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Abstract

The stochastic sandpile model (SSM) is a generalisation of the standard Abelian
sandpile model (ASM), in which topplings of unstable vertices are made random.
When unstable, a vertex sends one grain to each of its neighbours independently
with probability p ∈ (0, 1). We study the SSM on complete graphs. Our main result
is a description of the recurrent states of the model. We show that these are given by
convex sums of recurrent states for the ASM. This allows us to recover a well-known
result: that the number of integer lattice points in the n-dimensional permutation
polytope is equal to the number of labeled spanning forests on n vertices. We
also provide a stochastic version of Dhar’s burning algorithm to check if a given
(stable) state is recurrent or not, which runs in linear time. Finally, we study
a family of so-called partial SSMs, in which some vertices topple randomly, while
others topple deterministically (as in the ASM, sending one grain to all neighbours).
We show that this distinction is meaningful, yielding sets of recurrent states that
are in general different from those of both the ASM and SSM. We also show that
to get all recurrent states of the SSM, we can allow up to two vertices to topple
deterministically.

Mathematics Subject Classifications: 05A15, 05A19, 60J10

1 Introduction

The Abelian sandpile model (ASM) was introduced by Bak, Tang and Wiesenfeld in
the late 1980’s [2, 3] as an example of a model exhibiting a phenomenon known as self-
organised criticality. This phenonemon describes systems which self-tune themselves to-
wards some critical state, without the need for external modification of their parameters.
The model was then generalised and formalised a few years later by Dhar [10].

The ASM is a random process on a graph, where vertices are assigned a number of
grains of sand (a non-negative integer). At each unit of time, a grain is added to a
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randomly selected vertex of the graph. If this causes the number of grains to exceed a
certain threshold (usually the degree of the vertex), that vertex is said to be unstable, and
topples, sending one grain to each of its neighbours in the graph. A special vertex called
the sink absorbs grains (never topples), and so the process eventually stabilises.

Of particular interest in this model are the so-called recurrent states, which are states
that appear infinitely often in the long-time running of the model. While there are a
number of ways to check if a given state is recurrent or not (Theorem 5 gives four of
these), computing the set of all recurrent states is in general a difficult question, both
algorithmically and combinatorially. As such, a fruitful direction of ASM research has
been to instead focus on certain graph families with high levels of symmetry or structure,
on which the set of recurrent states can be more easily studied and computed.

The seminal example of such a study is due to Cori and Rossin [9], who showed that
on complete graphs, the set of recurrent states is in bijection with the set of parking
functions (see Section 2.5 for a definition of these, and Theorem 16 for a statement of
the bijection). Similar combinatorial studies on many other graph families – such as
complete bipartite [13] and multi-partite [8] graphs, complete split graphs [12], wheel
and fan graphs [26], Ferrers graphs [15], permutation graphs [14], and so on – followed.
Related combinatorial objects include generalisations of parking functions, parallelogram
polyominoes, Motzkin words, subgraphs of cycles, lattice paths, decorated EW-tableaux,
tiered trees, and a number of others.

In the ASM, the only randomness lies in the choice of vertex where grains are added
at each time step, together with possibly the randomness of the initial state. After this,
the toppling and stabilisations processes are entirely deterministic. Stochastic variants of
the ASM add an extra layer of randomness to the model by making topplings random.
When a vertex is unstable, it chooses a random (multi-)subset of its neighbours to send
grains to according to some probability distribution. There are a number of stochastic
variants of the ASM in the literature, including the following.

• In [20], there are two different types of grain, which cannot occupy the same vertex.
When they do, one of the grains is moved to a randomly chosen neighbouring vertex
instead.

• In [24], unstable vertices lose a fixed number grains, which are re-distributed at
random to their neighbours: some neighbours may receive more than one grain,
others none, while some grains may exit the system directly.

• In [5], unstable vertices flip a biased coin for each neighbour to decide which neigh-
bours to send grains to. That is, all neighbours independently of each other receive
a grain with probability p ∈ (0, 1) (with probability (1−p) that grain is kept by the
toppling vertex).

• The model in [21] generalises the two previous models in [5, 24]. In this model,
toppling vertices send grains to a random multi-set of neighbours, with the total
number of grains lost being itself random.
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• In [18], the toppling threshold of a vertex is set to a (fixed) multiple M of its degree.
For each toppling, a random number γ ∈ {1, . . . ,M} is chosen, and each neighbour
of the toppling vertex receives the same (random) number γ of grains.

In general, these models have not been studied as widely as the ASM. The existing
research has mainly focused on the physical properties of the models such as the steady
state distribution, and no real combinatorial studies have been conducted. This paper pro-
poses the first such combinatorial study. We focus on the “coin-flipping” model from [5],
which we call the stochastic sandpile model (SSM). We choose this model because it has
known characterisations of recurrent states, i.e. conditions under which a given state is
recurrent (see Theorem 6 in this paper). We study the SSM on complete graphs, seeking
a combinatorial description of its set of recurrent states in the spirit of that of Cori and
Rossin for the ASM [9].

