
A Short Proof of Kahn-Kalai Conjecture

Phuc Trana Van Vua

Submitted: Jul 30, 2023; Accepted: Jun 25, 2024; Published: Jul 12, 2024

©The authors. Released under the CC BY-ND license (International 4.0).

Abstract

In a recent paper, Park and Pham famously proved Kahn-Kalai conjecture. In
this note, we simplify their proof, using an induction to replace the original analysis.
This reduces the proof to one page and from the argument it is also easy to read
that one can set the constant K in the conjecture to ≈ 3.998, which could be the
best value under the current method. Our argument also applies to the ε-version of
the Park-Pham result, studied by Bell.

Mathematics Subject Classifications: 05C80, 05D40, 60C05.

1 Introduction

Let X be a set of N elements and 0 6 p 6 1. The measure µp is defined on the subsets of
X by µp(S) = p|S|(1 − p)N−|S|. This is the measure generated by choosing each element
of X independently with probability p. For a family F of subsets, µp(F ) :=

∑
S∈F µp(S).

Furthermore, let Ep(|F |) =
∑

S∈F p
|S| be the expectation for the number of elements of

F in the chosen set. We call F increasing family if F satisfies the increasing property,
meaning that if B ⊃ A ∈ F , then B ∈ F . Given a family F , let 〈F 〉 be the collection of
subsets of X which contain some elements of F , namely 〈F 〉 := {T : T ⊃ S, S ∈ F}. We
say that G covers F if F ⊂ 〈G〉.

Define pc(F ) to be point where µpc(〈F 〉) = 1/2, and pE(G) be the point where
EpE(|G|) = 1/2. Let q(F ) = max {pE(G) | G covers F}. It is clear that

pE(F ) 6 q(F ) 6 pc(F ). (1)

Finally, we say that F is l-bounded if its elements have size at most l.
Example. Let X be the set of all edges of the complete graph Kn on a set V of

n vertices. Thus, |X| = N =
(
n
2

)
and each subset S ⊂ X corresponds to a graph on

V . For each 0 6 p 6 1, µp is the measure of the random graph G(n, p). Let F be the

collection of Hamiltonian cycles on V . It is clear that F is n-bounded and Ep(F ) = (n−1)!pn
2
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(since |F | = (n−1)!
2

) is the expectation of the number of Hamiltonian cycles in G(n, p).
Furthermore, pc(F ) is the critical point where G(n, p) contains a Hamiltonian cycle with
probability 1/2.

By Stirling’s formula, q(F ) > pE(F ) = (1 + o(1)) e
n
. The computation of pc(F ) is

harder, and classical theorems in random graph theory show that

pc(F ) = (1 + o(1))
lnn

n
= (ln 2 + o(1))

log n

n
≈ .693

log n

n
,

where (following tradition) we assume that log x has base 2.
Kahn and Kalai [2] conjectured that there is a constant K such that for any increasing

family F , pc(F ) 6 Kq(F ) log n. This was the central question in random graph theory
for many years. In 2021, a weaker version of this conjecture was proved by Frankston,
Kahn, Narayanan and Park [3], inspired by an exciting development from [4]. This version
already contained the most interesting applications in the literature. A year later, Park
and Pham [5], also using ideas from [4], settled the conjecture in an even stronger form.

Theorem 1 (Park-Pham [5]). There is a constant K > 0 such that for any l-bounded
increasing family F, pc(F ) 6 Kq(F ) log l.

This note grew out of our attempt to teach Theorem 1 in class. We found a shortcut
using induction, avoiding the relatively technical analysis in [5]. This simplifies the proof
of the main result of [5] (Theorem 3 below) and reduces its length to about one page.
The other ingredients remain the same.

This short proof also reveals that when l → ∞ (which is the interesting case in
applications) we can set K ≈ 3.998, which we believed to be the best constant with
respect to the current approach. The previous record is K = 8, see [1].

2 The covering theorem

Fix a positive number p 6 1. In the power set 2X , the m-level, denoted by Lm, is the
family of all subsets of size m. Clearly |Lm| =

(
N
m

)
. For a family H of subsets of X, the

cost to cover H, denoted by fp(H), is the minimum expectation with respect to p of a
family G such that H ⊂ 〈G〉. This cost function is sub-additive, if H is partitioned into
H1 and H2, then fp(H) 6 fp(H1) + fp(H2). If H is empty, then fp(H) = 0. On the other
hand, if H contains the empty set, then fp(H) = 1.

For an increasing family F , let ct(F ) = |F∩Lt|
|Lt| be the fraction of level t in F . By double

counting, it is easy to show that

Fact 2. ct(F ) is increasing with t.

