1 (x, y) =
81(1− xy)

4(x− 1)3(y − 1)3
. (6.20)

Coefficient extraction then led us to recover the original harmonic function from the
generating series, giving us h1

1(i, j) = (i+1)(j+1)(i+ j+2). In Section 6 we computed a
biharmonic function for H1

1 , which was however not rational. Using the method presented
in this section, however, we will find that there is, in fact, a rational one.
First, one can check that the group is finite and of order 6; we have

(x, y)
Ψ󰀁→

󰀕
x,

x

y

󰀖
Φ󰀁→

󰀕
1

y
,
x

y

󰀖
Ψ󰀁→

󰀕
1

y
,
1

x

󰀖
Φ󰀁→

󰀕
y

x
,
1

x

󰀖
Ψ󰀁→

󰀓y
x
, y
󰀔

Φ󰀁→ (x, y). (6.21)

Now using (6.5), we obtain the decoupling function F1(x) = − 81x3

4(1−x)5
. Note that this

decoupling function is not the same one as is given in [6, App. C], where instead (after
scaling) F ′

1 =
−81x3

4(1−x)6
is given. This goes to show that the choice of a decoupling function

is, due to the invariance property in (2.5), unique only up to functions of ω; in this
particular case we have (up to a multiplicative constant) F ′

1(x)−F1(x) = ω(x)2. The way
in which this alternative decoupling function was found is described in Section 7.
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We can now utilize this F1 in order to compute a biharmonic function; (6.13) directly
gives us

H1
2 =

243(xy − 1)(x+ y + xy(x+ y − 4))

(x− 1)5(y − 1)5
, (6.22)

which after extracting coefficients corresponds to

h1
2(i, j) = (i+ 1)(j + 1)(−36i− 30i2 − 6i3 − 36j − 44ij − 14i2j − 2i3j − 30j2

− 14ij2 + i2j2 + i3j2 − 6j3 − 2ij3 + i2j3 + i3j3) (6.23)

We can now use (6.5) again to obtain the next decoupling function F2(x) = −81x4(1+2x)
4(1−x)7

,
which we can then use to compute

H1
3 =

p(x, y)

(x− 1)7(y − 1)7
, (6.24)

where p(x, y) is a somewhat unwieldy polynomial of bidegree 9.

6.1.2 Example: the king’s walk revisited

Consider now once again the king’s walk with the step set S = {↑,↗,→,↘, ↓,↙,←,↖},
each with probability 1

8
. We have, as in Section 5.1.2,

K(x, y) = xy − 1 + x+ y + x2 + y2 + x2y + xy2 + x2y2

8
, (6.25)

H1
1 (x, y) =

1

16(x− 1)2(y − 1)2
. (6.26)

After coefficient extraction, we find that h1
1(i, j) = (i + 1)(j + 1). While the biharmonic

function we obtained in Section 5.1.2 was rational, it did not have a shape which made it
very easy to describe its singularities, or to extract coefficients. This will once again be
very different applying the decoupling method.
The king’s walk has a finite group of order 4, namely

(x, y)
Ψ󰀁→

󰀕
x,

1

x

󰀖
Φ󰀁→

󰀕
1

x
,
1

y

󰀖
Ψ󰀁→

󰀕
1

x
, y

󰀖
Φ󰀁→ (x, y). (6.27)

It turns out that in this case, we can pick 0 as a decoupling function, as the right-
hand side of (4.18) vanishes. Therefore, (6.13) gives us Ĥ1

2 (x, y) =
128y

3(x−1)2(y−1)4
, which is

essentially the same result as we obtained for the simple walk in Section 4.2.1. This is not
a coincidence but rather due to the fact that we have π/θ = 2 and a finite group. This
case will be discussed in more depth in Section 8.2. There we will also prove Thm. 31,
from which it follows that indeed these two models have the same discrete polyharmonic
functions.
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6.2 Continuous decoupling

The idea of decoupling in the continuous setting, as suggested in [29, 6], is very much
the same as in Section 6. The continuous version of the boundary value problem for
polyharmonic functions now reads

σ22L2(hn)(c+y)− σ22L2(hn)(c−y) = L(hn−1(c+y, y))− L(hn−1(c−y, y)). (6.28)

Our goal will now be to construct a decoupling function fn−1(x), such that

fn−1(c+y)− fn−1(c−y) = L(hn−1)(c+y, y)− L(hn−1)(c−y, y). (6.29)

One key point to note here is that all expressions appearing in (6.28) are homogeneous3,
which follows for L(hk

1) by construction, and can be checked for the others by induction. In
particular, this means that the right-hand side of (6.29) is homogeneous as well; and as it
depends only on y it must therefore be of the form αym for some α, and m = degL(hn+1).
Consequently, we choose the ansatz fn = βym, with m = degL(hn). The equation we
wish to solve thus reads

β [(c+y)
m − (c−y)

m] = αym ⇔ α

(c+)m − (c−)m
= β. (6.30)

Remembering that c± = ce±iπ/θ, we see that this is solvable in general only if m is not
an integer multiple of π/θ, as then we would have (c+)

m − (c−)
m = 0. It turns out that

this constraint does in fact not matter: whenever we would run into this issue, it just so
happens that α is already 0, i.e. we do not need a decoupling function (see Example 6.2.1).
At this stage, no direct proof of this is known, and it would be very interesting to find a way
to see this directly. But one can use the convergence properties of discrete polyharmonic
functions to show that the decoupling function will be 0 in all suitable cases to circumvent
this problem. Since this is essential in order to continue the procedure but we will use
convergence properties which will be introduced later, this will be stated here and be
proven in Section 6.3. An illustration of this is given in Example 6.2.1.

Lemma 21. In the setting of Thm. 22 below, if (c+)
m − (c−)

m = 0, then the right-hand
side of (6.29) vanishes. In particular, we can always find a decoupling function of the
form fk

n(x) = αxm, with m = degLhk
n(c+x, x) (where α = 0 if (c+)

m = (c−)
m).

Utilizing the above lemma, it is now easy to prove the continuous analogue of Thm. 20.

Theorem 22. Suppose we have a model such that π/θ ∈ Z. Let L(hk
1)(x, y) be defined by

(5.26). We can then define inductively

L(hk
n)(x, y) =

L(hn−1)(x, y)− fn−1(x)− [L(hn−1)(c+y, y)− fn−1(c+y)]

γ(x, y)
, (6.31)

3That is, there is some m ∈ R such that they satisfy T (λx,λy) = λmT (x, y) for all x, y; we call this m
the degree of T (written as deg T ).
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where fn(x) is a decoupling function as in (6.29). Then, L(hk
n)(x, y) is the Laplace trans-

form of an n-harmonic function, such that Lhk
n = hk

n−1. For each n, k we can write

L(hk
n)(x, y) =

qn,k(x, y)

xαyα
, (6.32)

for α ∈ N and qn,k(x, y) a homogeneous polynomial.

Remark: We will see in Thm. 24 that α 󰃑 kπ/θ + 2(n− 1).

Proof. For n = 1, the statement can be checked directly. Now suppose the statement holds

for n, thus we know that L(hk
n)(x, y) =

qn,k(x,y)

xαyα
. By Lemma 21 (which will be proven in

Section 6.3), we know that we can find a decoupling function, which must either be 0 or
have the same degree as L(hk

n)(c+y, y), and we can therefore formally define L(hk
n+1)(x, y)

via (6.31). One can check that each summand is homogeneous of the same degree; hence
so is their sum. By construction, the numerator of (6.31) is 0 for x = c±y; it must therefore
contain a factor γ(x, y) = σ11(x − c+y)(x − c−y), so the denominator cancels. The fact
that L(hk

n+1)(x, y) is the Laplace transform of a continuous polyharmonic function such
that △hk

n+1(s, t) = hk
n(s, t) follows from checking that the functional equation (2.18) is

satisfied, and noticing that we can perform an inverse transform on monomials of the
form xuyv for u, v ∈ R.

Remark: while the construction of discrete polyharmonic functions via decoupling func-
tions is only possible if the group is finite, there are no such restrictions in the continuous
setting.

6.2.1 Example: the scaling limit of the tandem walk revisited

For the scaling limit of the tandem walk, we have

γ(x, y) =
1

3

󰀃
x2 − xy + y2

󰀄
, c± =

1± i
√
3

2
, ω̂(x) =

1

x3
. (6.33)

As before, we have L(h1
1)(x, y) =

3(x+y)
x3y3

, and thus (6.29) takes the form

f 1
1 (c+y)− f 1

1 (c−y) = L(h1
1)(c+y, y)− L(h1

1)(c+y, y) =
3i
√
3

y5
. (6.34)

By a quick computation, one obtains f1(x) =
−3
x5 and a biharmonic function

L(h1
2)(x, y) =

L(h1
1)(x, y)− f1(x)− [L(h1

1)(c+y, y)− f 1
1 (c+y)]

γ(x, y)
(6.35)

=
9(x+ y)(x2 + y2)

x5y5
. (6.36)
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Performing the inverse Laplace transform, this gives us

h1
2(s, t) = −81

8
st(s+ t)(s2 + st+ t2). (6.37)

For computing a triharmonic function, our decoupling function must now satisfy

f 1
2 (c+y)− f 1

2 (c−y) = L(h1
2)(c+y, y)− L(h1

2(c−y, y) =
243i

√
3

4y7
, (6.38)

which leads to f 1
2 (x) = −243

x7 and

L(h1
3)(x, y) =

729(x+ y)(x2 − xy + y2)(x2 + xy + y2)

4x7y7
, (6.39)

and

h1
3(s, t) = − 81

320
st(s+ t)(s2 + st+ t2)2. (6.40)

When trying to compute a decoupling function f 1
3 (x) as in (6.34) and (6.38), seeing that

the degree of the denominator will always increase by 2, this is where one might expect
things to go wrong, as (c+)

9 = (c−)
9 and thus an ansatz as above might not work.