Our paper is organised as follows. In Section 2 we introduce the necessary definitions,
tools and notation for our study. This includes formal definitions of the ASM and SSM,
and characterisations of their recurrent states (Theorems 5 and 6). We also introduce
various notions such as orientations, parking functions, and polytopes, which will be
needed later in the paper. In Section 3 we focus on the sandpile model (both Abelian and
stochastic) on complete graphs. We re-state the characterisation theorems mentioned
above in terms of complete graphs, and this allows us to define a stochastic burning
algorithm that establishes in log-linear time whether a given state is recurrent for the
SSM or not (Theorem 21). In Section 4 we state and prove our main combinatorial
description of recurrent states for the SSM on complete graphs (Theorem 26), namely
that these are given by integer lattice points in the convex polytope of the set of recurrent
states for the ASM. In Section 5 we introduce a concept of partially stochastic sandpile
models in which some vertices topple according to the SSM rules, while others topple
according to the ASM rules. We show that the recurrent states for these models are in
general distinct to those of both the ASM and SSM (Propositions 33 and 34), and that if
at most two vertices topple according to the ASM rules, we in fact get all the recurrent
states of the SSM (Theorem 37). Finally, Section 6 summarises our main results, and lists
some potential directions of future research.

2 Preliminaries

In this section, we introduce some of the necessary definitions, tools and notation we
will need and use throughout the rest of the paper. As usual, the sets Z and N denote
the sets of integers and (strictly) positive integers respectively. We let Z+ := N ∪ {0}
denote the set of non-negative integers. For a positive integer n ∈ N, we denote [n], resp.
[n]0, the set {1, . . . , n}, resp. {0, . . . , n}. For a vector v = (v1, . . . , vn) ∈ Rn, we write
vinc = (vinc1 , . . . , vincn ) for the non-decreasing rearrangement of v.

Throughout this section, a graph G is a labelled, undirected, connected graph with
vertex set [n]0. The edge set E is finite, and may contain multiple edges, but no loops.
We call vertex 0 the sink of the graph G. For i ∈ [n]0, we write degi = degGi for the degree
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of the vertex i in G, omitting the superscript where the underlying graph is unambiguous.
For a subset of vertices A ⊆ [n]0, we denote G[A] the induced subgraph of G on A, that
is the graph with vertex set A and edge set the set of edges of G with both endpoints in
A. The complete graph K0

n is the graph where there is one edge between any two distinct
vertices i, j ∈ [n]0.

2.1 Orientations

An orientation O of a graph G is the assignment of a direction to each edge in E. If E
contains a multiple edge, a direction is assigned to each of its copies. For an orientation

O, and an edge e = {i, j} ∈ E, we write i
O−→ j to denote that the edge e is directed

from i to j in O. For i ∈ [n]0, we denote inOi , resp. outOi , the number of incoming, resp.
outgoing, edges at i in O.

An orientation is acyclic if it contains no directed cycles. A root, resp. source, of an
orientation is a vertex where all edges are incoming, resp. outgoing. It is straightforward to
verify that an acyclic orientation contains at least one root and one source. An orientation
is said to be sink-rooted if it contains exactly one root, the sink 0. A cycle-flip refers to the
act of changing the directions of all edges in a directed cycle, leaving other edge directions
unchanged.

Definition 1. We say that two orientations O and O′ of G are score-equivalent if

∀ i ∈ [n]0, inOi = inO
′

i . (1)

The following is stated in equivalent form in [16, Lemma 1].

Proposition 2. Two orientations O and O′ are score-equivalent if, and only if, the
orientation O′ can be obtained from O through a series of cycle-flips.

Note that as a consequence, if O is acyclic, its score-equivalence class contains only
itself.

2.2 The Abelian sandpile model

In this part we introduce the Abelian sandpile model (ASM) on a graph, and recall some
important results regarding the so-called recurrent states of the model. Let G be a graph
with vertex set [n]0 where 0 is the sink, and edge set E.

A configuration on G is a vector c = (c1, . . . , cn) ∈ Zn+ that assigns the number ci to
vertex i. We think of ci as representing the number of grains of sand at the vertex i. Note
that the sink vertex 0 is not assigned a number of grains. Denote by Config (G) the set
of all configurations on G. Let αi ∈ Zn+ be the vector with 1 in the i-th position and 0
elsewhere. By convention, α0 = (0, . . . , 0) is the all-0 vector.

We say that a vertex i in a configuration c = (c1, . . . , cn) ∈ Config (G) is stable if
ci < degGi , and unstable otherwise. A configuration is called stable if all its non-sink
vertices are stable (otherwise it is unstable), and we denote Stable (G) the set of all stable
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configurations on G. We also define cmax to be the maximal stable configuration on G,
i.e. cmax

i = degGi − 1 for all i ∈ [n]. The terminology “maximal” here means that adding
a grain to any vertex in cmax would result in an unstable configuration.

Unstable vertices may topple. We define the deterministic toppling operator DetToppi,
corresponding to the toppling of an unstable vertex i ∈ [n] in a configuration c ∈
Config (G), by:

DetToppi(c) := c− degi · αi +
∑

j:{i,j}∈E

αj, (2)

where the sum is over all vertices j adjacent to i in G, counted with multiplicity. In
words, the deterministic toppling of a vertex i sends one grain along each edge incident
to i (with multiplicity), with the grains then being received by the neighbouring vertices.

Performing this toppling may cause other vertices to become unstable, and we topple
these in turn. One can show (see e.g. [11]) that starting from some unstable configuration
c and successively toppling unstable vertices, we eventually reach a stable configuration
c′ (we think of the sink as absorbing grains). Moreover, this configuration c′ does not
depend on the sequence in which vertices are toppled. We write c′ = DetStab(c) and call
it the deterministic stabilisation of c.

Remark 3. The qualifier deterministic for toppling operators and stabilisation is used
here to distinguish the ASM from its stochastic variant introduced in Section 2.3. For
this variant, we will talk instead of stochastic topplings and stabilisation.

