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Abstract

Our main results in this paper are new equidistributions on plane trees and
132-avoiding permutations, two closely related and ubiquitous objects. As for the
former, we discover a characteristic for vertices of plane trees that is equally dis-
tributed as the height for vertices. The latter is concerned with four distinct ways
of decomposing a 132-avoiding permutation into subsequences. We show combina-
torially that the subsequence length distributions of the four decompositions are
mutually equal, and there is a way to group the four into two groups such that
each group is symmetric and the joint length distribution of one group is the same
as that of the other. Some consequences are discussed. For instance, we provide a
new refinement of the fundamental equidistribution of internal vertices and leaves,
and present new sets of 132-avoiding permutations that are counted by the Motzkin
numbers and their refinements.

Mathematics Subject Classifications: 05C05, 05A19, 05A15

1 Introduction

Permutations with or without certain patterns have been extensively studied since Knuth’s
work [13]. Let [n] = {1,2,...,n} and &,, be the symmetric group of permutations on [n].
Let 7 = o -+ T, € 6, with m < n. A permutation 7 = mymy---m, € &,, is said to
have a pattern 7 if there exists a subsequence m;, 7;, - - - m;,, of 7 such that m;, < m;, if and
only if 7; < 7. If m does not have the pattern 7, 7 is called 7-avoiding. The permutation
7 is said to have a consecutive pattern 7 if there exists a subsequence m;m; 41 -+ - Ty m_1 Of
7 that provides an occurrence of the pattern 7.

It is well understood that the number of permutations on [n] avoiding a pattern 7 of
length three is given by the Catalan number C, = %H(Z:) for any 7 € G3. It is also
very well known that C), counts plane trees of n edges and respectively Dyck paths of

semilength n. A bijection between 132-avoiding permutations and plane trees was given in
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Jani and Rieper [11], while a bijection between 132-avoiding permutations and Dyck paths
was given in Krattenthaler [14]. We refer to Claesson and Kitaev [5] and references therein
for more detailed discussion on bijections related to permutations avoiding a length three
pattern.

This paper is mainly concerned with the set &,,(132) of 132-avoiding permutations
on [n] and plane trees. We examine four types of decompositions of permutations into
subsequences. When restricted to 132-avoiding permutations, two of the four decompo-
sitions refine ascents and others refine descents. In fact, two of them are respectively
increasing run and decreasing run decompositions which have been studied, for instance,
in Zhuang [19], and Elizalde and Noy [8]. One of our main results states that the length
distributions of the subsequences of the four decompositions are mutually equivalent, and
there is a way to group the four into two groups such that each group is symmetric and
the joint length distribution of one group is the same as that of the other. We prove this
combinatorially, connecting several bijections, some are well-known and some are recently
discovered or new. As a consequence, we are able to enumerate 132-avoiding permutations
according to a variety of filtrations. For instance, taking advantage of a result of Elizalde
and Mansour [7], we present four sets of 132-avoiding permutations that are respectively
counted by the Motzkin numbers. We additionally carry out some refined enumeration
of these sets.

One employed new bijection between plane trees and 132-avoiding permutations also
allows us to derive a new equidistribution result on plane trees concerning height for
vertices. As a corollary, we immediately recover the fundamental fact that internal vertices
and leaves of plane trees are equidistributed.

The paper is organized as follows. In Section 2, we introduce the four types of decom-
positions and present some basic properties. In Section 3, several relevant bijections are
reviewed. In Section 4, we present a bijection between plane trees and 132-avoiding per-
mutations that appears new. As a consequence, we introduce the right spanning width of
vertices and show this new characteristic is equally distributed as the height of vertices.
Finally, we prove the equidistribution result of the four decompositions and provide a
number of enumerative results as applications in Section 5. For instance, we present four
sets of permutations that are all counted by the Motzkin numbers.

2 Decompositions of permutations

For a permutation treated as a sequence, we have many ways to decompose it into dif-
ferent subsequences. Here we are interested in four distinct decompositions which will
be introduced in order. The four decompositions can be viewed as refinements of the
well studied statistics ascents and descents of permutations as we shall see shortly. Let
T =mmy- 7T, €S,. An ascent of 7 is an index 1 < i < n such that m; < m;;1. The rest
are called descents of m. Note that here we always treat n as a descent.
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2.1 Increasing and decreasing run decompositions

Definition 1. Suppose m = mymy-- -1, € 6,,. A subsequence m;m; 1 - T1k_1 is called
an increasing run (IRY) if m; < my < -+ < T4p_1, and it is not contained in a longer
such subsequence.

Obviously, a permutation 7 can be uniquely decomposed into IR. This decomposition
will be simply referred to as IRD. For example, we can decompose a permutation m =
5346127 into three IR:

T = 5, To = 346, T3 = 127.

An integer partition A of n, denoted by A F n, is a sequence of non-increasing positive
integers A = A\ Ag--- A such that ) . A\; = n. The lengths of the IR of 7 give the length
distribution of m w.r.t. IRD. We will encode the length distribution by an integer partition
of n. For example, the length distribution of 7 = 5346127 w.r.t. IRD is given by A = 331.

Note that if 7 is a descent of 7, then m; is the rightmost (or last) element of an IR while
mit1 (if ¢ < n) starts a new IR of w. Thus, there is an obvious one-to-one correspondence
between IR and descents. Consequently, the set of permutations with k& descents can be
further refined into subsets by the length distribution of the corresponding k IR.

