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Abstract

Let ped(n) be the number of partitions of n whose even parts are distinct and
whose odd parts are unrestricted. For a positive integer m, let ped(n,m) be the
number of all possible partitions of the number n into exactly m parts whose even
parts are distinct and whose odd parts are unrestricted. In this paper, we give new
recurrence formulas for ped(n,m) as well as explicit formulas for ped(n,m), when
m = 2, 3 and m = 4. For a positive integer q and j ∈ {0, 1, 2, . . . , q − 1}, we also
give a recurrence formula for pq,j(n,m) the number of partitions of n into m parts
such that the parts congruent to −j modulo q are distinct where other parts are
unrestricted.

Mathematics Subject Classifications: Primary 05A17; Secondary 11P81, 11P83.

1 Introduction and results

A partition of a positive integer n [2, Chapter 14] is a finite sequence of positive integers
λ = (λ1,λ2, . . . ,λm) such that

λ1 + λ2 + · · ·+ λm = n.

The λi’s are called the parts of the partition. The number of parts is unrestricted, repe-
tition is allowed, and the order of the parts is not taken into account (nevertheless, the
usual assumption is that λ1 󰃍 λ2 󰃍 . . . 󰃍 λm).

Let ped(n) be the number of partitions of n with distinct even parts (while odd parts
are unrestricted). The function ped(n) has been studied by many authors, see [1, 4, 5, 7, 9].
In 2008, Fink, Guy and Krusemeyer [6] gave a recurrence relation for ped(n) as

∞󰁛

j=−∞

(−1)jped

󰀕
n− j(3j + 1)

2

󰀖
=

󰀫
(−1)k, if n = 2k(3k + 1), k ∈ Z;
0, otherwise.
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Recently, Merca [8] provided the following new recurrence relations for ped(n) that involve

the triangular numbers Tk =
k(k+1)

2
, where k ∈ N0,

∞󰁛

j=0

(−1)⌈j/2⌉ped(n− Tj) =

󰀫
1, if n = 2Tk, k ∈ N0;

0, otherwise,

and
∞󰁛

j=−∞

(−1)jped(n− 2j2) =

󰀫
1, if n = Tk, k ∈ N0;

0, otherwise.

Finding a new formula for the numbers of partitions of n with distinct even parts is
a problem of current interest. For a positive integer m, let p(n,m) be the number of
partitions of the number n into exactly m parts, whereas ped(n,m) is the number of
partitions of the number n into exactly m parts with distinct even parts (while odd parts
are unrestricted).

Let us determine the values ped(n, 1), ped(n, 2), . . . , ped(n, n). Some of these are triv-
ial, such as

ped(n, 1) = 1 and ped(n, n) = 1 for all n ∈ N; ped(n, n− 1) = 1 for all n > 1.

It is obvious that, for n 󰃍 1,

ped(n) = ped(n, 1) + ped(n, 2) + · · ·+ ped(n, n),

which is similar to the formula

p(n) = p(n, 1) + p(n, 2) + · · ·+ p(n, n).

In particular, the recurrence formula for p(n,m) is

p(n,m) = p(n− 1,m− 1) + p(n−m,m).

In this paper, we will give a recurrence formula for ped(n,m). We obtain the following
result.

Theorem 1. For any positive integers n 󰃍 1 and 1 󰃑 m 󰃑 n, we have

ped(n,m) = ped(n− 1,m− 1) + ped(n− 2m,m− 1) + ped(n− 2m,m).

Here, ped(n,m) = 0 when n 󰃑 0 and m > 0.

Moreover, we also give explicit formulas for ped(n,m), when m = 2, 3 and m = 4. For
integers n and q with q > 0, define

χq(n) =

󰀫
1, if q ∤ n;
0, if q | n.

Using an elementary method as in [3], we obtain the following theorems.
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Theorem 2. For any positive integers n 󰃍 1, we have

ped(n, 2) =
󰁭n
2

󰁮
− χ4(n) =

󰀫󰀇
n
2

󰀈
, if 4 ∤ n;󰀇

n
2

󰀈
− 1, if 4 | n.