We now define a Markov chain on the set of stable configurations Stable (G). Let
µ = (µ1, . . . , µn) be a probability distribution on [n] such that µi > 0 for all i ∈ [n]. At
each step of the Markov chain we add a grain at the vertex i with probability µi and
(deterministically) stabilise the resulting configuration. Formally the transition matrix Q
is given by:

∀ c, c′ ∈ Stable (G), Q(c, c′) =
n∑
i=1

µi1DetStab(c+αi)= c′ . (3)

The recurrent states for the Markov chain are the set of configurations which appear
infinitely often in the long-time running of the model. In the spirit of Remark 3, we call
the recurrent states of the ASM deterministically recurrent (DR), and let DetRec (G) be
the set of DR states on the graph G. Since µi > 0 for all i ∈ [n], it is clear that the
maximal stable configuration cmax is DR, and that the Markov chain is irreducible.

Given a configuration c = (c1, . . . , cn) ∈ Config (G) and an orientation O of G, we say
that O and c are compatible if

∀ i ∈ [n], ci > inOi . (4)

Note that ifO and c are compatible, andO′ is an orientation of G which is score-equivalent
to O, then O′ and c are also compatible. If O and c are compatible, we will sometimes
say that O is compatible with c, or simply that O is compatible if there is no ambiguity
over which configuration c is considered.

The study of DR states is of central importance in ASM research. In Theorem 5 we
give four equivalent characterisations of DR states.
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1. The first is a simple Markov chain result, stating that recurrent states can be reached
from the maximal configuration through a series of grain additions and deterministic
stabilisations. The formulation used in the theorem stems from the remark that in
this sequence, we can put all the grain additions first, and then it remains to effect
just one stabilisation.

2. The second is in terms of compatible acyclic orientations. This characterisation was
first stated in these terms by Biggs [4], although the author credits a previous paper
[17] as having equivalent results.

3. The third is in terms of forbidden subconfigurations, essentially configurations on a
strict subgraph of G which remain stable (see [23]).

4. The fourth is the famous burning algorithm, due to Dhar [11], which provides a
straightforward algorithmic process to check if a given (stable) configuration is DR
or not.

That Characterisations (3) and (4) are equivalent is fairly straightforward, but we
choose to give both here to foreshadow our results on the SSM. First, let us describe
Dhar’s burning algorithm. This is a process which burns vertices of G until either no
vertices are left, or a forbidden subconfiguration is reached. Burning a vertex of a graph
means removing that vertex and all its incident edges. Dhar’s algorithm can be described
as follows.

Algorithm 4 (Dhar’s burning algorithm). Input: a stable configuration c ∈ Stable (G).

• Step 1. Burn the sink vertex 0. Let Remain = [n]0 \ {0} = [n] be the set of
remaining (unburned) vertices, and G[Remain] be the induced subgraph of G on
the set of remaining vertices.

• Step 2. While there exists i ∈ Remain such that ci > deg
G[Remain]
i , burn vertex i,

setting Remain = Remain \ {i}, and repeat.

• Step 3. Output the set of remaining vertices Remain = Remain(c).

Traditionally, in Step 2, one chooses to burn the minimal i satisfying the inequality,
but the output does not depend on this choice in any way, so we do not specify it here.
We can now state the four equivalent characterisations of DR states referred to above.

Theorem 5. Let c = (c1, . . . , cn) ∈ Stable (G) be a stable configuration on the graph G.
Then c is DR if, and only if, one of the following four equivalent conditions holds.

(i) There exists a configuration d ∈ Config (G) such that DetStab(cmax + d) = c.

(ii) There exists an acyclic, sink-rooted orientation O of G compatible with c.

(iii) For every subset A ⊆ [n], there exists a vertex i ∈ A such that ci > deg
G[A]
i .

(iv) Dhar’s burning algorithm burns all vertices of G, i.e. outputs Remain(c) = ∅.
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2.3 The stochastic sandpile model

In this section, we introduce a stochastic variant of the ASM, called stochastic sandpile
model (SSM). We are slightly more informal than in the previous section, as most of the
notions introduced closely mirror those of the ASM. For a more formal definition of the
SSM, see [5].

In the ASM, the only randomness in the model concerns the choice of which vertex to
add a grain to at each step of the Markov chain (i.e. the distribution µ in Section 2.2),
while the subsequent operations – topplings and thus stabilisation – are deterministic.

In the SSM, we introduce an additional layer of randomness by making the topplings
random. Fix some parameter p ∈ (0, 1). Informally, every time we have an unstable
vertex i, we flip a biased coin for each incident edge to i, and decide to send one grain
along that edge with probability p (the grain gets sent to one of the neighbours of i), while
with probability (1 − p) that grain remains at vertex i. The coin flips are independent
for each edge, and independent of other vertex topplings. We thus define the stochastic
toppling operator at vertex i by:

StoToppi(c) := c+
∑

j:{i,j}∈E

(
1Bj=1 (αj − αi)

)
, (5)

where the sum is over all vertices j adjacent to i, counted with multiplicity, and the
(Bj) are i.i.d. Bernoulli random variables of parameter p. Note that if we take p = 1,
we have StoToppi = DetToppi a.s., and the SSM is the same as the ASM in that case,
hence we assume p < 1. In general, the resulting configuration StoToppi(c) is a random
configuration.

Performing this (stochastic) toppling may cause other vertices to become unstable, and
we topple these in turn. In [5, Theorem 2.2] it is shown that, as in the ASM, starting from
some unstable configuration c and successively toppling unstable vertices, we eventually
reach a (random) stable configuration c′. Moreover, this configuration c′ does not depend
on the order in which vertices are toppled. We write c′ = StoStab(c) and call it the
stochastic stabilisation of c.

