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Abstract

Given a set of graphsH, we say that a graph G isH-free if it does not contain any
member of H as a subgraph. Let ex(n,H) (resp. exsp(n,H)) denote the maximum
size (resp. spectral radius) of an n-vertex H-free graph. Denote by Ex(n,H) the set
of all n-vertexH-free graphs with ex(n,H) edges. Similarly, let Exsp(n,H) be the set
of all n-vertex H-free graphs with spectral radius exsp(n,H). For positive integers
a, b with a 6 b, an [a, b]-factor of a graph G is a spanning subgraph F of G such
that a 6 dF (v) 6 b for all v ∈ V (G), where dF (v) denotes the degree of the vertex
v in F. Let Fa,b be the set of all the [a, b]-factors of an n-vertex complete graph
Kn. In this paper, we determine the Turán number ex(n,Fa,b) and the spectral
Turán number exsp(n,Fa,b), respectively. Furthermore, the bipartite analogue of
ex(n,Fa,b) (resp. exsp(n,Fa,b)) is also obtained. All the corresponding extremal
graphs are identified. Consequently, one sees that Exsp(n,Fa,b) ⊆ Ex(n,Fa,b) holds
for graphs and bipartite graphs. This partially answers an open problem proposed
by Liu and Ning (arXiv:2307.14629, 2023). Our results may deduce a main result
of Fan and Lin (arXiv:2211.09304v1, 2021).

Mathematics Subject Classifications: 05C70; 05C50

1 Introduction

Extremal graph theory, one of the most important branches in combinatorics, intends to
study how global properties of a graph control its local structure. Turán-type problem
is a typical representative in extremal graph theory. Given a set of graphs H, a graph
G is H-free if it contains no member of H as a subgraph. In particular, if H = {H},
then we also say that G is H-free. Let ex(n,H) denote the maximum size of an n-vertex
H-free graph. Denote by Ex(n,H) the set of all n-vertex H-free graphs with ex(n,H)

aSchool of Mathematics and Statistics, and Hubei Key Lab–Math. Sci., Central China Normal
University, Wuhan 430079, China (yfhaomath@sina.com (Y.F. Hao), li@ccnu.edu.cn).

bKey Laboratory of Nonlinear Analysis & Applications (Ministry of Education),
Central China Normal University, Wuhan 430079, China (li@ccnu.edu.cn).

the electronic journal of combinatorics 31(3) (2024), #P3.23 https://doi.org/10.37236/12106

https://doi.org/10.37236/12106


edges. One of the central problems in extremal graph theory is to study the behavior of
the Turán number ex(n,H) and to characterize all the graphs in Ex(n,H). The classical
results in this area include Mantel’s theorem [29] that any n-vertex graph with more than
bn2

4
c edges must contain a triangle. The cornerstone result in extremal graph theory is

Turán’s theorem [38] in which Turán determined ex(n,Kr) in 1941. Five years later, the
celebrated Erdős-Stone theorem [12, 13] presented an asymptotic solution for ex(n,H)
when χ(H) > 3. For more development along this line one may consult the nice paper
[16].

Spectral extremal graph theory, comparing with the classical extremal graph theory,
is much younger. In the past thirty years, it has experienced rapid development. Given
a set of graphs H, let exsp(n,H) denote the maximum adjacency spectral radius of an n-
vertex H-free graph, which is the so-called spectral Turán number. Denote by Exsp(n,H)
the set of all n-vertex H-free graphs with adjacency spectral radius exsp(n,H). Nikiforov
[31] initiated the research on the spectral Turán-type problems: Determine the maximum
adjacency spectral radius over the class of n-vertex H-free graphs and characterize the
corresponding extremal graphs. Subsequently, he conducted a systematic research on this
topic, and spectral extremal graph theory attracts more and more researchers’ attention
from now on. One may consult the nice survey [26] for more details.

Clearly, the spectral Turán-type problem has close relationship with Turán-type prob-
lem. Both of them have the same goal: to determine both ex(n,H) and exsp(n,H) and
identify the extremal graphs in Ex(n,H) and Exsp(n,H), respectively. One sees, from the
mathematical literature, the achievement on Turán-type problems is much richer than
that of spectral Turán-type problems. So it is very natural for us to deduce the spectral
analogues of the Turán-type problems. On the other hand, some mathematical phe-
nomenons reveal that Exsp(n,H) has close relation with Ex(n,H). This leads us to reveal
the mysterious veil between Ex(n,H) and Exsp(n,H).

We will survey some typical results surrounding the above observation in what follows.
Nikiforov [30] and Guiduli [18], independently, determined exsp(n,Kr+1). Together with
[38], one sees Exsp(n,Kr+1) ⊆ Ex(n,Kr+1). Erdős, Füredi, Gould, and Gunderson [11]
determined the Turán number ex(n,K1 ∨ kK2) and identified the extremal graphs, whose
spectral analogue is obtained in [9, 45], in which Cioabă, Feng, Tait and Zhang [9] showed
that Exsp(n,K1 ∨ kK2) ⊆ Ex(n,K1 ∨ kK2) and Zhai, Liu and Xue [45] determined the
unique extremal graph in Exsp(n,K1∨kK2). Chen, Gould, Pfender and Wei [6] generalized
the main result in [11] determining the Turán number ex(n,K1∨kKr) and identifying the
extremal graphs. Its spectral analogue is obtained in [10, 43], in which You, Wang and
Kang [43] determined the unique extremal graph in Exsp(n,K1 ∨ kKr) and Desai et al.
[10] showed Exsp(n,K1 ∨ kKr) ⊆ Ex(n,K1 ∨ kKr) for sufficiently large n. Let F1, . . . , Ft
be t disjoint color-critical graphs with χ(Fi) = r + 1 (r > 2). Simonovits [35] determined
the Turán number ex(n,∪ti=1Fi) and identified the extremal graph for sufficiently large
n. Recently, Lei and Li [21] determined the spectral Turán number exsp(n,∪ti=1Fi) and
identified the extremal graph for sufficiently large n. One sees that the unique extremal
graph in Exsp(n,∪ti=1Fi) coincides with that of Ex(n,∪ti=1Fi). For more advances on this
topic, we refer the reader to [5, 19, 36, 37, 40, 46] and the nice survey paper [26].
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Based on the above achievements and some other mathematical phenomenon, Liu and
Ning [28] proposed an interesting problem as follows.

Problem 1 ([28]). Let H be any graph. Characterize all graphs H such that

Exsp(n,H) ⊆ Ex(n,H)

for sufficiently large n.

Recently, there are two breakthroughs for Problem 1. The first one is due to Wang,
Kang and Xue’s work [39]: Given a graph H with ex(n,H) = tr(n) + O(1), where r > 2
and tr(n) denotes the size of Turán graph Tr(n), then Exsp(n,H) ⊆ Ex(n,H) when
n → ∞. This confirms a conjecture proposed by Cioabă, Desai, and Tait [8, Conjecture
7.1]. Another one is due to Byrne, Desai and Tait’s work [5]. It proves a general theorem
to characterize the spectral extremal graphs for a wide range of forbidden families H and
implies several new and existing results. Particularly, [5] deduces the following: Whenever
ex(n,H) = O(n), Kk+1,∞ is notH-free and Ex(n,H) contains the complete bipartite graph
Kk,n−k (or certain similar graphs), then Exsp(n,H) ⊆ Ex(n,H) for sufficiently large n.

In order to establish a criterion for Exsp(n,H)∩Ex(n,H) 6= ∅, they gave a conjecture:

Conjecture 2. Let k be a fixed positive integer and n be a sufficiently large integer. Let
F be a graph such that ex(n, F ) = 1

2
n2−kn+O(1). Then we have Exsp(n, F ) ⊆ Ex(n, F ).

In this paper, motivated by [22, 23, 24, 28], we contribute to Problem 1 by proving
positive results when Fa,b is the set of all the [a, b]-factors of a complete graph Kn, and
we also contribute to Problem 1 by proving positive results when Ba,b is the set of all the
[a, b]-factors of bipartite graphs on n vertices. Our results also present certain relation
with Conjecture 2.