Theorem 3. For any positive integer n, we have

ped(n, 3) =

󰀙
n2 + 6

12

󰀚
−

󰀙
n− 1

4

󰀚
.

More precisely, if n = 12k + i for some integers k 󰃍 0 and i ∈ {0, 1, 2, . . . , 11}, then we
have

ped(12k + i, 3) =

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

12k2 − 3k + 1, if i = 0;

12k2 − k, if i = 1;

12k2 + k, if i = 2;

12k2 + 3k + 1, if i = 3;

12k2 + 5k + 1, if i = 4;

12k2 + 7k + 1, if i = 5;

12k2 + 9k + 2, if i = 6;

12k2 + 11k + 3, if i = 7;

12k2 + 13k + 4, if i = 8;

12k2 + 15k + 5, if i = 9;

12k2 + 17k + 6, if i = 10;

12k2 + 19k + 8, if i = 11.

We can easily deduce Theorem 3 in the following form.

Corollary 4. For n 󰃍 1, we have

ped(n, 3) =

󰀫
n2

12
− n

4
+ 1, if 12 | n;

12
󰀇

n
12

󰀈2
+
󰀓
2(n mod 12)− 3

󰀔 󰀇
n
12

󰀈
+ ped((n mod 12), 3), if 12 ∤ n.

However, the value of ped(n, 3) can be obtained easily in the form of p(n, 3). This gives
us a new explicit formula for p(n, 3) in the form of ped(n, 3). The number of partitions of
n into exactly 3 parts is equal to the sum of the number of partitions of n into exactly 3
parts with distinct even parts and the number of partitions of n into exactly 3 parts with
at least two parts being even. We note that a partition of n into exactly 3 parts with at
least two parts being even is of the form (n − 4k, 2k, 2k), for 1 󰃑 k 󰃑

󰀇
n−1
4

󰀈
. Thus, we

obtain the following corollary.

Corollary 5. For n 󰃍 1, we have

p(n, 3)=

󰀙
n− 1

4

󰀚
+

󰀫
n2

12
− n

4
+ 1, if 12 | n;

12
󰀇

n
12

󰀈2
+
󰀓
2(n mod 12)− 3

󰀔 󰀇
n
12

󰀈
+ ped((n mod 12), 3), if 12 ∤ n.
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More generally, let q be a positive integer and j ∈ {0, 1, 2, . . . , q − 1}. Denote by
pq,j(n,m) the number of partitions of n into m parts such that the parts congruent to −j
modulo q are distinct (other parts are unrestricted). In particular, ped(n,m) is simply
p2,0(n,m). We have the following relationship between p(n,m) and pq,j(n,m).

Theorem 6. For any positive integers n and m such that m 󰃑 n, we have

pq,j(n,m) = p(n,m)−
∞󰁛

ℓ=1

∞󰁛

r=1

p(r, ℓ) pq,j(n+ 2jℓ− 2qr,m− 2ℓ).

Here, pq,j(n,m) = 0 when n 󰃑 0 and m > 0, or when m < 0. Additionally, pq,j(0, 0) = 1
and pq,j(n, 0) = 0 for n ∕= 0.

The following corollary follows immediately from Theorem 6.

Corollary 7. For any positive integers n and m such that m 󰃑 n, we have

ped(n,m) = p(n,m)−
∞󰁛

ℓ=1

∞󰁛

r=1

p(r, ℓ) ped(n− 4r,m− 2ℓ).

For m = 4, we obtain the following corollary.

Corollary 8. For every positive integer n, we have

ped(n, 4) =

󰀙
n3

144
+

n2

48
− n

16
(n mod 2) +

1

2

󰀚
−

󰀧
1

4

󰀙
n− 2

2

󰀚2
󰀨
+

󰀙
n− 4

8

󰀚
χ4(n).