As for the ASM, we can define a Markov chain for the SSM on the set of stable
configurations Stable (G). Let µ = (µ1, . . . , µn) be a probability distribution on [n] such
that µi > 0 for all i ∈ [n]. At each step of the Markov chain we add a grain at the
vertex i with probability µi and (stochastically) stabilise the resulting configuration. We
call recurrent states for this Markov chain stochastically recurrent (SR) and denote their
set StoRec (G). Note that, once again, the Markov chain is irreducible, and the maximal
stable configuraiton cmax is recurrent.

We now give three equivalent characterisations of SR states in terms of grain addi-
tions and stabilisations, compatible orientations, and forbidden subconfigurations. These
characterisations closely mirror the first three in Theorem 5 for DR states. In the case of
general graphs G, there is as yet no known equivalent to Dhar’s burning algorithm. In
Section 3.2, we describe a stochastic burning algorithm in the case of complete graphs.
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Theorem 6. Let c = (c1, . . . , cn) ∈ Stable (G) be a stable configuration on the graph G.
Then c is SR if, and only if, one of the following three equivalent conditions holds.

(i) There exists a configuration d ∈ Config (G) such that StoStab(cmax + d) = c with
positive probability.

(ii) There exists a sink-rooted orientation O compatible with c.

(iii) For any subset A ⊆ [n], we have c(A) > |E(G[A])|, where c(A) :=
∑
i∈A

ci is the

total number of grains in A, and |E(G[A])| is the number of edges of G with both
endpoints in A (i.e. the number of edges of the induced subgraph G[A]).

Proof. That c ∈ Stable (G) is SR if, and only if, Condition (i) holds follows as in the
DR case from being able to put any grain additions first in a sequence of grain additions
and topplings. The equivalence with Condition (ii), was stated in equivalent, though
slightly different, form in [5, Theorem 3.4]. The equivalence of Conditions (ii) and (iii) is
more-or-less part of graph theory “folklore”. We give a brief proof here for completeness.

Suppose that there exists a sink-rooted orientation O compatible with c, and let A ⊆
[n]. By summing Inequality (4) over all vertices in A, we get c(A) >

∑
i∈A

inOi > |E(G[A])|.

For the right-hand inequality, note that all edges between two vertices in A are counted
exactly once in the sum of in-degrees, with this sum also possibly including some edges

directed i
O←− j with i ∈ A, j /∈ A. This shows that (ii) ⇒ (iii).

For the converse, let c be a configuration on G which satisfies Condition (iii). We
proceed by induction on m = |E(G)| − deg0. If m = 0 the result is trivial. Otherwise, let
e = (i, j) be some edge of G between two non-sink vertices i, j ∈ [n]. Consider the graph
G′ with edge e removed, and the configurations c′ := c − αi and c′′ := c − αj. We claim
that at least one of the configurations c′ and c′′ satisfies Condition (iii) on the graph G′.
Suppose for now this claim proved, and without loss of generality assume the condition
holds for c′. By induction we can find an orientation O′ of G′ compatible with c′, and

taking O to be the orientation O′ together with the edge i
O←− j yields an orientation O

of G which is compatible with c, as desired.
It therefore remains to prove the previous claim. Seeking contradiction, we assume

that Condition (iii) holds for neither c′ nor c′′. Then there exists some vertex subsets
Ai and Aj such that c′(Ai) < |E(G′[Ai])| and c′′(Aj) < |E(G′[Aj]). Since Condition (iii)
holds for c in G, we must have i ∈ Ai and j ∈ Aj. Now suppose that j ∈ Ai. We
have c(Ai) = c′(Ai) + 1 < |E(G′[Ai])| + 1 = |E(G[Ai]), a contradiction. This means
that j /∈ Ai, and therefore |E(G[Ai])| = |E(G′[Ai])|. In particular, we get |E(G[Ai])| 6
c(Ai) = c′(Ai) + 1 < |E(G[Ai]) + 1, so that c(Ai) = |E(G[Ai]). By symmetry, we
also have c(Aj) = E(G[Aj]). Finally, set A := Ai ∪ Aj, and A′ = Ai ∩ Aj, and let k
be the number of edges (i′, j′) of G such that i′ ∈ Ai \ A′, j′ ∈ Aj \ A′. Note that
these include at least the edge (i, j), so that k > 1, and that by construction we have
|E(G[A])| = |E(G[Ai])|+ |E(G[Aj])| − |E(G[A′])|+ k. We get:

c(A) = c(Ai) + c(Aj)− c(A′)
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6 c(Ai) + c(Aj)− |E(G[A′])|, applying Condition (iii) to A′

= |E(G[Ai])|+ |E(G[Aj])| − |E(G[A′])|
< |E(G[Ai])|+ |E(G[Aj])| − |E(G[A′])|+ 1

6 |E(G[Ai])|+ |E(G[Aj])| − |E(G[A′])|+ k = |E(G[A])|.

This contradicts Condition (iii) for c, thus completing the proof.

Remark 7. Conditions (i) or (ii) of Theorems 5 and 6 immediately imply the inclusion
DetRec (G) ⊆ StoRec (G). In general, the converse doesn’t hold. Consider the graph in
Figure 1 below, with the configuration c = (1, 1, 1) (the sink is the black square vertex).
This configuration is SR since the orientation exhibited on the figure is compatible with c,
but is not DR as the set of the three non-sink vertices forms a forbidden subconfiguration
for Condition (iii) of Theorem 5. Proposition 12 will give straightforward, but useful,
conditions under which these two sets are the same.