However, doing the computation one finds that

f3(c+y)− f3(c−y) = L(h1
3)(c+y, y)− L(h1

3)(c−y, y) = 0, (6.41)

thus we can pick f3(x) = 0 and directly obtain a 4-harmonic function

L(h1
4)(x, y) =

2187(x3 + 2x2y + 2xy2 + y3)

4x7y7
, (6.42)

which leads to

h1
4(s, t) =

81

640
s3t3(s+ t)3. (6.43)

The fact that the right-hand side of (6.41) turns out to be 0 is a consequence of the
convergence of discrete to continuous polyharmonic and decoupling functions, and will be
shown in the next section in Thm. 24.

6.3 The scaling limit

Using Lemma 12, the strategy to show a general convergence of the polyharmonic func-
tions obtained by decoupling is quite simple: we use the fact that the recursive definitions
(6.13) and (6.31) have the same structure, and take the limit of each term separately.
All that remains to consider are the decoupling functions. However, using once again
Lemma 12, this turns out to be rather straightforward, too.
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Lemma 23. Suppose we have are given discrete and continuous polyharmonic function
H(x, y) and L(h)(x, y) respectively, and a constant α such that

lim
µ→0

µαH
󰀃
e−µx, e−µy

󰀄
= L(h)(x, y). (6.44)

Then, if we can construct a decoupling function F (x) of xyH(x, y) via (6.5), the limit

f(x) := lim
µ→0

µαF
󰀃
e−µx

󰀄
(6.45)

exists and is a decoupling function of L(h)(x, y).

Remark: In the context of the construction in Thm. 20, we know that F k
n (x) is rational

with its only pole at x = 1. From this, we can conclude immediately that f(x) will have
the form f(x) = β

xα , where β may or may not be 0. This, as we will see, is essentially the
idea of the proof of Lemma 21.

Proof. To see that the limit exists, we note that α must be the order of the pole at
x = y = 1 of H(x, y), and thus also the order of the pole of xY±H(x, Y±). Noticing
that, due to (6.5), F (x) consists of such summands with powers of Θ applied to them,
provided that Θ′(x, Y±) ∕= 0, we know that the maximum possible order of the pole of
F (x) at x = 1 is α. The condition about the derivative, however, is guaranteed by the
parametrization of the kernel curve we will use in Section 7.1, which tells us that we have
Θ(x(s)) = s/q, and therefore the derivative wrt x can never be 0. Thus, the limit exists,
and the statement follows by taking the limit of (6.2).

We can now formulate and prove the following theorem, which shows convergence between
the Hk

n and the L(hk
n) defined in Sections 6 and 6.2 respectively. In doing so, we will also

prove Lemma 21. Since we will be using Thm. 22 to do so, which in turn utilizes the
former, it is worth taking a moment to make sure that in each induction step in the proof
of Thm. 24 for some fixed n+1, we use the statement of Thm. 22 for n, and then proceed
to prove Lemma 21 for n+ 1. We therefore do not enter any circular reasoning.

Theorem 24. Let π/θ ∈ Z and Hk
n, L(hk

n) be defined by (6.13), (6.31) respectively. Then

lim
µ→0

µkπ/θ+2nHk
n

󰀃
e−µx, e−µy

󰀄
= αn,kL

󰀃
hk
n

󰀄
(x, y) (6.46)

for some constants αn,k ∕= 0.
Furthermore, we can write

Hk
n(x, y) =

pkn(x, y)

(1− x)u(1− y)v
, L(hk

n)(x, y) =
qkn(x, y)

xαyα
, (6.47)

where u, v,α ∈ Z with u, v 󰃑 α = kπ/θ + 2(n − 1), pkn(x, y) a polynomial and qkn(x, y) a
homogeneous polynomial of degree π/θ + 2(n− 1).
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Proof of Thm. 24 and Lemma 21. We prove the theorem and the lemma simultaneously
by induction. For n = 1 everything can be checked by a direct computation. Now
suppose everything is shown up to some n. By Lemma 23, we know that we can define
a continuous decoupling function fk

n(x) of L(hk
n)(x, y) via a the scaling limit fk

n(x) :=
limµ→0 µ

kπ/θF k
n (e

−µx), and we also know that it is of the form f(x) = βx−kπ/θ−2n, so in
particular Lemma 21 holds for n+ 1 as well. Having now completely proven Thm. 22 for
n + 1 (where we utilized Lemma 21), we can take the piecewise limit of (6.13). Using in
particular Lemma 12, and the definition (6.31) of L(hk

n+1)(x, y), we have for α = kπ/θ+2n
and (to save space) ex = e−µx, ey := e−µy,

lim
µ→0

µα+2Hk
n (ex, ey)

= lim
µ→0

µα
󰀃
exeyK(ex, ey)− F k

n (ex)−
󰀅
X+(ey)eyH

k
n (X+(ey), ey)− F k

n (X+(ey))
󰀆󰀄

µ−2K(e−µx, e−µy)

=
L(hk

n)(x, y)− fk
n(x)−

󰀅
L(hk

n)(c+y, y)− fk
n(c+y)

󰀆

γ(x, y)

=L(hk
n+1)(x, y).

The degree of qkn(x, y) and the value of α in (6.47) can be checked by a direct computation
(note that it is allowed that qkn(x, y) be divisible by some power of x or y). From there it
follows immediately that α = kπ/θ + 2n is an upper bound of u, v using (6.46).

7 A guessing approach

In [6], the authors used an entirely different approach to find biharmonic functions, which
may not be as easy to generalize as the method above, but is in many ways a more
elementary and intuitive approach. As we will see, their guessing method using an ansatz
can be shown to be effective for computation of biharmonic functions whenever decoupling
is possible. Unlike the constructive approach above, this ansatz allows to rule out the
existence of decoupling functions of a sufficiently nice shape. The main goal of this section
is to detail this approach, which was only roughly outlined in [6], and show in Prop. 26
that if a sufficiently nice decoupling function exists, it can always be found using this
ansatz.

7.1 A parametrization of the kernel curve

If we substitute x 󰀁→ X±(y) into (1.10), then we obtain (see [6, (30)])

K(X+, 0)H2(X+, 0)−K(X−, 0)H2(X−, 0) = y [X+H1(X+, y)−X−H1(X−, y)] . (7.1)

Our goal is to rewrite the right-hand side of (7.1) for H1(x, y) =
P (ω(x))−P (ω(X+))

K(x,y)
. Seeing

as we substitute x 󰀁→ X±, where the denominator is 0, we need to utilize L’Hôpital’s rule,
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which gives us (note that K(x, y) = ã(y) (x−X+(y)) (x−X−(y))

X+yH1(X+, y) =
yX+(y)ω

′(X+)

ã(y) (X+ −X−)
P ′(ω(X+)), (7.2)

X−yH1(X−, y) =
yX−ω

′(X−)

ã(y) (X− −X+)
P ′(ω(X−)). (7.3)

Noting that P ′(ω(X+)) = P ′(ω(X−)) due to the invariance property of ω, in order to find
a decoupling function F (x) it would be enough to find an F such that

F (X+)− F (X−) =
yX+(y)ω

′(X+)

ã(y) (X+ −X−)
− yX−ω

′(X−)

ã(y) (X− −X+)
. (7.4)

To do so, we utilize the fact that the kernel curve C := {(x, y) ∈ C̄2 : K(x, y) = 0} as
defined in Section 2 permits a parametrization of the form

x(s) =
(s− s1)(s− 1/s1)

(s− s0)(s− 1/s0)
, (7.5)

y(s) =
(ρs− s3)(ρs− 1/s3)

ρs− s2)(ρs− 1/s2)
, (7.6)

where ρ = e−iθ,

s0 =
2− (x1 + x4)− 2

󰁳
(1− x1)(1− x4)

x4 − x1

, (7.7)

s1 =
x1 + x4 − 2x1x4 − 2

󰁳
x1x4(1− x1)(1− x4)

x4 − x1

, (7.8)

with similar definitions for s2 and s3 using y1, y4 instead of x1, x4, where the xi and yi
are defined by the zeros of the discriminant of the kernel as in Section 2 (see [13, 5] for
details). Using this parametrization, we have [12, 2.3]

x

󰀕
1

s

󰀖
= x(s), y

󰀓q
s

󰀔
= y(s), (7.9)

with q := e2iθ = 1/ρ2. One can deduce that the mappings s 󰀁→ 1
s
, s 󰀁→ q

s
correspond to

the restriction of the group to C, and due to the invariance properties of x(s), y(s) and
ω(x), we see that ω(x(s)) = sπ/θ + s−π/θ + c, for c some some constant. In the following,
seeing as with ω(x), we know that ω(x)− c will also be a suitable conformal mapping for
our purposes, we will assume that ω(x(s)) = sπ/θ − s−π/θ.
Using these parametrizations, one eventually finds that the right-hand side of (7.1) written
in terms of s takes the form

c
󰀃
sπ/θ − s−π/θ

󰀄 Q(s)

s2(s− 1)(s+ 1)(s− q)(s+ q)
=: B(s), (7.10)
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where c ∈ C is a constant and Q(s) is a polynomial of degree 8. Noticing that the mapping
s 󰀁→ s

q
maps X+ to X−, we want to find a function f such that

f(s)− f(s/q) = B(s). (7.11)

Then, one would only need to find a way to write f(s) – which must inherit the invariance
property f(s) = f(1/s) from x(s) – to a function of the form F (x(s)), and we would have
our decoupling function.