More precisely, if n = 12k + i for some integers k 󰃍 0 and i ∈ {0, 1, 2, . . . , 11}, then we
have

ped(12k + i, 4) =

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

12k3 − 6k2 + 5k −
󰀇
k
2

󰀈
− 1, if i = 0;

12k3 − 3k2 + 3k, if i = 1;

12k3 + 2k, if i = 2;

12k3 + 3k2 + 3k, if i = 3;

12k3 + 6k2 + 4k +
󰀇
k
2

󰀈
+ 1, if i = 4;

12k3 + 9k2 + 5k + 1, if i = 5;

12k3 + 12k2 + 6k + 1, if i = 6;

12k3 + 15k2 + 9k + 2, if i = 7;

12k3 + 18k2 + 13k −
󰀇
k
2

󰀈
+ 3, if i = 8;

12k3 + 21k2 + 15k + 4, if i = 9;

12k3 + 24k2 + 18k + 5, if i = 10;

12k3 + 27k2 + 23k + 7, if i = 11.
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2 Proofs

Proof of Theorem 1. Let A be the set of all partitions of positive integers with distinct
even parts and unrestricted odd parts. Let A(n,m) be the set of all partitions of the
number n in A into exactly m parts. Note that |A(n,m)| = ped(n,m). Consider the
following two sets P1 and P2, where P1 is the set of partitions of the number n in A into
exactly m parts with at least one part being 1 and P2 is the set of partitions of the number
n in A into exactly m parts containing parts greater than 1. By definition, we have

|A(n,m)| = P1 ∪ P2 and P1 ∩ P2 = ∅.

Thus,

ped(n,m) = |P1|+ |P2|.

Since the last part of all elements in P1 is 1, then, |P1| = ped(n− 1,m− 1). To compute
the number of elements in P2, we write P2 = T1 ∪ T2 and T1 ∩ T2 = ∅, where T1 is the
set of partitions of the number n in P2 into exactly m parts with at least one part being
2 and T2 is the set of partitions of the number n in P2 into exactly m parts containing
parts greater than 2.

To compute the numbers of element in T1, we first add 2 to all m parts. Since the
partition has distinct even parts, we fix only the last part to be 2. Then there is a one-
to-one function from the set T1 to the set A(n− 2m,m− 1), namely (λ1,λ2, . . . ,λm−1, 2)
→ (λ1 − 2,λ2 − 2, . . . ,λm−1 − 2). Thus, |T1| = ped(n− 2m,m− 1). Similarly, there is a
one-to-one function from the set T2 to the set ped(n− 2m,m), namely

(λ1,λ2, . . . ,λm−1, 2) → (λ1 − 2,λ2 − 2, . . . ,λm−1 − 2,λm − 2).

Thus, |T2| = ped(n− 2m,m). Then, we have

ped(n,m) = ped(n− 1,m− 1) + ped(n− 2m,m− 1) + ped(n− 2m,m).

Proof of Theorem 2. Let n 󰃍 2. We consider the following partitions:

󰀃
(n− 1), 1

󰀄
,
󰀃
(n− 2), 2

󰀄
,
󰀃
(n− 3), 3

󰀄
, . . . ,

󰀓
n−

󰁭n
2

󰁮
,
󰁭n
2

󰁮󰀔
.

These partitions have distinct even parts, if 4 ∤ n. If 4 | n, then the partition
󰀓
n −

󰀇
n
2

󰀈
,
󰀇
n
2

󰀈 󰀔
has repeated even parts. Thus, we have

ped(n, 2) =

󰀫󰀇
n
2

󰀈
, if 4 ∤ n;󰀇

n
2

󰀈
− 1, if 4 | n.
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Proof of Theorem 3. Let n 󰃍 3. We start with those partitions with distinct even parts
and having 3 parts, where the last part is j for some positive integer j 󰃑

󰀇
n
3

󰀈
. Such a

partition λ takes the form λ = (n − i − j, i, j), where i is a positive integer such that
j 󰃑 i 󰃑

󰀇
n−j
2

󰀈
. We consider two cases: j is odd or j is even.

