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Abstract

Let ped(n) be the number of partitions of n whose even parts are distinct and
whose odd parts are unrestricted. For a positive integer m, let ped(n,m) be the
number of all possible partitions of the number n into exactly m parts whose even
parts are distinct and whose odd parts are unrestricted. In this paper, we give new
recurrence formulas for ped(n,m) as well as explicit formulas for ped(n, m), when
m = 2,3 and m = 4. For a positive integer ¢ and j € {0,1,2,...,q — 1}, we also
give a recurrence formula for p, j(n, m) the number of partitions of n into m parts
such that the parts congruent to —j modulo ¢ are distinct where other parts are
unrestricted.

Mathematics Subject Classifications: Primary 05A17; Secondary 11P81, 11P83.

1 Introduction and results

A partition of a positive integer n [2, Chapter 14] is a finite sequence of positive integers
A= (A1, A, ..., Ay) such that

)\1+/\2+---+)\m:n.

The A;’s are called the parts of the partition. The number of parts is unrestricted, repe-
tition is allowed, and the order of the parts is not taken into account (nevertheless, the
usual assumption is that Ay > Ay > ... > A\p).

Let ped(n) be the number of partitions of n with distinct even parts (while odd parts
are unrestricted). The function ped(n) has been studied by many authors, see [1,4, 5,7, 9].
In 2008, Fink, Guy and Krusemeyer [6] gave a recurrence relation for ped(n) as

> (—1)ped (n _ G+ 1>> _ {(—1)’“, if n = 2k(3k + 1), k € Z;

< 2 0, otherwise.
j=—o00
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Recently, Merca [8] provided the following new recurrence relations for ped(n) that involve

the triangular numbers 7T}, = k(k; 1), where k € N,
> , 1, if n=2T, k€ Ny;
Z(_l)h/?lped(n_r]) _ , 1In ) k> € No;
= 0, otherwise,
and
> , 1, ifn="1T,, k€& Ny;
Z (=1 ped(n —25%) =4 thn _k’ € Noj
Pall 0, otherwise.

Finding a new formula for the numbers of partitions of n with distinct even parts is
a problem of current interest. For a positive integer m, let p(n,m) be the number of
partitions of the number n into exactly m parts, whereas ped(n,m) is the number of
partitions of the number n into exactly m parts with distinct even parts (while odd parts
are unrestricted).

Let us determine the values ped(n,1),ped(n,2),...,ped(n,n). Some of these are triv-
ial, such as

ped(n,1) =1 and ped(n,n) =1 for all n € N; ped(n,n — 1) =1 for all n > 1.
It is obvious that, for n > 1,
ped(n) = ped(n, 1) + ped(n,2) + - - - + ped(n,n),
which is similar to the formula
p(n) =p(n,1) +p(n,2) + - -+ p(n,n).
In particular, the recurrence formula for p(n,m) is
p(n,m) =pn—1,m—1)+ p(n —m,m).

In this paper, we will give a recurrence formula for ped(n, m). We obtain the following
result.

Theorem 1. For any positive integers n > 1 and 1 < m < n, we have
ped(n,m) = ped(n —1,m — 1) + ped(n — 2m,m — 1) + ped(n — 2m, m).
Here, ped(n,m) =0 when n <0 and m > 0.

Moreover, we also give explicit formulas for ped(n, m), when m = 2,3 and m = 4. For
integers n and ¢ with ¢ > 0, define

() = {1’ SN

0, if ¢|n.
Using an elementary method as in [3], we obtain the following theorems.
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Theorem 2. For any positive integers n > 1, we have

’_gJ, if 44 n;

)= [3] - = {144

Theorem 3. For any positive integer n, we have
n*+6 n—1
d(n,3) = — .
More precisely, if n = 12k + i for some integers k > 0 and i € {0,1,2,...,11}, then we
have

(12k2 — 3k +1, ifi=0;
12k — k, if 4 =1;
12k% + k, if =2
12k +3k+1, if i=3;
12k + 5k +1, if i=4;
12k + 7k +1, if i =05;
12k> + 9k 4+ 2, if i=6;
1262 + 11k + 3, if i =T;
12k* + 13k + 4, ifi=§;
12k* + 15k +5, if i =09;
12k + 17k + 6, if i = 10;
12k? + 19k + 8, if i =11.

ped(12k +14,3) = <

\

We can easily deduce Theorem 3 in the following form.