Rewriting the boundary value problem

The following computations were originally done in [28]. Writing

H(x, y) = P (ω(x))−P (ω(X+))
K(x,y)

we have, using L’Hôpital’s rule,

X+yH(X+, y)−X−yH(X−, y)

=
yX+(y)ω

′(X+(y))

ã(y) [X+(y)−X−(y)]
P ′(ω(X+(y)))−

yX−(y)ω
′(X+(y))

ã(y) [X−(y)−X+(y)]
P ′(ω−(y))), (7.12)

where ã(y) is defined as in Section 2. As ω(X+(y)) = ω(X−(y)), it therefore suffices to
find a decoupling function F (x) such that

F (X+)− F (X−) =
yX+(y)ω

′(X+(y))

ã(y) [X+(y)−X−(y)]
− yX−(y)ω

′(X−(y))

ã(y) [X−(y)−X+(y)]
. (7.13)

Using the parametrization, we have X+(y) = x(s), X−(y) = x(q/s). (7.13) thus becomes

f(x(s))− f(x(q/s)) =
y(s)x(s)ω′(x(s))

ã(y(s)) [x(s)− x(q/s)]
− y(s)x(s)ω′(x(q/s))

ã(y(s)) [x(q/s)− x(s)]
. (7.14)

In order to simplify the right-hand side of (7.14), the main idea is to utilize the fact that
ω(x(s)) = sπ/θ + s−π/θ, thus

ω′(x(s))x′(s) =
π

θ

1

s

󰀃
sπ/θ − s−π/θ

󰀄
. (7.15)

We therefore rewrite

y(s)x(s)ω′(x(s))

ã(y(s)) [x(s)− x(q/s)]
=

y(s)

ã(y(s)) [x(s)− x(q/s)]󰁿 󰁾󰁽 󰂀
:=T1(s)

x(s)

x′(s)󰁿 󰁾󰁽 󰂀
:=T2(s)

ω′(x(s))x′(s)󰁿 󰁾󰁽 󰂀
:=T3(s)

. (7.16)

By utilizing the fact that

T1(s) =
y(s)

ã(y(s)) [x(s)− x(q/s)]
=

y(s)

D̃(y(s))
, (7.17)
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with D̃ the determinant from Section 2, after some computations one obtains that, for
some constant c1,

T1(s) = c1
(ρs3s− 1)(ρs− s3)(ρs2s− 1)(ρs− s2)

s(ρs− 1)(ρs+ 1)
. (7.18)

Similarly, we have

T2(s) = c2
(s0s− 1)(s− s0)(s1s− 1)(s− s1)

(s+ 1)(s− 1)
(7.19)

for some constant c3
4. We can therefore, after again some short computations, rewrite

y(s)x(s)ω′(x(s))

ã(y(s)) [x(s)− x(q/s)]
− y(s)x(s)ω′(x(q/s))

ã(y(s)) [x(q/s)− x(s)]

=
y(s)

ã(y(s)) [x(s)− x(q/s)]

π

θ

1

s

󰀃
sπ/θ − s−π/θ

󰀄󰀕 x(s)

x′(s)
− s2

q

x(q/s)

x′(q/s)

󰀖
. (7.20)

After simplifying the last factor, we end up with

y(s)x(s)ω′(x(s))

ã(y(s)) [x(s)− x(q/s)]
− y(s)x(s)ω′(x(q/s))

ã(y(s)) [x(q/s)− x(s)]

= c
󰀓
sπ/θ − s−π/θ

󰀔 (ρs3s− 1)(ρs− s3)(ρs2s− 1)(ρs− s2)(s− s4)(s− q/s4)(s− s5)(s− q/s5)

s2(s+ 1)(s− 1)(s− q)(s+ q)
, (7.21)

where c, s4, s5 are constants.

7.2 The ansatz

The guessing method used by the authors of [6] is to search for a f(s) of the form

f(s) = c
󰀃
sπ/θ − s−π/θ

󰀄 spR(s)

s− s−1
, (7.22)

where p is some constant and R(s) rational. Utilizing (7.21) and the fact that (due to the
invariance property of x(s)) we must have f(s) = f (1/s), it turns out that this already
implies p = −3, and that R(s) must be a reciprocal polynomial of degree 65. From here,
one can simply write R(s) = (s− z1)(s− 1

z1
) . . . (s− 1

z3
), and check to see if it is possible

to find z1, z2, z3 such that (7.11) holds. After some more calculations one finds that we
want to solve

(s− q)(s+ q)R(s)− s6q−2(s− 1)(s+ 1)R (q/s) =

c(ρs3s− 1)(ρs− s3)(ρs2s− 1)(ρs− s2)(s− s4)(s− q/s4)(s− s5)(s− q/s5) (7.23)

4This is the only part where our assumption y4 ∕= ∞ comes into play; if y4 = ∞ we find that the
denominator of T1(s) stays the same while the numerator is quadratic.

5In the case y4 = ∞, one finds p = −1 and R(s) of degree 2.
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for some constant c. In (7.10), everything except for s±π/θ is rational in s, and sπ/θ is
invariant under s 󰀁→ s/q (by definition, we have qπ/θ = e2iθ·π/θ = 1). Therefore it is not
very surprising that we can, in a sense, leave the invariant factor

󰀃
sπ/θ − s−π/θ

󰀄
alone and

find a decoupling function for the remaining part only. This is formalized by the following
lemma.

Lemma 25. Let t := sπ/θ, and let f1 ∈ C(s, t) such that f1 ∈ C(s, t) is a decoupling
function of b(s) = R(s)h(t). Then we can find f ∈ C(s) such that f is a decoupling
function of R(s).

Proof. Let τ be the automorphism s 󰀁→ s/q, which by definition of q leaves t invariant.
We have two cases here, depending on whether or not π/θ is rational or not, i.e. if there
is some algebraic relation between s and t.

1. π/θ /∈ Q:
In this case, as we are always working with rational functions, we can utilize the
fact that s and t are algebraically independent. By invariance of t under τ , we can
thus write

f1(τs, t)

h(t)
− f1(s, t)

h(t)
= R(s). (7.24)

Due to the independence of s and t we can treat the right-hand side, viewed as a
rational function coefficients in C(s), like a constant function in t.

Now let f2(s, t) := f1(s,t)
h(t)

= u(s,t)
v(s,t)

, with u, v ∈ C(s)[t]. We factor u, v into their

irreducible components (ui), (vi) over C(s). Any ui, vi which lies in C[t] must cancel,
because else it would be a factor of the entire left-hand side and thus of R(s), a
contradiction. Thus we can assume that all ui, vi lie in C(s)[t] \ C[t].
Suppose there is an i, which we can assume to be 1, such that degt(vi) > 0. Then,
as the resulting pole must cancel, we know there is a j, let us say j = 2, such
that v2(s, t) = v1(τ(s), t). Proceeding inductively, we can construct a sequence (vi)
such that v1(τ

n−1(s), t) = vn(s, t). But as τn ∕= id for all n ∈ N since q /∈ Q, this
procedure will never stop, i.e. we would need to have an infinite number of factors
vi, which is impossible. Therefore, we know that v(s, t) = v(s) ∈ C(s); and by
looking at the degree of the left-hand side of (7.24), therefore u(s, t) = u(s) ∈ C(s)
as well. Hence, f2 = f1

h
∈ C(s), and therefore it is a valid decoupling function of

R(s).

2. π/θ ∈ Q:
Let π/θ = m

n
, with m,n ∈ N, (m,n) = 1. While before we could simply consider the

irreducible factors of numerator and denominator of f2, this is not now so simple

anymore, as the algebraic structure of F := Quot
󰀓
C[s, t]

󰀱
〈sm − tn〉

󰀔
is not as

obvious. It would, for instance, not immediately make sense to talk about the
degree of an expression. Therefore, we need to work around this issue. We know
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that gcd(m,n) = 1, and thus there are a, b such that am + bn = 1. Now consider
the mapping6

φ : C(T ) → F : T 󰀁→ sbta. (7.25)

One can check that an inverse map φ−1 is given by (s, t) 󰀁→ (T n, Tm), and that φ
is in fact an isomorphism. Our automorphism τ can now be carried over to C(T )
thus we obtain an automorphism σ := φ−1 ◦ τ . As τ and φ both fix C, so does σ.
Therefore, we know that σ is of the form

σ : T 󰀁→ c1T + c2
d2T + d2

(7.26)

for some c1, c2, d1, d2. From this, one obtains that σ(T ) = ζT , where ζn = q, ζm = 1,
which means ζ = exp

󰀃
2iπ 1

m

󰀄
.

Translating the decoupling property (7.24) to T , we now have, with f3 = φ−1 ◦ f2

f3(σT )− f3(T ) = R1(T ). (7.27)

By Hilbert’s Thm. 90 [13, 4.6.5] such a f3 can exist if and only if Trσ R1 = 0, that
is, if

m󰁛

k=1

R1(ζ
kT ) = 0. (7.28)

But using that R1(T ) := φ−1 (R(s)) = R(T n) and that ζn = q, we have

Trσ R1 =
m󰁛

k=1

R
󰀃
ζknT n

󰀄
=

m󰁛

k=1

R
󰀃
φ−1(qks)

󰀄
= φ−1

󰀥
m󰁛

k=1

R(qks)

󰀦
= φ−1 (Trτ R) .