Suppose first that j is odd. Then, i can be any integer from j, j+1, j+2, . . .,
󰀇
n−j
2

󰀈
,

with the possible exception when 4 | n − j, that is, if 4 | n − j, i cannot be equal to󰀇
n−j
2

󰀈
= n−j

2
, as the even number n−j

2
is repeated in the partition λ. Hence, the number

Nj of possible partitions in this case is

Nj =

󰀙
n− j

2

󰀚
− j + 1− χ4(n− j) =

󰀫󰀇
n−j
2

󰀈
− j + 1, if 4 ∤ n− j;󰀇

n−j
2

󰀈
− j, if 4 | n− j.

Assume now that j is even. Then, i ∕= j. In the subcase n 󰃍 3j + 1, we note that i can
take any value from j+1, j+2, . . .,

󰀇
n−j
2

󰀈
, with the possible exception when 4 | n− j. As

before, if 4 | n− j, then i cannot be equal to
󰀇
n−j
2

󰀈
= n−j

2
. Hence, the number of possible

partitions Nj in this scenario is

Nj =

󰀙
n− j

2

󰀚
− j − χ4(n− j) =

󰀫󰀇
n−j
2

󰀈
− j, if 4 ∤ n− j;󰀇

n−j
2

󰀈
− j − 1, if 4 | n− j.

(1)

However, if n = 3j, then Nj = 0.
From the work above, we obtain

Nj =

󰀫󰀇
n−j
2

󰀈
− j + 1− χ2(j)− χ4(n− j), if 2 ∤ j or n ∕= 3j;

0, if 2 | j and n = 3j.

We have ped(n, 3) =
󰁓⌊n

3 ⌋
j=1 Nj. We shall now consider two cases:

• n ∕≡ 0 (mod 6);

• n ≡ 0 (mod 6).

We can easily prove by induction that, for every positive integer p,
󰁓p

ℓ=1

󰀇
ℓ
2

󰀈
=

󰁭
p2

4

󰁮
.

Case 1. n ∕≡ 0 (mod 6)
We get

ped(n, 3) =

⌊n
3 ⌋󰁛

j=1

Nj =

⌊n
3 ⌋󰁛

j=1

󰀣󰀙
n− j

2

󰀚
− j + 1− χ2(j)− χ4(n− j)

󰀤

=

⌊n
3 ⌋󰁛

j=1

󰀙
n− j

2

󰀚
−

⌊n
3 ⌋󰁛

j=1

j +
󰁭n
3

󰁮
−

⌊n
3 ⌋󰁛

j=1

χ2(j)−
⌊n

3 ⌋󰁛

j=1

χ4(n− j)

=
n−1󰁛

j=n−⌊n
3 ⌋

󰀙
j

2

󰀚
− 1

2

󰁭n
3

󰁮 󰀕󰁭n
3

󰁮
+ 1

󰀖
+
󰁭n
3

󰁮
−

󰀙
1

2

󰁭n
3

󰁮󰀚
−

n−1󰁛

j=n−⌊n
3 ⌋

χ4(j).
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Note that n−
󰀇
n
3

󰀈
=

󰀇
2n+2

3

󰀈
=

󰀇
2n−1

3

󰀈
+ 1 and that

󰁭
1
2

󰀇
n
3

󰀈󰁮
=

󰀇
n
6

󰀈
. Thus,

ped(n, 3) =
n−1󰁛

j=⌊ 2n−1
3 ⌋+1

󰀙
j

2

󰀚
− 1

2

󰁭n
3

󰁮 󰀕󰁭n
3

󰁮
− 1

󰀖
−

󰁭n
6

󰁮
−

n−1󰁛

j=⌊ 2n−1
3 ⌋+1

χ4(j)

=

󰀳

󰁃
󰀙
(n− 1)2

4

󰀚
−

󰀧
1

4

󰀙
2n− 1

3

󰀚2
󰀨󰀴

󰁄− 1

2

󰁭n
3

󰁮 󰀕󰁭n
3

󰁮
− 1

󰀖

−
󰁭n
6

󰁮
−

󰀳

󰁃
󰀙
n− 1

4

󰀚
−

󰀧
1

4

󰀙
2n− 1

3

󰀚󰀨󰀴

󰁄 .