Corollary 4. Forn > 1, we have

n? n : .
ﬁ—z’l-]_, 1f12|n,

ped(n, 3) = {12 |2 ]*+ (2(n mod 12) — 3) | 2| + ped((n mod 12),3), if 124 n.

However, the value of ped(n, 3) can be obtained easily in the form of p(n, 3). This gives
us a new explicit formula for p(n, 3) in the form of ped(n, 3). The number of partitions of
n into exactly 3 parts is equal to the sum of the number of partitions of n into exactly 3
parts with distinct even parts and the number of partitions of n into exactly 3 parts with
at least two parts being even. We note that a partition of n into exactly 3 parts with at
least two parts being even is of the form (n — 4k, 2k, 2k), for 1 < k < L”T_lj Thus, we
obtain the following corollary.

Corollary 5. Forn > 1, we have

n2 n N .
’ 4 12]2 )+ <2(n mod 12) — 3) | 2| + ped((n mod 12),3), if 124 n.
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More generally, let ¢ be a positive integer and j € {0,1,2,...,¢ — 1}. Denote by
Pq.j(n,m) the number of partitions of n into m parts such that the parts congruent to —j
modulo ¢ are distinct (other parts are unrestricted). In particular, ped(n,m) is simply
p2.0(n,m). We have the following relationship between p(n,m) and p, ;(n, m).

Theorem 6. For any positive integers n. and m such that m < n, we have

o0

Pgj(n,m) = p(n,m) — Z Z p(r,0) pgi(n+ 250 — 2qr,m — 20).

(=1 r=1

Here, p,j(n,m) =0 when n <0 and m > 0, or when m < 0. Additionally, p,;(0,0) =1
and py j(n,0) =0 for n # 0.

The following corollary follows immediately from Theorem 6.
Corollary 7. For any positive integers n and m such that m < n, we have
ped(n,m) = p(n,m) — Z Z p(r, 0) ped(n — 4r,m — 20).
(=1 r=1
For m = 4, we obtain the following corollary.
Corollary 8. For every positive integer n, we have
3 2

ped(n, 1) {%*Z_s_%(” mod 2)+%J - E L”fﬂ + V;LJ xa(n).

More precisely, if n = 12k + i for some integers k > 0 and i € {0,1,2,...,11}, then we
have

~

12k3 — 6k* + 5k — |5] — 1,  ifi=0;
12k3 — 3k? + 3k, if i=1;
123 + 2k, if =2
12k3 + 3k? + 3k, if i=3;
12k% + 6k + 4k + |5 +1,  if i=4;
, 123 + 9Kk + 5k + 1, if i =05;
ped(L2k+6.4) =0 s L 1ok2 4 6k 11, if i =6
12k3 + 15k + 9k + 2, if i =T,
12k3 +18k% + 13k — 5] +3, ifi=38;
12K 4 21k? + 15k + 4, if i=09;
12k3 + 24k 4 18k + 5, if i = 10;
| 12K% + 27k% + 23k + 7, if ¢ =11.
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2 Proofs

Proof of Theorem 1. Let A be the set of all partitions of positive integers with distinct
even parts and unrestricted odd parts. Let A(n,m) be the set of all partitions of the
number n in A into exactly m parts. Note that |.A(n,m)| = ped(n,m). Consider the
following two sets P; and P, where P; is the set of partitions of the number n in A into
exactly m parts with at least one part being 1 and P, is the set of partitions of the number
n in A into exactly m parts containing parts greater than 1. By definition, we have

]A(n,m)] :P1UP2 and PlﬂPQZ(Z)
Thus,
ped(n,m) = [Pi[ + |P|.

Since the last part of all elements in P, is 1, then, |P;| = ped(n — 1,m — 1). To compute
the number of elements in P, we write P, = T3 UTy and T3 N T, = (), where T} is the
set of partitions of the number n in P, into exactly m parts with at least one part being
2 and T is the set of partitions of the number n in P, into exactly m parts containing
parts greater than 2.

