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Abstract

We describe an implementation of a computer search for the “small” excluded
minors for a class of matroids representable over a partial field. Using these tech-
niques, we enumerate the excluded minors on at most 15 elements for both the
class of dyadic matroids, and the class of 2-regular matroids. We conjecture that
there are no other excluded minors for the class of 2-regular matroids; whereas, on
the other hand, we show that there is a 16-element excluded minor for the class of
dyadic matroids.

Mathematics Subject Classifications: 05B35

1 Introduction

A minor-closed class of matroids can be characterised by its excluded minors : the minor-
minimal matroids that are not in the class. Finding an excluded-minor characterisation
for a class of matroids representable over a certain field or fields is an area of much interest
to matroid theorists (see [15, 16] for recent examples). A class of matroids representable
over a set of fields can be characterised by representability over a structure known as a
partial field. Two particular tantalising classes of matroids representable over a partial
field, for which excluded-minor characterisations are not yet known, are dyadic matroids
and 2-regular matroids. In this paper, we describe an implementation of a computer
search for the “small” excluded minors for a class of matroids representable over a partial
field. This approach was used to enumerate, by computer, the excluded minors on at
most 15 elements for the class of dyadic matroids, and for the class of 2-regular matroids.

Our first result from this computation is the following:

Theorem 1. The excluded minors for dyadic matroids on at most 15 elements are U2,5,
U3,5, F7, F

∗
7 , AG(2, 3)\e, (AG(2, 3)\e)∗, (AG(2, 3)\e)∆Y , T8, N1, N2, and N3.
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With the exception of N3, these matroids were previously known [20, Problem 14.7.11].
However, even this list is incomplete: we also found a 16-element excluded minor that we
call N4. We describe N3 and N4 in Section 5.

Our second result is the following:

Theorem 2. The excluded minors for 2-regular matroids on at most 15 elements are U2,6,
U3,6, U4,6, P6, F7, F

∗
7 , F

−
7 , (F−

7 )∗, F=
7 , (F=

7 )∗, AG(2, 3)\e, (AG(2, 3)\e)∗, (AG(2, 3)\e)∆Y ,
P8, P

−
8 , P=

8 , and TQ8.

The matroids P−
8 and TQ8 are described in Section 6, whereas the others will be well

known to readers that are familiar with the excluded-minor characterisations for GF(4)-
representable matroids [15] and near-regular matroids [16] (see also [20]).

We conjecture that this is the complete list of excluded minors for this class. In fact,
in recent as-yet-unpublished work, Brettell, Oxley, Semple and Whittle [7, 8] prove that
an excluded minor for the class of 2-regular matroids has at most 15 elements. Combining
this result with Theorem 2, one obtains an excluded-minor characterisation of the class
of 2-regular matroids, which is the culmination of a long research programme [6, 9–12].

The structure of this paper is as follows. In the next section, we review preliminaries.
In Section 3, we introduce confined partial-field representations and describe how a rep-
resentation over a partial field can be encoded by a representation over a finite field, with
particular subdeterminants. In Section 4, we describe the implementation of the com-
putation. Rather than presenting the code (which we intend to make freely available),
we focus on describing the implementation details that enabled us to search up to ma-
troids on 15 elements using computer resources that are (more or less) readily available.
In Sections 5 and 6, we present our results for dyadic matroids and 2-regular matroids,
respectively.

2 Preliminaries

2.1 Partial fields

A partial field is a pair (R,G), where R is a commutative ring with unity, and G is a
subgroup of the group of units of R such that −1 ∈ G. Note that (F,F∗) is a partial field
for any field F. If P = (R,G) is a partial field, then we write p ∈ P when p ∈ G ∪ {0},
and P ⊆ P when P ⊆ G ∪ {0}.

For disjoint sets X and Y , we refer to a matrix with rows labelled by elements of X
and columns labelled by elements of Y as an X×Y matrix. Let P be a partial field, and let
A be an X×Y matrix with entries from P. Then A is a P-matrix if every subdeterminant
of A is contained in P. If X ′ ⊆ X and Y ′ ⊆ Y , then we write A[X ′, Y ′] to denote the
submatrix of A with rows labelled by X ′ and columns labelled by Y ′.

Lemma 3 ([22, Theorem 2.8]). Let P be a partial field, and let A be an X × Y P-matrix,
where X and Y are disjoint sets. Let

B = {X} ∪ {X△Z : |X ∩ Z| = |Y ∩ Z|, det(A[X ∩ Z, Y ∩ Z]) ∕= 0}.
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Then B is the family of bases of a matroid on X ∪ Y .

For an X × Y P-matrix A, we let M [A] denote the matroid in Lemma 3, and say
that A is a P-representation of M [A]. Note that this is sometimes known as a reduced
P-representation in the literature; here, all representations will be “reduced”, so we simply
refer to them as representations. A matroid M is P-representable if there exists some P-
matrix A such that M ∼= M [A]. We refer to a matroid M together with a P-representation
A of M as a P-represented matroid.

For partial fields P1 and P2, we say that a function φ : P1 → P2 is a homomorphism if

(i) φ(1) = 1,

(ii) φ(pq) = φ(p)φ(q) for all p, q ∈ P1, and

(iii) φ(p) + φ(q) = φ(p+ q) for all p, q ∈ P1 such that p+ q ∈ P1.

Let φ([aij]) denote [φ(aij)]. The existence of a homomorphism from P1 to P2 certifies that
P1-representability implies P2-representability:

Lemma 4 ([22, Corollary 2.9]). Let P1 and P2 be partial fields and let φ : P1 → P2 be
a homomorphism. If a matroid is P1-representable, then it is also P2-representable. In
particular, if A is a P1-representation of a matroid M , then φ(A) is a P2-representation
of M .

Representability over a partial field can be used to characterise representability over
each field in a set of fields. Indeed, for any finite set of fields F , there exists a partial
field P such that a matroid is F -representable if and only if it is P-representable [23,
Corollary 2.20].

Let M be a matroid. Pendavingh and Van Zwam described [22, Section 4.2] the
canonical construction of a partial field PM with the property that for every partial field P,
the matroid M is P-representable if and only if there exists a homomorphism φ : PM → P
(see also [4]). We call the partial field PM the universal partial field of M .

Let P = (R,G) be a partial field. We say that p ∈ P is fundamental if 1− p ∈ P. We
denote the set of fundamentals of P by F(P). For p ∈ P, the set of associates of p is

Asc(p) =

󰀫󰁱
p, 1− p, 1

p
, 1
1−p

, p
p−1

, p−1
p

󰁲
if p /∈ {0, 1}

{0, 1} if p ∈ {0, 1}.

For P ⊆ P, we write Asc(P ) =
󰁖

p∈P Asc(p). If p ∈ F(P), then Asc(p) ⊆ F(P).
Let A and A′ be P-matrices. We write A ≼ A′ if A can be obtained from A′ by the

following operations: multiplying a row or column by an element of G, deleting a row or
column, permuting rows or columns, and pivoting on a non-zero entry. The cross ratios
of A are

Cr(A) =

󰀝
p :

󰀗
1 1
p 1

󰀘
≼ A

󰀞
.