(7.29)

As φ leaves C fixed, we therefore know that Trσ R1 = 0 ⇔ Trτ R = 0, and thus a
decoupling of R1(T ) is possible if and only if a decoupling of R(s) is possible.

Proposition 26. If the function f(x(s)) as in (7.14) has a decoupling function in
C
󰀃
s, sπ/θ

󰀄
, then we can find it using an ansatz as in (7.22).

Proof. Using the computations from the previous section, in particular (7.15), we see
that we can write b(s) := f(x(s)) in the form R(s)h(t), with t := sπ/θ as in Lemma 25.
Assuming that b(s) has a decoupling function in C

󰀃
s, sπ/θ

󰀄
, it follows by the same lemma

that we can then find a decoupling function of R(s) in C(s). But finding such a decoupling
function is, after our previous computations, equivalent to solving (7.23), i.e. to the ansatz
working out.

6This is merely a formalisation of the basic idea of adjoining a simple element T such that Tn = s, Tm =
t, which serves the role of an n-th root of s.

the electronic journal of combinatorics 31(3) (2024), #P3.18 42



Remarks:

• The above allows to show for concrete models with infinite group that a decoupling
function in C (x, y,ω(x),ω(y)) cannot exist. However, it is not obvious how to show
that an infinite group implies that there is no decoupling function. In particular,
it is not at all clear how the group (as defined in Section 6, i.e. the birational
transformations) being finite can be grasped in terms of the parametrization, where
all that is left is the restriction of the group to the curve C. Section 8 will contain
some examples where the restriction of the group, but not the group itself is finite.

• While it would be natural to assume that any decoupling function would be in
C
󰀃
s, sπ/θ

󰀄
, this is not always the case. We will see an example for this in Ex-

ample 8.4, where the ansatz will not work but we will construct a (non-algebraic)
decoupling function. This might also be tied to the appearance of logarithms in the
asymptotics of some models with infinite group [11]. In the setting of Section 6,
however, one checks immediately by (6.5) that if ever the group is finite, then the
resulting decoupling functions will be rational in s and sπ/θ.

• While this kind of ansatz seems useful to either compute decoupling functions in
concrete examples or show that they don’t exist, it may be difficult to use it to
obtain a general criterion for models which allow for such a function: though this is
not formally proven, it appears that such a function exists precisely for the models
with finite group (in particular, the existence is shown in Thm. 20). When utilizing
the parametrization, however, one loses information about the group: one knows
only if the group is finite on the kernel curve, which is not equivalent to it being
finite in general and not sufficient for a decoupling function to exist. For an example
of this, see Section 8.

7.2.1 Example: a decoupling function for the tandem walk using the ansatz

Recall that the tandem walk was defined by the step set S = {↖,→, ↓} with weight 1
3

each. We had K(x, y) = xy− 1
3
(x2 + y + xy2), from which we obtain x1 = 0, x4 = 4, y0 =

1
4
, y4 = ∞, and thus s0 = −1

2
(1+ i

√
3), s1 = 1, s2 = −1, s3 =

1
2
(1− i

√
3). Furthermore, we

have π/θ = 3, and thus q := e2iθ = −1
2
(1− i

√
3) as well as ρ := e−iθ = 1

2
(1−

√
3) = −q.

This leads to

x(s) =
(s− 1)2

1 + s+ s2
, y(s) =

−1
2
(1− i

√
3)s2 − 1

2
(1 + i

√
3)s+ 1

󰀃
s+ 1

2
(1 + i

√
3
󰀄2 . (7.30)

After some computations, we see that the right-hand side of (7.23) takes the form

1/6i(s− 1)3(2
√
3 + (

√
3 + 3i)s)(1 + s+ s2)2. (7.31)

Letting R(s) = (1− z1)(1− z2)(1− z3)(1−1/z1)(1−1/z2)(1−1/z3) and solving (7.23) for
z1, z2, z3 yields multiple solutions, for instance c = −1

3
, z1 = 1, z2 = i, z3 = −1

2
(1 + i

√
3).
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This particular one leads to

f(s) := c
󰀃
s3 − s−3

󰀄 R(s)

s4 − s2

=
1− s+ 2s2 − 3s3 + 3s4 − 4s5 + 3s6 − 3s7 + 2s8 − s9 + s10

3s5
. (7.32)

To transform this back into a function of x, we utilize the fact that

1

1− x(s)
=

1 + s+ s2

3s
. (7.33)

Making an ansatz of f(s) = a0 + a1
1

1−x(s)
+ · · · + a5

1
(1−x(s))5

gives a0 = a1 = 0, a2 =
−18, a3 = 99, a4 = −162, a5 = 81. Putting this together, we finally obtain the decoupling
function

f(x) =
9x(2 + 5x+ 2x2)

(1− x)5
. (7.34)

Note that this decoupling function is different from the one computed in Example 6.1.1,
where we obtained F (x) = − 81x3

4(1−x)5
.

7.2.2 Example: trying to decouple a model with infinite group

Consider the model with the step set

p1,0 = p0,1 = 0, (7.35)

p1,1 = 1/4, (7.36)

p1,−1 = p0,−1 = p−1,0 = p−1,1 = 1/6, (7.37)

p−1,−1 = 1/12. (7.38)

This model has an infinite group, as can be seen by Thm. 29. We have K(x, y) =
xy− 1

12
(1+2x+2y+2x2+2y2+3x2y2), and can compute x1,4 = y1,4 =

1
6
(±5

√
3− 9). As

π/θ = 2, we have q = −1, ρ = i. After some calculations, one finds that the right-hand
side of (7.23) takes, up to a multiplicative constant, the form

s(
√
2−

√
3 + is)(

√
3 + is)(

√
3 + 3is)(1 + i(

√
2−

√
3)s)(−1 + s2). (7.39)

We can check that solving (7.23) does not give any solutions for z1, z2, z3, thus we cannot
find a decoupling function using the ansatz. In particular, in light of Lemma 25 this
implies that there is no rational (in s) decoupling function. We will, however, see how one
can construct a non-algebraic decoupling function for this model using a contour integral
in Example 8.4.
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8 The special case π/θ = 2

In this section we will consider the special case where θ = π/2 (θ is the angle defined
in Section 2, and can be computed by (2.6)). This is done for two different reasons:
firstly, we will see that in this setting we gain a number of nice properties; in particular
an explicit criterion for the group to be finite (Thm. 29 in Section 8.1), in which case we
the polyharmonic functions can be explicitly computed (Thm. 31 in Section 8.2). On the
other hand, this setting allows us to explicitly compute decoupling functions in the case
of an infinite group with comparably little effort, which are – albeit not rational – still
guaranteed to exist by general theory about complex boundary value problems, see for
example [15, §4],[13, 5.]. This will be done starting from Section 8.3. In particular, we
will see that the resulting functions are not even algebraic anymore (though still D-finite).
The case π/θ = 2 includes a number of standard models, such as the simple walk, the
king’s walk or the diagonal walk. It is characterized by the property

p1,1 + p−1,−1 = p1,−1 + p−1,1, (8.1)

that is, the sums of the weights of the two diagonals are the same. This is a direct
consequence of (2.6). Also note that that the function f(i, j) = (i + 1)(j + 1) satisfies
△f(i, j) = 0 in this case, which corresponds to the fact that, up to a multiplicative
constant, H1

1 (x, y) =
1

(1−x)2(1−y)2
. This can be checked directly using the definition of the

discrete Laplacian in Sec. (2.1).

8.1 A criterion for the group to be finite

Deciding if the group of a given model is finite is in general not an easy problem, as
can be seen for example by the very computationally heavy approach in [19], or by the
approach in [5] where it was done for unweighted small-step models using a combination
of eigenvalue properties and valuations. While for the standard models with π/θ = 2 like
the simple walk, the diagonal walk or the king’s walk the group is finite, this is not always
the case7. Take for example the model with probabilities

p1,0 = p0,1 = 0, (8.2)

p1,1 = 1/4, (8.3)

p1,−1 = p0,−1 = p0,−1 = p−1,1 = 1/6, (8.4)

p−1,−1 = 1/12. (8.5)

One can check immediately that while we have π/θ = 2 and the restriction of the group
has order 4, the group itself is infinite.
In the case of π/θ = 2 we will show in this section that there is a very intuitive way to
classify the behaviour of the group of a given model: it is finite of order 4 if the model
has either a North-South or an East-West symmetry, else it is infinite. To do so, we will

7The fact that π/θ = 2 ∈ Z guarantees that the restriction of the group on C is finite, see e.g. [12], but
not that it is finite on all of C2.
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first show that the group is of order four precisely if one of these symmetries holds; and
then afterwards show that the group being finite leads directly back to this case. We will
start with a technical lemma in order to shorten later computations.

Lemma 27. Suppose we have a non-degenerate model with small steps, zero drift and
π/θ = 2. If there is an i ∈ {−1, 0, 1} such that p1,i = p−1,i, then we have p1,j = p−1,j for
j ∈ {−1, 0, 1}. Similarly, if there is an i ∈ {−1, 0, 1} such that pi,1 = pi,−1, then we have
pj,1 = pj,−1 for j ∈ {−1, 0, 1}.

Proof. By a direct computation, using (8.1).