To compute the numbers of element in 77, we first add 2 to all m parts. Since the
partition has distinct even parts, we fix only the last part to be 2. Then there is a one-
to-one function from the set T3 to the set A(n — 2m,m — 1), namely (A1, Ao, ..., A1, 2)
— (A1 =2, —2,..., A1 — 2). Thus, |T}| = ped(n — 2m, m — 1). Similarly, there is a
one-to-one function from the set 75 to the set ped(n — 2m,m), namely

()\17)\27---7>\m—172) — ()\1_27)\2_27~-~7)\m—1 —2,)\m—2)
Thus, |T»| = ped(n — 2m, m). Then, we have

ped(n,m) = ped(n —1,m — 1) + ped(n — 2m,m — 1) + ped(n — 2m, m).

Proof of Theorem 2. Let n > 2. We consider the following partitions:
n n
((n=1),1), (n—2),2), ((n—3),3), ..., (n - bJ , bJ ).

These partitions have distinct even parts, if 4 ¥ n. If 4 | n, then the partition <n —

ng , L%J > has repeated even parts. Thus, we have

], if 4 1 n;
| =1, if 4|n.

pei(n.2) - ﬂ

IS I3
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Proof of Theorem 3. Let n > 3. We start with those partitions with distinct even parts

and having 3 parts, where the last part is 5 for some positive integer j < L%J Such a

partition A takes the form A = (n — i — j,1,7), where i is a positive integer such that
J << [ J We consider two cases: j is odd or j is even.

Suppose first that j is odd. Then, ¢ can be any integer from 7, j+ 1, j+2, ..., L%J,
with the possible exception when 4 | n — j, that is, if 4 | n — j, i cannot be equal to
L%J = 57, as the even number ”Q—J is repeated in the partition A\. Hence, the number

N; of possible partitions in this case is

R I N B e e N (RS SR |
Na—{ 5 J j+1=xan J)—{LMJ_% 4|0

Assume now that j is even. Then, i # j. In the subcase n > 3j + 1, we note that ¢ can
take any value from 57+1, 742, ..., \_ 5 J, with the possible exception when 4 | n—j. As
before, if 4 | n — 7, then ¢ cannot be equal to L%J = % Hence, the number of possible
partitions N; in this scenario is

o n—j R LTJJ—j, if4tn—j;
N; L2J J = xaln —7j) {L%”J—J—l, £4)n— (1)

However, if n = 3j, then N; = 0.
From the work above, we obtain

v N =i 1= el) = xaln—3), 24 or n # 35
’ 0, if 2| j and n = 3.

r—
Wl:
e

We have ped(n,3) = >_:*; N;. We shall now consider two cases:
e n# 0 (mod 6);

e n=0 (mod 6).

We can easily prove by induction that, for every positive integer p, > 7_, L%J = {%J.

Case 1. n Z 0 (mod 6)
We get

ped(n, 3)

I
—
|3
| I—

=

Il
—
w3
| I—

VRS

I
R
S
Do
<
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no
S
+
[\
| I—
I
—
Do
m’f
L
| I
_l,_
—_
®
=
a.
fen nd
=
®
o+
-
N[
—
wl3
| E—
—_
I
—
|3
| E—
H
=
b=
\.UJ

Note that n — [gj =

pins = S 355 (5 -0)-18- £ v

pton)= | S 322 5 (3] (50 - - ]

Case 2. n =0 (mod 6)
The only difference between Case 1 and Case 2 comes from the fact that NV 2] = N» =
3

0, but if we were to use Equation (1), we would get N » = —1. As a result, Equation (2)
underestimates the actual value of ped(n,3) by 1. In other words, the correct value of

ped(n,3) in this case is given by

e =[5 (=2 ) (1) -1

Combining Case 1 and Case 2 yields

e =[5 (52 ) (1) -

+ f”lg 1J + xo(n).

Since |2 = xo(n) = [ 25| and [251] = |1 |257L] | = |21, it follows that

e = =52 =[5 [ 5 B (619 -5

T | L | ).
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Observe that

F(n+12) — F(n) =

Thus,

F(n+12) — F(n) = (6n + 30) — (4 f”; 1J +16> - <4 gJ +6)

—6n—4 gJ —4 V";lJ +8.

Recall that n — |2| = |2%2| = |22 | 4+ 1, which means n — 1 = | %] + | 2%
result,

1J. As a

F(n+12)— F(n)=6n—4(n—1)+8=2n+ 12.