Any other undefined terminology related to partial fields follows Pendavingh and Van
Zwam [22,23]. We note that although we work only at the generality of partial fields, this
theory has been generalised by Baker and Lorscheid [3, 5].
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2.2 Partial fields of note

The dyadic partial field is D =
󰀃
Z
󰀅
1
2

󰀆
, 〈−1, 2〉

󰀄
. We say a matroid is dyadic if it is

D-representable. A matroid is dyadic if and only if it is both GF(3)-representable and
GF(5)-representable. Moreover, a dyadic matroid is representable over every field of
characteristic not two [26, Lemma 2.5.5].

The 2-regular partial field is

U2 = (Q(α, β), 〈−1,α, β, 1− α, 1− β,α− β〉),

where α and β are indeterminates. We say a matroid is 2-regular if it is U2-representable.
Note that U2 is the universal partial field of U2,5 [26, Theorem 3.3.24]. If a matroid is
2-regular, then it is F-representable for every field F of size at least four [24, Corollary
3.1.3]. However, the converse does not hold; for example, U3,6 is representable over all
fields of size at least four, but is not 2-regular [24, Lemma 4.2.4].

More generally, the k-regular partial field is

Uk = (Q(α1, . . . ,αk), 〈{x− y : x, y ∈ {0, 1,α1, . . . ,αk} and x ∕= y}〉),

where α1, . . . ,αk are indeterminates. In particular, a matroid is near-regular if it is U1-
representable.

We also make some use of the following partial fields [22, 26]. The sixth-root-of-unity
partial field is S = (Z[ζ], 〈ζ〉), where ζ is a solution to x2 − x + 1 = 0. A matroid is
S-representable if and only if it is GF(3)- and GF(4)-representable.

The 2-cyclotomic partial field is

K2 = (Q(α), 〈−1,α− 1,α,α + 1〉),

where α is an indeterminate. If a matroid is K2-representable, then it is representable
over every field of size at least four; but the converse does not hold [23, Lemma 4.14 and
Section 6]. The class of 2-regular matroids is a proper subset of the K2-representable
matroids.

Finally, Pendavingh and Van Zwam introduced, for each i ∈ {1, . . . , 6}, the Hydra-i
partial field Hi [22]. A 3-connected quinary matroid with a {U2,5, U3,5}-minor is Hi-
representable if and only if it has at least i inequivalent GF(5)-representations.

2.3 Delta-wye exchange

Let M be a matroid with a coindependent triangle T = {a, b, c}. Consider a copy of
M(K4) having T as a triangle with {a′, b′, c′} as the complementary triad labelled such that
{a, b′, c′}, {a′, b, c′} and {a′, b′, c} are triangles. Let PT (M,M(K4)) denote the generalised
parallel connection of M with this copy of M(K4) along the triangle T . Let M ′ be the
matroid PT (M,M(K4))\T where the elements a′, b′ and c′ are relabelled as a, b and c
respectively. The matroid M ′ is said to be obtained from M by a ∆-Y exchange on the
triangle T . Dually, M ′′ is obtained from M by a Y -∆ exchange on the triad T ∗ = {a, b, c}
if (M ′′)∗ is obtained from M∗ by a ∆-Y exchange on T ∗.
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We say that matroids M and M ′ are ∆Y -equivalent if M ′ can be obtained from M
by a (possibly empty) sequence of ∆-Y exchanges on coindependent triangles and Y -∆
exchanges on independent triads.

For a matroid M , we use ∆(M) to denote the set of all matroids ∆Y -equivalent to
M ; for a set of matroids N , we use ∆(N ) to denote

󰁖
N∈N ∆(N). We also use ∆(∗)(N )

to denote
󰁖

N∈N ∆({N,N∗}).
The following two results were proved by Oxley, Semple and Vertigan [21], generalising

the analogous results by Akkari and Oxley [1] regarding the F-representability of ∆Y -
equivalent matroids for a field F.

Lemma 5 ([21, Lemma 3.7]). Let P be a partial field, and let M and M ′ be ∆Y -equivalent
matroids. Then M is P-representable if and only if M ′ is P-representable.

Lemma 6 ([21, Theorem 1.1]). Let P be a partial field, and let M be an excluded minor
for the class of P-representable matroids. If M ′ is ∆Y -equivalent to M , then M ′ is an
excluded minor for the class of P-representable matroids.

2.4 Excluded-minor characterisations

We now recall Geelen, Gerards and Kapoor’s excluded-minor characterisation of quater-
nary matroids [15]. The matroid P8 is illustrated in Figure 2; observe that {a, b, c, d} and
{e, f, g, h} are disjoint circuit-hyperplanes. Relaxing both of these circuit-hyperplanes
results in the matroid P=

8 .

Theorem 7 ([15, Theorem 1.1]). A matroid is GF(4)-representable if and only if it has
no minor isomorphic to U2,6, U4,6, P6, F

−
7 , (F−

7 )∗, P8, and P=
8 .

Let AG(2, 3)\e denote the matroid obtained from AG(2, 3) by deleting an element
(this matroid is unique up to isomorphism). Let (AG(2, 3)\e)∆Y denote matroid obtained
from AG(2, 3)\e by performing a single ∆-Y exchange on a triangle (again, this matroid is
unique up to isomorphism). Hall, Mayhew, and Van Zwam proved the following excluded-
minor characterisation of the near-regular matroids [16].

Theorem 8 ([16, Theorem 1.2]). A matroid is near-regular if and only if it has no minor
isomorphic to U2,5, U3,5, F7, F

∗
7 , F

−
7 , (F−

7 )∗, AG(2, 3)\e, (AG(2, 3)\e)∗, (AG(2, 3)\e)∆Y ,
and P8.

2.5 Splitter theorems

Let N be a set of matroids. We say that a matroid M has an N -minor if M has an N -
minor for some N ∈ N . In order to exhaustively generate the matroids in some class that
are 3-connected and have an N -minor, we use Seymour’s Splitter Theorem extensively.

Theorem 9 (Seymour’s Splitter Theorem [25]). Let M be a 3-connected matroid that is
not a wheel or a whirl, and let N be a 3-connected proper minor of M . Then there exists
an element e ∈ E(M) such that M/e or M\e is 3-connected and has an N-minor.

the electronic journal of combinatorics 31(3) (2024), #P3.20 5



We are primarily interested in matroids that are not near-regular, due to Theorem 8.
The next corollary follows from the observation that wheels and whirls are near-regular.

Corollary 10. Let M be a 3-connected matroid with a proper N-minor, where N is
not near-regular. Then, for (M ′, N ′) ∈ {(M,N), (M∗, N∗)}, there exists an element e ∈
E(M ′) such that M ′\e is 3-connected and has an N ′-minor.