Set ml := bLpN log(l + 1)c where L is a sufficiently large constant. The main result
of [5] is the following
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Theorem 3 (Park-Pham [5]). There is a constant L such that the following holds. Assume
that H is l-bounded and fp(H) > 1/2. Then 〈H〉 contains at least 2

3
fraction of the ml-level

(Lml). In other words

|〈H〉 ∩ Lml | >
2

3
|Lml |.

As shown in [5], Theorem 1 follows quickly from Theorem 3; see Remark (6) for details.
We will prove an (artificially) stronger variant, whose parameters are set for induction.

Theorem 4 (Covering theorem). Let 0 6 l 6 N be integers and X be a set of size N .
Assume that H is an l-bounded family of subsets of X and fp(H) > 1

2
− 1

2l+2 . Then 〈H〉
contains at least 2

3
+ 1

2l+2 fraction of the ml-level.

We prove Theorem 4 by induction on l and N . For l = 0, fp(H) > 1/4 > 0. This
means that H consists of the empty set, and the conclusion is trivial (for any N) as 〈∅〉
contains Lm for all 0 6 m 6 N . Now we prove for a pair 1 6 l 6 N , assuming that the
hypothesis holds for all values l′ < l and N ′ 6 N .

For a set W ⊂ X, define HW := {S\W : S ∈ H}. Let H ′W be the family of minimal
sets of HW and let GW := {T : T ∈ H ′W , |T | > .9l} and H̃W := H ′W\GW . The following
lemma is the key estimation.

Lemma 5 (Double counting lemma). For L > 1000 and w = b.1LpNc, we have∑
W :|W |=w

µp(〈GW 〉) 6
(
N

w

)
1

8× 16l
.

Proof. Notice that µp(〈GW 〉) 6
∑

S′∈GW p|S
′|. Therefore,∑

W :|W |=w

µp(〈GW 〉) 6
∑

W :|W |=w

∑
k

∑
S′:S′∈GW ,|S′|=k

pk. (2)

To bound the RHS, we bound the number of pairs (W,S ′), in which W is a set of
size w and S ′ ∈ GW has exactly k elements. To determine (W,S ′), we first fix the union
W ′ = W ∪S ′ and then choose S ′ ∈ GW ′\S′ : |S ′| = k. There are

(
N
w+k

)
ways to choose W ′.

Once this union is fixed, pick a set S ∈ H inside the union (there must be at least one,
namely, the one that defines S ′, but we can choose any). For each possible S ′ ⊂ W ′ (i.e.
W = W ′ \S ′, S ′ ∈ GW , |S ′| = k), if S ′ 6⊂ S, then S ′∩S = S \W is minimal. It contradicts
the fact that S ′ ∈ GW is a minimal set. Thus, S ′ must be a subset of S (regardless of
whether S ′ is defined by S or not). This gives at most

(
l
k

)
choices of S ′. Finally, by the

definition of the system, we only need to consider k > .9l. Therefore, with w = b.1LpNc,
the RHS of (2) is at most∑

.9l<k6l

(
N

w + k

)(
l

k

)
pk 6

(
N

w

) ∑
.9l<k6l

(.1L)−k
(
l

k

)
6

(
N

w

)
(.1L)−.9l2l+1 6

(
N
w

)
8× 16l

, (3)

given that L > 1000. This proves the lemma.
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Back to Theorem 4, we say that W is good if µp(〈GW 〉) 6
∑

S′∈GW p|S
′| 6 1

2l+2 . By

averaging, at most an 1
2×8l fraction of all W are bad. For a good W , by subadditivity, we

have

fp(H̃W ) > fp(H
′
W )− fp(GW ) > fp(H)− 1

2l+2
>

1

2
− 1

2l+1
>

1

2
− 1

2l1+2
,

with l1 := b.9lc < l.
By the induction hypothesis, 〈H̃W 〉 contains 2

3
+ 1

2l1+2 fraction of the ml1-level of the
ground set X\W , |X\W | = N −w. By taking the union with W (for good W ), it follows
that 〈H〉 contains at least

2

3
+

1

2l1+2
− 1

2× 8l
>

2

3
+

1

2l+2

fraction of the (ml1 +w)-level, in which ml1 +w = bLp(N −w) log(l1 + 1)c+ b.1LpNc 6
bLpN log(l + 1)c = ml, given that L > 1000. By Fact 2, our proof is complete.

Remark 6. One can easily deduce Kahn-Kalai conjecture from the main theorem, with
K = L(1 + ε), for any fixed ε > 0. Let us consider G(n, p), the argument for random
hypergraphs is similar. Set N =

(
n
2

)
. Notice that if we choose each edge with probability

p = ρ(1 + ε) where pN → ∞, then with probability 1 − o(1), the resulting graph has at
least m = ρN edges. Thus we can generate G(n, p) (barring an event of probability o(1))
by first generating a random number m̄ of value at least m (according to the binomial
distribution, but this does not really matter), and then hit a uniform random point on
the m̄ level and take the corresponding graph. So with probability at least 2/3− o(1) we
hit a point in 〈H〉.