This lemma tells us that we have a North-South symmetry in only one of the three possible
ways, then our step set as a whole already has a North-South symmetry. We can now
utilize this in the following

Lemma 28. Suppose we have a model with π/θ = 2. Then, the group is finite of order 4
precisely if the model has either a North-South, or an East-West symmetry.

Proof. Recall the definition of the group G of the model generated by the birational
transformations Φ and Ψ as in (6.3): defining

φ(x, y) := x−1 c̃(y)

ã(y)
, (8.6)

ψ(x, y) := y−1 c(x)

a(x)
, (8.7)

with a(x), c(x), ã(y), c̃(y) defined as in Section 2, we have

Φ(x, y) = (φ(x, y), y) , (8.8)

Ψ(x, y) = (x,ψ(x, y)) . (8.9)

The group being of order four is equivalent to (Φ ◦Ψ)2 = Id, which in turn is the same
as Φ ◦Ψ = Ψ ◦ Φ, due to the fact that both Ψ and Φ are involutions. By the above, this
simplifies to

(Φ ◦Ψ) (x, y) =

󰀳

󰁃x−1
c̃
󰀓

c(x)
a(x)

y−1
󰀔

ã
󰀓

c(x)
a(x)

y−1
󰀔 , c(x)

a(x)
y−1

󰀴

󰁄

=

󰀳

󰁃 c̃(y)

ã(y)
x−1, y−1

c
󰀓

c̃(y)
ã(y)

x−1
󰀔

a
󰀓

c̃(x)
ã(y)

x−1
󰀔

󰀴

󰁄 = (Ψ ◦ Φ) (x, y). (8.10)

First, consider the first entries of the middle terms of (8.10). For them to be equal, we
need

c̃(y)

ã(y)
=

c̃
󰀓

c(x)
a(x)

y−1
󰀔

ã
󰀓

c(x)
a(x)

y−1
󰀔 . (8.11)
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If c(x) is a multiple of a(x), then by the zero drift condition we know that c(x) = a(x)

and (8.11) trivially holds. Otherwise, the expression c(x)
a(x)

will be, for fixed y, a nonconstant
rational function in x.
Similarly, if c̃(y) is a multiple of ã(y), then (8.11) holds. If not, then c̃(y)

ã(y)
is a nonconstant

rational function in y.
If we have neither a(x) = c(x) nor ã(y) = c̃(y), then for any fixed value of y, it follows
that we can obtain infinitely many possible values on the right-hand side of (8.11), which
is impossible seeing as its left-hand side is constant. Consequently, one of these two
equalities must hold.
We can treat the second entries of the middle terms of (8.10) in the same manner, leading
to the same conditions. Correspondingly we know that the group is of order 4 precisely
if a(x) = c(x) or ã(y) = c̃(y), which is the same as saying that the model has either a
North-South or an East-West symmetry.

Theorem 29. Suppose we have a model with π/θ = 2. Then the group is finite of order
4 if the model has a North-South or an East-West symmetry, and it is infinite otherwise.

Proof. Utilizing Lemma 28, all that remains to show is that in our setting any group that
is finite must be of order 4. To see this, define δ̃, ε̃, δ, ε ∈ R̄ such that

c(x)

a(x)

x→∞→ δ,
c(x)

a(x)

x→0→ ε, (8.12)

c̃(y)

ã(y)

y→∞→ δ̃,
c̃(y)

ã(y)

y→0→ ε̃, (8.13)

where a(x), c(x), ã(y), c̃(y) are defined as in Section 2. Notice that if δ = ε = 0, then
this would imply p1,1 = p−1,1 = 0, in which case by Lemmas 27 and 28 we already know
the group to be finite of order 4. In the same fashion, one sees that if δ = ε = ∞,
δ̃ = ε̃ ∈ {0,∞} then we have a finite group of order 4. In all other cases, we find that,
for sufficiently large values of (x, y), the group behaves like

(x, y) 󰀁→ (δx̄, y) 󰀁→ (δx̄, ε̃ȳ) 󰀁→
󰀓ε
δ
x, ε̃ȳ

󰀔
󰀁→

󰀣
ε

δ
x,

δ̃

ε̃
, y

󰀤
󰀁→ . . . (8.14)

Consequently, for the group to be finite, both ε
δ
, δ̃
ε̃
must be roots of unity. As they are

nonnegative reals, they must therefore be 1. This condition can then be checked to
simplify to p1,1p−1,−1 = p1,−1p−1,1.
We write

0 = p1,1p−1,−1 − p1,−1p−1,1 = p1,1p−1,−1 − p1,−1(p1,1 + p−1,−1 − p1,−1) (8.15)

= (p1,1 − p1,−1)(p−1,−1 − p1,−1), (8.16)

where in (8.15) we made use of (8.1). One can check by a short computation that the
first condition implies a North-South and the second one an East-West symmetry; thus
by Lemma 28 we already know that our group is of order 4.
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8.2 The finite group case

We use the same parametrization of the curve C := {(x, y) ∈ C2
: K(x, y) = 0} as in

Section 7.1,

x(s) =
(s− s1)(s− 1/s1)

(s− s0)(s− 1/s0)
, (8.17)

y(s) =
(ρs− s3)(ρs− 1/s3)

(ρs− s2)(ρs− 1/s2)
, (8.18)

with s0, s1, s2, s3 given by (7.7)–(7.8). Remember the invariance properties x(s) = x (1/s)
and y(s) = (q/s) with q := e2iθ = 1/ρ2, and that the mappings s 󰀁→ 1

s
, s 󰀁→ q

s
correspond

to the restriction of the group to C, and that we have ω(x(s)) = sπ/θ + s−π/θ.
In the case π/θ = 2, the above immediately simplifies to ρ = −i, q = −1. By Thm. 29,
we also know that in this case we have a North-South, or an East-West symmetry. This
gives us some particularly nice properties of these models, and allows us to compute
polyharmonic functions without the use of decoupling functions.

Lemma 30. Suppose we model with π/θ = 2 and finite group. If we have an East-West
symmetry, then there is a constant c such that we can write

ω(x) = c
x

(1− x)2
, (8.19)

and the contour Γ given by X± ([y1, y4]) is the unit circle.
In case of a North-South symmetry, a corresponding statement holds true for y and the
corresponding conformal mapping ω̂ instead.

Proof. (8.19) follows from the parametrization, computing

x(s)

(1− x(s))2
=

a0s
4 + a1s

3 + a2s
2 + a1s+ a0

s2
. (8.20)

It turns out that we have a1 = 0 if s0s1 = 0, which we can check to be true if and only
if we have a North-South symmetry. In this case we can then see that the right-hand
side of (8.20) is a0 (s

2 + s−2) + a2. As we already know that, up to an additive constant,
ω(x(s)) = s2 + s−2, we thus have ω(x) = 1

a0
x

(1−x)2
− a2, and seeing as we pick ω(x) such

that ω(0) = 0, (8.19) follows.
For the statement about the contour, [13, Thm. 5.3.3] tells us that it is a circle if π/θ = 2
(in their notation, r = 0). However, considering that ω(x) must take the same values on
the upper and lower half of the contour Γ by the invariance property ω(X+(y)) = ω(X−(y))
and given (8.19), it follows that this circle must be the unit circle.

Theorem 31. For any model with π/θ = 2, finite group, and East-West symmetry, an
explicit basis of polyharmonic functions is given by

Hk
n(x, y) =

yn−1

(1− x)2(1− y)2n

󰀥
k−1󰁛

j=0

sn(j)ω (X+)
j ω(x)k−1−j

󰀦
, (8.21)
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where the functions sl : N → N are defined inductively via s1(j) = 1, sl+1(j) =
󰁓j

i=0 sl(i).
In particular, this basis has the form

Hk
n(x, y) =

pn,k(x, y)

(1− x)2k(1− y)2(n+k−1)
, (8.22)

where the pn,k(x, y) are polynomials.
In case of a North-South symmetry, the statement holds with x and y reversed.

Proof. As multiplicative constants can safely be ignored for the construction of a basis,
in the following, we will write A(x, y) ≍ B(x, y) if A(x, y) = cB(x, y) for some constant
c ∕= 0.
To illustrate the idea, let us start by computing H1

n(x, y). We already know that a
harmonic function is given by

H1
1 (x, y) =

1

(1− x)2(1− y)2
. (8.23)

Since the group is finite, by Lemma 30 we can rewrite

xyH1
1 (x, y) ≍ xy

ω(x)− ω(X+)

K(x, y)
≍ ω(x)ω(y). (8.24)

As ω(X+) = ω(X−), we do not need a decoupling function and can instead continue via

H1
2 (x, y) =

xyH1
1 (x, y)−X+yH

1
1 (X+, y)

K(x, y)
(8.25)

≍ 1

K(x, y)
[ω(x)ω(y)− ω(X+)ω(y)] (8.26)

= ω(y)
ω(x)− ω(X+)

K(x, y)󰁿 󰁾󰁽 󰂀
≍H1

1 (x,y)

. (8.27)

We can now proceed inductively, noticing that in each step we only gain a factor of ω(y),
and thus obtain

H1
n(x, y) ≍ ω(y)n−1H1

1 (x, y) (8.28)

=
yn−1

(1− x)2(1− y)2n
, (8.29)

which is, due to Lemma 30, nothing but (8.21) for k = 1.
In the case where k 󰃍 2 In the case where k 󰃍 2, the idea is exactly the same, but the
execution is slightly more involved algebraically as we need to do some factoring. So let
us proceed by induction.
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For n = 1, we have