To reduce the number of extensions to consider, when generating potential excluded
minors, we use splicing, as described in Section 4.5. Since we only keep track of 3-
connected matroids with a particular N -minor, we require a guarantee of the existence
of so-called N -detachable pairs [9], in order to generate an exhaustive list of potential
excluded minors. Let M be a 3-connected matroid, and let N be a 3-connected minor of
M . A pair {a, b} ⊆ E(M) is N-detachable if either M\a\b or M/a/b is 3-connected and
has an N -minor. To describe matroids with no N -detachable pairs, we require a definition.
Let P ⊆ E(M) be an exactly 3-separating set of M such that |P | 󰃍 6. Suppose P has
the following properties:

(a) there is a partition {L1, . . . , Lt} of P into pairs such that for all distinct i, j ∈
{1, . . . , t}, the set Li ∪ Lj is a cocircuit,

(b) there is a partition {K1, . . . , Kt} of P into pairs such that for all distinct i, j ∈
{1, . . . , t}, the set Ki ∪Kj is a circuit,

(c) M/p and M\p are 3-connected for each p ∈ P ,

(d) for all distinct i, j ∈ {1, . . . , t}, the matroid si(M/a/b) is 3-connected for any a ∈ Li

and b ∈ Lj, and

(e) for all distinct i, j ∈ {1, . . . , t}, the matroid co(M\a\b) is 3-connected for any a ∈ Ki

and b ∈ Kj.

Then we say P is a spikey 3-separator of M .

Theorem 11 ([9, Theorem 1.1]). Let M be a 3-connected matroid, and let N be a 3-
connected minor of M such that |E(N)| 󰃍 4, and |E(M)|− |E(N)| 󰃍 6. Then either

(i) M has an N-detachable pair,

(ii) there is a matroid M ′ obtained by performing a single ∆-Y or Y -∆ exchange on M
such that M ′ has an N-minor and an N-detachable pair, or

(iii) M has a spikey 3-separator P , and if |E(M)| 󰃍 13, then at most one element of
E(M)− E(N) is not in P .

We note that in the statement of this theorem in [9], the precise structure of the 3-
separators that arise in case (iii) is described. It is clear that when |E(M)|− |E(N)| 󰃍 6,
each of these 3-separators satisfy conditions (a) and (b) in the definition of a spikey 3-
separator. The fact that (c) holds for such a 3-separator follows from [9, Lemma 5.3], and
it is easily checked that (d), and dually (e), also hold.
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2.6 Equivalence of P-matrices, and stabilizers

Let P = (R,G) be a partial field, and let A and A′ be P-matrices. We say that A and A′ are
scaling equivalent if A′ can be obtained from A by scaling rows and columns by elements
of G. If A′ can be obtained from A by scaling, pivoting, permuting rows and columns, and
also applying automorphisms of P, then we say that A and A′ are algebraically equivalent.
We say that M is uniquely representable over P if any two P-representations of M are
algebraically equivalent.

Let M and N be P-representable matroids, where M has an N -minor. Then N stabi-
lizes M over P if for any scaling-equivalent P-representations A′

1 and A′
2 of N that extend

to P-representations A1 and A2 of M , respectively, A1 and A2 are scaling equivalent.
For a partial field P, let M(P) be the class of matroids representable over P. A

matroid N ∈ M(P) is a P-stabilizer if, for any 3-connected matroid M ∈ M(P) having
an N -minor, the matroid N stabilizes M over P.

Following Geelen et al. [14], we say that a matroid N strongly stabilizes M over P if
N stabilizes M over P, and every P-representation of N extends to a P-representation of
M . We say that N is a strong P-stabilizer if N is a P-stabilizer and N strongly stabilizes
every matroid in M(P) with an N -minor.

3 Partial-field proxies

In this section, we show that we can simulate a representation over a partial field by
a representation over a finite field, where we have constraints on the subdeterminants
appearing in the representation. This has efficiency benefits for our computations, as we
can utilise an existing implementation of finite fields, and avoid a full implementation of
a partial field from scratch.

Let P be a partial field, let F ⊆ F(P), let M be a matroid, and let A be a P-matrix
so that M = M [A]. We say that the matrix A is F -confined if Cr(A) ⊆ F ∪ {0, 1}.
If A is an F -confined P-matrix and φ : P → P′ is a partial-field homomorphism, then
M [A] = M [φ(A)] and

Cr(φ(A)) ⊆ φ(F ),

so that φ(A) is an φ(F )-confined representation over P′. We will show that under certain
conditions on φ and F , any φ(F )-confined representation over P′ can be lifted to an
F -confined representation over P.

The following is a reformulation of [23, Corollary 3.8] (see also [26, Corollary 4.1.6]) us-
ing the notion of F -confined partial-field representations. To see this, take the restriction
of h to Cr(A) as the lift function.

Theorem 12 (Lift Theorem [23]). Let P and P′ be partial fields, let F ⊆ F(P′), let A be
an F -confined P′-matrix, and let φ : P → P′ be a partial-field homomorphism. Suppose
there exists a function h : F → P such that

(i) φ(h(p)) = p for all p ∈ F ,
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(ii) if 1 + 1 ∈ P′, then 1 + 1 ∈ P, and 1 + 1 = 0 in P′ if and only if 1 + 1 = 0 in P,

(iii) for all p, q ∈ F ,

• if p+ q = 1 then h(p) + h(q) = 1, and

• if pq = 1 then h(p)h(q) = 1; and,

(iv) for all p, q, r ∈ F , we have pqr = 1 if and only if h(p)h(q)h(r) = 1.

Then there exists a P-matrix A′ such that φ(A′) is scaling-equivalent to A.

We are interested in the case where P′ is a finite field F = GF(q) for some prime power
q. In this case, we obtain the following corollary:

Corollary 13. Let P be a partial field, let F be a finite field, let φ : P → F be a partial-field
homomorphism, let F = φ(F(P)), and let A be an F -confined F-matrix. Suppose that the
restriction of φ to F(P) is injective, and

(i) for all p, q ∈ F(P), if φ(p) + φ(q) = 1, then p+ q = 1; and

(ii) for all p, q, r ∈ F(P), if φ(p)φ(q)φ(r) = 1, then pqr = 1; and

(iii) if 1 = −1 in F, then 1 = −1 in P.

Then there exists a P-matrix A′ such that φ(A′) is scaling-equivalent to A.

Proof. We work towards applying Theorem 12 with P′ = F. Since the restriction of φ to
F(P) is injective and φ(F(P)) = F , there is a well-defined function h : F → F(P) where
h(f) = p when φ(p) = f . Now h is the inverse of φ|F(P), and thus it is easily seen that
(i)–(iv) of Theorem 12 are satisfied by the function h.

Corollary 14. M is dyadic if and only if M has a {2, 6, 10}-confined representation over
GF(11).

Proof. Recall that F(D) \ {0, 1} = {−1, 2, 2−1} [26]. Consider the partial-field homomor-
phism d : D → GF(11) defined by d(2) = 2, d(−1) = 10, d(2−1) = 6. A finite check suffices
to verify that the conditions of the theorem are satisfied for (P,F,φ) = (D,GF(11), d),
and that then F = {2, 6, 10}. The corollary follows.

A finite check reveals that we cannot take a smaller finite field F which admits a
partial-field homomorphism φ : D → F to take the role of GF(11) in this corollary. For
example, if we take F = GF(7), then φ(2)φ(2)φ(2) = 1, but 2 · 2 · 2 ∕= 1.

Let P be a partial field. For a finite field F and partial-field homomorphism φ : P → F,
we say that (F,φ) is a proxy for P if φ can be lifted in the sense of Corollary 13. For
example, the proof of Corollary 14 shows that (GF(11), d) is a proxy for D.