Therefore,

ped(n, 3)=

󰀙
(n− 1)2

4

󰀚
−
󰀧
1

4

󰀙
2n− 1

3

󰀚2
󰀨
−1

2

󰁭n
3

󰁮󰀕󰁭n
3

󰁮
−1

󰀖
−
󰁭n
6

󰁮
−
󰀙
n− 1

4

󰀚
+

󰀙
2n− 1

12

󰀚
(2)

Case 2. n ≡ 0 (mod 6)
The only difference between Case 1 and Case 2 comes from the fact that N⌊n

3 ⌋ = Nn
3
=

0, but if we were to use Equation (1), we would get Nn
3
= −1. As a result, Equation (2)

underestimates the actual value of ped(n, 3) by 1. In other words, the correct value of
ped(n, 3) in this case is given by

ped(n, 3) =

󰀙
(n− 1)2

4

󰀚
−

󰀧
1

4

󰀙
2n− 1

3

󰀚2
󰀨
− 1

2

󰁭n
3

󰁮 󰀕󰁭n
3

󰁮
− 1

󰀖
−

󰁭n
6

󰁮
−

󰀙
n− 1

4

󰀚

+

󰀙
2n− 1

12

󰀚
+ 1.

Combining Case 1 and Case 2 yields

ped(n, 3) =

󰀙
(n− 1)2

4

󰀚
−

󰀧
1

4

󰀙
2n− 1

3

󰀚2
󰀨
− 1

2

󰁭n
3

󰁮 󰀕󰁭n
3

󰁮
− 1

󰀖
−

󰁭n
6

󰁮
−

󰀙
n− 1

4

󰀚

+

󰀙
2n− 1

12

󰀚
+ χ6(n).

Since
󰀇
n
6

󰀈
− χ6(n) =

󰀇
n−1
6

󰀈
and

󰀇
2n−1
12

󰀈
=

󰁭
1
6

󰀇
2n−1

2

󰀈󰁮
=

󰀇
n−1
6

󰀈
, it follows that

ped(n, 3) =

󰀙
(n− 1)2

4

󰀚
−

󰀧
1

4

󰀙
2n− 1

3

󰀚2
󰀨
− 1

2

󰁭n
3

󰁮 󰀕󰁭n
3

󰁮
− 1

󰀖
−

󰀙
n− 1

4

󰀚
.

Let now

F (n) =

󰀙
(n− 1)2

4

󰀚
−

󰀧
1

4

󰀙
2n− 1

3

󰀚2
󰀨
− 1

2

󰁭n
3

󰁮 󰀕󰁭n
3

󰁮
− 1

󰀖
.
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Observe that

F (n+ 12)− F (n) =

󰀙
(n+ 11)2

4

󰀚
−

󰀙
(n− 1)2

4

󰀚
−

󰀧
1

4

󰀙
2n+ 23

3

󰀚2
󰀨
+

󰀧
1

4

󰀙
2n− 1

3

󰀚2
󰀨

− 1

2

󰀙
n+ 12

3

󰀚 󰀣󰀙
n+ 12

3

󰀚
− 1

󰀤
+

1

2

󰁭n
3

󰁮 󰀕󰁭n
3

󰁮
− 1

󰀖

=

󰀙
(n− 1)2

4
+ 6n+ 30

󰀚
−

󰀙
(n− 1)2

4

󰀚

−
󰀧
1

4

󰀙
2n− 1

3

󰀚2

+ 4

󰀙
2n− 1

3

󰀚
+ 16

󰀨
+

󰀧
1

4

󰀙
2n− 1

3

󰀚2
󰀨

− 1

2

󰀕󰁭n
3

󰁮
+ 4

󰀖 󰀕󰁭n
3

󰁮
+ 3

󰀖
+

1

2

󰁭n
3

󰁮 󰀕󰁭n
3

󰁮
− 1

󰀖
.

Thus,

F (n+ 12)− F (n) = (6n+ 30)−
󰀣
4

󰀙
2n− 1

3

󰀚
+ 16

󰀤
−

󰀕
4
󰁭n
3

󰁮
+ 6

󰀖

= 6n− 4
󰁭n
3

󰁮
− 4

󰀙
2n− 1

3

󰀚
+ 8.