Hk
1 (x, y) =

ω(x)k − ω(X+)
k

K(x, y)
(8.30)

=
ω(x)− ω(X+)

K(x, y)󰁿 󰁾󰁽 󰂀
≍H1

1 (x,y)

󰀅
ω(x)k−1 + · · ·+ ω(X+)

k−1
󰀆

(8.31)

≍ 1

(1− x)2(1− y)2
󰀅
ω(x)k−1 + · · ·+ ω(X+)

k−1
󰀆
, (8.32)

which is the same as (8.21), since s1(i) = 1 for all i.
Now let us fix k and assume that (8.21) holds for some n. This allows us to write

xyHk
n(x, y) ≍ ω(x)ω(y)n

k−1󰁛

j=0

sn(j)ω(X+)
jω(x)k−1−j. (8.33)

We then have

Hk
n+1 =

xyHk
n(x, y) +X+yH

k
n(X+, y)

K(x, y)
(8.34)

≍ ω(y)n

󰁫
ω(x)

󰁓k−1
j=0 sn(j)ω(X+)

jω(x)k−1−j
󰁬
− ω(X+)

n
󰁓k−1

j=0 sn(j)

K(x, y)
. (8.35)

One can now factor the numerator, using the algebraic identity

a

󰀥
k−1󰁛

j=0

cja
k−1−jbj

󰀦
− bk

k−1󰁛

j=0

cj = (a− b)
k−1󰁛

j=0

󰀣
j󰁛

i=0

ci

󰀤
ak−1−jbj, (8.36)

which holds true for any a, b and sequences c0, . . . , ck−1 and can be checked via a direct
computation. Applying this for a = ω(x), b = ω (X+), and cj = sn(j) yields

Hk
n+1(x, y) ≍ ω(y)n

ω(x)− ω(X+)

K(x, y)󰁿 󰁾󰁽 󰂀
≍H1

1 (x,y)

k−1󰁛

j=0

󰀣
j󰁛

i=0

sn(i)

󰀤

󰁿 󰁾󰁽 󰂀
=sn+1(j)

ω(x)k−1−jω(X+)
j. (8.37)

Since ω(y) ≍ y
(1−y)2

and H1
1 (x, y) ≍ 1

(1−x)2(1−y)2
, this is precisely (8.21) for n+ 1.

Finally, by counting the order of the poles at x = 1 and y = 1 respectively, one ob-
tains (8.22).

8.3 The infinite group case

In the case of an infinite group, the approach as in the previous section clearly does not
work, as it was dependent on the fact that we could write, up to multiplicative constants,
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xyH1
1 (x, y) = xy

(1−x)2(1−y)2
= ω(x)ω(y). For this, in the finite group case we utilized the

special shape of ω given by Lemma 30, which is now unavailable. Neither can we use
(6.5) to find a decoupling function and simplify our boundary value problem. However,
general theory of these boundary value problems as in [15] still tells us that a decoupling
function should exist, and there are methods to find them. It is therefore only natural to
try and see what happens if we want to apply them here. Unfortunately, it will turn out
that even in this simple case π/θ = 2, the resulting functions are rather unwieldy, and
will in general not even be algebraic anymore.

Suppose from now on that we have an arbitrary non-singular model with small steps, zero
drift and π/θ = 2. We already know that H1

1 (x, y) =
1

(x−1)2(y−1)2
is a harmonic function

for such model, and what we want to do is to compute a biharmonic function of H1
1 (x, y).

Now let

Y±(x) =
−b(x)∓

󰁳
b(x)2 − 4a(x)c(x)

2a(x)
, (8.38)

as in Section 2, and consider the contour Γ given by X±[y1, 1]. By [13, Lemma 6.5.1], we
know that Γ is a circle, symmetric with respect to the real axis, which it intersects at 1
and at some point −1 < p. We let c, d be the center and radius of Γ respectively. Let,
again as in Section 2, P be the (finite) domain bounded by Γ. Via

r : C → C̄ : z 󰀁→ d2

z − c
+ c, (8.39)

we can define a rational mapping r such that

1. r is an involution,

2. r maps the interior P◦ to the exterior Pc and vice versa,

3. r corresponds to complex conjugation on Γ itself.

The existence of this rational mapping is the main reason why the following computation
turns out to be comparatively simple; if π/θ were not 2, then Γ would not be a circle and
things would end up being more complicated.
Now define

L(x) := xY+(x)H1(x, Y+(x))− r(x)Y+(x)H1(r(x), Y+(x)). (8.40)

L(x) describes the value of xyH1
1 (x, y)−X+yH

1
1 (X+, y) on Γ: we substitute Y+(x) for y

to be on Γ in the first place, and complex conjugation corresponds to switching from one
solution of K(x, Y+(x)) = 0 to the other, thus we have K(x, Y+(x)) = K(r(x), Y+(x)) = 0.
It is also the expression we want to find a decoupling function of; our goal is to find a Υ,
which is analytic inside P \ {1}, such that

Υ(x)−Υ(r(x)) = L(x), ∀x ∈ Γ. (8.41)
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Lemma 32. We have

αL(x) =
[(−1 + 2d+ x)]

󰁫
p2(x) +

󰁳
b(x)2 − 4a(x)c(x)

󰁬

(x− 1)3
(8.42)

for some non-zero constant α and a polynomial p2(x) of degree at most 2.

Proof. We make use of the expression for H1(x, y), and rewrite (8.40) as

βL(x) =

󰀗
x

(x− 1)2
− r(x)

(r(x)− 1)2

󰀘
Y+

(Y+ − 1)2
(8.43)

=
(d− 1)(−1 + 2d+ x)

d2(x− 1)

Y+

(Y+ − 1)2
, (8.44)

where β is some non-zero multiplicative constant we can ignore in the following. Note
here that the factor (−1 + 2d+ x) has a zero at x = 1− 2d = p (where p was defined to
be the second intersection, other than 1, of Γ with the real axis), which will be important
later on. In order to simplify Y+

(Y+−1)2
, seeing as a(x) + b(x) + c(x) = K(x, 1) = ρ1(x− 1)2

and b(x)2 − 4a(x)c(x) = (x− 1)2p̃(x) for a constant ρ1 and a quadratic polynomial p̃(x),
we can check that the following identities hold, which will be useful to us:

a(1) = c(1) (8.45)

a(1) + b(1) + c(1) = K(1, 1) = 0, (8.46)

a′(1) + b′(1) + c′(1) =
∂

∂x
K(x, 1)

󰀏󰀏󰀏󰀏
x=1

, (8.47)

∂

∂x
b(x)2 − 4a(x)c(x)

󰀏󰀏󰀏󰀏
x=1

=
∂

∂x
△(x)

󰀏󰀏󰀏󰀏
x=1

= 0. (8.48)

A direct simplification yields

Y+

(Y+ − 1)2
=

󰁫
−b(x) +

󰁳
b(x)2 − 4a(x)c(x)

󰁬 󰁫
2a(x) + b(x) +

󰁳
b(x)2 − 4a(x)c(x)

󰁬2

8 [a(x) + b(x) + c(x)]2

(8.49)

=

󰁫
−b(x) +

󰁳
b(x)2 − 4a(x)c(x)

󰁬 󰁫
2a(x) + b(x) +

󰁳
b(x)2 − 4a(x)c(x)

󰁬2

8ρ21a(x)(x− 1)4
.

(8.50)

In order to simplify the numerator, we write

󰁫
−b(x) +

󰁳
b(x)2 − 4a(x)c(x)

󰁬 󰁫
2a(x) + b(x) +

󰁳
b(x)2 − 4a(x)c(x)

󰁬2
(8.51)

=− 4a(x) [a(x)b(x) + 4a(x)c(x) + b(x)c(x)] + a(x)(a(x)− c(x))
󰁳

b(x)2 − 4a(x)c(x).
(8.52)
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Note that the factor a(x) − c(x) in front of the square root vanishes if and only if our
walk has a North-South symmetry8, which is why everything stays rational in the finite
group case.
We want to show that the first summand contains a factor of (x−1)2. To do so, we notice
that for s1 := a(x)b(x) + 4a(x)c(x) + a(x)b(x), we have

s1(1) =a(1)b(1) + 4a(1)c(1) + b(1)c(1) (8.53)

(8.45)
= 2a(1) [a(1) + b(1) + c(1)] (8.54)

(8.46)
= 0, (8.55)

as well as

s′1(1) = a′(1)b(1) + b′(1)a(1) + 4a′(1)c(1) + 4a(1)c′(1) + b′(1)c(1) + b(1)c′(1) (8.56)

= b(1) [a′(1) + c′(1)] + b′(1) [a(1) + c(1)] + 4 [a′(1)c(1) + a(1)c′(1)] (8.57)

(8.47)
= −b(1)b′(1)− b′(1)b(1) + 4 [a′(1)c(1) + a(1)c′(1)] (8.58)

(8.48)
= 0. (8.59)

Thus, −4s1(x) = (x − 1)2p1(x) for some polynomial p1(x) of degree at most 2. Next,in
order to treat the second summand of (8.52), we want to show that a(x)−c(x) = ρ(x−1)2

for some constant ρ. We already know due to (8.45)) that a(1) − c(1) = 0. To see that
a′(1) − c′(1) = 0 as well, let a(x) = a0 + a1x + a2x

2, c(x) = c0 + c1x + c2x
2 (that is,

a0/1/2 = p−1/0/1,1, c0/1/2 = p−1/0/1,−1). The expression a′(1) − c′(1) thus simplifies to
2a2+ a1− 2c2− c1. Utilizing that, as π/θ = 2, we have a2+ c0 = c2+ a0, we can write the
latter as 2(a2−c2)+a1−c1 = a2−c2+a0−c0+a1−c1 = (a2+a1+a0)−(c2+c1+c0) = 0,
since we have zero drift. Therefore, we know that a(1) − c(1) = a′(1) − c′(1) = 0, and
therefore a(x)−c(x) = ρ(x−1)2 (note that a(x)−c(x) is quadratic in x). Thus we obtain

Y+

(Y+ − 1)2
=

󰁫
−b(x) +

󰁳
b(x)2 − 4a(x)c(x)

󰁬 󰁫
2a(x) + b(x) +

󰁳
b(x)2 − 4a(x)c(x)

󰁬2

8ρ21(x− 1)4

(8.60)

=
p2(x)(x− 1)2 + (x− 1)2

󰁳
b(x)2 − 4a(x)c(x)

ρ3(x− 1)4
(8.61)

=
p2(x) +

󰁳
b(x)2 − 4a(x)c(x)

ρ3(x− 1)2
. (8.62)

Substituting this into (8.44) yields the statement.