Table 1 lists several partial field proxies (see [22, Appendix A] for any partial fields
undefined here). These were found by an exhaustive search (by computer), trying each
prime p, in order, until the desired homomorphism was found. Note that, with the
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Partial field Finite Field Partial field homomorphism
S GF(7) ζ 󰀁→ 3
D GF(11) 2 󰀁→ 2
G GF(19) τ 󰀁→ 5
U1 GF(23) α 󰀁→ 5
H2 GF(29) i 󰀁→ 12
K2 GF(73) α 󰀁→ 15
H3 GF(151) α 󰀁→ 4
P4 GF(197) α 󰀁→ 31
U2 GF(211) α 󰀁→ 4, β 󰀁→ 44
H4 GF(947) α 󰀁→ 272, β 󰀁→ 928
H5 GF(3527) α 󰀁→ 1249, β 󰀁→ 295, γ 󰀁→ 3517

Table 1: Several proxies for partial fields.

exception of H4 and H5, these are the smallest finite fields of prime order for which such
a homomorphism exists (for these two partial fields, the search was time consuming, so
we started it at a large prime).

Each of the partial fields listed in Table 1 has finitely many fundamentals. There
necessarily exists a finite field proxy for such partial fields. To establish this, we will need
the following fact.

Lemma 15. Let R = Z[X1, . . . , Xk], and let J be a maximal ideal of R. Then R/J is a
finite field.

Proof. As J is a maximal ideal of the ring R, F := R/J is a field.
Suppose that F is a field of characteristic 0. Then the prime field S of F is isomorphic

to Q. F is finitely generated as an algebra over Z, since

F = Z[X1, . . . , Xk]/J = Z[a1, . . . , ak]

where ai is the residue class of Xi modulo J . Since S ⊇ Z, F is also finitely generated as
an algebra over the field S. By Zariski’s Lemma [2, Proposition 7.9], it follows that F is a
finite field extension of S. So Z ⊆ S ⊆ F, F is finitely generated as an algebra over Z, and
F is finitely generated as a module over S. By the Artin-Tate Lemma [2, Proposition 7.8],
it then follows that S ∼= Q is finitely generated as an algebra over Z. Say, Q = Z[t1, . . . , tm]
where ti = pi/qi, with pi, qi ∈ Z, and qi ∕= 0. Pick any prime p that does not divide qi for
any i. As 1/p ∈ Q = Z[t1, . . . , tm], there is an integer polynomial r ∈ Z[X1, . . . , Xm] so
that 1/p = r(t1, . . . , tm). It follows that there exist integers u, v ∈ Z such that 1/p = u/v
and v is a power of

󰁔
i qi. Then v = up, but p does not divide v, a contradiction.

So F is a field of characteristic p > 0, that is, p ∈ J . Then

F = Z[X1, . . . , Xk]/J = GF(p)[X1, . . . , Xk]/J
′ = GF(p)[b1, . . . , bk],

where bi is the residue class of Xi modulo J ′, and J ′ ⊆ GF(p)[X1, . . . , Xk] is J modulo p.
So F is finitely generated as an algebra over GF(p). By Zariski’s Lemma [2, Proposition
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7.9], it follows that F is a finite field extension of GF(p). Then F = GF(pk) for some
integer k, as required.

Lemma 15 is perhaps not surprising to anyone familiar with the fundamentals of
commutative algebra, but at the same time it is not elementary. We thank Rob Eggermont
for providing us with a short proof (indeed, with three short proofs).

Theorem 16. Let P be a partial field with finitely many fundamentals. Then there exists
a finite field F and homomorphism φ : P → F, so that (F,φ) is a proxy for P.

Proof. Let P = (R,G) be a partial field such that |F(P)| < ∞. We may assume that G
is generated by F(P) and that R = Z[G]. Note that under these simplifying assumptions
there is an ideal I of Z[W ], where W := {Wf : f ∈ F(P)}, so that R = Z[W ]/I.

Consider the ring S := R[X, Y, Z] where X, Y, Z are the collections of variables

X := {Xpq : p, q ∈ F(P)} ∪ {X11}, Y := {Ypq : p, q ∈ F(P) ∪ {0}, p+ q ∕= 1}

and Z := {Zpqr : p, q, r ∈ F(P) ∪ {1}, pqr ∕= 1}. Let J ′ be the ideal of S generated by

{(p− q)Xpq − 1 : p, q ∈ F(P), p ∕= q}

{(p+ q − 1)Ypq − 1 : F(P) ∪ {0}, p+ q ∕= 1}

{(pqr − 1)Zpqr − 1 : p, q, r ∈ F(P) ∪ {1}, pqr ∕= 1}

and the generator 2X11 − 1 if 1 ∕= −1 in P. Since each of the polynomials generating J ′

uses a variable unique to that generator, the ideal J ′ is proper, i.e. 1 ∕∈ J ′.
Let J be a maximal ideal of S containing J ′. As S is commutative and J is maximal,

F := S/J is a field. Since R = Z[W ]/I, we have S = R[X, Y, Z] = Z[W,X, Y, Z]/I
and F = S/J = Z[W,X, Y, Z]/(I + J). Finally since F(P) is finite, each set of variables
W,X, Y, Z is finite. Then F is a finite field by Lemma 15.

Let φ : R → F be the restriction to R of the natural ring homomorphism ψ : S →
S/J = F. We verify that (F,φ) is a proxy for P. Since φ is a ring homomorphism,
it is necessarily a partial field homomorphism. Moreover, φ is injective on F(P), for if
φ(p) = φ(q) for some distinct p, q ∈ F(P), then we get the contradiction

−1 = (ψ(p)− ψ(q))ψ(Xpq)− 1 = ψ((p− q)Xpq − 1) ∈ ψ(J) = {0}.

Second, if p+ q ∕= 1 but φ(p) + φ(q) = 1 then

−1 = (ψ(p) + ψ(q)− 1)ψ(Ypq)− 1 = ψ((p+ q − 1)Ypq − 1) ∈ ψ(J) = {0},

a contradiction. Third, if φ(p)φ(q)φ(r) = 1 when pqr ∕= 1 we get

−1 = (ψ(p)ψ(q)ψ(r)− 1)ψ(Zpqr)− 1 = ψ((pqr − 1)Zpqr − 1) ∈ ψ(J) = {0},

a contradiction. Finally, if 1 ∕= −1 in P then 1 ∕= −1 in F, for otherwise we get the
contradiction −1 = (ψ(1) + ψ(1))ψ(X11)− 1 = ψ(2X11 − 1) ∈ ψ(J) = {0}.
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4 Implementation details

Our implementation of these computations was written using SageMath 8.1, making ex-
tensive use of the Matroid Theory library. Computations were run in a virtual machine
on an Intel Xeon E5-2690 v4 64-bit x86 microprocessor operating at 2.6GHz, with 4 cores
and 23GB of memory available.

Let P ∈ {D,U2}; we want to find excluded minors of size at most n for the class of
P-representable matroids M(P). Let N be a set of strong P-stabilizers such that each

N ∈ N is not near-regular. In what follows, we use 󰁩MN (P) to denote the set of all
3-connected matroids in M(P) with an N -minor.