1

1 1

Figure 1: Example of a configuration which is SR but not DR.

Definition 8. Let c ∈ Config (G). We say that c is strongly stable if for all i ∈ [n],
we have ci < degi − 1. In other words, we can add a grain to each vertex of [n] in the
configuration c, and the resulting configuration will still be stable.

Remark 9. Suppose that the graph G is simple, i.e. has no multiple edges. By Dhar’s
burning criterion, a strongly stable state can never be DR, since after burning the sink
no further vertices can be burned. However, it is possible for a strongly stable state to
be SR, as shown in Figure 2 below, which exhibits a strongly stable state on K0

3 with a
corresponding compatible orientation (the sink is the central black square).

2.4 Minimal recurrent configurations

In this part we mention briefly a few results about minimal recurrent configurations. The
results are nearly identical for minimal SR or DR states, so we make a common section
for both models for the sake of brevity and to avoid too much repetition, and talk simply
of recurrent states.
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1

1 1

Figure 2: Example of a configuration which is strongly stable and SR.

First, observe that if c is a recurrent state, by summing Inequality (4) over all vertices
i ∈ [n], we get:

n∑
i=1

ci > |E| − deg0. (6)

This naturally leads to the definition of the level statistic of a recurrent configuration:

level(c) :=

(
n∑
i=1

ci

)
+ deg0 − |E|. (7)

By also noting that a recurrent configuration is stable, so ci 6 degi − 1 for all i ∈ [n], we
get the bounds:

0 6 level(c) 6 |E| − n, (8)

which hold for any recurrent configuration c.
There is a natural partial order � on the set of configurations. For c, c′ ∈ Config (G),

we define c � c′ if for all i ∈ [n], ci 6 c′i. From the Markov chain definition, if c � c′ with
c a recurrent state, and c′ is stable, then c′ is also recurrent. We say that c is minimal
recurrent if c is recurrent and minimal for the partial order �.

Theorem 10. Let c ∈ Stable (G) be a stable configuration on G. Then c is minimal
SR, resp. minimal DR, if, and only if, there exists a sink-rooted, resp. acyclic sink-rooted,
orientation O of G, such that:

∀i ∈ [n], ci = inOi . (9)

Moreover, such an orientation is unique up to score-equivalence, resp. unique.

Sketch of proof. Theorem 10 was proved in the (minimal) DR case in [25]. The proof in
the SR case is identical. If O is a sink-rooted orientation, compatible with a SR state c,
and there exists i ∈ [n] such that ci > inOi , then c′ := c − αi is still compatible with O,
and so is SR by Theorem 6, which implies that c is not minimal.

Conversely, if c is SR and there exists a sink-rooted orientation O which satisfies
Equation (9), then by summation we have level(c) = 0. If c were not minimal, there
would exist c′ ∈ StoRec (G) such that c′ ≺ c, and by summation we would have level(c′) <
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level(c) = 0, which is impossible by the left-hand side of Inequality (8), so c must be
minimal, as desired.

The uniqueness of O up to score-equivalence follows immediately from the characte-
risation. In the DR case, as noted in Section 2.1, uniqueness up to score equivalence of
acyclic orientations is simply uniqueness.

The proof above suggests a link between minimal recurrent states and those with level
equal to 0. This is indeed the case.

Proposition 11. Let c be a recurrent configuration. Then c is minimal recurrent if, and
only if, level(c) = 0.

This result is often implicit in the literature, particularly when considering the level
polynomial of a graph which counts recurrent configurations according to their level. We
sketch a brief proof here for completeness.

Sketch of proof. If c is recurrent and level(c) = 0, then c is minimal recurrent. Otherwise
there would exist a recurrent state c′ such that c′ ≺ c, and by summation we would
level(c′) < level(c) = 0, which is impossible by the left-hand side of Inequality (8).

Conversely, if c is minimal recurrent, there exists a sink-rooted (acyclic in DR case) ori-
entation O satisfying Equation (9), and by summation we get level(c) = 0 as
desired.

We end this section by stating conditions under which all SR states are also DR (we
know that the converse is always true).

Proposition 12. Let G be a graph with vertex set [n]0 and edge set E. The following
statements are equivalent.

(i) All SR states on G are also DR, i.e. StoRec (G) = DetRec (G).

(ii) All minimal SR states on G are also DR.

(iii) The graph G′ := G
[
[n]
]

obtained by deleting the sink and all incident edges in G is
a forest.

Proof. Trivially, (i) implies (ii). It is also straightforward to show that (iii) implies (i).
Let c be a SR state. By Theorem 6 there exists a sink-rooted orientation O of G that
is compatible with c. But if G′ is a forest, it contains no cycles, so that any sink-rooted
orientation of G is acyclic (there can be no directed cycles containing the sink, since
it is a root of the orientation). Therefore O is an acyclic sink-rooted orientation of G,
compatible with c, and so c is DR by Theorem 5.

It therefore remains to show that (ii) implies (iii), which we do by contraposition.
Suppose that G′ contains a cycle (i1, . . . ik, i1). Let G′′ be the graph G with all edges of
this cycle removed, and O′ be a sink-rooted orientation of G′′. Now let O be the sink-

rooted orientation of G obtained by adding the directed cycle i1
O−→ i2

O−→ · · · O−→ ik
O−→ i1

to O′, and define c to be the minimal SR state compatible with O. If c were DR, there
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would exist an acyclic orientation that is compatible with c, and therefore score-equivalent
to O. But by Proposition 2 this is impossible: one can’t go from an acyclic orientation
to one containing a directed cycle through a series of cycle-flips. Therefore c is not DR,
as desired.