Our first main result determines the maximum size of an n-vertex graph forbidding
[a, b]-factors, and characterizes the extremal graphs.

Theorem 3. Let a 6 b be two positive integers, and G be a graph of order n, where
n > a + 1 and na ≡ 0 (mod 2) when a = b. If G contains no [a, b]-factors, then e(G) 6(
n−1
2

)
+ a− 1 with equality if and only if one of the following holds:

(i) G ∼= Ka−1 ∨ (Kn−a ∪K1) or K1,3, if ab = 1 or ab = 2;

(ii) G ∼= Ka−1 ∨ (Kn−a ∪K1) or K2 ∨K3, if a = b = 2;

(iii) G ∼= Ka−1 ∨ (Kn−a ∪K1), if b > 3.

Our second main result determines the maximum adjacency spectral radius of an
n-vertex graph forbidding [a, b]-factors and characterizes the extremal graphs, which
strengthens the main result of Wei and Zhang [41, Theorem 1].

Theorem 4. Let a 6 b be two positive integers, and G be a graph of order n, where
n > a + 1 and na ≡ 0 (mod 2) when a = b. If G contains no [a, b]-factors, then ρ(G) 6
ρ(Ka−1 ∨ (Kn−a ∪K1)) with equality if and only if G ∼= Ka−1 ∨ (Kn−a ∪K1).
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Figure 1: The structure of a double nested graph.

An immediate corollary of Theorem 3 and 4 directly contributes to Problem 1.

Corollary 5. Let a, b, n be three positive integers with a 6 b, n > a + 1 and na ≡ 0
(mod 2) when a = b. Then Exsp(n,Fa,b) ⊆ Ex(n,Fa,b).

In what follows, we give the bipartite analogues of Theorems 3 and 4. In fact, they
are closely relative to the Zarankiewicz problem, which asks how many edges an n by m
bipartite graph may have without containing a copy of Ks,t, and is the other most famous
bipartite Turán problem.

Before formulating our main results, we recall the definition of double nested graph
(see [1, 25, 33]), which is also called the bipartite chain graph [3].

Let G = (X, Y ) be a connected bipartite graph. We call G a double nested graph if
there exist partitions X = X1 ∪ X2 ∪ · · · ∪ Xh and Y = Y1 ∪ Y2 ∪ · · · ∪ Yh such that all
vertices in Xi are adjacent to all vertices in

⋃h+1−i
j=1 Yj for 1 6 i 6 h (see Fig. 1), in which

each solid circle denotes an independent set of an appropriate size, each line between two
large solid circles means that all vertices in one large solid circle are adjacent to all vertices
in the other one. For convenience, let |Xi| = pi and |Yi| = qi for i = 1, 2, . . . , h. Then
we denote the graph G by D(p1, p2, . . . , ph; q1, q2, . . . , qh). Clearly, if p1 = 0 or q1 = 0,
then D(p1, p2, . . . , ph; q1, q2, . . . , qh). is the disjoint union of a connected graph and some
isolated vertices. Hence, a double nested graph D(p1, p2, . . . , ph; q1, q2, . . . , qh) is connected
if and only if p1, q1 > 0.

The next main result determines the maximum size of an |X| by |Y | bipartite graph
without containing any [a, b]-factor, and the extremal graphs are also characterized.

Theorem 6. Let a 6 b be two positive integers. Let G = (X, Y ) be a bipartite graph with
|X| 6 |Y | forbidding [a, b]-factors.

(i) If a|Y | > b|X|, then e(G) 6 |X||Y | with equality if and only if G ∼= K|X|,|Y |.

(ii) If a|Y | 6 b|X| and a > |X|, then e(G) 6 |X||Y | with equality if and only if G ∼=
K|X|,|Y |.

(iii) If a|Y | 6 b|X| and a 6 |X|, then e(G) 6 |X|(|Y | − 1) + a − 1 with equality if and
only if G ∼= D(a− 1, |X| − a+ 1; |Y | − 1, 1).

The next main result determines the maximum size of an n-vertex bipartite graph
without containing any [a, b]-factor, and characterizes the corresponding extremal graphs.

the electronic journal of combinatorics 31(3) (2024), #P3.23 4



For convenience, let

f(a, b) :=

⌊
an− 1

a+ b

⌋(
n−

⌊
an− 1

a+ b

⌋)
. (1)

Theorem 7. Let a, b, n be three positive integers with a 6 b and a 6 bn
2
c. Let G be an

n-vertex bipartite graph forbidding [a, b]-factors.

(i) If f(a, b) >
⌊
n
2

⌋
(
⌈
n
2

⌉
− 1) + a − 1, then e(G) 6 f(a, b) with equality if and only if

G ∼= Kban−1
a+b
c,n−ban−1

a+b
c.

(ii) If f(a, b) = n
2
(n
2
− 1) +a− 1 for even n, then e(G) 6 f(a, b) with equality if and only

if G ∈ {Kban−1
a+b
c,n−ban−1

a+b
c, D(a− 1, n

2
− a; n

2
, 1), D(a− 1, n

2
− a+ 1; n

2
− 1, 1)}.

(iii) If f(a, b) = (n−1
2

)2 + a− 1 for odd n, then e(G) 6 f(a, b) with equality if and only if
G ∈ {Kban−1

a+b
c,n−ban−1

a+b
c, D(a− 1, n+1

2
− a; n−1

2
, 1)}.

(iv) If f(a, b) < n
2
(n
2
− 1) + a− 1 for even n, then e(G) 6 n

2
(n
2
− 1) + a− 1 with equality

if and only if G ∈ {D(a− 1, n
2
− a; n

2
, 1), D(a− 1, n

2
− a+ 1; n

2
− 1, 1)}.

(v) If f(a, b) < (n−1
2

)2 + a− 1 for odd n, then e(G) 6 (n−1
2

)2 + a− 1 with equality if and
only if G ∼= D(a− 1, n+1

2
− a; n−1

2
, 1).

The following main result determines the maximum adjacency spectral radius of an |X|
by |Y | bipartite graph without containing any [a, b]-factor, and identifies the corresponding
extremal graphs.

Theorem 8. Let a 6 b be two positive integers. Let G = (X, Y ) be a bipartite graph with
|X| 6 |Y | forbidding [a, b]-factors.

(i) If a|Y | > b|X|, then ρ(G) 6
√
|X||Y | with equality if and only if G ∼= K|X|,|Y |.

(ii) If a|Y | 6 b|X| and a > |X|, then ρ(G) 6
√
|X||Y | with equality if and only if

G ∼= K|X|,|Y |.

(iii) If a|Y | 6 b|X| and a 6 |X|, then ρ(G) 6 ρ(D(a − 1, |X| − a + 1; |Y | − 1, 1)) with
equality if and only if G ∼= D(a− 1, |X| − a+ 1; |Y | − 1, 1).

Let G be a connected balanced bipartite graph of order n and let 2 6 a = b = k 6 n
2
−1

in Theorem 8. Consequently, our result deduces a main result of Fan and Lin [14, Theorem
1.3], which provides a sufficient spectral condition for a connected balanced bipartite graph
to contain a k-factor.

Theorem 9 ([14]). Let 2 6 k 6 n
2
− 1 and let G be a connected balanced bipartite graph

of order n. If

ρ(G) > ρ(D(k − 1,
n

2
− k + 1;

n

2
− 1, 1)),

then G has a k-factor, unless G ∼= D(k − 1, n
2
− k + 1; n

2
− 1, 1).

Our last main result determines the maximum spectral radius of an n-vertex bipartite
graph without [a, b]-factors, and identifies the corresponding extremal graphs. Recall that
f(a, b) is given in (1).
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Theorem 10. Let a, b, n be three positive integers with a 6 b and a 6 bn
2
c. Let G be a

bipartite graph of order n forbidding [a, b]-factors.