We generate all matroids in 󰁩MN (P) of size at most n. To find the excluded minors of
size n, our basic approach is as follows. First, find all 3-connected extensions of (n− 1)-

element matroids in 󰁩MN (P); second, filter out those isomorphic to an n-element matroid

in 󰁩MN (P); finally, filter out those that contain, as a minor, an excluded-minor for M(P)
of size at most n− 1.

4.1 Restricting to ternary or quaternary excluded minors

As we are dealing with a partial field P ∈ {D,U2}, which has a partial-field homomorphism
to either GF(3) or GF(4), the efficiency of the first step can be improved using the
excluded-minor characterisations for ternary and quaternary matroids.

Lemma 17. Let M be an excluded minor for the class of 2-regular matroids. If |E(M)| 󰃍
9, then M is quaternary.

Proof. Suppose |E(M)| 󰃍 9 and, towards a contradiction, that M is not GF(4)-
representable. Then M has a minor N isomorphic to one of the seven excluded minors for
GF(4) (see Theorem 7). Since each of these excluded minors has at most eight elements,
M contains N as a proper minor. But M is an excluded minor, so N is 2-regular; a
contradiction.

The following lemma follows, in a similar manner, from the excluded-minor character-
isation of ternary matroids.

Lemma 18. If M is an excluded minor for dyadic matroids with |E(M)| 󰃍 8, then M is
ternary.

By Lemmas 17 and 18, at the first step of our procedure for finding excluded minors,
we need only consider ternary or quaternary 3-connected extensions of (n − 1)-element

matroids in 󰁩MN (P). We can further reduce the number of potential excluded minors to
consider using splicing, which we explain in Section 4.5.
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4.2 Generating P-representable matroids

To simulate generating a P-representable matroid, we use partial field proxies, as described
in Section 3. That is, we find a prime p, and partial-field homomorphism φ : P →
GF(p), such that a matroid is P-representable if and only if it has a φ(F(P))-confined
representation over GF(p) (see Corollary 13 and Table 1). Then, to find P-representable
single-element extensions of a matroid with P-representation A, we can find single-element
extensions of φ(A) with a GF(p)-representation whose cross ratios are in φ(F(P)).

For a class M(P) with a set of strong P-stabilizers N , we generate a representative

M of each isomorphism class in 󰁩MN (P) consisting of matroids of size at most n.

Suppose we have generated all matroids in 󰁩MN (P) of size at most n − 1 (up to
isomorphs). Initially, if n0 is the size of the smallest matroid in N , then n = n0 + 1.
Let M [A] be a P-represented matroid. We say that the P-represented matroid M [A|e],
for some column vector e with entries in P, is a linear extension of M [A]. For each
(n − 1) element P-represented matroid, we generate all simple linear extensions (where
the representations have the appropriate cross ratios; this functionality is provided by the
function LinearMatroid.linear_extensions() in SageMath). Note that each of these
simple matroids is in fact 3-connected (by [20, Proposition 8.2.7]). After closing this set
under duality, and adding any n-element matroid in N , the set consists of all n-element
matroids in 󰁩MN (P), by Corollary 10 and since each matroid in N is a strong P-stabilizer.

4.3 Isomorph filtering

We use an isomorphism invariant, which can be efficiently computed, to distinguish ma-
troids that can be easily identified as non-isomorphic. Two matroids with different values
for the invariant are non-isomorphic; whereas two matroids with the same value for the
invariant require a full isomorphism check. The isomorphism invariant we use is provided
by the function BasisMatroid._bases_invariant() in SageMath, and is based on the
incidences of groundset elements with bases.

As n increases, we have to deal with more matroids than can be loaded in memory
at once. Thus, to filter isomorphic matroids, we use a batched two-pass approach. We
consider the matroids in batches of an appropriate size so that an entire batch can be kept
in memory at once. First, batch by batch, we compute a hash of the matroid invariant
for each matroid in the batch, and write the matroids to disk, stored in g groups, grouped
by the hash modulo g. (The value of g is chosen to ensure all matroids in a group can
also be loaded in memory at once.) Call the hash of the invariant the raw hash, and call
the hash modulo g the hash mod. Then, in turn, we load each of the g groups; that is, for
each i ∈ {0, 1, . . . , g − 1}, we load all matroids whose hash mod is i. Within each group,
isomorphs are filtered by isomorphism checking those matroids with the same raw hash.

4.4 Minor checking

Let M and N be matroids. To check if M has a minor isomorphic to N , we use a simple
approach that avoids repetitive computations. If |E(N)| = |E(M)|, then we check if N
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is isomorphic to M ; otherwise, for each single-element deletion and contraction of M , we
recursively check if any of these matroids has an N -minor. However, we cache the result of
each minor check (keyed by the isomorphism class), and use cached results when available,
to avoid repetition. Full isomorphism checking is performed only when the isomorphism
invariants match, as described in Section 4.3.

4.5 Splicing

Let M ′ be a matroid, let Me be a single-element extension of M ′ by an element e, and
let Mf be a single-element extension of M ′ by an element f , where e and f are distinct.
Note that Me and Mf may be isomorphic. We say that M is a splice of Me and Mf if
M\e = Mf and M\f = Me.

Suppose we wish to find the excluded minors of size n for the class M(P). In order
to reduce the number of matroids to consider as potential excluded minors, rather than
generating all extensions of (n− 1)-element matroids in 󰁩MN (P), we can instead generate

splices of each pair of (n − 1)-element matroids in 󰁩MN (P) that are extensions of some

(n − 2)-element matroid in 󰁩MN (P). Note that the two matroids in such a pair may be
isomorphic. In order for this splicing process to be exhaustive, we require a guarantee
that for any excluded minor M , there is (up to duality) some pair e, f ∈ E(M) such that

M\e, M\f , and M\e\f are in 󰁩MN (P). Theorem 11 is such a guarantee when M does
not contain any spikey 3-separators. We work towards showing that spikey 3-separators
do not appear in an excluded minor M when M is large.

First, there is a subtlety worth noting. Let Mx and M ′ be matroids with E(Mx) =
E(M ′)∪ {x}, and suppose M ′ ∼= Mx\x. Clearly M ′ has a single-element extension, by an
element x, that is isomorphic to Mx, but there may be more than one distinct extensions
with this property, due to automorphisms of Mx. To obtain all splices, it is not enough to
consider just one of these extensions. For each (n−2)-element matroid M ′ ∈ 󰁩MN (P), and
each (n− 1)-element matroid Mx ∈ 󰁩MN (P) such that Mx\x ∼= M ′ for some x ∈ E(Mx),
we keep track of all single-element extensions of M ′ to a matroid isomorphic to Mx;
denote these extensions as X (Mx). We also maintain, for each matroid X ∈ X (Mx),
the isomorphism between Mx\x and X\x. Using this information, for each matroid M ′,

and each (possibly isomorphic) pair {Me,Mf} ⊆ 󰁩MN (P) such that Mx\x ∼= M ′ for
x ∈ {e, f}, and each Xe ∈ X (Me) and Xf ∈ X (Mf ), we compute the splice of Xe and Xf .
For simplicity, we refer to the set of all of these matroids as “the splices of Me and Mf”.

The following generalises [6, Lemma 7.2]; as the proof is similar, we provide only a
sketch.