2.5 Parking functions

Definition 13. Let p = (p1, . . . , pn) ∈ Nn be a tuple of positive integers, and pinc its
non-decreasing rearrangement. We say that p is a parking function if

∀i ∈ [n], pinci 6 i. (10)

The set of all n-parking functions is denoted PFn.

Remark 14. The terminology “parking function” comes from the following observation.
Suppose we have n cars trying to park in n spaces, cars and spaces both labeled 1, . . . , n.
Each car has a preferred parking spot pi. The cars enter the car park in order 1, . . . , n
and for each i the car i parks in the first available spot q > pi (if no such spot exists, the
car cannot park). Then all n cars can park if, and only if, p = (p1, . . . , pn) is a parking
function.

There is a rich literature on the study of parking functions. We refer interested readers
to the excellent survey by C. Yan [29]. In Theorem 16 we recall a straightforward bijection
between n-parking functions and DR states of the ASM on the complete graph K0

n.

2.6 Polytopes

A polytope is the convex hull of a finite set of points S ⊂ Rn for some n. In other words,
it is the set of all points of the form

∑
s∈S

λss, where 0 6 λs 6 1 for all s ∈ S and
∑
s∈S

λs = 1.

In this paper, we will be interested in three polytopes in particular.

• The regular n-permutohedron. This is the polytope of the set Sn of permutations
of length n. We denote it PermPolyn.

• The n-dimensional parking function polytope. This is the polytope of the set of
n-parking functions PFn. We denote it PFPolyn.

• The n-dimensional DR polytope. This is the polytope of the set of DR states on
the complete graph K0

n. We denote it DRPolyn.

Polytopes, and in particular permutohedrons, have been well-studied in the combina-
torics literature (see [22] and references therein). One element of interest when studying
a polytope combinatorially (usually in this case S ⊂ Zn) is to look at its set of integer
lattice points, i.e. the set of points in the polytope with integer coordinates. In general
these sets are not easy to compute, let alone obtain an explicit formula for. One of the
main results in our paper (Theorem 26) states that the set of SR states on the complete
graph K0

n is the set of integer lattice points in the n-dimensional DR polytope DRPolyn.
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3 The sandpile model(s) on complete graphs

In this section, we study the ASM and SSM on the complete graphs K0
n. Recall that

the complete graph K0
n is the graph with vertex set [n]0 = {0, 1, . . . , n} where there

is one edge between any pair of distinct vertices. Because the sink is connected to all
the non-sink vertices, there is an obvious one-to-one correspondence between sink-rooted
orientations of K0

n and orientations of Kn, where Kn is the complete graph with vertex
set [n] = {1, . . . , n}, i.e. the graph K0

n with sink removed.
This means that we can essentially ignore the role the sink plays in characterising

recurrent states for the sandpile model on K0
n. Therefore, to lighten notation, we will

slightly abuse notation and talk of the sandpile model on, and orientations of, Kn. We
will write Confign for the set of configurations on Kn, with similar notation for Stablen,
DetRecn, and StoRecn.

The following result is an immediate consequence of the symmetry of the complete
graph, which we state here as it is useful at various points in the paper.

Proposition 15. Let c = (c1, . . . , cn) ∈ Confign be a configuration on Kn. Then c is
recurrent (DR or SR) if, and only if, its non-decreasing rearrangement cinc is recurrent.

3.1 The ASM on Kn: parking functions and the burning algorithm

In this part, we recall the bijection from the set of DR states on Kn and the set of
n-parking functions from the seminal work by Cori and Rossin [9].

Theorem 16. Let c = (c1, . . . , cn) ∈ Confign be a configuration of the ASM on Kn.
Define p = (p1, . . . , pn) := (n − c1, . . . , n − cn) to be the n-complement of c (we write
p = n− c for short). Then c is DR if, and only if, p is a parking function. Thus the map
c 7→ n− c defines a bijection from DetRecn to PFn.

We get the immediate following corollary, which can be thought of as a re-writing of
Dhar’s burning criterion for complete graphs.

Corollary 17. Let c = (c1, . . . , cn) ∈ Stablen be a stable configuration on Kn. Then c is
DR if, and only if, for all i ∈ [n], we have cinci > i− 1, where cinc = (cinc1 , · · · , cincn ) is the
non-decreasing rearrangement of c.

3.2 The SSM on Kn: a stochastic burning algorithm

In this part, we study the SSM on the complete graphs Kn. First, we restate the charac-
terisation result from Theorem 6, Condition (ii), in the complete graph case.

Theorem 18. Let c = (c1, . . . , cn) ∈ Stablen be a stable configuration on Kn. Then c is
SR if, and only if:

∀A ⊆ [n], c(A) >

(
|A|
2

)
. (11)

the electronic journal of combinatorics 31(3) (2024), #P3.26 13



A more convenient characterisation that will allow us to exhibit the stochastic burning
algorithm (Algorithm 20) is the following.

Proposition 19. Let c = (c1, . . . , cn) ∈ Stablen be a stable configuration on Kn, and cinc

its non-decreasing rearrangement. Then c is SR if, and only if:

∀ i ∈ [n],
i∑

j=1

cincj = cinc([i]) >

(
i

2

)
. (12)

Proof. If c is SR, then so is cinc by Proposition 15. Applying Equation (11) to cinc and
subsets [i] immediately gives Equation (12).