Recall that n −
󰀇
n
3

󰀈
=

󰀇
2n+2

3

󰀈
=

󰀇
2n−1

3

󰀈
+ 1, which means n − 1 =

󰀇
n
3

󰀈
+

󰀇
2n−1

3

󰀈
. As a

result,
F (n+ 12)− F (n) = 6n− 4(n− 1) + 8 = 2n+ 12.

As F (1) = F (2) = 0, F (3) = F (4) = 1, F (5) = 2, F (6) = 3, F (7) = 4, F (8) = 5,
F (9) = 7, F (10) = 8, F (11) = 10, and F (12) = 12, we can easily prove by induction that

F (n) =
󰁭
n2+6
12

󰁮
. Since ped(n, 3) = F (n)−

󰀇
n−1
4

󰀈
, we obtain

ped(n, 3) =

󰀙
n2 + 6

12

󰀚
−

󰀙
n− 1

4

󰀚
.

Proof of Theorem 6. For convenience, let Pq,j(n,m) be the set of partitions of n into m
parts such that the parts congruent to −j modulo q are distinct. Thus, pq,j(n,m) =
|Pq,j(n,m)|.

In contrast, let P̄q,j(n,m) be the set of partitions of n into m parts such that at least
one part congruent to −j modulo q is repeated. Write p̄q,j(n,m) =

󰀏󰀏P̄q,j(n,m)
󰀏󰀏. We prove

the following equality:

p̄q,j(n,m) =
∞󰁛

ℓ=1

∞󰁛

r=1

p(r, ℓ) pq,j(n+ 2jℓ− 2qr,m− 2ℓ). (3)
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Fix λ ∈ P̄q,j(n,m). Suppose that t1 > t2 > . . . > tk are all the positive integers
such that, for each i = 1, 2, . . . , k, there are si(> 0) parts in λ of size qti − j. Define
ℓ =

󰁓k
i=1

󰀇
si
2

󰀈
and r =

󰁓k
i=1 ti

󰀇
si
2

󰀈
. Since λ ∈ P̄q,j(n,m), we conclude that si 󰃍 2 for

some i = 1, 2, . . . , k, whence ℓ 󰃍 1 and r 󰃍 1.
The ℓ-term sequence f(λ) consisting of

󰀇
si
2

󰀈
copies of ti for i = 1, 2, . . . , k is clearly

a partition of r into ℓ parts. Now, we define g(λ) to be the sequence consisting of the
following terms:

• all terms of λ that are not congruent to −j modulo q, and

• one copy of qti − j for all i = 1, 2, . . . , k such that si is an odd integer.

Observe that g(λ) is a partition into m− 2ℓ parts of

n−
k󰁛

i=1

2
󰁭si
2

󰁮
(qti − j) = n+ 2j

k󰁛

i=1

󰁭si
2

󰁮
− 2q

k󰁛

i=1

ti

󰁭si
2

󰁮
= n+ 2jℓ− 2qr.

Note that the parts congruent to −j modulo q of g(λ) do not repeat. Therefore, g(λ) ∈
Pq,j(n+ 2jℓ− 2qr,m− 2ℓ).

We have established a map λ 󰀁→
󰀃
f(λ), g(λ)

󰀄
, where f(λ) is a partition of r 󰃍 1 into

ℓ 󰃍 1 parts and g(λ) is an element of Pq,j(n+ 2jℓ− 2qr,m− 2ℓ). Conversely, for a given
partition φ of r(󰃍 1) into ℓ(󰃍 1) parts and for a given γ ∈ Pq,j(n+2jℓ− 2qr,m− 2ℓ), we
can create an element Λ(φ, γ) ∈ P̄q,j(n,m) as follows: assume that φ consists of σµ copies
of τµ for µ = 1, 2, . . . , ν. For all µ = 1, 2, . . . , ν, we add 2σµ copies of qτµ − j to γ. Let
Λ(φ, γ) be the resulting sequence. Obviously, Λ(φ, γ) is an element of P̄q,j(n,m).