(i) If ρ(D(a− 1, dn
2
e− a; bn

2
c, 1)) <

√
f(a, b), then ρ(G) 6

√
f(a, b) with equality if and

only if G ∼= Kban−1
a+b
c,n−ban−1

a+b
c.

(ii) If ρ(D(a− 1, dn
2
e− a; bn

2
c, 1)) =

√
f(a, b), then ρ(G) 6

√
f(a, b) with equality if and

only if G ∼= Kban−1
a+b
c,n−ban−1

a+b
c or D(a− 1, dn

2
e − a; bn

2
c, 1).

(iii) If ρ(D(a− 1, dn
2
e − a; bn

2
c, 1)) >

√
f(a, b), then ρ(G) 6 ρ(D(a− 1,

⌈
n
2

⌉
− a;

⌊
n
2

⌋
, 1))

with equality if and only if G ∼= D(a− 1, dn
2
e − a; bn

2
c, 1).

An immediate corollary of Theorem 8 and Theorem 10 contributes to Problem 1.

Corollary 11. Let a, b, n be three positive integers with a 6 b and a 6 bn
2
c. Then

Exsp(n,Ba,b) ⊆ Ex(n,Ba,b).

Outline of the paper In section 2, some necessary preliminaries are given. In Section
3, we give the proofs of Theorems 3 and 4. In fact, we determine ex(n,F), exsp(n,F)
and corresponding Ex(n,F), Exsp(n,F), where F is the set of all the [a, b]-factors of an
n-vertex graph G. In Section 4, we firstly give the proof of Theorems 6. Then based on
Theorem 6, we give the proof of 7. In Section 5, we give the proof of Theorems 8 at first.
Then based on Theorem 8, we give the proof of Theorem 10. Some concluding remarks
are given in the last section.

Notations and definitions In this paper, we consider only finite, simple and undirected
graphs. For graph theoretic notation and terminology not defined here, we refer the reader
to [17, 42].

Let G = (V (G), E(G)) be a graph with vertex set V (G) and edge set E(G). The
order of G is the number n := |V (G)| of its vertices, and the size of G is the number
e(G) := |E(G)| of its edges. For a vertex v ∈ V (G), the degree of v, denoted by dG(v), is
the number of vertices adjacent to v in G. The minimum degree δ(G) = min{dG(v) : v ∈
V (G)}. A graph G is Hamiltonian if it contains a Hamilton cycle, i.e., a cycle containing
all vertices of G.

For two graphs G and H, we define G ∪H to be their disjoint union. We write tG to
denote the disjoint union of t copies of G. The join of G and H, denoted by G ∨ H, is
the graph obtained from G∪H by adding edges joining every vertex of G to every vertex
of H. A graph is color-critical if it contains an edge whose deletion reduces its chromatic
number.

The adjacency matrix A(G) = (aij) of G is defined as an n × n (0, 1)-matrix with
aij = 1 if and only if ij ∈ E(G). Note that A(G) is real symmetric, its eigenvalues λi are
real. So we can index them as λ1 > λ2 > · · · > λn. The largest eigenvalue λ1 of A(G) is
called the spectral radius of G, written as ρ(G).

For two disjoint subsets A,B ⊆ V (G), we use E(A,B) to denote the set of edges with
one endpoint in A and the other endpoint in B, and let e(A,B) = |E(A,B)|. Given a
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graph G, let g, f : V (G) → Z be two functions with g(v) 6 f(v) for all v ∈ V (G). A
(g, f)-factor of the graph G is a spanning subgraph F of G such that g(v) 6 dF (v) 6 f(v)
for all v ∈ V (G). Let a 6 b be two positive integers. If g(v) = a and f(v) = b for all
v ∈ V (G), then a (g, f)-factor is called an [a, b]-factor. In particular, if a = b = k, then a
[k, k]-factor is called a k-factor.

2 Preliminaries

In this section, we give some preliminaries, which will be used in the subsequent sections.
Consider a real matrix M whose rows and columns are indexed by V = {1, . . . , n}. Assume
that M can be written as

M =

 M11 · · · M1s
...

. . .
...

Ms1 · · · Mss


according to a vertex partition π : V = V1 ∪ · · · ∪ Vs, wherein Mij denotes the submatrix
(block) of M formed by rows in Vi and columns in Vj. The quotient matrix of M is the
matrix whose entries are the average row sums of the blocks of M. The partition is called
equitable if each block Mij has a constant row sum.

Lemma 12 ([4, 44]). Let M be a real square matrix with an equitable partition π, and let
Mπ be the corresponding quotient matrix. Then every eigenvalue of Mπ is an eigenvalue
of M. Furthermore, if M is nonnegative, then the largest eigenvalues of M and Mπ are
equal.

Lemma 13 ([2]). Let G be a connected graph, and H be a subgraph of G. Then ρ(H) 6
ρ(G) with equality if and only if H ∼= G.

The following result is an immediate consequence of Lemma 13.

Corollary 14. Let G = G′ ∪ lK1 be the disjoint union of a connected graph G′ and l
isolated vertices, where l > 0. If H is a spanning subgraph of G, then ρ(H) 6 ρ(G) with
equality if and only if H ∼= G.

The following lemma provides a relation between the spectral radius of a graph G and
the size of G, which plays an important role in our later proof.

Lemma 15 ([20]). Let G be a connected graph of order n. Then ρ(G) 6
√

2e(G)− n+ 1
with equality if and only if G ∼= K1,n−1 or G ∼= Kn.

Lemma 16 ([34]). Let G(n, e) be the set of graphs with n vertices and e edges. If e =
( r2 ) + t, where 0 < t 6 r, then (Kt ∨ (Kr−t ∪ K1)) ∪ (n − r − 1)K1 is the unique graph
with maximum spectral radius among all graphs in G(n, e).

Let p, q, e be positive integers with p 6 q and e 6 pq. Let K(p, q, e) be the set of
bipartite graphs G = (X, Y ) with |X| = p, |Y | = q and e edges. The following lemma
gives an upper bound on the spectral radius of graphs in K(p, q, e) with restriction on the
value of e.
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Lemma 17 ([27]). If p, q, e are positive integers satisfying p 6 q and pq − p < e < pq,
then for G ∈ K(p, q, e), we have

ρ(G) 6 ρ(Ke
p,q),

where Ke
p,q ∈ K(p, q, e) is the graph obtained from Kp,q by deleting pq − e edges incident

with a common vertex in the partite set of order q.

Remark 18. In fact, from the proof of Lemma 17, we can deduce that the above equality
holds if and only if G ∼= Ke

p,q.

Lemma 19 ([3]). If G is a bipartite graph, then ρ(G) 6
√
e(G).

The following famous theorem of Folkman and Fulkerson [15] is one of the most im-
portant tools for our proof.

Theorem 20 ([15]). Let G = (X, Y ) be a bipartite graph, and g, f : V (G) → Z be
functions such that g(v) 6 f(v) for all v ∈ V (G). Then G has a (g, f)-factor if and only
if ∑

v∈S
f(v) +

∑
v∈T

(dG(v)− g(v))− e(S, T ) > 0

and ∑
v∈T

f(v) +
∑
v∈S

(dG(v)− g(v))− e(T, S) > 0

for all subsets S ⊆ X and T ⊆ Y.

For two positive integers a 6 b, let g(v) = a and f(v) = b for all v ∈ V (G) in Theorem
20, we obtain the following corollary, which gives a criterion for a bipartite graph to have
an [a, b]-factor.

Corollary 21. Let G = (X, Y ) be a bipartite graph, and a 6 b be two positive integers.
Then G has an [a, b]-factor if and only if

b|S|+
∑
v∈T

dG(v)− a|T | − e(S, T ) > 0

and
b|T |+

∑
v∈S

dG(v)− a|S| − e(T, S) > 0

for all subsets S ⊆ X and T ⊆ Y.

The following lemma presents a property of bipartite graphs with [a, b]-factors.