Conversely, suppose that c is such that cinc satisfies Equation (12). To simplify nota-
tion, by Proposition 15 we may assume that c = (c1, . . . , cn) = cinc. Let A ⊆ [n] and write
A = {i1, . . . , ik} with i1 < · · · < ik. By construction, we have ij > j for all j ∈ {1, . . . , k},
and thus cij > cj since c is assumed to be non-decreasing. This implies that

c(A) =
k∑
j=1

cij

>
k∑
j=1

cj

>
(
k
2

)
=

(|A|
2

)
,

where we applied Equation (12) in the third line. This shows that c is SR by Theorem 18.

Proposition 19 leads us to define the stochastic burning algorithm on the complete
graph Kn.

Algorithm 20 (Stochastic burning algorithm). Input: c ∈ Stablen, a stable configuration
on Kn.

1. Step 1. Obtain the non-decreasing rearrangement cinc of c. Define Sum :=
n∑
i=1

ci

and Target :=
(
n
2

)
. Initialise k := n.

2. Step 2. While Sum > Target and k > 0, do:

• Sum← Sum− cinck ,
• Target← Target− (k − 1)
• k ← k − 1.

This step is equivalent to burning the vertex with the k-th smallest number of grains
in c.

3. Step 3. Output k, the number of unburned vertices.
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Theorem 21. Let c ∈ Stablen be a stable configuration on Kn. Then c is SR if, and
only if, all vertices are burned in the stochastic burning algorithm, that is, Algorithm 20
outputs k = 0.
Moreover, the stochastic burning algorithm runs in linear O(n) time.

Proof. The characterisation follows from Proposition 19 and the straightforward observa-
tion that

(
k
2

)
−(k−1) =

(
k−1
2

)
. For the complexity, we note that since the configuration c is

bounded above by n (we have ci 6 n−1 for all i ∈ [n]), sorting can be done in linear time
using the CountSort algorithm (also known as sort by values, see e.g. [7, proof of Propo-
sition 13]). In brief, this algorithm first computes an auxiliary array a = (a0, . . . , an−1)
where aj = |{i ∈ [n]; ci = j}| for all j. This can be done straightforwardly in linear time
by simply looping over c and incrementing aci by one at each step. We then recover cinc

from a in linear time by looping over a and appending aj times the value j to cinc at each
step (since

∑
aj = n this is indeed linear). Finally, once the sorting is done, the algorithm

itself requires only a linear number of calculations.

Remark 22. The stochastic burning algorithm only works in the complete graph case,
where this high degree of symmetry allows us to reduce configurations to their non-
decreasing rearrangements. A natural attempt at generalisation would be to successively
burn maximal vertices. That is, we check the condition c(A) >

∣∣E(G(A))
∣∣ (Condition (iii)

from Theorem 6) for subsets A obtained by successively burning vertices with the maximal
number of grains. This however fails fairly obviously, since we can “artificially” inflate
the number of grains at a given vertex v by simply connecting an arbitrary number of
new vertices to v (these new vertices all have degree 1).

A less naive attempt would be to instead successively burn vertices with minimal lack-
ing number, where the lacking number of a vertex is equal to its degree minus its number
of grains. However, this also fails. For a counter-example, consider the configuration in
Figure 3 below. For convenience, we don’t represent the sink, but we may assume that it
is connected to each vertex by a single edge. The configuration, read from left-to-right,
is (0, 5, 5, 5), and the lacking numbers are (7 − 0, 7 − 5, 8 − 5, 8 − 5) = (7, 2, 3, 3). The
two left-most vertices (in red) form a forbidden subconfiguration in terms of Theorem 6,
Condition (iii), since there are 5 grains in total but 6 edges between the two. This im-
plies that the configuration is not SR. One can check that this is the only such forbidden
sub-configuration for the SSM. But now, notice that the vertex with minimal lacking
number is part of this forbidden subconfiguration. As such, if we were to burn vertices
successively in (increasing) order of their lacking number, this would be the first vertex
to be burned, and so there is no possibility of the algorithm terminating on the forbidden
subconfiguration: it would simply burn through it!

The question of an (efficient) stochastic burning algorithm on general graphs remains
a significant open problem. In fact, it remains an open problem to improve the existing
(trivial) complexity bound of O

(
2|V |
)

resulting from checking Condition (iii) of Theorem 6
for all subsets A ⊂ [n].
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0 5 5 5

Figure 3: A counter-example to a stochastic burning algorithm which successively burns
vertices with minimal lacking number. The sub-configuration on the two left-most vertices
(in red) is a forbidden sub-configuration, but all vertices would be burned.

3.3 Minimal SR states on Kn: tournaments and spanning forests

We now briefly study minimal SR states on the complete graph. An n-tournament is an
orientation of the complete graph Kn for some n. From Theorem 10 and our remarks at
the beginning of Section 3, we know that there is a bijection between minimal SR states
on Kn and the score-equivalent classes of n-tournaments.

A spanning forest of a graph G = (V,E) is a cycle-free subgraph F = (V,E) (or
equivalently, a collection of disjoint trees such that the union of their vertices is equal
to V ). The following result has been known for some time in graph theory, see for
instance [18] for a bijective proof.

Theorem 23. The number of score-equivalent orientations of a graph G is equal to its
number of spanning forests.

This immediately gives another enumeration of minimal SR states.

Proposition 24. The number of minimal SR states on Kn is equal to the number of
labelled spanning forests on n nodes.

Remark 25. In fact, Proposition 24 holds in a more general setting than that of the
complete graphs Kn. It holds in any graph where the sink plays no role in enumerating
the minimal SR states. Thus, for any graph G where every non-sink vertex has at least
one edge to the sink 0, the number of minimal SR states on G is equal to the number
of spanning forests of G \ {0} (the graph G with the sink removed). Conversely, if this
equality holds, then every non-sink vertex in G must have at least one edge to the sink.