Clearly, the maps λ 󰀁→
󰀃
f(λ), g(λ)

󰀄
and (φ, γ) 󰀁→ Λ(φ, γ) are inverses of each other.

Hence, p̄q,j(n,m) =
󰀏󰀏P̄q,j(n,m)

󰀏󰀏 is the number of pairs (φ, γ), where φ is a partition
of r into ℓ parts for some positive integers r and ℓ, and γ is an element of Pq,j(n +
2jℓ − 2qr,m − 2ℓ). For fixed values of r and ℓ, there are p(r, ℓ) choices of φ, whilst
there are pq,j(n + 2jℓ − 2qr,m − 2ℓ) ways to choose γ. Consequently, there are in total
p(r, ℓ) pq,j(n + 2jℓ − 2qr,m − 2ℓ) ways to pick (φ, γ) for any positive integers r and ℓ.
Equation (3) is now evident.

Proof of Corollary 8. From Corollary 7, we have

ped(n, 4) = p(n, 4)−
∞󰁛

r=1

p(r, 1) ped(n− 4r, 2)−
∞󰁛

r=1

p(r, 2) ped(n− 4r, 0).

According to Theorem 2, ped(n − 4r, 2) =
󰀇
n−4r
2

󰀈
− χ4(n − 4r) =

󰀇
n
2

󰀈
− 2r − χ4(n) for

r = 1, 2, . . . ,
󰀇
n−1
4

󰀈
, whereas ped(n − 4r, 2) = 0 for r >

󰀇
n−1
4

󰀈
. Furthermore, the sum󰁓∞

r=1 p(r, 2) ped(n− 4r, 0) is nonzero only when 4 | n, in which case
󰁓∞

r=1 p(r, 2) ped(n−

the electronic journal of combinatorics 31(3) (2024), #P3.19 9



4r, 0) = p
󰀃
n
4
, 2
󰀄
=

󰁭
1
2

󰀃
n
4

󰀄󰁮
=

󰀇
n
8

󰀈
. Consequently,

ped(n, 4) = p(n, 4)−
⌊n−1

4 ⌋󰁛

r=1

󰀕󰁭n
2

󰁮
− 2r − χ4(n)

󰀖
−

󰁭n
8

󰁮
χ4(n)

= p(n, 4)−
⌊n−1

4 ⌋󰁛

r=1

󰀕󰁭n
2

󰁮
− 2r

󰀖
+

󰀙
n− 1

4

󰀚
χ4(n)−

󰁭n
8

󰁮
χ4(n)

= p(n, 4)−
⌊n−1

4 ⌋󰁛

r=1

󰀕󰁭n
2

󰁮
− 2r

󰀖
+

󰀕󰀙
n− 1

4

󰀚
−

󰁭n
8

󰁮󰀖
χ4(n).

Observe that
󰀇
n−1
4

󰀈
−
󰀇
n
8

󰀈
=

󰀇
n−4
8

󰀈
for every positive integer n such that 4 | n. Moreover,

we can easily prove by induction that, for any positive integer p, the sum of all positive

integers i < p such that i ≡ p (mod 2) is given by
󰁭
(p−1)2

4

󰁮
. Therefore,

ped(n, 4) = p(n, 4)−
󰀙
1

4

󰀓󰁭n
2

󰁮
− 1

󰀔2
󰀚
+

󰀙
n− 4

8

󰀚
χ4(n)

= p(n, 4)−
󰀧
1

4

󰀙
n− 2

2

󰀚2
󰀨
+

󰀙
n− 4

8

󰀚
χ4(n).

It remains to show that

p(n, 4) =

󰀙
n3

144
+

n2

48
− n

16
(n mod 2) +

1

2

󰀚
(4)

For convenience, write an =
󰁭

n3

144
+ n2

48
− n

16
(n mod 2) + 1

2

󰁮
. Then

an+12 − an =

󰀫
(n−1)2

4
+ 4n+ 14, if 2 ∤ n;

n2

4
+ 7n

2
+ 15, if 2 | n.

Note that a1 = a2 = a3 = 0, a4 = a5 = 1, a6 = 2, a7 = 3, a8 = 5, a9 = 6, a10 = 9,
a11 = 11, and a12 = 15.