Decreasing runs (DR) and decreasing run decomposition (DRD) are defined analo-
gously. It is also apparent that the number of ascents of 7 plus one is the same as the
number of segments from the DRD of 7. Consequently, DR with the associated length
distribution may be viewed as a refinement of ascents.

2.2 Value-consecutive increasing subsequences

An increasing run can be alternatively interpreted as a maximal position-consecutive
increasing subsequence. Then, it suggests a natural counterpart which may be called
maximal value-consecutive increasing subsequences (v-CIS).

Definition 2. A v-CIS of a permutation m = mmy--- 7, is a subsequence of the form
TiyTiy T, =J3(j+1)---(j+k —1) for some j > 1 and k > 1.

By abuse of notation, the decomposition of a permutation 7 into its maximal v-
CIS is also referred to as v-CIS (of 7). Taking m = 5346127 as an example, its v-CIS
decomposition gives subsequences:

567, 34, 12,
the length distribution of which is given by the partition 322.

Lemma 3. The number of descents of m € &,(132) equals the number of subsequences
from its v-CIS. In particular, if i # n is a descent of 7, then w11 starts a mazximal v-CIS

of .

'We will write IR (DR and v-CIS defined later) in singular as well as plural form.
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Proof. Let m = mmy---m, € 6,(132). It suffices to show that there is a one-to-one
correspondence between the descents i # n of m and the maximal v-CIS of © which do
not start with my. First, if ¢ # n is a descent of m, then we claim that 7, starts a
maximal v-CIS of 7. Otherwise, m; = ;41 — 1 for some j < ¢. In this case, m;mm;
yields a 132 pattern, a contradiction. Conversely, suppose ;11 (i > 0) starts a maximal
v-CIS. If 7,41 = 1, then obviously ¢ is a descent; If 7,11 # 1, then 7; = 741 — 1 for some
J > 1+ 1 due to the maximality of the v-CIS containing m; ;. Consequently, m; < ;11
implies m; < m;41 — 1 = m;, which again yields a 132 pattern m;m;17;. Thus, we always
have m; > ;1 whence 7 is a descent of 7. In view that there is a maximal v-CIS starting
with m; and n is a descent of m, the lemma follows. n

We remark that the above relation is not true for a general permutation. For instance,
7 = 153642 clearly has a 132 pattern. We can check that 7 has four descents but only three
subsequences in its v-CIS. This is actually interesting as the other three decompositions
studied in this paper are directly related to ascents and descents for general permutations,
and may deserve future investigations.

Lemma 4. Let m = mymy -+ -1, be a 132-avoiding permutation. Then, there do not exist
1<i<j<k<l<n such that m; and m, are contained in the same v-CIS 11 while 7,
and 7, are contained in the same v-CIS 15 where 11 # Ty.

Proof. Suppose such 1, j, k, [ exist. By construction, if 7; > m;, then m; > 7, as well since
otherwise the three must be contained in the same v-CIS. Thus, m;7;m; provides a 132
pattern, a contradiction. Analogously, if m; < m; (so m; < m), we then have m < 7y,
which implies m;m,m being a 132 pattern. Either way yields a contradiction and the
lemma, follows. ]

Lemma 5. Let 1 = myme---m, € 6,(132). Suppose 7 and 7' are two distinct v-CIS
of w. Then, either all elements in T lie between two consecutive elements in 7', or all
elements in T are to the left of the starting element of 7. Moreover, in the former case,
the mazimal element in T is smaller than the minimal element of 7', while in the latter
case, the mazimal element in 7' is smaller than the minimal element in T.

Proof. The first statement follows from Lemma 4. In the remaining part, the former
case is true because the minimal (i.e., starting) element of 7 is the image of an element
determining a descent in view of Lemma 3; the latter case is true since otherwise an
element from 7, ; and an element from 7’ form a 132 pattern, where 7; determines the
descent corresponding to 7’ in the light of Lemma 3. This completes the proof. O]

2.3 Layered decreasing envelops

Definition 6. Let 7 = mmy -+ -1, be a permutation. A right-to-left maximum w.r.t. a
position m (or starting with m,,) is an entry m; such that m; > m; for all i < j < m, and
T is always viewed as a right-to-left maximum.
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Let m = mmy---m, be a permutation. Starting with m,, we search all right-to-left
maxima in 7 which will give us a decreasing subsequence of 7 (i.e., a decreasing path).
See an example for 7 = 10,8,7,9,11,6,4,3,5,12,1, 2 in Figure 1. The obtained decreasing
path from this step is 12,2. Next starting with the position that precedes the leftmost
element of the last found path, we search all right-to-left maxima which will give us a new
decreasing path (i.e., 11,6,5 for the example); Continue doing this until we get a path
starting with m (10,9 for the example). At this point, we have found the “outermost”
layer of decreasing paths. Imagine we have connected adjacent elements in the same
decreasing path by edges. Repeat the procedure of obtaining decreasing paths with respect
to the segment of entries covered by the same edge in the existing paths until all entries
in m have been placed into a path. This decomposition of permutation elements into
decreasing subsequences will be called layered decreasing envelop decomposition, simply
referred to as LDE.

Apparently, if i # n is an ascent of 7, then 7; is the rightmost element of a decreasing
path. Conversely, if i # n and 7; is the rightmost element of a decreasing path, then i is an
ascent. Taking into account the decreasing path ending with =, the number of decreasing
paths is one greater than the number of ascents of m. We will be interested in the length
distribution of these decreasing paths. For example, the LDE length distribution of 7 in
Figure 1 is the partition 322221.