Lemma 19. Let P be a partial field, let N be a non-binary 3-connected strong P-stabilizer,
and let M be an excluded minor for M(P), where M has an N-minor. If M has a
spikey 3-separator P such that at most one element of E(M) − E(N) is not in P , then
|E(M)| 󰃑 |E(N)|+ 5.

Proof. Since at most one element of E(M)−E(N) is not in P , we have that |P−E(N)| 󰃍
5. By dualising, if necessary, we may assume that there are distinct elements a, b ∈ P
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such that M\a\b has an N -minor, with a ∈ Ki and b ∈ Kj for i ∕= j, where {K1, . . . , Kt}
is a partition of P such that Ki′ ∪Kj′ is a circuit for all distinct i′, j′ ∈ {1, . . . , t}. Now
M\a, M\b and co(M\a\b) are 3-connected.

By the definition of a spikey 3-separator, the pair {a, b} is contained in a 4-element
cocircuit C∗ ⊆ P . Let u ∈ C∗ − {a, b}. Then u is in a series pair of M\a\b, so M\a\b/u
has an N -minor, and co(M\a\b/u) is 3-connected. Moreover, M/u is 3-connected. The
result then follows using the same argument as in [6, Lemma 7.2].

Lemma 20. Let P be a partial field, and let N be a set of non-binary strong P-stabilizers
for M(P). Let M be an excluded minor for M(P) such that M has an N -minor, |E(M)| 󰃍
13, and |E(M)| 󰃍 |E(N)|+ 6 for each N ∈ N . Then there is a matroid M ′ that is ∆Y -
equivalent to M or M∗, and distinct elements e, f ∈ E(M ′) such that for each M ′′ ∈
{M ′\e\f, M ′\e, M ′\f}, the matroid M ′′ is 3-connected, has an N -minor, and M ′′ ∈
M(P).

Proof. Let N ∈ N such that M has an N -minor. By Theorem 11, either there exists a
matroid M ′ that is ∆Y -equivalent to M or M∗ and a pair of elements {e, f} such that
either M ′\e\f is 3-connected with an N -minor, or M ′ has a spikey 3-separator P . In the
latter case, as |E(M)| 󰃍 13 there is at most one element of E(M) − E(N) is not in P ,
so, by Lemma 19, |E(M)| 󰃑 |E(N)|+ 5; a contradiction. We deduce that there is a pair
{e, f} such that M ′\e\f is 3-connected with an N -minor. It follows that M ′\e and M ′\f
are 3-connected with an N -minor. Moreover, since M ′ is an excluded minor for the class
M(P), by Lemma 6, each of M ′\e, M ′\f , and M ′\e\f is in M(P).

As described in Section 4.1, when P = D or P = U2, we may restrict our attention to
ternary or quaternary excluded minors respectively; so it suffices to find splices that are
ternary or quaternary, respectively.

4.6 Testing

Implementations were tested before use. In particular, the excluded-minor computation
routines were checked using the known characterisation for GF(4) [15], and using the
known excluded minors for GF(5)-representable matroids on up to 9 elements [19]. The
excluded minors for dyadic matroids on up to 13 elements have previously been computed
by Pendavingh; our results were also consistent with those. Regarding the generation of
matroids inM(P), the matroids that we generated were consistent with known maximum-
sized P-representable matroids for P ∈ {D,U2} [17, 18, 24]. Our splicing implementation

was tested by independently generating all (ternary/quaternary) matroids in 󰁩MN (P)
with a pair {x, y} such that M\x\y ∈ 󰁩MN (P), and ensuring that these are precisely the
matroids obtained by splicing.

5 Dyadic matroids

In this section we present the results of the computation of the excluded minors for dyadic
matroids on at most 15 elements. The next lemma is a consequence of Theorem 8, and
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the subsequent lemma is well known and easy to verify (see [14, Proposition 3.1], for
example).

Lemma 21. Let M be an excluded minor for the class of dyadic matroids. Then, either

(i) M has a {F−
7 , (F−

7 )∗, P8}-minor, or

(ii) M is isomorphic to one of U2,5, U3,5, F7, F ∗
7 , AG(2, 3)\e, (AG(2, 3)\e)∗, and

(AG(2, 3)\e)∆Y .

Lemma 22. The matroids F−
7 , (F−

7 )∗, and P8 are strong D-stabilizers.

The excluded minors for dyadic matroids are known to include the seven matroids
listed in Lemma 21(ii), as well as an 8-element matroid known as T8, a 10-element matroid
known as N1, and a 12-element matroid known as N2 (see [20, Problem 14.7.11]).

We computed an exhaustive list of the excluded minors on at most 15 elements, finding
one more, previously unknown, excluded minor, on 14 elements. This matroid, which we
call N3, has a reduced GF(3)-representation as follows:

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

1 2 0 0 1 2 2
2 2 2 0 1 1 2
0 2 0 0 1 1 2
0 0 0 0 2 1 2
1 1 1 2 1 2 2
2 1 1 1 2 1 1
2 2 2 2 2 1 0

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

Theorem 23. The excluded minors for dyadic matroids on at most 15 elements are U2,5,
U3,5, F7, F

∗
7 , AG(2, 3)\e, (AG(2, 3)\e)∗, (AG(2, 3)\e)∆Y , T8, N1, N2, and N3.

Proof. We exhaustively generated all n-element dyadic matroids that are not near-regular
for n 󰃑 15; see Table 2.

By Lemma 21, the excluded minors on at most seven elements are U2,5, U3,5, F7, and
F ∗
7 . Let 8 󰃑 n 󰃑 14, and suppose all excluded minors for dyadic matroids on fewer

than n elements are known. We generated all matroids that are ternary single-element
extensions of some (n − 1)-element dyadic matroid with a {F−

7 , (F−
7 )∗, P8}-minor. From

this list of potential excluded minors, we first filtered out those in our list of n-element
dyadic matroids, and then also filtered out any matroids that contained, as a minor, any
of the excluded minors for dyadic matroids on fewer than n elements. Each remaining
matroid is an excluded minor. On the other hand, if M is an n-element excluded minor
not listed in Lemma 21(ii), then, by Lemmas 18 and 21 and Corollary 10, this collection
of generated matroids contains at least one of M and M∗.

Now let n = 15, and again suppose all excluded minors on fewer than n elements are
known. We generated all 3-connected ternary splices of a (not-necessarily non-isomorphic)
pair of (n−1)-element dyadic matroids that are each single-element extensions of an (n−
2)-element 3-connected dyadic matroid with a {F−

7 , (F−
7 )∗, P8}-minor; call this collection

the electronic journal of combinatorics 31(3) (2024), #P3.20 15



of generated matroids S. Since n 󰃍 |E(P8)|+6 = 14, Lemma 20 implies that if M is an n-
element excluded minor, then, for some M ′ ∈ ∆(∗)(M), there exists a pair {e, f} ⊆ E(M ′)
such that M ′\e, M ′\f , and M ′\{e, f} are 3-connected and have a {F−

7 , (F−
7 )∗, P8}-minor.