Lemma 22. Let G = (X, Y ) be a bipartite graph with |X| 6 |Y |, and a 6 b be two
positive integers. If G has an [a, b]-factor, then a|Y | 6 b|X|.
Proof. Assume that F is an [a, b]-factor of G, then a 6 dF (v) 6 b for all v ∈ V (F ).
Furthermore, we have

a|Y | 6
∑
v∈Y

dF (v) = e(F ) =
∑
v∈X

dF (v) 6 b|X|,

as desired.
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3 Proofs of Theorems 3 and 4

In this section, we give the proofs of Theorems 3 and 4. Before doing so, we need the
following lemmas.

Lemma 23 ([41]). Let a 6 b be two positive integers, and G be a graph of order n and
δ(G) > a. If

e(G) >

(
n− 1

2

)
+
a+ 1

2

and na ≡ 0 (mod 2) when a = b, then G has an [a, b]-factor.

Lemma 24 ([32]). Let G be a graph of order n > 3. If e(G) > ( n−12 ) , then G has a
Hamilton path, unless G ∼= Kn−1 ∪K1 or G ∼= K1,3.

Lemma 25 ([32]). Let G be a graph of order n > 3. If e(G) > ( n−12 ) + 1, then G has a
Hamilton cycle, unless G ∼= K1 ∨ (Kn−2 ∪K1) or G ∼= K2 ∨K3.

Proof of Theorem 3. Let G be an n-vertex graph forbidding [a, b]-factors. We consider
the following two possible cases.

Case 1. δ(G) 6 a − 1. In this case, there exists a vertex u ∈ V (G) such that
dG(u) 6 a − 1, which implies that G is a spanning subgraph of Ka−1 ∨ (Kn−a ∪ K1).
Therefore, we have

e(G) 6 e(Ka−1 ∨ (Kn−a ∪K1)) =

(
n− 1

2

)
+ a− 1,

where the first equality holds if and only if G ∼= Ka−1 ∨ (Kn−a ∪K1).
Case 2. δ(G) > a. In this case, since G contains no [a, b]-factors, by Lemma 23, we

have e(G) < ( n−12 ) + a+1
2
, i.e.,

e(G) 6

(
n− 1

2

)
+
a

2
.

When a = 1, we have e(G) 6 ( n−12 ) = ( n−12 ) + a − 1. If e(G) = ( n−12 ) , then by Lemma
24 and δ(G) > a = 1, we have G ∼= K1,3. Otherwise, G has a Hamilton path. Combining
with na ≡ 0 (mod 2) for a = b, it implies that G has a [1, b]-factor, a contradiction. Note
that if b = 1 or b = 2. Then K1,3 contains no [1, b]-factors. If b > 3, then K1,3 is a [1, b]-
factor of itself, a contradiction. When a = 2, we have e(G) 6 ( n−12 ) + 1 = ( n−12 ) + a− 1.
Furthermore, if e(G) = ( n−12 ) + 1, then by Lemma 25 and δ(G) > a = 2, we have
G ∼= K2 ∨ K3. Otherwise, G has a Hamilton cycle, which implies that G has a [2, b]-
factor, a contradiction. Note that if b = 2. Then K2 ∨ K3 contains no [2, b]-factors. If
b > 3, then K2 ∨ K3 is a [2, b]-factor of itself, a contradiction. When a > 3, we have
e(G) 6 ( n−12 ) + a

2
< ( n−12 ) + a− 1.

This completes the proof.

Next, we give the proof of Theorem 4.
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Proof of Theorem 4. Suppose that ρ(G) > ρ(Ka−1 ∨ (Kn−a ∪ K1)) and G � Ka−1 ∨
(Kn−a ∪K1). In order to obtain a contradiction, we will show that G contains an [a, b]-
factor.

We first assert that G is connected. Note that Ka−1∨ (Kn−a∪K1) contains Kn−1∪K1

as a spanning subgraph. By Corollary 14, we have ρ(Ka−1 ∨ (Kn−a ∪ K1)) > ρ(Kn−1 ∪
K1) = n − 2, where the first equality holds if and only if a = 1. If G is not con-
nected, then assume that G1, . . . , Gh are the components of G. It is clear that ρ(G) =
max{ρ(G1), . . . , ρ(Gh)} 6 ρ(Kn−1∪K1) 6 ρ(Ka−1∨(Kn−a∪K1)), where ρ(G) = ρ(Ka−1∨
(Kn−a ∪ K1)) holds if and only if a = 1 and G ∼= Kn−1 ∪ K1, a contradiction to
G � Ka−1 ∨ (Kn−a ∪ K1). Thus, G is connected. Furthermore, by Lemma 15 and
ρ(G) > ρ(Ka−1 ∨ (Kn−a ∪K1)) > n− 2, we have

n− 2 6 ρ(G) 6
√

2e(G)− n+ 1,

which deduces that e(G) > ( n−12 )+1. In what follows, assume that e(G) = ( n−12 )+t, where
1 6 t 6 n− 1. We claim that t > a. If 1 6 t 6 a− 1, then by Lemma 16, we have ρ(G) 6
ρ(Kt ∨ (Kn−1−t ∪K1)) 6 ρ(Ka−1 ∨ (Kn−a ∪K1)), where ρ(G) = ρ(Ka−1 ∨ (Kn−a ∪K1))
holds if and only if G ∼= Ka−1 ∨ (Kn−a ∪K1), a contradiction to our assumption. Hence,
t > a, which implies that e(G) > ( n−12 ) + a. By Theorem 3, G has an [a, b]-factor, as
desired.

This completes the proof.

4 Proofs of Theorems 6 and 7

In this section, we give the proofs of Theorems 6 and 7. First, we prove Theorem 6,
which establishes an upper bound on the size of a bipartite graph with given partite sets
forbidding [a, b]-factors.

Proof of Theorem 6. Let G = (X, Y ) be a bipartite graph forbidding [a, b]-factors.
Assume that |X| = p and |Y | = q, where p 6 q. Let a, b be two positive integers with
a 6 b.

(i) If aq > bp, then by Lemma 22, any bipartite graph with bipartite orders p and
q contains no [a, b]-factors. Hence, Kp,q contains no [a, b]-factors. Furthermore, e(G) 6
e(Kp,q) = pq with equality if and only if G ∼= Kp,q, as desired.

(ii) If a > p, then for each vertex v ∈ Y, we have dG(v) 6 p < a, which implies that
any bipartite graph with bipartite orders p and q contains no [a, b]-factors. Hence, Kp,q

contains no [a, b]-factors. Furthermore, e(G) 6 e(Kp,q) = pq with equality if and only if
G ∼= Kp,q.

(iii) We proceed with the following two possible cases.
Case 1. δ(G) 6 a − 1. In this case, there exists a vertex u ∈ V (G) such that

dG(u) 6 a− 1. If u ∈ X, then G is a spanning subgraph of D(p− 1, 1; a− 1, q − a + 1).
Therefore,

e(G) 6 e(D(p− 1, 1; a− 1, q − a+ 1)) (1)
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= (p− 1)q + a− 1

6 p(q − 1) + a− 1. (2)

Note that equality in (1) holds if and only if G ∼= D(p− 1, 1; a− 1, q − a+ 1); inequality
in (2) holds since p 6 q, and equality in (2) holds if and only if p = q. Hence, e(G) =
p(q− 1) + a− 1 holds if and only if G ∼= D(p− 1, 1; a− 1, p− a+ 1), as desired. If u ∈ Y,
then G is a spanning subgraph of D(a− 1, p− a+ 1; q − 1, 1). Therefore,

e(G) 6 e(D(a− 1, p− a+ 1; q − 1, 1)) = p(q − 1) + a− 1,

where the first equality holds if and only if G ∼= D(a− 1, p− a+ 1; q − 1, 1).
Case 2. δ(G) > a. In this case, if b > q, then for each vertex v ∈ V (G), we have

a 6 dG(v) 6 q 6 b, which implies that G is an [a, b]-factor of itself, a contradiction. If
b < q, then in order to complete the proof, it suffices to prove that e(G) < p(q−1)+a−1.
Since G contains no [a, b]-factors, by Corollary 21, there exist two vertex subsets S ⊆ X
and T ⊆ Y such that

γ∗(S, T ) := b|S|+
∑
v∈T

dG(v)− a|T | − e(S, T ) < 0

or
γ∗(T, S) := b|T |+

∑
v∈S

dG(v)− a|S| − e(T, S) < 0.