10 8 7 9 11 6 4 3 5 12 1 2

Figure 1: The LDE of a 132-avoiding permutation, where elements belonging to the same
decreasing subsequence are connected by solid lines.

It is also worth noting that by construction any two decreasing paths are either in a
left-right position or in a covering (or nesting) relation, i.e., crossing free.

3 Relevant existing bijections

In this section, we review several bijections involving plane trees and 132-avoiding per-
mutations which can be found in the literature and will be used later.

ot
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3.1 A bijection ¢ on plane trees

A plane tree T can be recursively defined as an unlabeled tree with one distinguished
vertex called the root of T', where the unlabeled trees resulted from the removal of the
root as well as its incident edges from T are linearly ordered, and are plane trees with
the vertices adjacent to the root of T" as their respective roots. In a plane tree T', the
number of edges in the unique path from a vertex v to the root of T" is called the height
(or level) of v, and the vertices adjacent to v but having greater heights are called the
children of v. The number of children of v is called the outdegree of v. The vertices on
level 2i (resp. 2i 4 1) for ¢« > 0 are called even-level (resp. odd-level) vertices. A leaf is a
non-root vertex with no children, and a non-leaf vertex is called an internal vertex. The
root is always treated as an internal vertex. We will draw a plane tree with its root on
the top level, i.e., level 0, and with the children of a level 7 vertex arranged on level i + 1
(below level 7) left-to-right following their linear order.

A plane tree can be decomposed into a set of paths where each path has a leaf as a
terminal vertex. There are two ways to achieve that: left path decomposition and right
path decomposition.

Definition 7 (Left path decomposition). Suppose all leaves in a plane tree T are ordered
by their relative order in the depth-first search of T" from left to right. The first path is
the path from the first leaf to the root, and for ¢ > 1, the ¢-th path goes from the ¢-th
leaf up to the first vertex that is already in a path that has been obtained.

We will call the multiset consisting of the lengths of the obtained paths the left path
distribution of the given tree. The right path decomposition is analogous. That is, the
paths are successively obtained from right to left.

There is a bijection ¢ from plane trees to plane trees obtained by connecting two
bijections between plane trees and RNA secondary structures, one being the Schmitt-
Waterman bijection [17] and the other being the new bijection recently discovered by
Chen [3]. We refer to [17] and [3] for details about the bijections, and to Smith and
Waterman [18] as well as Schmitt and Waterman [17] for the definition and discussion on
RNA secondary structures. What one really needs in this paper is the following property
of the bijection .

Theorem 8 (Chen [3]). Let A be the set of plane trees of n > 0 edges with x, internal
vertices of outdegree q and vy, (left) paths of length 1 in its left path decomposition. Let
B be the set of plane trees of n edges with x4 odd-level vertices of outdegree ¢ — 1 and y,
even-level vertices of degree . Then, the bijection ¢ induces a bijection between A and B.

Furthermore, the length of the first (leftmost) path in T € A equals the degree of the
root of o(T') € B.

3.2 The Jani-Rieper bijection

An explicit bijection between plane trees and 132-avoiding permutations was given by
Jani and Rieper [11]. The following is how it works. Let 7" be a plane tree of n edges.
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We use a preorder traversal of T (from left to right) to label the non-root vertices in
decreasing order with the integers n,n — 1,...,1. As such, the first vertex visited gets
the label n and the last receives 1. A permutation written as a word is next obtained
by reading the labeled tree in postorder, that is, traverse the tree from left to right and
record the label of a vertex when it is last visited.

The reverse from a 132-avoiding permutation to a plane tree was not explicitly pre-
sented in Jani and Rieper [11]. Here we present a procedure and we leave it to the reader
to verify its effectiveness. Let 7 be a 132-avoiding permutation. Suppose the IR of 7 from
left to right are 7, 7, ..., 7. For example, for 7 = 10,8,7,9,11,6,4,3,5,12,1, 2, we have

7'1:10, T2:8, T3:7,9,11, 7'4:6, T5:4, T623,5,12, 7'7:1,2.

For 1 < ¢ < k, make 7; into a path (graph) with the vertex labels increasing along the
path (still referred to as 7;). We next begin with a plane tree with only one vertex r (i.e.,
the root) and will “integrate” the paths into the tree, one path at a time. Start with the
path 7, and connect the maximal element in 75 to the vertex r. For our exemplary 7, we
obtain a partial tree which is the path from vertex 1 to the root of the left tree in Figure 2
at this point. After 7; has been integrated into the tree, we find the minimal element
w in the leftmost path (i.e., the one from the leftmost leaf to the root) in the current
partial tree that is larger than the maximal element x in the path 7;,_;, and connect u
and z; if no such a u exists, we connect x to the vertex r. In addition, make sure that
the minimal element in 7;_; is the leftmost leaf of the resulting partial tree, i.e., 7;,_1 is
integrated into the existing partial tree from the lefthand side. Eventually, we obtain
a plane tree JR(m). In the following, we will regard the corresponding plane trees of
132-avoiding permutations as plane trees with vertex labels, although the vertex labels
are uniquely determined (by the underlying bijections) and can be omitted. Moreover,
we may sometimes use the label of a vertex to refer to the vertex.

Lemma 9 (Jani-Rieper [11]). The longest increasing subsequence in m € &,(132) starting
with an entry is the height of the vertex corresponding to the entry in JR(r).

Lemma 10. For m = mymy - 7w, € 6,(132), the outdegree distribution of the internal
vertices of JR(m) is the same as the LDE length distribution of w, while the right path
distribution of JR(m) is the same as the IR length distribution of .