As F(1) = F(2) = 0, F(3) = F(4) = 1, F(5) = 2, F(6) = 3, F(7) = 4, F(8) = 5,
F) =1, F(lO) =38, F(11) = 10, and F(12) = 12, we can easily prove by induction that
F(n)= J Since ped(n,3) = F(n) — | " |, we obtain

sy = | 255821

Proof of Theorem 6. For convenience, let P, ;(n,m) be the set of partitions of n into m
parts such that the parts congruent to —j modulo q are distinct. Thus, p,(n,m) =

0

| Py (n, m)]. .
In contrast, let F, ;(n,m) be the set of partitions of n into m parts such that at least
one part congruent to —j modulo ¢ is repeated. Write p, ;(n, m) ‘ (n,m | We prove

the following equality:

Pq.i(n,m) = Z Z p(r,0) pq.;(n+ 250 — 2qr,m — 20). (3)

(=1 r=1
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Fix A\ € P,;(n,m). Suppose that t; > t, > ... > t; are all the positive integers
such that, for each ¢ = 1,2,...,k, there are s;(> 0) parts in A\ of size gt; — j. Define
= Zle |2 and r = Zle t; |%]. Since A € B, ;(n,m), we conclude that s; > 2 for
some 1= 1,2,...,k, whence £ > 1 and r > 1.

The (-term sequence f(A) consisting of L%J copies of t; for i = 1,2,...,k is clearly
a partition of r into ¢ parts. Now, we define g(\) to be the sequence consisting of the

following terms:
e all terms of A\ that are not congruent to —j modulo ¢, and
e one copy of gt; — j for all © = 1,2,...,k such that s; is an odd integer.

Observe that g(\) is a partition into m — 2¢ parts of

n-3>2 {%J (gt —)=n+2j Y {%J —Zqiti EJ — 1+ 20 — 2.

i=1 =1 i=1

Note that the parts congruent to —j modulo g of g(A) do not repeat. Therefore, g(\) €
P, i(n+ 250 —2qr,m — 20).

We have established a map A — (f()\),g()\)), where f()\) is a partition of r > 1 into
¢ > 1 parts and g(\) is an element of P, j(n + 250 — 2qr, m — 2(). Conversely, for a given
partition ¢ of (> 1) into ¢(> 1) parts and for a given v € P, j(n+ 2j¢ — 2qr,m — 2(), we
can create an element A(¢,v) € P, ;(n,m) as follows: assume that ¢ consists of o,, copies
of 7, for p =1,2,...,v. Forall p=1,2,...,v, we add 20, copies of q7, — j to . Let
A(¢,7) be the resulting sequence. Obviously, A(¢, ) is an element of P, ;(n,m).

Clearly, the maps A\ — (f(/\),g()\)) and (¢,v) — A(¢,~) are inverses of each other.
Hence, p,;(n,m) = ‘pm(n, m)’ is the number of pairs (¢,7), where ¢ is a partition
of r into ¢ parts for some positive integers r and ¢, and v is an element of P, ;(n +
2j0 — 2qr,m — 2(). For fixed values of r and ¢, there are p(r,¢) choices of ¢, whilst
there are p, ;(n + 2j¢ — 2qr, m — 2¢) ways to choose v. Consequently, there are in total
p(r, 0) pg;(n + 250 — 2qr,m — 2() ways to pick (¢,~) for any positive integers r and /.
Equation (3) is now evident. O

Proof of Corollary 8. From Corollary 7, we have

ped(n, 4) = p(n,4) = S p(r, 1) ped(n — 4,2) = 3 p(r,2) ped(n — 41, 0).
r=1 r=1
According to Theorem 2, ped(n — 4r,2) = L”‘T‘”J — xa(n —4r) = L%J — 2r — x4(n) for
r=1,2..., "], whereas ped(n — 4r,2) = 0 for r > |"*|. Furthermore, the sum

1 1
>0, p(r,2) ped(n — 4r,0) is nonzero only when 4 | n, in which case Y =, p(r,2) ped(n —

THE ELECTRONIC JOURNAL OF COMBINATORICS 31(3) (2024), #P3.19 9



(%)J — L%J Consequently,

2]

pedtn. ) =p(n ) = 3 ([ 5] =20 =) = [ 5] vato)

— p(n,4) - L% (5] =2) + | "] o = 5] v

22!