Choose such a pair (S, T ) so that S ∪ T is maximal. Then we proceed by distinguishing
the following two possible subcases.

Subcase 2.1. γ∗(S, T ) < 0. In this subcase, we have

e(X\S, T ) =
∑
v∈T

dG−S(v) =
∑
v∈T

dG(v)− e(S, T ) < a|T | − b|S|. (3)

Moreover, we have the following claims.

Claim 26. |T | > b+ 1.

Proof of Claim 26. Suppose that |T | 6 b. Together with δ(G) > a, we have

γ∗(S, T ) = b|S|+
∑
v∈T

dG(v)−a|T |−e(S, T ) > b|S|−e(S, T ) > b|S|−|S||T | = (b−|T |)|S| > 0,

a contradiction. So Claim 26 holds.

Claim 27. If T ⊂ Y, then for each v ∈ Y \T , e(X\S, {v}) > a.

Proof of Claim 27. Suppose that there exists a vertex u ∈ Y \T such that e(X\S, {u}) 6
a. Let T ′ = T ∪ {u}. Then

γ∗(S, T ′) = b|S|+
∑
v∈T ′

dG(v)− a|T ′| − e(S, T ′)
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= b|S|+
∑
v∈T

dG(v) + dG(u)− a(|T |+ 1)− (e(S, T ) + e(S, {u}))

= γ∗(S, T ) + dG(u)− a− e(S, {u})
= γ∗(S, T ) + e(X\S, {u})− a < 0,

which contradicts the choice of (S, T ). Hence, Claim 27 holds.

Recall that |X| = p and |Y | = q. It follows from Claim 27 that if T ⊂ Y, then for each
v ∈ Y \T ,

a < e(X\S, {v}) 6 |X\S| = |X| − |S| = p− |S|. (4)

Claim 28. If p = q, then T ⊂ Y.

Proof of Claim 28. Suppose that T = Y. Applying (3) for T = Y, we have e(X\S, Y ) <
a|Y | − b|S|. Note that e(X\S, Y ) =

∑
v∈X\S dG(v). Combining with δ(G) > a, we obtain

a(p−|S|) = a(|X|−|S|) 6
∑
v∈X\S

dG(v) = e(X\S, Y ) < a|Y |−b|S| 6 a(|Y |−|S|) = a(q−|S|),

a contradiction. So Claim 28 holds.

In what follows, we consider the size of G according to whether T ⊂ Y or not. If
T ⊂ Y, then we have

e(G) = e(S, T ) + e(X\S, T ) + e(X, Y \T )

6 |S||T |+ e(X\S, T ) + p(q − |T |)
< |S||T |+ a|T | − b|S|+ p(q − |T |) (by (3))

= (|S|+ a− p)|T | − b|S|+ pq

6 (|S|+ a− p)(b+ 1)− b|S|+ pq (by (4) and Claim 26)

= p(q − 1)− b(p− a) + |S|+ a

6 p(q − 1)− b(p− a) + p− a− 1 + a (by (4))

= p(q − 1)− (b− 1)(p− a) + a− 1

6 p(q − 1) + a− 1, (by b > 1 and (4))

as desired. If T = Y, then we first assert that S ⊂ X. Suppose not, then S = X, which
gives γ∗(S, T ) = γ∗(X, Y ). Note that γ∗(S, T ) < 0. Therefore,

γ∗(X, Y ) = b|X|+
∑
v∈Y

dG(v)− a|Y | − e(X, Y ) = b|X| − a|Y | = bp− aq < 0.

This implies that bp < aq, a contradiction. Hence, S ⊂ X and so |S| 6 |X| − 1 = p− 1.
Furthermore, we have

e(G) = e(S, Y ) + e(X\S, Y )
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6 |S||Y |+ e(X\S, Y )

< |S||Y |+ a|Y | − b|S| (by (3))

= |S|(|Y | − b) + a|Y |
6 (p− 1)(q − b) + aq (since |S| 6 p− 1)

= pq − bp− q + b+ aq

= p(q − 1)− (bp− aq)− (q − p) + b. (5)

Note that bp > aq and q > p for T = Y by Claim 28. If bp− aq > b− a, then in view of
(5), we have

e(G) < p(q − 1)− (bp− aq)− (q − p) + b 6 p(q − 1)− (b− a)− 1 + b = p(q − 1) + a− 1,

as desired. If 0 6 bp− aq 6 b− a− 1, then p 6 b−a−1+aq
b

, which implies that

q − p > q − b− a− 1 + aq

b
=

(b− a)(q − 1) + 1

b
> b− a,

where the last inequality follows from b < q. Furthermore, in view of (5), we obtain

e(G) < p(q − 1)− (bp− aq)− (q − p) + b

6 p(q − 1)− (b− a+ 1) + b

= p(q − 1) + a− 1,

as required.
Subcase 2.2. γ∗(T, S) < 0. In this subcase, we have

e(S, Y \T ) =
∑
v∈S

dG−T (v) =
∑
v∈S

dG(v)− e(T, S) < a|S| − b|T |. (6)

Moreover, we have the following claims.

Claim 29. |S| > b+ 1.

Proof of Claim 29. Suppose that |S| 6 b. Then

γ∗(T, S) = b|T |+
∑
v∈S

dG(v)− a|S| − e(T, S)

> b|T | − e(T, S) (7)

> b|T | − |T ||S|
= (b− |S|)|T |
> 0,

where the inequality in (7) follows from δ(G) > a, a contradiction. Hence, Claim 29
holds.
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Claim 30. S ⊂ X.

Proof of Claim 30. If not, then S = X. Applying (6) for S = X and by δ(G) > a, we
have

a(q−|T |) = a(|Y |−|T |) 6
∑
v∈Y \T

dG(v) = e(X, Y \T ) < a|X|−b|T | 6 a(|X|−|T |) = a(p−|T |),

a contradiction. Hence, Claim 30 holds.

It follows immediately from Claim 30 that X\S 6= ∅. For each v ∈ X\S, we have the
following property.

Claim 31. For each v ∈ X\S, we have e(Y \T, {v}) > a.

Proof of Claim 31. Suppose that there exists a vertex u ∈ X\S such that e(Y \T, {u}) 6
a. Let S ′ = S ∪ {u}. Then

γ∗(T, S ′) = b|T |+
∑
v∈S′

dG(v)− a|S ′| − e(T, S ′)

= b|T |+
∑
v∈S

dG(v) + dG(u)− a(|S|+ 1)− (e(T, S) + e(T, {u}))

= γ∗(T, S) + dG(u)− a− e(T, {u})
= γ∗(T, S) + e(Y \T, {u})− a < 0,

which contradicts the choice of (S, T ). So Claim 31 holds.

By Claim 31, for each vertex v ∈ X\S, we have

a < e(Y \T, {v}) 6 |Y \T | = |Y | − |T | = q − |T |. (8)

In what follows, we consider the size of G. By a direct computation, we obtain the
size of G as

e(G) = e(S, T ) + e(S, Y \T ) + e(X\S, Y )

6 |S||T |+ e(S, Y \T ) + (p− |S|)q
< |S||T |+ a|S| − b|T |+ (p− |S|)q (by (6))

= |S|(|T |+ a− q)− b|T |+ pq

6 (b+ 1)(|T |+ a− q)− b|T |+ pq (by Claim 29 and (8))

= pq − q − b(q − a) + |T |+ a

6 p(q − 1)− b(q − a) + |T |+ a (since p 6 q)

6 p(q − 1)− b(q − a) + q − a− 1 + a (by (8))

= p(q − 1)− (b− 1)(q − a) + a− 1

6 p(q − 1) + a− 1, (by b > 1 and (8))

as desired.
Combining with Case 1 and Case 2, we complete the proof.
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Based on Theorem 6, we give the proof of Theorem 7, which establishes an upper
bound on the size of an n-vertex bipartite graph forbidding [a, b]-factors.