Proof. The “while” part succinctly follows from our reverse procedure from 132-avoiding
permutations to plane trees. We next focus on the correspondence between the outdegree
and LDE length distributions. First, we have the following observations from our reverse
procedure:

(i) The left-to-right order of the children of an internal vertex in JR(7) is the same as
the left-to-right order of these children in 7, and these children form a decreasing
subsequence of 7;

(ii) The descendants of a vertex v are smaller than the vertex (in terms of their labels).
In particular, if v = m;, then the rightmost child of v is 7m;_; and m;_; < 7;;
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(iii) Let v be a non-root vertex in JR(m). Suppose v’ is the first vertex on the path
directing from v (including v) to the root that has left siblings. Let u be the
immediate left sibling of v’ in JR(w). Then, the entries to the left of v and to the
right of u in 7 are descendants of v. If no such v exists, then all entries to the left
of v in 7 are descendants of v.

Note that the latter case of (iii) only happens when v is on the path from the leftmost
leaf to the root of JR(r).

By construction, the rightmost child of the root of JR(w) is m,. Based on (i), (ii)
and (iii), the children of the root are the right-to-left maxima starting with m, whence
an LDE decreasing path in w. Next, for the children of a non-root vertex v = m; for
some 7, they are easily seen to be contained in the same LDE decreasing path £ since
they are right-to-left maxima starting with m;_;. (Recall m;_; corresponds to an ascent
in 7 whence the rightmost element of an LDE.) It remains to show there does not exist
a right-to-left maximum starting with m;_; which is to the left of the leftmost child of
v in 7 and is also contained in L. If the desired u in (iii) does not exist, obviously, no
such a right-to-left maximum exists. If the desired w exists, u is certainly a right-to-left
maximum starting with m;_;. However, u and v’ as children of the same vertex are in
the same LDE decreasing path. In addition, (ii) and (iii) imply that a vertex cannot be
contained in the same LDE with any of its descendant. Thus, v and v" are not contained
in £. No other elements to the left of u in 7 are contained in L either, otherwise £ and the
LDE containing u and v’ cross which is impossible as analyzed before (see the discussion
right before Section 3). This completes the proof. n

3.3 0Odd-even level switching of plane trees

Given a plane tree T', we obtain a new plane tree 7" by taking the leftmost child v of
the root of T" as the root of the new tree 1", i.e., lifting v to the top level such that the
even-level vertices in T" become odd-level vertices in 7" and vice versa. This is clearly
a bijection. In addition, it is not difficult to verify that the degree distribution of the
even-level (resp. odd-level) vertices of T becomes the degree distribution of the odd-level
(resp. even-level) vertices of T".

4 A new bijection and consequences

In this section, we first present a bijection between plane trees and 132-avoiding permu-
tations which appears to be new. Then, we discuss several applications of the bijection,
in particular, a new equidistribution result on plane trees.
Let m = myme -+ -, € 6,(132). Suppose there are k subsequences in its v-CIS: 7, =
Lrl ! bk k and suppose for 1 < i <k,

7T17TQ7T,LI,,T]€:7T17T27T“€,

7t = max{n!, 7 k)
We then construct a plane tree T' = ¢(7) recursively with the following procedure.

THE ELECTRONIC JOURNAL OF COMBINATORICS 31(3) (2024), #P3.24 8



e First, start with a single vertex and arrange =y, ... 77T,L»11 from left to right as the
children of the vertex.

e For j =2 to k, find vertex m; in the constructed partial tree that is immediately to
the left of 7] in 7; then let 77, ... ,ij be the left-to-right children of vertex ;.

Due to Lemma 3 and Lemma 5, the above desired m; must be contained in 7; for some
1 < 7. So, m; is indeed contained in the partial tree. Hence, the above procedure eventually
yields a labeled plane tree T'. It is also easy to observe that: (i) there are k internal vertices
in 7', and (ii) the descendants (if any) of any non-root vertex m; have smaller labels and
their positions in 7 are to the right of m; and to the left of the immediate right sibling of
m; if any due to Lemma 5.

For example, 7 = 10,8,7,9,11,6,4,3,5,12,1,2 is a 132-avoiding permutation, and its
v-CIS are

7'1:10,11,]_2, ’7'2:897 7'3:7, ’7'4:67 7'5:45, 7'6:3, 7'7:12.

Then, its corresponding labeled plane tree is depicted in Figure 2 (right).

The labels of the vertices are uniquely determined by the underlying unlabeled plane
tree as follows: if we travel the internal vertices of the plane tree in the left-to-right
depth-first manner, then the k left-to-right children of the current internal vertex carry
the remaining k largest elements from [n] in increasing order.

The above claim can be seen in the following manner. If this is not the case, then
there will be two internal vertices v and v such that u is first visited in the left-to-right
depth-first travel but the children of v carry larger labels than that of the children of w.
Note that there are only two situations when u gets visited first: either v is a descendant
of u, or v is a descendant of a vertex x (other than u) that is on the path from u to the
root of the tree and v is located on the right-hand side of the path. The former case is
impossible, since we construct the tree in a top-down manner and the children of a vertex
must carry smaller labels (we may assume the label of the root is 0o0). As for the latter
case, we further assume the child of z that is on the path from wu to x is «’ (could be u
itself) , and the child of x that is on the path from v to x is v’ (could be v itself). By
assumption, v’ is a right-hand side sibling of /. By construction, the labels of u, v, v, v’
satisfy u < v/ < v" and v < v/. Pick a child «” of u and a child v” of v. Obviously,
u”" <u < v and v <wv <v'. Moreover, in 7, the left-to-right order of u”,v’,v” is exactly
u” v, v". Now if v” has a larger label than u”, then u”v'v” gives a 132 pattern in 7, a
contradiction. Therefore, the vertex labels of the tree are uniquely determined as claimed.