T EDY (g —Qr) + Q";lJ - {gJ) xa(n).

r=1

Observe that L”T_IJ - L%J = L”T_‘lj for every positive integer n such that 4 | n. Moreover,

we can easily prove by induction that, for any positive integer p, the sum of all positive
integers ¢ < p such that ¢ = p (mod 2) is given by L@J. Therefore,

pedin. ) =p(n) - |3 ([5]=1)°] + |5

— p(n,4) - ﬁ {”;QH #|"5 ato

n®  n?

p(n,4) = {m+@—%(n mod 2)+%J (4)

It remains to show that

: : _ | n3 n? n 1
For convenience, write a,, = {m + %5 — 1 (nmod 2) + §J. Then

@—Hln—i—lél, if 24 n;
Qpy12 — Ap = n2 ™ .

Note that a1 = as = a3 =0, a4y = a5 =1, ag = 2, a7 = 3, ag = 5, ag = 6, a9 = 9,
a;; = 11, and a9 = 15.
To calculate p(n,4), we shall employ Burnside’s lemma. Consider the set

T, = {(xl,xg,xg,x4) ez ’ X1, 29,23, 24 >0 and xq + 29 + 13 + 24 = n}

The symmetric group on 4 symbols, or Sy, acts on 7, in the natural way. We want to
find the number of orbits of T}, under S;. Now, S; has 4 conjugacy classes:

e (: the identity class (1 element),

e (5 the class of transpositions (6 elements),
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e (3: the class of 3-cycles (8 elements),
e (4 the class of products of two disjoint transpositions (3 elements), and
e (5: the class of 4-cycles (6 elements).

For g € Sy, let TY denote the number of elements of 7, fixed by the action of g.
The number of elements of T}, fixed by an element of the class C; (the identity element
e of Sy) is T,. It is easily seen that

. n—1
=il = ("),

The number of elements of 7T, fixed by an element g € (5 is the same as the number
of tuples (1, %2, x3,24) € T, such that x; = xo. If 1 = 25 = j, then z3 + x4 = n — 2j.
Since 3 > 1 and x4 > 1, it holds that n — 25 > 2, whence j < VLT_QJ Because we can
choose x3 in n — 27 — 1 ways, we conclude that

B= > -1~ o).

j=1

The number of elements of T, fixed by an element g € C3 is the same as the number
of tuples (x1, s, 3,24) € T, such that 1 = x5 = z3. If 1 = 29 = x3 = j, then from
1+ x9 + 23+ 24 =n and x4 > 1, we deduce that j < "T_l Hence,

n—1
T = .
= |57

The number of elements of T;, fixed by an element g € C is the same as the number of
tuples (x1, x9, 23, x4) € T), such that 27 = x9 and x3 = x4. If 1 = 29 = jand x5 = x4 = k,

then n = 2j + 2k or j + k = §. Thus, n must be even, in which case |TJ| = § — 1. In
general,

T2 = (5 -1) ().

Finally, the number of elements of T,, fixed by an element g € C}y is the same as the

number of tuples (x1, x9, 23, x4) € T), such that x; = x5 = 3 = x4. Since x1+ro+r3+24 =

n, it follows that 4 | n and x; = w3 = 23 = x4 = % is the only solution. In general,

T3] = xa(n).

Note that p(n,4) is precisely the number of orbits of 7,, under S;. According to

Burnside’s lemma,
1
n,4) = — T9|.
p(n,4) TH >y

gESs
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Then,

p(n,4) = i (1(”;1) +6. V”;”ZJ +8. {”;J +3(5 1) () +6-X4(n)>.

Evidently, p(n,4) = a, for alln =1,2,...,12.
We can easily verify that

(n—1)2 : .

+4n+ 14, if2¢n

n+12,4) — p(n,4) = 4 ’ ’
p( ) —p(n,4) {%2_1_%_1_157 if 2 | n.

Hence, the sequences (p(n, 4)):;1 and (an)zoz1 satisfy the same recurrence relation, and
share the same initial values. In conclusion, p(n,4) = a, for every n = 1,2,3,.... The
assertion is now proven. [
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