Proof of Theorem 7. Let G = (X, Y ) be a bipartite graph of order n forbidding [a, b]-
factors. Assume that |X| = p and |Y | = q, where p 6 q and p + q = n. Let a, b be two
positive integers such that a 6 b and a 6 bn

2
c.

To prove our theorem, it suffices to show:

(1) If aq > bp, then e(G) 6 ban−1
a+b
c(n − ban−1

a+b
c) with equality if and only if G ∼=

Kban−1
a+b
c,n−ban−1

a+b
c.

(2) If aq 6 bp, then e(G) 6 bn
2
c(dn

2
e − 1) + a− 1 with equality if and only if one of the

following holds:

(i) G ∼= D(a− 1, n
2
− a; n

2
, 1) or D(a− 1, n

2
− a+ 1; n

2
− 1, 1) for even n;

(ii) G ∼= D(a− 1, n+1
2
− a; n−1

2
, 1) for odd n.

We first give the proof of (1). If aq > bp, then by Theorem 6(i), we have e(G) 6 pq with
equality if and only if G ∼= Kp,q. In addition, if aq > bp, then aq−1 > bp, i.e., a(n−p)−1 >
bp, which implies that p 6 ban−1

a+b
c. Note that pq = p(n− p) 6 ban−1

a+b
c(n− ban−1

a+b
c), where

equality holds if and only if p = ban−1
a+b
c. Hence, e(G) 6 ban−1

a+b
c(n− ban−1

a+b
c) with equality

if and only if G ∼= Kban−1
a+b
c,n−ban−1

a+b
c.

Next we prove (2). We proceed by distinguishing the following two possible cases.
Case 1. a 6 p. In this case, by Theorem 6(iii), we have e(G) 6 p(n− p− 1) + a− 1

with equality if and only if G ∼= D(a− 1, p− a+ 1;n− p− 1, 1). Note that

p(n− p− 1) + a− 1 6
⌊n

2

⌋
(
⌈n

2

⌉
− 1) + a− 1,

with equality if and only if p = n
2
− 1 or p = n

2
for even n, or p = n−1

2
for odd n. Hence,

e(G) 6 bn
2
c(dn

2
e − 1) + a − 1 with equality if and only if G ∼= D(a − 1, n

2
− a; n

2
, 1) or

G ∼= D(a− 1, n
2
− a + 1; n

2
− 1, 1) for even n, or G ∼= D(a− 1, n+1

2
− a; n−1

2
, 1) for odd n,

as desired.
Case 2. a > p. In this case, by Theorem 6(ii), one sees

e(G) 6 e(Kp,n−p) = p(n− p)
6 (a− 1)(n− a+ 1) (9)

= (a− 1)(n− a) + a− 1

6 (
⌊n

2

⌋
− 1)(n−

⌊n
2

⌋
) + a− 1 (10)

= (
⌊n

2

⌋
− 1)

⌈n
2

⌉
+ a− 1

6
⌊n

2

⌋
(
⌈n

2

⌉
− 1) + a− 1. (11)

Note that (9) follows from p 6 a − 1, and equality in (9) holds if and only if p = a − 1;
(10) follows from a 6 bn

2
c, and equality in (10) holds if and only if a = bn

2
c; (11) follows
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from bn
2
c 6 dn

2
e, and equality in (11) holds if and only if bn

2
c = dn

2
e, i.e., n is even. Hence,

e(G) = bn
2
c(dn

2
e − 1) + a− 1 holds if and only if G ∼= Kp,n−p, p = a− 1, a = bn

2
c and n is

even, which is equivalent to n is even, a = n
2

and G ∼= Kn
2
−1,n

2
+1, as desired.

5 Proofs of Theorems 8 and 10

In this section, we shall give the proofs of Theorems 8 and 10. Firstly, we prove Theorem 8,
which provides an upper bound on the spectral radius of a bipartite graph G with given
partite sets forbidding [a, b]-factors.

Proof of Theorem 8. Let G = (X, Y ) be a bipartite graph forbidding [a, b]-factors.
Assume that |X| = p and |Y | = q, where p 6 q. Let a, b be two positive integers with
a 6 b.

(i) If aq > bp, then by Lemma 22, any bipartite graph with bipartite orders p and
q contains no [a, b]-factors. Hence, Kp,q contains no [a, b]-factors. Furthermore, ρ(G) 6
ρ(Kp,q) =

√
pq with equality if and only if G ∼= Kp,q.

(ii) If a > p, then for each vertex v ∈ Y , we have dG(v) 6 p < a, which implies that
any bipartite graph with bipartite orders p and q contains no [a, b]-factors. Hence, Kp,q

contains no [a, b]-factors. Furthermore, ρ(G) 6 ρ(Kp,q) =
√
pq with equality if and only

if G ∼= Kp,q.
(iii) Suppose that ρ(G) > ρ(D(a−1, p−a+1; q−1, 1)) and G � D(a−1, p−a+1; q−

1, 1). In what follows, we are to show that G contains an [a, b]-factor. For convenience,
let G1 := D(a− 1, p− a+ 1; q − 1, 1). Then we have the following claim.

Claim 32. e(G) > p(q − 1) if a = 1, and e(G) > p(q − 1) if a > 1.

Proof of Claim 32. Note that a is a positive integer. If a = 1, then G1 = Kp,q−1 ∪K1.

Thus, ρ(G) > ρ(Kp,q−1 ∪K1) =
√
p(q − 1). Together with Lemma 19, we have√

p(q − 1) 6 ρ(G) 6
√
e(G),

which implies that e(G) > p(q−1). If a > 1, then G1 is connected and contains Kp,q−1∪K1

as a proper spanning subgraph. By Lemma 13, we have ρ(G1) > ρ(Kp,q−1 ∪ K1) =√
p(q − 1). Combining with ρ(G) > ρ(G1) and Lemma 19, we obtain√

p(q − 1) < ρ(G1) 6 ρ(G) 6
√
e(G),

which deduces that e(G) > p(q − 1). Hence, Claim 32 holds.

By Claim 32, we may assume that e(G) = p(q − 1) + r, where 0 6 r 6 p. Next we
assert that r = 0 or r > a. If not, then 1 6 r 6 a− 1. By Lemma 17, we have

ρ(G) 6 ρ(D(r, p− r; q − 1, 1))

with equality if and only if G ∼= D(r, p − r; q − 1, 1). It is easy to see that D(r, p −
r; q − 1, 1) is a spanning subgraph of D(a − 1, p − a + 1; q − 1, 1). Thus, by Lemma
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13, ρ(D(r, p − r; q − 1, 1)) 6 ρ(D(a − 1, p − a + 1; q − 1, 1)) with equality if and only
if r = a − 1. Hence, ρ(G) 6 ρ(D(a − 1, p − a + 1; q − 1, 1)) with equality if and only
if G ∼= D(a − 1, p − a + 1; q − 1, 1), which contradicts our assumption. Therefore, we
have r = 0 or r > a. If r = 0, then e(G) = p(q − 1). By Claim 32, we have a = 1.
Furthermore, by Theorem 6(iii), G contains a [1, b]-factor, as required. If r > a, then
e(G) > p(q − 1) + a. By Theorem 6(iii), G contains an [a, b]-factor, as desired.

This completes the proof.

Based on Theorem 8, we give the proof of Theorem 10, which establishes an upper
bound on the spectral radius of a bipartite graph with given order forbidding [a, b]-factors.

Proof of Theorem 10. Let G = (X, Y ) be a bipartite graph of order n forbidding [a, b]-
factors and assume that |X| = p and |Y | = q, where p 6 q and p+ q = n. Let a, b be two
positive integers with a 6 b and a 6 bn

2
c.