So, in theory, we can remove the vertex labels and only consider the underlying unla-
beled plane tree. But, we prefer to keeping the vertex labels as it is more convenient to
refer to the vertices.

As for the reverse, from a plane tree that is uniquely labeled in the manner just
described right above, it is not difficult to see that the left-to-right depth-first search (or
preorder) gives us the desired 132-avoiding permutation. We leave the proofs of this and
the following lemma to the reader.
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n=108791164351212

Figure 2: The corresponding plane trees under the Jani-Rieper bijection (left) and the
bijection ¢ (right) of the same 132-avoiding permutation .

Lemma 11. Given 7 € 6,(132), let T = ¢(n). Then, the outdegree distribution of
internal vertices of T' is the same as the v-CIS length distribution of 7, while the left path
distribution of T equals the DR length distribution of w. In particular, the length of the
DR starting with m in 7 is the same as the length of the left first path in T.

As the first application of the bijection ¢, we obtain a new equidistribution result on
plane trees which involves a new quantity associated to vertices.

Definition 12 (Right spanning width). Let {v, vy, v, ..., v} be the set of vertices on
the path from v to the root of a plane tree T'. Then, the right spanning width of v equals
the sum of the number of children of v and the number pr(v) of edges incident to v;’s that
are on the right-hand side of the path.

Let rsw(v) denote the right spanning width of v. See an illustration in Figure 4. Note
that the right spanning width of the root is just its outdegree, and rsw(v) = pr(v) if v is
a leaf. In addition, we define

rsw(T) = max{rsw(v) : v is an internal vertex in T}.

Lemma 13. Let m = mymy -+ - m, € 6,(132) and T = ¢(w). Then, the length of the longest
increasing subsequence starting with m; in 7 equals pr(m;) + 1 for vertex m; in T.

Proof. From previous analyses, the entries larger than m; and to the right of m; in =
correspond to some vertices in 7' that are located on the right-hand side of the path
from m; to the root of T. Since these “some vertices” cannot be the children of any
internal vertices that are on the right-hand side of the path due to the previous unique
vertex labeling argument, they must be adjacent to the vertices different from 7; on the
path. By definition, there are pr(m;) such vertices which also obviously form an increasing
subsequence in 7. Taking into account ; itself, the lemma follows. O
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Figure 3: The right spanning width of the vertex v is the number of bold edges.

Our new equidistribution result can be stated symbolically as: over all plane trees of
n edges, we have

height ~ rsw. (1)

Theorem 14. Suppose M is a multiset consisting of n + 1 integers. Let ht(M) be
the number of plane trees of n edges the heights of whose vertices constitute M, and let
rsw(M) be the number of plane trees of n edges the right spanning widths of whose vertices
constitute M. Then, we have

ht(M) = rsw(M). (2)

Moreover, if M’ is a multiset consisting of k integers, then the number of plane trees
of n edges and k leaves whose heights constitute M’ is the same as the number of plane
trees of n edges and k internal vertices whose right spanning widths constitute M’.

Proof. Let m = mymg---m, € 6,(132). Suppose T' = JR(7w) and 7" = ¢(m) (with vertex
labels). Assume m; is a leaf in 7. Then, 7; starts an IR of 7 and thus starts a v-CIS of
7. Thus, 7; is the label of the leftmost child of an internal vertex v in 7" by construc-
tion. Consider the longest increasing subsequence 7 in 7 starting with ;. According to
Lemma 9, the length of 7 equals the height of 7; in 7', while the length of 7 equals pr(m;)+1
in 7" due to Lemma 13. Since 7; is the leftmost child of v, we have rsw(v) = pr(m;) + 1.
Thus, the height of a leaf 7; in T" is the same as rsw(v) for v being internal in 7",

Next, assume 7; is an internal vertex in 7". The longest increasing subsequence starting
with m; in 7 also equals the height of m; in T'. By construction, 7; being of an internal
vertex in T implies that ¢ # 1 and m;_; < 7, i.e., i — 1 is an ascent of . However, in 7",
m;—1 must be a leaf. Note that the longest increasing subsequence starting with m; _; has
length exactly pr(mi_1) + 1 = rsw(m_1) + 1 in T". Accordingly, the length of the longest
increasing subsequence starting with m; equals rsw(m;_1). The last part of the theorem
on the correspondence between heights of leaves and rsw of internal vertices (and vice
versa) is also implied here, and the theorem follows. O

Remark 15. Recall the height of a plane tree is the maximum height of leaves in the tree.
While average height of various trees and a single leaf there were examined in a plethora
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of work, see for instance, de Bruijin, Knuth and Rice [6], Kemp [12], and Prodinger [15],
to the best of our knowledge, no statistics have been found to be equidistributed as height.

Remark 16 (Open problem?). Tt is natural to define left spanning width (Isw) of a vertex
analogously. We believe there exists another statistic A associated to vertices such that the
pair (Isw,rsw) is in equidistribution with the pair of A and height of vertices. However,
we failed to find it.

Corollary 17. The number of plane trees of n edges and height k equals the number of
plane trees T of n edges with rsw(T) = k.