3 Reducing the constant K

In this section, we show that when l→∞, we can reduce L to approximately 3.998, and
then K (by Remark 6) also approximates 3.998. This seems to be the best value with
respect to the current method.

Let 0 < δ < 1 be a constant and set L (with foresight) such that 3 > ε = (L log(1/δ))δ

2
−

1 > 0. The smallest value for L so that this holds for some 1 > δ > 0 is L ≈ 3.998 . . .
which is slightly larger than the minimal value of 21/δ

log(1/δ)
over the interval (0, 1).

Let l0 be a natural number such that 2 6 (1 + ε/3)l0−bδl0c. Set ml = bLpN log(l +
1) + 1000pN log(l0 + 1)c. With a small modification, we prove the following ε-version of
Theorem 4.

Theorem 7. Let l0 6 l 6 N be integers and X be a set of size N . Assume that H is
l-bounded and fp(H) > 1

2
− (1 + ε/3)−l. Then 〈H〉 contains at least a 2

3
+ (1 + ε/3)−l

fraction of the ml-level.

Proof. We start the induction at l = l0. This base case is covered by Theorem 4 and results
in the term 1000pN log(l0 + 1). Next, we replace .9 by δ and consider w := bLcpNc with
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c := log(1/δ). Thus, in (3), instead of
∑

.9l<k6l(.1L)−k
(
l
k

)
, we end up with

∑
W :|W |=w

µp(〈GW 〉) 6
(
N

w

) ∑
δl<k6l

(Lc)−k
(
l

k

)

6

(
N

w

)
(Lc)−lδ

∑
δl<k6l

(
l

k

)
6

(
N

w

)
(Lc)−lδ2l

=

(
N

w

)[
(Lc)δ

2

]−l
=

(
N

w

)
(1 + ε)−l (by Definition of L and ε )

6

(
N

w

)
(1 + ε/3)−l(1 + ε/3)−l (since ε < 3 ).

(4)

We say that W is good if µp(〈GW 〉) 6
∑

S′∈GW p|S
′| 6 (1 + ε/3)−l. By averaging, at

most an (1 + ε/3)−l fraction of all W are bad. For a good W , by subadditivity, we have

fp(H̃W ) > fp(H
′
W )− fp(GW ) > fp(H)− (1 + ε/3)−l >

1

2
− 2(1 + ε/3)−l >

1

2
− (1 + ε/3)−l1 ,

with l1 = bδlc, thanks to the assumption 2 6 (1 + ε/3)l0−bδl0c. By applying the induction
hypothesis for l1 and taking union with W (for the good W ), it follows that 〈H〉 contains
at least

2

3
+ (1 + ε/3)−l1 − (1 + ε/3)−l >

2

3
+ (1 + ε/3)−l,

fraction of the (ml1+w)-level for ml1+w = bLp(N−w) log(l1+1)+1000pN log(l0+1)c+w.
By the settings of l1 and c, it is easy to check that ml1 +w is at most ml = bLpN log(l+
1) + 1000pN log(l0 + 1)c. We complete the induction and the proof.

4 Covering theorem for arbitrary small ε1

In the previous sections, we proved that if fp(H) > 1/2, then 〈H〉 contains at least
2/3 = 1 − 1

3
fraction of the ml-level, for sufficiently large ml. In [1], Bell considered the

question of how large should ml be if we replace 1
3

by an arbitrary ε1 > 0. He proved in [1,

Theorem 3] that the covering theorem still holds for ml = b48pN log l + 48pN log
(

1
ε1

)
c.

By combining our induction with Bell’s result, we can prove the following bound for
sufficiently small ε1.

Define L ≈ 3.998 and its corresponding l0 as in the beginning of Section 3. Set

ml = bLpN log(l + 1) + 96pN log
(

1
ε1

)
c.
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Theorem 8. Let 0 < ε1 < 1/l0 be a positive number which may depend on N . Assume
that H is l-bounded and fp(H) > 1

2
. Then 〈H〉 contains at least 1 − ε1 fraction of the

ml-level.

Proof of Theorem 8 . We start the induction at l = b 1
ε1
c−1. This base case is covered by

Bell’s theorem and results in the term 96pN log
(

1
ε1

)
. When l > b 1

ε1
c − 1, we follow the

proof of Theorem 7 with 1 − ε1 replacing 2
3

and obtain the remaining term LpN log(l +
1).

The first author could further improve the constant from 96 to 16; details will appear
in a sequential work.
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