Thus M ′ ∈ S. (For reference, S contained 20632781 pairwise non-isomorphic 15-element
rank-7 matroids, and 8840124 pairwise non-isomorphic 15-element rank-8 matroids.) As
before, from this list of potential excluded minors, we filtered out those matroids that
were dyadic or contained, as a minor, any of the excluded minors for dyadic matroids on
fewer than n elements.

r\n 7 8 9 10 11 12 13 14 15
3 1 1 1
4 1 7 24 52 60 44 20 7 2
5 1 24 223 1087 3000 5065 5651 4553
6 1 52 1087 10755 57169 185354 398875
7 60 3000 57169 540268 2986648
8 44 5065 185354 2986648
9 20 5651 398875
10 7 4553
11 2

Total 2 9 50 327 2294 16843 124508 922292 6780156

Table 2: The number of 3-connected n-element rank-r dyadic matroids with a
{F−

7 , (F−
7 )∗, P8}-minor, for n 󰃑 15.

It turns out that the list of matroids in Theorem 23 is not the complete list of excluded
minors for dyadic matroids. We also found an excluded minor with 16 elements; we call
this matroid N4. The following is a reduced GF(3)-representation of N4:

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

1 0 1 1 1 1 2 1
0 2 0 0 1 0 0 1
1 0 2 1 0 1 2 1
1 0 1 0 0 0 1 0
1 1 0 0 0 1 0 0
1 0 1 0 1 1 0 1
2 0 2 1 0 0 2 1
1 1 1 0 0 1 1 0

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

We found this matroid by a computer search, as follows. Observe that the matroids
T8, N1, N2, and N3 are self-dual matroids on 8, 10, 12, and 14 elements respectively, and
each has a pair of disjoint circuit-hyperplanes. Starting with the 2986648 3-connected
rank-8 dyadic non-near-regular matroids on 15 elements, 285488 of these matroids have
a circuit-hyperplane whose complement is independent. Of these, 4875 have at least one
3-connected ternary extension to a matroid with disjoint circuit-hyperplanes. There are
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M PM |∆(M)|
U2,5 U2 2
F7 GF(2) 2

AG(2, 3)\e S 3
T8 GF(3) 1
N1 GF(3) 1
N2 GF(3) 1
N3 GF(3) 1
N4 GF(3) 1

Table 3: Excluded minors for the class of dyadic matroids, and their universal partial
fields. We list one representative M of each ∆Y -equivalence class ∆(M).

288076 such matroids, but 52 are dyadic and 288023 properly contain an excluded minor
for dyadic matroids. The one other matroid is N4.

Finally, using Lemma 18 and Theorem 23, we observe that with the exception of U2,5

and U3,5, each excluded minor for the class of dyadic matroids is not GF(5)-representable,
so is an excluded minor for the class of GF(5)-representable matroids. In Table 3, we
provide the universal partial field for each of the known excluded minors. The matroids
with universal partial field GF(3) are representable only over fields with characteristic
three.

6 2-regular matroids

We now present the results of the computation of the excluded minors for 2-regular
matroids on at most 15 elements. The next lemma is a consequence of [21, Lemmas 5.7
and 5.25].

Lemma 24. The matroids U2,5 and U3,5 are strong U2-stabilizers.

Lemma 25. Let M be an excluded minor for the class of 2-regular matroids. Then, either

(i) M has a {U2,5, U3,5}-minor, or

(ii) M is isomorphic to one of F7, F ∗
7 , F−

7 , (F−
7 )∗, AG(2, 3)\e, (AG(2, 3)\e)∗,

(AG(2, 3)\e)∆Y , and P8.

Proof. Suppose that M has no {U2,5, U3,5}-minor. Since M is not, in particular, near-
regular, Theorem 8 implies that M has a minor isomorphic to one of F7, F

∗
7 , F

−
7 , (F−

7 )∗,
AG(2, 3)\e, (AG(2, 3)\e)∗, (AG(2, 3)\e)∆Y , and P8.

It is well known that F7 and F ∗
7 are representable over a field F if and only if F

has characteristic two; whereas F ∗
7 , (F−

7 )∗, and P8 are representable over a field F if
and only if F does not have characteristic two. Moreover, AG(2, 3)\e is not GF(5)-
representable [16, Proposition 7.3], and hence (AG(2, 3)\e)∗ and (AG(2, 3)\e)∆Y are also
not GF(5)-representable, the latter by Lemma 5. Since each of these eight matroids is
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(a) F7. (b) F−
7 .

a

g ed

f
b c

(c) F=
7 .

Figure 1: Three of the excluded minors for 2-regular matroids.
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a

f

g
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Figure 2: P8, an excluded minor for 2-regular matroids. Relaxing {e, f, g, h} results in
the matroid P−

8 ; relaxing both {a, b, c, d} and {e, f, g, h} results in the matroid P=
8 .

not representable over either GF(4) or GF(5), we deduce that M does not contain one of
these matroids as a proper minor, so (ii) holds, as required.

By Lemma 25, in our search for excluded minors for the class of 2-regular matroids,
we can restrict our focus to matroids with a {U2,5, U3,5}-minor. The matroids U2,6, U4,6,
P6, P8, and P=

8 are not 2-regular, as they are not GF(4)-representable, by Theorem 7.
Let F=

7 denote the matroid obtained by relaxing a circuit-hyperplane of the non-Fano
matroid F−

7 , as illustrated in Figure 1. Recall that P=
8 is obtained from P8 by relaxing

disjoint circuit-hyperplanes; let P−
8 denote the matroid obtained by relaxing just one of

a pair of disjoint circuit-hyperplanes of P8. It is known that U3,6, F
=
7 and (F=

7 )∗ are not
2-regular [24, Lemmas 4.2.4 and 4.2.5]; and neither is P−

8 [13, Section 4.1]. It turns out
that all these matroids are excluded minors for the class of 2-regular matroids.

There is one more excluded minor for the class, that we now describe. We denote
this matroid TQ8, and let E(TQ8) = {0, 1, . . . , 7}. The matroid TQ8 is a rank-4 sparse
paving matroid with eight non-spanning circuits

󰀋
{i, i+2, i+4, i+5} : i ∈ {0, 1, . . . , 7}

󰀌
,

working modulo 8. It is illustrated in Figure 3.

Theorem 26. The excluded minors for 2-regular matroids on at most 15 elements
are U2,6, U3,6, U4,6, P6, F7, F ∗

7 , F−
7 , (F−

7 )∗, F=
7 , (F=

7 )∗, AG(2, 3)\e, (AG(2, 3)\e)∗,
(AG(2, 3)\e)∆Y , P8, P

−
8 , P=

8 , and TQ8.
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Figure 3: TQ8, another excluded minor for 2-regular matroids.

Proof. We exhaustively generated all n-element 2-regular matroids with a {U2,5, U3,5}-
minor for n 󰃑 15; see Table 4.

By Lemma 25, any excluded minor has at least six elements. Let 6 󰃑 n 󰃑 15, and
suppose all excluded minors for 2-regular matroids on fewer than n elements are known.
For 6 󰃑 n 󰃑 8, we generated all single-element extensions of some (n − 1)-element 2-
regular matroid with a {U2,5, U3,5}-minor. By Lemma 25 and Corollary 10, if M is an
n-element excluded minor not listed in Lemma 25(ii), then this collection of generated
matroids contains at least one of M and M∗. For 8 < n 󰃑 13, we generated all matroids
that are quaternary single-element extensions of some (n− 1)-element 2-regular matroid
with a {U2,5, U3,5}-minor. For each of these potential excluded minors, we filtered out
any matroids in the list of generated 2-regular matroids, or any matroid containing, as a
minor, one of the excluded minors for 2-regular matroids on fewer than n elements. Any
matroid remaining after this process is an excluded minor. On the other hand, if M is
an n-element excluded minor not listed in Lemma 25(ii), then, by Lemmas 17 and 25
and Corollary 10, the collection of generated potential excluded minors contains at least
one of M and M∗.