Apparently, the latter part of Theorem 14 refines the following well-known fact.

Corollary 18. The number of plane trees of n edges with k internal vertices is the same
as the number of plane trees of n edges with k leaves.

It is well known that the number of Dyck paths of semilength n with k£ peaks is given
by the Narayana number N(n, k) = %(Z) (kfl) with N (0,0) = 1. It is worthy of pointing
out that the number of plane trees of n edges and k leaves is also counted by N(n, k),
in which Corollary 18 is implied. In Callan [2], it was proved via a novel combinatorial
argument that the number of Dyck paths of semilength n with ¢ returns to ground level

and j peaks equals the generalized Narayana number

v = G55

Callan’s result can be easily translated into a result in the world of plane trees: the
number of plane trees of n edges where there are j leaves and the outdegree of the root
is 7 is V;(n, j).

Theorem 19. The number of 132-avoiding permutations on [n] starting with i and hav-
g k descents is given by %1_’( " )(1_2). Furthermore, the number of 132-avoiding

k—1) \i—k
permutations on [n] starting with i, ending with j and having k descents is

Nu_i(n —1,n — k), if i <j,
S Nppisin—jn—m+1)NG — 1,5 +m —k+1), else.

(3)

Proof. Let m € 6,,(132). If 7 starts with ¢, then its v-CIS containing the first element i
is evidently i(i + 1) - - - n. According to the bijection ¢, this implies the outdegree of the
root of the tree ¢(m) equals n+ 1 —i. Recall that the number of descents of 7 is equal to
the number of v-CIS of 7 which equals the number of internal vertices in ¢(m). So, the
number of leaves in ¢(7) is n + 1 — k. Hence, the desired number in the first part of the
theorem equals the number of plane trees with n edges and n+ 1 — k leaves, the outdegree
of whose root is n + 1 — 7. As stated, the number of such trees is given by

n+1—1 n 7 — 2
St 1y = (Y172

2Zhicong Lin recently told us that he and his coauthors have solved the open problem.
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As for the remaining part of the theorem, we need the following claim: In a 132-
avoiding permutation ending with j, the last j entries are from the set [j]. Otherwise,
there is no difficulty to show there exists a 132 pattern.

The first consequence of the above claim is that if ¢ < j, then j = n. Then, the
considered set is equivalent to the set of 132-avoiding permutations on [n — 1] starting
with ¢ and having k descents which is counted by N,,_;(n —1,n — k) as just proved in the
first part of the theorem.

Next, assume ¢ > j and 7 = mmy---m, € &,(132) where 7y = i and 7, = j. We
distinguish two cases: 7 =1 and j > 1. For j = 1, the index n — 1 clearly gives a descent.
If  has k descents, then there are k — 2 descents contained in [n — 2]. It follows that the
uniquely induced 7’ = (m; — 1)(me — 1) -+ (M1 — 1) € &,,_1(132) starts with ¢ — 1 and
has k — 1 descents. There are obviously N,+1_;(n —1,n — k+ 1) such =’

If ©+ > 57 > 1, from the above claim, any 132-avoiding permutation in this case is a
concatenation of two 132-avoiding permutations: 7y - - - m,_; is on [n] \ [j] and starts with
i as well as has m descents, and m,_j41 - -7, is on [j], ending with j and having k — m
descents, for some 1 < m < k. The former permutations on [n] \ [j] are equivalent to
132-avoiding permutations on [n — j] which start with ¢ — j and have m descents, while
the latter are equivalent to 132-avoiding permutations on [j — 1] having k — m descents.
The former permutations are counted by N,11_;(n — j,n —j —m+ 1). Recall the latter
permutations are in one-to-one correspondence with plane trees with j vertices k — m of
which are internal via ¢. Summing over all possible m, the desired number is

k—1
Y Nupoiln—jin—j—m+1)N@G—1j+m—k).
m=1

Note that N(0,0) = 1 and N(0,z) = 0 for z > 0. For j = 1, the last quantity equals
Npy1—i(n — 1,n — k + 1), agreeing to the number for the case i > j = 1, and the proof
follows. m

We remark that 132-avoiding permutations with £ descents are known to be counted
by the Narayana numbers, see e.g. [16].

5 Equidistributions on 132-avoiding permutations

Our main goal in this section is to prove the following new equidistribution result on
132-avoiding permutations. We point out that common techniques such as taking the
inverse, taking the reverse (i.e., reading from right to left) or taking the complement (i.e.,
replacing ¢ with n + 1 — ¢) will not work since the resulting permutations may not be
132-avoiding permutations anymore. Instead, we will connect several bijections carefully
in order for proving the theorem.

Theorem 20. Given two partitions A, i = n, the following four sets are of equal size:

(1) m € 6,(132) whose IRD and LDE length distributions are resp. A and p.
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(2) m € &,(132) whose IRD and LDE length distributions are resp. pu and \.
(3) ™€ &,(132) whose v-CIS and DRD length distributions are resp. A and p.

(4) 7™ € 6,(132) whose v-CIS and DRD length distributions are resp. j and A.

Proof. We first prove the sets of (1) and (2) have the same size. Let 7 € &,(132) and
suppose its IRD and LDE length distributions are resp. A and u. Let T} = JR(w), i.e.,
the corresponding tree of m under the Jani-Rieper bijection. Denote by T, the mirror
image of T3 (i.e., horizontal flipping). Clearly, in view of Lemma 10, the internal vertex
outdegree distribution of 75 is 1 and the left path length distribution of 75 is A. Suppose
W= pfyfto -+ . Accordingly, following from Chen’s bijection ¢ (Theorem 8), the odd-level
vertex outdegree distribution of T = ¢(75) is p — 1, that is, (g — 1) (o — 1) -+ (up — 1),
while the even-level vertex degree distribution of T3 is A.