To prove our theorem, it suffices to show:

(1) If aq > bp, then ρ(G) 6
√
ban−1
a+b
c(n− ban−1

a+b
c) with equality if and only if G ∼=

Kban−1
a+b
c,n−ban−1

a+b
c.

(2) If aq 6 bp, then

ρ(G) 6 ρ(D(a− 1,
⌈n

2

⌉
− a;

⌊n
2

⌋
, 1))

with equality if and only if G ∼= D(a− 1,
⌈
n
2

⌉
− a;

⌊
n
2

⌋
, 1).

We first prove (1). If aq > bp, then by Theorem 8(i), we have ρ(G) 6
√
pq with equality

if and only if G ∼= Kp,q. In addition, if aq > bp, then aq − 1 > bp, i.e., a(n− p)− 1 > bp,

which implies that p 6 ban−1
a+b
c. Note that

√
pq =

√
p(n− p) 6

√
ban−1
a+b
c(n− ban−1

a+b
c) with

equality if and only if p = ban−1
a+b
c. Hence, ρ(G) 6

√
ban−1
a+b
c(n− ban−1

a+b
c) with equality if

and only if G ∼= Kban−1
a+b
c,n−ban−1

a+b
c.

Next we prove (2). We consider the following two possible cases.
Case 1. a 6 p. In this case, by Theorem 8(iii), we have ρ(G) 6 ρ(D(a − 1, p − a +

1; q− 1, 1)) with equality if and only if G ∼= D(a− 1, p− a+ 1; q− 1, 1). In what follows,
we tend to show

ρ(D(a− 1, p− a+ 1; q − 1, 1)) 6 ρ(D(a− 1,
n

2
− a;

n

2
, 1))

for even n, where equality holds if and only if p = n
2
− 1, or p = n

2
and a = 1, and

ρ(D(a− 1, p− a+ 1; q − 1, 1)) 6 ρ(D(a− 1,
n+ 1

2
− a;

n− 1

2
, 1))

for odd n, where equality holds if and only if p = n−1
2

.
We first consider that n is even. If p = n

2
− 1, then the result holds obviously. In what

follows, it suffices to show that ρ(D(a− 1, p− a + 1; q − 1, 1)) 6 ρ(D(a− 1, n
2
− a; n

2
, 1))

for p 6= n
2
− 1, where equality holds if and only if p = n

2
and a = 1.
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For convenience, let G1 := D(a− 1, p− a+ 1; q− 1, 1) and G2 := D(a− 1, n
2
− a; n

2
, 1).

If a = 1, then G1 = Kp,q−1 ∪K1 and G2 = Kn
2
−1,n

2
∪K1. It is easy to check that

√
p(q − 1) = ρ(G1) 6 ρ(G2) =

√
n

2
(
n

2
− 1)

with equality if and only if p = n
2
− 1 or p = n

2
.

Next we assume that a > 2. Let X ′ and Y ′ be two partite sets of G1, where |X ′| = p
and |Y ′| = q. Furthermore, let

X ′1 = {v ∈ X ′ : dG1(v) = q}, X ′2 = {v ∈ X ′ : dG1(v) = q − 1},

and let
Y ′1 = {v ∈ Y ′ : dG1(v) = p}, Y ′2 = {v ∈ Y ′ : dG1(v) = a− 1}.

Consider the partition π1 : V (G1) = X ′1∪X ′2∪Y ′1 ∪Y ′2 . Then the corresponding quotient
matrix of A(G1) is

M1 =


0 0 q − 1 1
0 0 q − 1 0

a− 1 p− a+ 1 0 0
a− 1 0 0 0

 .

By a simple calculation, we obtain the characteristic polynomial of M1 as

Φ1(x) = x4 − (pq − p+ a− 1)x2 + (a− 1)(q − 1)(p− a+ 1). (1)

Note that the partition π1 is equitable. Hence, by Lemma 12, the largest root of Φ1(x) = 0
equals the spectral radius of G1.

Replacing p with n
2
− 1 in (1), we have

Φ2(x) =
1

4
(4x4 − (n2 − 2n+ 4a− 4)t2 + n(a− 1)(n− 2a)). (2)

It is clear that the largest root of Φ2(x) = 0 equals the spectral radius of G2.
In view of (1), (2) and by a direct computation, we have

Φ2(x)− Φ1(x) = −1

4
(n− 2p− 2)((n− 2p)x2 − (a− 1)(n− 2p+ 2a− 2)).

Let f1(x) = (n − 2p)x2 − (a − 1)(n − 2p + 2a − 2) be a real function in x. If p = n
2
,

then f1(x) = −2(a − 1)2 < 0 for a > 2. Thus, Φ2(x) − Φ1(x) = −1
4
(n − 2p − 2)f1(x) =

−(a− 1)2 < 0. It follows that Φ2(ρ(G1))−Φ1(ρ(G1)) < 0. Since Φ1(ρ(G1)) = 0, we have
Φ2(ρ(G1)) < 0, which implies that ρ(G1) < ρ(G2), as desired. If p 6 n

2
−2, then n−2p > 0.

Consider the derivative of f1(x), we have f ′1(x) = 2(n−2p)x > 0 for x > 0, which deduces
that f1(x) is a monotonically increasing function for x > 0. Note that Ka−1,q is a proper

subgraph of G1. Then by Lemma 13, we have ρ(G1) > ρ(Ka−1,q) =
√

(a− 1)q. Hence,

f1(ρ(G1)) > f1(
√

(a− 1)q) = (a− 1)(2p2 − (3n− 2)p+ n2 − n− 2a+ 2).
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Let f2(x) = 2x2 − (3n− 2)x+ n2 − n− 2a+ 2 be a real function in x, where x 6 n
2
− 2.

Then f ′2(x) = 4x− 3n+ 2 6 4(n
2
− 2)− 3n+ 2 = −n− 6 < 0, which implies that f2(x) is a

monotonically decreasing function for x 6 n
2
−2. Thus, f2(x) > f2(

n
2
−2) = 2n−2a+6 > 0.

Hence, f2(p) > 0, which deduces that f1(ρ(G1)) > f1(
√

(a− 1)q) = (a − 1)f2(p) > 0.
Furthermore, we have Φ2(ρ(G1)) − Φ1(ρ(G1)) = −1

4
(n − 2p − 2)f1(ρ(G1)) < 0. Since

Φ1(ρ(G1)) = 0, we have Φ2(ρ(G1)) < 0, which implies that ρ(G1) < ρ(G2), as desired.
Next we consider that n is odd. If p = n−1

2
, then the result holds obviously. In what

follows, it suffices to show that ρ(D(a−1, p−a+1; q−1, 1)) < ρ(D(a−1, n+1
2
−a; n−1

2
, 1))

for p < n−1
2

.
For convenience, let G3 := D(a− 1, n+1

2
− a; n−1

2
, 1). If a = 1, then G1 = Kp,q−1 ∪K1

and G3 = Kn−1
2
,n−1

2
∪K1. It is easy to check that

√
p(q − 1) = ρ(G1) 6 ρ(G3) =

n− 1

2

with equality if and only if p = n−1
2

.
Next we assume that a > 2. Replacing p with n−1

2
in (1), we have

Φ3(x) =
1

4
(4x4 − (n2 − 2n+ 4a− 3)t2 + (a− 1)(n− 1)(n− 2a+ 1)). (3)

It is clear that the largest root of Φ3(x) = 0 equals the spectral radius of G3.
In view of (1), (3) and by a direct calculation, we have

Φ3(x)− Φ1(x) = −1

4
(n− 2p− 1)((n− 2p− 1)x2 − (a− 1)(n− 2p+ 2a− 3)).

Let f3(x) = (n− 2p− 1)x2 − (a− 1)(n− 2p+ 2a− 3) be a real function in x with x > 0.
Then f ′3(x) = 2(n− 2p− 1)x > 0 for p < n−1

2
, which implies that f3(x) is a monotonically

increasing function for x > 0. Note that Ka−1,q is a proper subgraph of G1. Then by

Lemma 13, we have ρ(G1) > ρ(Ka−1,q) =
√

(a− 1)q. Hence,

f3(ρ(G1)) > f3(
√

(a− 1)q) = (a− 1)(2p2 − (3n− 3)p+ n2 − 2n− 2a+ 3).