Finally, let n ∈ {14, 15}. We generated all 3-connected quaternary splices of a (not-
necessarily non-isomorphic) pair of (n−1)-element 2-regular matroids that are each single-
element extensions of an (n−2)-element 3-connected 2-regular matroid with a {U2,5, U3,5}-
minor; call this collection of generated matroids S. By Lemma 20, if M is an n-element
excluded minor not listed in Lemma 25(ii), then, for some M ′ ∈ ∆(∗)(M), there exists
a pair {e, f} ⊆ E(M ′) such that M ′\e, M ′\f , and M ′\{e, f} are 3-connected and have
a {U2,5, U3,5}-minor. Thus M ′ ∈ S. (For reference, S consisted of 29383778 pairwise
non-isomorphic 15-element rank-7 matroids, and 12949820 pairwise non-isomorphic 15-

the electronic journal of combinatorics 31(3) (2024), #P3.20 19



element rank-8 matroids.) As before, for each such potential excluded minor M ′, we
filtered out M ′ if it is 2-regular or if it contains, as a minor, any of the excluded minors
for 2-regular matroids on fewer than n elements.

Table 4 records the number of pairwise non-isomorphic n-element rank-r matroids that
are 2-regular but not near-regular, for n 󰃑 15. Note that the two 10-element 2-regular
matroids of rank-3 are the maximum-sized 2-regular matroids known as T 2

3 and S10 [24].

r\n 5 6 7 8 9 10 11 12 13 14 15
2 1
3 1 1 2 4 3 2
4 2 17 62 113 132 89 45 14 5
5 4 62 502 2156 5357 8337 8685 6338
6 3 113 2156 18593 88191 258318 511593
7 2 132 5357 88191 732667 3637691
8 89 8337 258318 3637691
9 45 8685 511593
10 14 6338
11 5

Total 2 1 4 25 130 732 4576 29486 193146 1266701 8311254

Table 4: The number of 3-connected 2-regular n-element rank-r matroids with a
{U2,5, U3,5}-minor, for n 󰃑 15.

We conjecture that there are no excluded minors for the class of 2-regular matroids
on more than 15 elements.

Conjecture 27. A matroid M is 2-regular if and only if M has no minor isomor-
phic to U2,6, U3,6, U4,6, P6, F7, F

∗
7 , F

−
7 , (F−

7 )∗, F=
7 , (F=

7 )∗, AG(2, 3)\e, (AG(2, 3)\e)∗,
(AG(2, 3)\e)∆Y , P8, P

−
8 , P=

8 , and TQ8.

We also calculated the universal partial fields for each excluded minor for the class of
2-regular matroids, as shown in Table 5. The only as-yet-undefined partial field is:

PU3,6 = (Q(α, β, γ, δ), 〈−1,α, β, γ, δ,α− 1, β − 1, γ − 1, δ − 1,

α− β, γ − δ, β − δ,α− γ,αδ − βγ,αδ − βγ − α + β + γ − δ〉),

where α, β, γ, and δ are indeterminates. Note that there are no partial-field homomor-
phisms from U3 or H4 to GF(4), from D to fields of characteristic two, or from S to GF(5).
Thus, of the 17 matroids appearing in Theorem 26 (and Table 5), all but U3,6, F

=
7 , (F=

7 )∗,
P−
8 and TQ8 are not representable over either GF(4) or GF(5). On the other hand, we

have the following:

Lemma 28. The matroids U3,6, F=
7 , (F=

7 )∗, P−
8 and TQ8 are K2-representable, and

representable over all fields of size at least four.
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M PM max{i : M ∈ M(Hi)} |∆(M)|
U2,6 U3 6 3
U3,6 PU3,6 6 1
F7 GF(2) – 2
F−
7 D 2 2

F=
7 K2 2 2

AG(2, 3)\e S – 3
P8 D 2 1
P−
8 K2 2 1

P=
8 H4 4 1

TQ8 K2 2 1

Table 5: The excluded minors for 2-regular matroids on at most 15 elements, their uni-
versal partial fields, and how many inequivalent GF(5)-representations they have. We list
one representative M of each ∆Y -equivalence class ∆(M).

Proof. It suffices to show that each of these matroids is K2-representable, and this follows
directly from the universal partial fields calculations given in Table 5.

Alternatively, observe that 󰀵

󰀷
1 1 1
1 α β
1 γ δ

󰀶

󰀸

is a PU3,6-representation of U3,6, and let φ : PU3,6 → K2 be given by φ(α) = −α, φ(β) =
−1/α, φ(γ) = (α − 1)/α, φ(δ) = 1 − α. It is easily verified that φ is a partial-field
homomorphism. It is also easy to check that the following are reduced K2-representations
for F=

7 , TQ8, and P−
8 , respectively (labelled as in Figures 1 to 3, where for P−

8 , we relax
{e, f, g, h}).

󰀵

󰀷

d e f g

a 1 1 0 1
b 1 0 1 1
c 0 1 α 1

󰀶

󰀸

󰀵

󰀹󰀹󰀷

8 6 4 2

1 0 α 1 1
7 1 0 α α− 1
5 1 α 0 α
3 1 α− 1 1 0

󰀶

󰀺󰀺󰀸

󰀵

󰀹󰀹󰀷

d e g h

a 1 1 1 α + 1
b 1 0 α + 1 α + 1
c 1 −α 1 0
f 0 1 1 1

󰀶

󰀺󰀺󰀸

Corollary 29. Let M be an excluded minor for the class of matroids representable over
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all fields of size at least four. Suppose that Conjecture 27 holds, or |E(M)| 󰃑 15. Then,
either

(i) M has a proper {U3,6, F
=
7 , (F=

7 )∗, P−
8 ,TQ8}-minor, or

(ii) M is isomorphic to one of U2,6, U4,6, P6, F7, F ∗
7 , F−

7 , (F−
7 )∗, AG(2, 3)\e,

(AG(2, 3)\e)∗, (AG(2, 3)\e)∆Y , P8, and P=
8 .

Finally, we remark on the number of inequivalent GF(5)-representations that the ex-
cluded minors for 2-regular matroids possess. As there is a partial-field homomorphism
from U3 to H5 [26], and φ : PU3,6 → U3 given by φ(α) = α−1

α
, φ(β) = γ−1

γ
, φ(γ) = 1−α

β−α
,

and φ(δ) = 1−γ
β−γ

is a partial-field homomorphism, the matroids U2,6 and U3,6 have precisely

six inequivalent GF(5)-representations. For P ∈ {D,K2}, there is a partial-field homo-
morphism from P to H2 but none from P to H3 [26], so F−

7 , F=
7 , P8, P

−
8 , and TQ8 have

precisely two inequivalent GF(5)-representations. As the universal partial field of P=
8 is

H4, the matroid P=
8 has precisely four inequivalent GF(5)-representations.
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