Let T4 be the resulted tree from the odd-even level switching transform from 73. Then,
it is easily seen that the odd-level vertex outdegree distribution of T} is A—1 while the even-
level vertex degree distribution of T} is . According to Theorem 3.1, the internal vertex
outdegree distribution of T5 = ¢ ~1(T}) is thus X and the left path length distribution of T
is u. Consequently, the mirror image Ty of T5 has the internal vertex outdegree distribution
A and the right path length distribution . Thus, the corresponding permutation 7’ of Tg
under the Jani-Rieper bijection has the IRD and LDE length distributions resp. p and A.

See Figure 4 for an illustration. Obviously, the correspondence between 7 and 7’ is a
bijection as it is essentially the composition of a number of bijections. Hence, the sets of
(1) and (2) are of equal size.

n=5346127
IRD 5,346,127 — N N
LDE 54,3,62,1,7
T1 T2
.
m =5643721
— |IRD 56,4,37,2,1

Ts Ts LDE 5643721

Figure 4: The correspondence between set of (1) and set of (2).

Next we prove that the sets of (1) and (3) contain the same number of 132-avoiding
permutations. Again, let 7 € &,,(132) and suppose its IRD and LDE length distributions
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are respectively A and pu. Let T} = JR(w), and denote by T, the mirror image of 7}. Then,
the internal vertex outdegree distribution of 75 is p and the left path length distribution
of Ty is A\. Suppose 7’ is the corresponding permutation of 75 under the bijection ¢, i.e.,
7' = ¢~ }(Ty). According to Lemma 11, the v-CIS and DRD length distributions of 7’ are
resp. A and p. The correspondence is apparently reversible, so the sets of (1) and (3) are
of equal size. Other pairs from the four sets can be dealt with analogously, completing
the proof. O

In the rest of the paper, we present some applications of Theorem 20. Recall that the
Motzkin numbers M,, can be defined by their generating function:

ZMnxnzl—x—\/l—Qx—?)xz‘

212

n=>0

Elizalde and Mansour [7] showed that the number of 132-avoiding permutations in &,,(132)
that also avoid the consecutive pattern 123 is the Motzkin number M,,. Note that avoid-
ing the consecutive pattern 123 is tantamount to requiring all IR have length at most two.
As an immediate corollary of Theroem 20, we present more sets of permutations which
are counted by the Motzkin numbers.

Corollary 21 (Motzkin family). The following four sets of permutations are all counted
by the Motzkin number M, :

(1) m € 6,(132) whose IR have length at most two;

(2) m € 6,(132) whose LDE decreasing paths have length at most two;
(8) ™€ &,(132) whose v-CIS have length at most two;

(4) m € 6,(132) whose DR have length at most two.

We proceed to present more enumerative results. Some notation are needed first. An
unlabeled set-alternating E-tree (resp. O-tree) is a plane tree where the even-level vertices
carry indistinguishable labels from a set E (resp. O) and the odd-level vertices carry
indistinguishable labels from a set O (resp. E).

Let ¢t be a nonnegative integer and r;(n, m) denote the number of weak compositions
of n into m > 0 parts each of which is no larger than ¢, i.e., a1 +as +-- -+ a,, = n and a;
is an integer satisfying 0 < a; < t. We make the convention that x,(0,0) = 1. Obviously,
Ke(n,m) =01if n < 0.

Theorem 22. Suppose p+q =n+ 1. Let &,,(p,q) be the number of m = mymy---m, €
S,.(132) whose DRD and v-CIS respectively give p DR and q v-CIS, where the DR starting

with m has a length at most h, each of the remaining p—1 DR is of length no longer than
h+ 1, and each v-CIS is of length no longer than l. Then,

Ena(p,q) = ki(p — 1,q)kn(q, p)
-1

A+ mp—i-20- DG+ ma-i-1p-1} @)

>
—_

1=0

)
Il
o
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Proof. Combining Theorem 8 and Lemma 11, the set of 132-avoiding permutations under
consideration has the same size as the set of plane trees of n edges where there are p
even-level vertices with outdegree at most h, and ¢ odd-level vertices with outdegree at
most [. We shall enumerate the latter set by using generating functions and the Lagrange
inversion formula.

Let §g (resp. Fo) denote the set of unlabeled set-alternating E-trees (resp. O-trees)
with every E-vertex (i.e., vertex with a label from the set F) having at most h children,
and every O-vertex (i.e., vertex with a label from the set O) having at most [ children.

Let

Wy (tla tg) _ Z ti#vertices in E in Tt;#vertices inOinT

)
TESE

- 2 : #vertices in E in T ,#vertices in O in T
0% (tl, tg) = tl t2 .

TeSo

Clearly, the number in question is [t}td]wy, i.e., the coefficient of the term ¢}t in the power
series expansion of wy.