Let f4(x) = 2x2 − (3n − 3)x + n2 − 2n − 2a + 3 be a real function in x, where x 6 n−3
2

.
Then f ′4(x) = 4x− 3n+ 3 6 4× n−3

2
− 3n+ 3 = −n− 3 < 0, which implies that f4(x) is a

monotonically decreasing function for x 6 n−3
2

. Thus, f4(x) > f4(
n−3
2

) = n− 2a+ 3 > 0.

Hence, f4(p) > 0, which deduces that f3(ρ(G1)) > f3(
√

(a− 1)q) = (a − 1)f4(p) > 0.
Furthermore, we have Φ3(ρ(G1)) − Φ1(ρ(G1)) = −1

4
(n − 2p − 1)f3(ρ(G1)) < 0. Since

Φ1(ρ(G1)) = 0, we have Φ3(ρ(G1)) < 0, which implies that ρ(G1) < ρ(G3), as desired.
Case 2. a > p. In this case, by Theorem 8(ii), we have ρ(G) 6

√
pq 6√

(a− 1)(n− a+ 1), where ρ(G) =
√

(a− 1)(n− a+ 1) holds if and only if
G ∼= Ka−1,n−a+1. In order to complete the proof, it suffices to show that√

(a− 1)(n− a+ 1) 6 ρ(D(a− 1,
n

2
− a;

n

2
, 1)) = ρ(G2)
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for even n, where equality holds if and only if a = n
2
, and√

(a− 1)(n− a+ 1) < ρ(D(a− 1,
n+ 1

2
− a;

n− 1

2
, 1)) = ρ(G3)

for odd n.
We first consider that n is even. If a = n

2
, then the result holds obviously. Thus, in

what follows, it suffices to prove
√

(a− 1)(n− a+ 1) < ρ(G2) for 1 6 a < n
2
.

If a = 1, then G2 = Kn
2
−1,n

2
∪K1. It is easy to check that

0 =
√

(a− 1)(n− a+ 1) <

√
n

2
(
n

2
− 1) = ρ(G2),

as desired.
Next we consider 2 6 a < n

2
. Recall that ρ(G2) equals the largest root of Φ2(x) = 0,

where Φ2(x) is given in (2). Substituting x =
√

(a− 1)(n− a+ 1) into (2) yields

Φ2(
√

(a− 1)(n− a+ 1)) = −1

4
(a− 1)(n− 2a)(2a2 − (3n+ 4)a+ n2 + 2n+ 2).

Let g1(x) = 2x2 − (3n+ 4)x+ n2 + 2n+ 2 be a real function in x, where 2 6 x 6 n
2
− 1.

Consider the derivative of g1(x), we have g′1(x) = 4x − 3n − 4. Note that g′1(x) 6
g′1(

n
2
− 1) = −n− 8 < 0, which implies that g1(x) is a monotonically decreasing function

for 2 6 x 6 n
2
− 1. Hence, g1(x) > g1(

n
2
− 1) = n + 8 > 0 for 2 6 x 6 n

2
− 1.

Furthermore, we have Φ2(
√

(a− 1)(n− a+ 1)) = −1
4
(a − 1)(n − 2a)g1(a) < 0, which

gives that
√

(a− 1)(n− a+ 1) < ρ(G2).
Now we consider that n is odd. If a = 1, then G3 = Kn−1

2
,n−1

2
∪K1. It is easy to check

that

0 =
√

(a− 1)(n− a+ 1) <
n− 1

2
= ρ(G3),

as desired.
Next we consider 2 6 a 6 n−1

2
. Recall that ρ(G3) equals the largest root of Φ3(x) = 0,

where Φ3(x) is given in (3). Substituting x =
√

(a− 1)(n− a+ 1) into (3) yields

Φ3(
√

(a− 1)(n− a+ 1)) = −1

4
(a− 1)(n− 2a+ 1)(2a2 − (3n+ 3)a+ n2 + n+ 2).

Let g2(x) = 2x2 − (3n + 3)x + n2 + n + 2 be a real function in x, where 2 6 x 6 n−1
2

.
Consider the derivative of g2(x), we have g′2(x) = 4x − 3n − 3. Note that g′2(x) 6
g′2(

n−1
2

) = −n − 5 < 0, which implies that g2(x) is a monotonically decreasing function
for 2 6 x 6 n−1

2
. Therefore, g2(x) > g2(

n−1
2

) = 4 > 0 for 2 6 x 6 n−1
2

. Furthermore,

we have Φ3(
√

(a− 1)(n− a+ 1)) = −1
4
(a− 1)(n− 2a+ 1)g2(a) < 0, which deduces that√

(a− 1)(n− a+ 1) < ρ(G3), as required.
By Case 1 and Case 2, we complete the proof.
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6 Some further discussions

In this paper, we focus on determining the maximum size (resp. the largest spectral
radius) of an n-vertex graph (resp. an n-vertex bipartite graph) without [a, b]-factors.
Firstly, we establish a sharp upper bound on the size of a graph with given order forbidding
[a, b]-factors. Based on this result, we further establish a sharp upper bound on the
spectral radius of a graph with given order forbidding [a, b]-factors, which proves a stronger
version of Cho-Hyun-O-Park’s conjecture [7, Conjecture 4.4]. In addition, we provide two
sharp upper bounds on the size and spectral radius of a bipartite graph with given partite
sets forbidding [a, b]-factors, respectively. At last, we provide two upper bounds on the
size and spectral radius of a bipartite graph with given order forbidding [a, b]-factors,
respectively. Consequently, we contribute to Problem 1 by proving positive results.

In fact, we may view our results by their equivalent forms, in which one may give size
condition or spectral condition to guarantee that a graph (or bipartite graph) contains
an [a, b]-factor. For example, we may reformulate Theorem 3 as follows, which presents a
size condition to ensure that an n-vertex graph contains an [a, b]-factor.

Theorem 33. Let a 6 b be two positive integers, and let G be a graph of order n with
n > a+ 1 and na ≡ 0 (mod 2) when a = b. If e(G) >

(
n−1
2

)
+ a− 1, then G contains an

[a, b]-factor unless one of the following holds:

(i) G ∼= Ka−1 ∨ (Kn−a ∪K1) or K1,3, if ab = 1 or ab = 2;

(ii) G ∼= Ka−1 ∨ (Kn−a ∪K1) or K2 ∨K3, if a = b = 2;

(iii) G ∼= Ka−1 ∨ (Kn−a ∪K1), if b > 3.

In what follows, we give an equivalent form of Theorem 4.

Theorem 34. Let a 6 b be two positive integers, and let G be a graph of order n with
n > a + 1 and na ≡ 0 (mod 2) when a = b. If ρ(G) > ρ(Ka−1 ∨ (Kn−a ∪K1)), then G
contains an [a, b]-factor unless G ∼= Ka−1 ∨ (Kn−a ∪K1).

Note that if a graph G contains an [a, b]-factor. Then the minimum degree δ(G) must
satisfy δ(G) > a. However, observing the extremal graphs G in Theorems 33-34, we are
surprised to find that δ(G) = a − 1 for n > 5. So it is natural to consider the following
interesting and challenging problem.

Problem 35. Determine sharp lower bounds on the size or spectral radius of an n-vertex
graph G with δ(G) > a such that G contains an [a, b]-factor.

Observing Theorems 33-34 we also find that the size e(G) of the extremal graph is
e(G) = 1

2
n2 − 3

2
n + a. In view of Conjecture 2, we suspect the following holds, which is

motivated by [22, 23, 24] and the current work.

Conjecture 36. Let s be a fixed positive number and n be a sufficiently large integer.
Let F be the set of all the spanning subgraphs of an n-vertex graph. Then ex(n,F) =
1
2
n2 − sn+O(1) and Exsp(n,F) ⊆ Ex(n,F).
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