To calculate p(n, 4), we shall employ Burnside’s lemma. Consider the set

Tn =
󰀋
(x1, x2, x3, x4) ∈ Z4

󰀏󰀏 x1, x2, x3, x4 > 0 and x1 + x2 + x3 + x4 = n
󰀌
.

The symmetric group on 4 symbols, or S4, acts on Tn in the natural way. We want to
find the number of orbits of Tn under S4. Now, S4 has 4 conjugacy classes:

• C1: the identity class (1 element),

• C2: the class of transpositions (6 elements),
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• C3: the class of 3-cycles (8 elements),

• C4: the class of products of two disjoint transpositions (3 elements), and

• C5: the class of 4-cycles (6 elements).

For g ∈ S4, let T
g
n denote the number of elements of Tn fixed by the action of g.

The number of elements of Tn fixed by an element of the class C1 (the identity element
e of S4) is Tn. It is easily seen that

|T e
n| = |Tn| =

󰀕
n− 1

3

󰀖
.

The number of elements of Tn fixed by an element g ∈ C2 is the same as the number
of tuples (x1, x2, x3, x4) ∈ Tn such that x1 = x2. If x1 = x2 = j, then x3 + x4 = n − 2j.
Since x3 󰃍 1 and x4 󰃍 1, it holds that n − 2j 󰃍 2, whence j 󰃑

󰀇
n−2
2

󰀈
. Because we can

choose x3 in n− 2j − 1 ways, we conclude that

|T g
n | =

⌊n−2
2 ⌋󰁛

j=1

(n− 2j − 1) =

󰀙
(n− 2)2

4

󰀚
.

The number of elements of Tn fixed by an element g ∈ C3 is the same as the number
of tuples (x1, x2, x3, x4) ∈ Tn such that x1 = x2 = x3. If x1 = x2 = x3 = j, then from
x1 + x2 + x3 + x4 = n and x4 󰃍 1, we deduce that j 󰃑 n−1

3
. Hence,

|T g
n | =

󰀙
n− 1

3

󰀚
.

The number of elements of Tn fixed by an element g ∈ C4 is the same as the number of
tuples (x1, x2, x3, x4) ∈ Tn such that x1 = x2 and x3 = x4. If x1 = x2 = j and x3 = x4 = k,
then n = 2j + 2k or j + k = n

2
. Thus, n must be even, in which case |T g

n | = n
2
− 1. In

general,

|T g
n | =

󰀓n
2
− 1

󰀔
χ2(n).

Finally, the number of elements of Tn fixed by an element g ∈ C4 is the same as the
number of tuples (x1, x2, x3, x4) ∈ Tn such that x1 = x2 = x3 = x4. Since x1+x2+x3+x4 =
n, it follows that 4 | n and x1 = x2 = x3 = x4 =

n
4
is the only solution. In general,

|T g
n | = χ4(n).

Note that p(n, 4) is precisely the number of orbits of Tn under S4. According to
Burnside’s lemma,

p(n, 4) =
1

|S4|
󰁛

g∈S4

|T g
n | .
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Then,

p(n, 4) =
1

24

󰀣
1·
󰀕
n− 1

3

󰀖
+ 6·

󰀙
(n− 2)2

4

󰀚
+ 8·

󰀙
n− 1

3

󰀚
+ 3·

󰀓n
2
− 1

󰀔
χ2(n) + 6·χ4(n)

󰀤
.

Evidently, p(n, 4) = an for all n = 1, 2, . . . , 12.
We can easily verify that

p(n+ 12, 4)− p(n, 4) =

󰀫
(n−1)2

4
+ 4n+ 14, if 2 ∤ n;

n2

4
+ 7n

2
+ 15, if 2 | n.

Hence, the sequences
󰀃
p(n, 4)

󰀄∞
n=1

and
󰀃
an
󰀄∞
n=1

satisfy the same recurrence relation, and
share the same initial values. In conclusion, p(n, 4) = an for every n = 1, 2, 3, . . .. The
assertion is now proven.
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