Note that the subtrees of an E-tree in §g are O-trees in §o and the subtrees of an
O-tree in §o are E-trees in §g. Then, the following relation is obvious

_wh—l—l

w1 :t1(1+w2+w§++w§) :t1—27
1—(4}2

1_wl+1

wo = toy(l+wy +w?+ -+ wh) =1t L
1—(,01

In order for obtaining [t{td]wy, let us first recall the following bivariate Lagrange in-
version formula [1, 10]. Suppose g(x1,z2), fi(z1,22), fa(x1,22) are formal power series
in x, oo such that f;(0,0) # 0. Then the set of equations w; = t;f;(t1,t2) for 1 < i < 2
uniquely determine w; as formal power series in ¢, t9, and

z1 0f1 _x1 0fs
[1t3)g(wy, we) = [#h2§)g (w1, ) [T (21, 22) f3 (w1, w2) det ¢~ JHP0 208 b

f1 922 f2 Ox2

where det is for taking determinant.
In our case, we have

1_xh+1 1_1.1-"-1
9(%%‘2) = Ty, f1($1,$2) = ﬁ7 f2(9517$2) = ﬁ
— X2 — I

Therefore, we compute

_zdh _z0fs
o = [ahad)g- £ g3 -der{ | R RO
f1 Ox2 f2 Ox2

zi(1 =2y (1 —ag™hy
(]. — 1'1)(1 (1 — ZL'Q)p

=[]
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T129 1—a} 1\ (1 — 3 h
1-— < —lx >< — hx >
(1 -2 = b\ — 2y N1 =y 2

1— I+1\q 1— h+1\p 1 — I+1\gq 1— l
p(l—ay ) (-2 )P [p]x1< ;) 1 )( Il—lxﬁ)

(1 —mz)9 (1 —mxo)P

(
1 — gh+1yp 1 — h
X [mg]( 2 )’ th : ( . hx%)
(1—$2)p (1—ay™) M\ =
_ h—1
=ri(p — 1, q)kn(q, p) Z (i+Drlp—i—2,¢=1)> G+ Drlg—j—1Lp—1)
i=0 j=0
where the last simplification follows from Lemma 25 in the Appendix. O]

Let h go to infinity, we obtain

Corollary 23. The number of 132-avoiding permutations m = &,(132) with q IR each of
which has a length at most | is given by

;{(Z)_i(qﬁl)}'ﬂ(n—q—i,q—l). (5)

Proof. When h is large enough, we obviously have

( ) n+m-—1
kp(n,m) = :
h\"t, m— 1
Then, eq. (4) reduces to

l—

(573 tom o —{ S n( ) T HE 6w i i 200}

_] 3

—_

Il
o

Next, it is not hard to show by generating functions that

"i K\ (n—k\ [ n+1
—~\r s S \rds+1)
Then, we have

()0

J

-1

L~}

Il
=)

J
Consequently, eq. (4) equals

(377 - (B oo}

1=
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7

which is the number of 7 = &,,(132) with ¢ v-CIS each of which has a length at most .
Since IR and v-CIS are equidistributed from Theorem 20, the proof follows. n

Obviously, the numbers obtained by setting [ = 2 provide a refinement of the Motzkin
numbers. To be specific, we have the following result.

Corollary 24. The number of 132-avoiding permutations in &,(132) that avoid the con-
secutive pattern 123 and have q descents is given by

i{(g)_i<qﬁ1>}’f2(n—q—i,q—1). (6)

Moreover, we have the Motzkin number

weSE(Q) e o

Finally, we leave it to the interested reader to show that ky(n,m) can be explicitly

computed as follows:
. /m m—1
”2<”’m>zz<i)<2m—2¢—n)‘ ®)

1=0

We remark that more enumerative results can be obtained and some of them may be
found in the arXiv versions of the work. IR and DR can be formulated into consecutive
monotone patterns. Which patterns correspond to v-CIS and LDE paths? IR and LDE
(resp. DR and v-CIS) are somehow intertwined, and what their joint length distribution
really reveals w.r.t. the structure of 132-avoiding permutations remains not entirely clear.
These problems are interesting and left for future investigations.
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A Computation in Theorem 22

Lemma 25. Forl >0, ¢ > 0 and p being any integer, we have

1 — glth)e x 1— 2 . .
[2}]xy - ((1 _;1)3 . 1”1) ( ! —lxll) = Z(z—l— Dri(p—i—2,q—1).

(1 _ﬂjl 1 — I P
Proof. First, for t > 0 and m > 0, it is easy to see
1— 2\

Z/ﬁt(n,m)x":(1+x+...+$t)m:( : ) .

n=0 — X
Then, we have
(1-aty (1 _ Z)
(1 — xl)q (1 _ $l1+1)

e <1—xa_l>

(L—z)?  (1—af™)

Jy -

:[xP—Q] (1 - xllJrl)q_l . [mp—l—Q] (1 - xllJrl)q_l . l[xp—l—Q] (1 - xll+1)q_1
! (1 — xl)q“ ! (1 — £C1)q+1 ! (1 — :cl)q
:[ p—2] (1 - 35l1+1)q71 . [ p—l—Z] (1 - 95l1+1)q71 .y xp—l—2] (1 - xllﬂ)qil
Pl (T—)? T (1) (1 - )2 ! (1 —x)9
p—2 . p—1—2 .
1+1 . 1+ 1 )
—Z( Z. )m(p—z—lq—l)— Z ( . )m(p—l—z—lq—l)
=0 =0
p—1—2
—1) mlp—l-i=2q-1)
i=0
p—2 p—1-2
=Y (i+Drp—i—2,q—1)— Z (i+l+Drip—1—i—2,q—1)
=0 =
p—2 p—
=Y i+ Drlp—i—2,g=1) =Y (i+Drlp—i—2,¢—1)
i=0 i=1
-1
=) (i+Drlp—i—2,q¢-1),
=0
and the proof follows. O
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