8In particular, had we picked a model with East-West, but no North-South symmetry here, then the
computation here is much more complicated than necessary – we could just have swapped the roles of
x and y, done the same calculations and at this point ended up with a purely rational expression.
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We now define

L1(x) :=
(−1 + 2d+ x)p2(x)

(x− 1)3
, (8.63)

L2(x) :=
(−1 + 2d+ x)

󰁳
b(x)2 − 4a(x)c(x)

(x− 1)3
=

(−1 + 2d+ x)
󰁳
−(x− x1)(x− x4)

(x− 1)2
. (8.64)

By construction, we have [L1(x) + L2(x)] = αL(x).
We would now like to proceed by computing decoupling functions of L1, L2 separately.
For decoupling functions of L1,2(x) to exist, we must have L1,2(x) + L1,2(r(x)) = 0 for
x ∈ Γ, due to (8.41). Note that L(x) satisfies this condition by construction.
The first question to ask here is in which way we define the square root. This depends
on the sign of (x − x1)(x − x4); in order to utilize our methods later we will want the
expression L2(x) to be continuous on the contour Γ. Due to [13, Thm. 5.3.3], we know
that x1 ∈ P, x4 ∈ Pc. We select the branch cut such that the root singularity on Γ
is canceled out by the factor (−1 + 2d + x) = (x − p), for p the left intersection of Γ
with the real axis, i.e. we need to select the branch cut along the axis with the sign of
−(p− x1)(p− x4).
In both cases, there is a section of the contour Γ which lies on the side of the branch cut.
Therefore, on this section Γ′ of the contour we have

󰁳
−(x̄− x1)(x̄− x4) = −

󰁳
−(x− x1)(x− x4).

This implies that, on Γ′,

L(x) + L(r(x)) = L1(x) + L1(x) + L2(x) + L2(x) = L1(x) + L1(x)󰁿 󰁾󰁽 󰂀
∈R

+L2(x)− L2(x)󰁿 󰁾󰁽 󰂀
∈C

= 0.

(8.65)

Consequently, we know that L1(x) + L1(r(x)) must be 0 on Γ′, and as it is a rational
function it must thus be 0 everywhere. The same goes for L2(x) + L2(r(x)). This means
that finding a decoupling function of L(x) can be done in two parts:

1. We find a decoupling function of the rational function L1(x),

2. We find a decoupling function of the non-rational function L2(x).

Decoupling of the (rational) L1

As we already know that L1(x)+L1(r(x)) = 0, this turns out to be rather straightforward:
we have

L1(x) =
1

2
[L1(x)− L1(r(x))] , (8.66)

which already gives us a rational decoupling function. One arguably gets a somewhat
nicer form by utilizing an ansatz of the form

L1(x) = α3

󰀗
1

(x− 1)3
− 1

(r(x)− 1)3

󰀘
+ α1

󰀗
1

x− 1
− 1

r(x)− 1

󰀘
, (8.67)

as will be done for Example 8.4.
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Decoupling of the (irrational) L2

Note that the previous approach is problematic here, as the resulting function would have
singularities at x = x1 and x = x4, which might be inside of P. Thus we compute a
decoupling function via a contour integral, which is also the standard approach given the
theory of complex boundary value problems. To utilize the theory as in e.g. [15], we need
a function which is continuous on Γ. This is not the case for L2, due to its pole at x = 1.
However, this can easily be remedied by considering instead of L2 the function

L3(x) := (x− 1)(r(x)− 1)L2(x) = −d
(−1 + 2d+ x)

󰁳
−(x− x1)(x− x4)

x− (1− d)
. (8.68)

If we find a decoupling function Υ3(x) of L3, then Υ2(x) :=
Υ(x)3

(x−1)(r(x)−1)
will be a decou-

pling function of L2, as the denominator is invariant under x 󰀁→ r(x). However, due to
[15] we already know that such a Υ3 exists, seeing as L3(x) is continuous and bounded
on Γ (though not analytic near x = p, but this does not matter for us).
Since general theory guarantees us the existence of a Υ3, analytic in P◦, which decouples
L3, we can utilise the same trick as in [12]: we write the decoupling property, select a
t ∈ P◦, divide by (x− t) and integrate over Γ with respect to x. The resulting equation
then reads

󰁝

Γ

Υ3(x)

x− t
dx−

󰁝

Γ

Υ3(r(x))

x− t
dx =

󰁝

Γ

L3(x)

x− t
dx. (8.69)

The leftmost term is, by Cauchy’s integral formula, nothing but 2πiΥ3(t), and the right-
most term can be computed. The question is what to do with the middle term. We notice
that r(x) is an involution, sending Γ to itself (only changing the direction along which Γ
is traversed), and that r′(x) = − d2

(x−c)2
. Letting now x = r(y), this integral can be written

as
󰁝

Γ

Υ3(r(x))

x− t
dx = d2

󰁝

Γ

Υ3(y)

r(y)− t

1

(y − c)2
dy (8.70)

= d2
󰁝

Γ

Υ3(y)

(r(y)− t)(y − c)

1

y − c
dy (8.71)

= d2
󰁝

Γ

Υ3(y)

d2 + (c− t)(y − c)

1

y − c
dy. (8.72)

From (8.70), we see that the only possible pole of the integrand is at y = c (since t ∈ P◦),
and from (8.72) it follows that this is a simple pole. We can therefore, again by Cauchy,
write

󰁝

Γ

Υ3(r(x))

x− t
dx = 2πiΥ(c). (8.73)

Overall, we therefore get

Υ3(t)−Υ3(c) =
1

2πi

󰁝

Γ

L3(x)

x− t
dx. (8.74)
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Noticing that with Υ3 any translation Υ3 + const is also a solution for any constant, we
can without loss of generality assume that Υ3(c) = 0, and obtain

Υ3(t) =
1

2πi

󰁝

Γ

L3(x)

x− t
dx. (8.75)

Remark: We can, unfortunately, not apply calculus of residues to the integral on the
right-hand side of (8.69), since it is not analytic on the branch cut. We will take a closer
look at this integral in the following section.

8.3.1 Asymptotics of Υ3(t)

The goal of this section is to compute the asymptotics of [tn]Υ3(t)
9, which will serve

to show that Υ3(t) cannot be an algebraic function. To do so, by standard methods
about power series as presented for example in [14], we need to know the location of the
singularity of Υ3(t) closest to the origin.
Remember that the contour Γ is a circle in C, going through Γ and intersecting the real
axis at a second point p. For the asymptotics, we need a bit more information about the
exact location of p.

Lemma 33. Let p be the left intersection of the circle X [y1, 1] with the real axis. We
have

|p| > 1 if p1,1 > p1,−1,
|p| < 1 if p1,1 < p1,−1,
|p| = 1 if p1,1 = p1,−1.

Proof. Let us parametrize the contour and consider the absolute value of X+(t)X−(t), t
close to 1. Note again that we have

f(t) := |X+(t)|2 = X+(t)X−(t) = 2
c(t)

a(t)
. (8.76)

As we have zero drift and thus X+(1) = X−(1) = 0, we see that f ′(1) = 0. Now all that
remains to do is to check whether at this point we have a local minimum or maximum; i.e.
whether we have f ′′(1) > 0 or f ′′(1) < 0 respectively. Therefore, we can use the explicit
forms of a(x), b(x), and in the end we obtain (using, again, that r = 0)

f ′′(1) = −4
p1,−1 − p−1,−1

p−1,1 + p−1,0 + p−1,−1

. (8.77)

Since the denominator is certainly > 0, and since (again, due to the drift being zero) we
have p1,−1 − p−1,−1 = p1,1 − p−1,1, the statement follows.
Note lastly that if we have equality, i.e. p1,1 = p−1,1, then we already know that we have
an East-West symmetry, and that in this case the contour will be the unit circle.

9Here, [tn] is the linear operator extracting the n-th coefficient of a power series around 0.
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In the case |p| = 1, there is no need for all these computations, as the group is finite
by Lemma 27 and Thm. 29, and we can directly compute all polyharmonic functions.
If |p| > 1, the singularity of Υ3 closest to 0 (and thus the one determining asymptotic
behaviour) is at x = 1. In the case |p| < 1, however, Υ will have exponential growth with
base 1

p
. We will now compute the exact shape of the resulting terms in this case.

Lemma 34. Let d be the radius of the circle X[y1, 1], c its center and p its left intersection
with the real axis. We then have

d =
(1− x1)(1− x4)

2− x1 − x4

, (8.78)

or, equivalently,

p− c(x1 + x4) + x1x4 = 0. (8.79)

Proof. One can check that, if π/θ = 2 and we have zero drift, then

p = X(y4) = X(y1) = − b̃(y1)

2ã(y1)
=

−1 + 2p−1,0

1 + 4p1,−1 − 4p−1,−1 − 2p−1,0

. (8.80)

Similarly, one sees that

x1x4 =
4p−1,1p−1,−1 − p2−1,0

4p−1,1p1,−1 + 4p1,−1(p−1,−1 + p−1,0)− (2p−1,−1 + p−1,0)2
, (8.81)

x1 + x4 =
2((−1 + p−1,0)p−1,0 + p−1,−1(−1 + 2p−1,0) + p−1,1(−1 + 4p−1,−1 + 2p−1,0))

4p−1,1p1,−1 + 4p1,−1(p1,−1 + p−1,0)− (2p−1,−1 + p−1,0)2
.

(8.82)

Putting the above together, (8.78) follows immediately.

The above Lemma 34 now turns to be very useful for us: the term L3(x), which we want
to integrate, contains a root of the form

󰁳
−(x− x1)(x− x4). We integrate along the

contour Γ, thus we substitute x 󰀁→ c + deiu. It turns out that we now have, for any two
constants a, b,

−x2 − ax− b = −1− b+ a(−1 + d) + 2d− deiu(2 + a− 2d+ 2d cosu). (8.83)

However, for a = −(x1 + x4) and b = x1x4, Lemma 34 tells us that the constant term
vanishes, i.e. we have

−(x− x1)(x− x4) = −deiu(2− x1 − x4 − 2d+ 2d cosu). (8.84)

This will allow us to rewrite the square root, since the second factor is strictly real.
There are now two cases to consider: x4 < p and x4 > p. As the computations are very
similar, we will now only look at the former.
If x4 < p, then we have −(p − x1)(p − x4) > 0, which means that we select the branch
cut of the root to be along the positive real axis. Next, we will determine the sign of the
real factor under the root.
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Lemma 35. If x4 < p, then we have for any u ∈ [0, 2π]

2− x1 − x4 + 2d(−1 + cosu) 󰃍 0. (8.85)

Proof. First, notice that

2− x1 − x4 + 2d(−1 + cosu) 󰃍 (1− x1) + (1− x4)− 4d. (8.86)

Due to Lemma 34, we know that

d =
(1− x1)(1− x4)

(1− x1) + (1− x4)
. (8.87)

The right side of (8.86) can therefore be written as

a+ b− 4
ab

a+ b
, (8.88)

for a = 1 − x1, b = 1 − x4. Since x4 < −1 < x1, we know that a > b > 0, utilizing
homogeneicity it therefore suffices to study the function

f(a) = 1 + a− 4
a

1 + a
=

(1− a)2

1 + a
. (8.89)

As f(a) does not have any zeros for a > 1, (8.85) holds.

Due to our choice of branch cut, we have

󰁳
−(x− x1)(x− x4) =

󰁴
−deiu(2− x1 − x4 − 2d+ 2d cosu) (8.90)

=
󰀏󰀏󰀏
󰁳

d(2− x1 − x4 − 2d+ 2d cosu)
󰀏󰀏󰀏
󰁳

ei(u+π) (8.91)

=

󰀻
󰀿

󰀽

󰀏󰀏󰀏
󰁳

d(2− x1 − x4 − 2d+ 2d cosu)
󰀏󰀏󰀏 · ei(u+π)/2, if u ∈ [0,π),󰀏󰀏󰀏

󰁳
d(2− x1 − x4 − 2d+ 2d cosu)

󰀏󰀏󰀏 · ei(u−π)/2, if u ∈ [π, 2π).

(8.92)

If we now rewrite the integral

󰁝

Γ

L3(x)

x− t
dx = d

󰁝 2π

0

L3(c+ deiu)eiu

c+ deiu − t
du (8.93)

using (8.92), it turns out that the only term generating arbitrarily high powers of t is

√
2b(−1 + 2c− t)

󰁳
(a− b)(2a(−1 + c)(c− t) + b(1 + 2(−1 + c)c− 2ct+ t2))

× arctan

󰀣 √
a− b(−1 + t)󰁳

4a(−1 + c)(c− t) + 2b(1 + 2(−1 + c)c− 2ct+ t2)

󰀤
, (8.94)
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where a = d(2 − x1 − x4 + 2d), b = 2d2. Up to a multiplicative constant, we can write
this as

T (t) := (−1 + 2c− t)
󰁳

(t− x1)(t− x4) arctan

󰀣󰁳
d(2− x1 − x4 − 4d)(t− 1)

2d
󰁳

(t− x1)(t− x4)

󰀤
. (8.95)

From here on, it remains to do a standard computation, using the theory developed e.g.
in [14]. We know that arctan x has its singularities at x = ±i; one can check that this
is the case for t = −p. The singularities due to the

󰁳
(t− x1)(t− x4) cancel, since the

series representation of x arctan x contains only even powers of x. Therefore, all we need
to do is to consider the behaviour of the right-hand side of (8.95) near t = −p.
One can check that, after considering T̃ (t) := T (pt) in order to shift the pole to t = 1, we
have an asymptotic expansion of the form

T (t) = c1 + c2 log |1− t|+O(1− t) (8.96)

for some constants c1, c2, and thus, according to e.g. [14, Thm. VI.3], we have

[tn]T (t) = O
󰀗
1

pn

󰀕
log n

n

󰀖󰀘
. (8.97)

In particular, considering the log-terms, we know that T (t), and hence also Υ(x) and the
resulting decoupling function, cannot be algebraic.

8.4 An example with infinite group

We will now look at how the computations above work in a concrete example with zero
drift, π/θ = 2 and infinite group. As there are no models as famous as say the simple
walk or the tandem walk which belong to this group, we pick the same model as in
Example 7.2.2, which was defined by

p1,0 = p0,1 = 0,

p1,1 = 1/4,

p1,−1 = p0,−1 = p−1,0 = p−1,1 = 1/6,

p−1,−1 = 1/12.

Here, Γ is the circle defined by |z − 1/6|2 =
󰀃
5
6

󰀄2
, and therefore complex conjugation on

Γ corresponds to the Möbius transform r : z 󰀁→
󰀃
5
6

󰀄2 1
z−1/6

+ 1
6
. After some computation,

one checks that L1(x) and L2(x) as defined in (8.63) and (8.64) now take the form

L1(x) =
8(2 + 3x)(7 + 6x(1 + 2x))

125(1− x)3
(8.98)

L2(x) =
8(2 + 3x)(x− 1)

󰁳
(6x− 1)(3 + x)

125(1− x)3
. (8.99)
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For a decoupling function of L1(x), one obtains

Υ1(x) =
4

(x− 1)3
+

96

25(x− 1)
. (8.100)

For a decoupling function Υ2(x) of L2(x), we proceed as in Section 8.3. We start by

letting L3(x) = −8(2+3x)
√
−1−18x−6x2

25(1−6x)
, and compute in a first step a decoupling function

Υ3(x) of L3(x). Using the same integration trick as above, we finally arrive at

2πiΥ3(t) + 2πiΥ3 (1/6) =

󰁝

Γ

L3(x)

x− t
dx. (8.101)

We remember that we can always add a constant to a decoupling function without chang-
ing the decoupling property, so we can assume that Υ3(1/6) = 0 and thus have

Υ3(t) =
1

2πi

󰁝

Γ

L3(x)

x− t
dx. (8.102)

Combining everything until now, we have

Υ(x) =
1

2πi

󰁕
Γ

L3(t)
t−x

dt

(x− 1)(r(x)− 1)
+

4

(x− 1)3
− 96

25(x− 1)
. (8.103)

Here, the interesting part is clearly the contour integral. Thus, we want to know the
asymptotics of the coefficients of

Υ3(t) =
1

2πi

󰁝

Γ

(x+ 2/3)
󰁳

−(1 + 18x+ 6x2)

(x− 1/6)(x− t)
. (8.104)

By some computation, one finds that

[tn]Υ3(t) ∼ [tn] (2 + 3t)
󰁳

1/3 + 6t+ 2t2 arctan

󰀣
t− 1󰁳

1/3 + 6t+ 2t2

󰀤
. (8.105)

The singularity closest to 0 here is at −2
3
, and utilizing that Υ3

󰀃
−2

3
z
󰀄
= O

󰀃
log 1

1−z

󰀄
, we

can apply [14, Thm. VI.3] and have

[zn]Υ3(z) =

󰀕
−3

2

󰀖n

[zn]Υ3

󰀕
−2

3
z

󰀖
= O

󰀕󰀕
−3

2

󰀖n
log n

n

󰀖
. (8.106)

As mentioned, we can therefore deduce thatΥ3(t), and therefore alsoΥ(t), is not algebraic.

Accordingly, in case of an infinite group, the existence of a decoupling function as postu-
lated by general theory about boundary value problems does not appear to be very useful
in terms of actual computations. If one were to drop the condition that π/θ = 2 on top
of this, then the calculations would yet again get much more complicated, as we were
heavily relying on the fact that we can describe complex conjugation on the contour Γ
via a simple rational transformation, which is only due to the fact that Γ is a circle.
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