Because of the symmetries of Kn, it is natural as we have seen to consider non-
decreasing rearrangements of recurrent states. We can do this for minimal SR states,
i.e. consider configurations c = (c1, . . . , cn) that are minimal SR, and weakly increasing
(c1 6 c2 6 · · · 6 cn). In the context of complete graphs, these are known in the literature
as tournament scores (a tournament score is the weakly increasing re-arrangement of
the in-degree sequence of a tournament). The characterisation of a tournament score
was originally given by Landau [19] and is essentially Proposition 19 to which are added
stability and minimality conditions. In recent work [6], Claesson et al. proved an elegant
enumeration formula for the number of tournament scores, and their result yields an
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algorithm that generates these numbers in O(n2) time (n is the size of the tournament).
Thus, we can generate the number of non-decreasing minimal SR states on Kn in quadratic
O(n2) time.

4 Characterisation of StoRecn

In this section we state and prove our main characterisation theorem: that the SR states
on Kn are given by the integer lattice points of the DR polytope DRPolyn. We also give
a few consequences of this result.

4.1 Statement of the result and consequences

Recall that the n-dimensional DR polytope DRPolyn is the polytope of the set DetRecn
of DR states on Kn, and that the n-dimensional parking function polytope PFPolyn is the
polytope of the set PFn of n-parking functions. Note that the bijection from Theorem 16
between the sets DetRecn and PFn extends immediately to a bijection between integer
lattice points in the polytopes DRPolyn and PFPolyn. The main result of this section is
the following.

Theorem 26. The set StoRecn of SR states for the SSM on the complete graph Kn is the
set of integer lattice points (points with integer coordinates) in the DR polytope DRPolyn.
In other words, a configuration c = (c1, . . . , cn) ∈ Confign is SR if, and only if, there exist

DR states c(1), . . . , c(k) ∈ DetRecn, and scalars λ1, . . . , λk ∈ [0, 1] with
k∑
i=1

λi = 1, such that

c =
k∑
i=1

λic
(i), where the sum and scalar multiplication are the usual pointwise operations

in Rn.

From the introductory remark of this section, we immediately get the following.

Corollary 27. The number of SR states for the SSM on the complete graph Kn is the
number of integer lattice points in the parking function polytope PFPolyn.

The first values of these numbers for n = 1, 2, . . . are: 1, 3, 17, 144, 1623, 22804, . . .,
given by Sequence A333331 in [28]. An explicit, if somewhat complicated, enumerative
formula for this sequence is given in [1, Theorem 5.1]. Corollary 27 provides a new
combinatorial interpretation of these numbers.

In fact (see Remark 31), our proof in Section 4.2 implies a stronger result than Theo-
rem 26. More specifically, we will show that the result holds when restricting ourselves to
recurrent states of a fixed level, i.e. that the set of SR states on Kn with level k is the set
of integer lattice points in the convex hull of DR states on Kn with level k, for any k 6

(
n
2

)
.

A consequence of this, for the special case k = 0, gives the following well-known result
(see Exercise 4.64(a) in [27]). Recall that the regular n-permutohedron is the polytope of
the set of n-permutations.
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Corollary 28. The number of integer points in the regular n-permutohedron is the number
of labelled spanning forests on n vertices.

Proof. Theorem 26 restricted to minimal recurrent states shows that the set of minimal
SR states on Kn is the set of integer lattice points in the convex hull of the set of minimal
DR states on Kn. But minimal DR states correspond to maximal parking functions via the
bijection of Theorem 16. Because maximal parking functions are just permutations, this
implies that the number of minimal SR states on Kn is the number of integer lattice points
in the regular n-permutohedron. The result then follows immediately from Proposition 24.

Remark 29. Theorem 26 is false for general graphs. Consider the graph of Figure 1 with
its SR state c = (1, 1, 1). All DR states for this graph have two grains at the vertex 1
connected to the sink (this is easily checked by e.g. Dhar’s burning algorithm), so c cannot
be written as a convex sum of DR states.

4.2 Proof of Theorem 26

We first show that an integer lattice point in the DR polytope DRPolyn is SR. Let

c ∈ DRPolyn ∩ Zn be such a point. We can write c =
k∑
i=1

λic
(i), for some DR states

c(1), . . . , c(k) ∈ DetRecn, and scalars λ1, . . . , λk ∈ [0, 1] such that
k∑
i=1

λi = 1. Let A ⊆ [n].

We have:

c(A) =
k∑
i=1

λic
(i)(A)

>
k∑
i=1

λi
(|A|

2

)
=

(|A|
2

)
,

where the inequality on the second line follows from the inclusion DetRecn ⊆ StoRecn and
applying Theorem 18 to each c(i). Since this holds for any subset A ⊆ [n], by Theorem 18,
we have c ∈ StoRecn as desired.

We now show the converse, that is

StoRecn ⊆ DRPolyn. (13)

We proceed by strong induction on n. For n = 1 or n = 2, we have StoRecn = DetRecn (in
these cases Kn is acyclic, so Proposition 12 applies), and the result is trivial. Suppose now
that Inclusion (13) holds for all k < n for some n > 3, and let c = (c1, . . . , cn) ∈ StoRecn
be a SR state on Kn.

We first introduce some notation. Let max ∈ [n], resp. nextMax ∈ [n], be such that
cmax = max

i∈[n]
{ci}, resp. cnextMax = max

i∈[n]
i 6=max

{ci}. In words, max is the label of the vertex with

the highest number of grains in the configuration c, and nextMax the label of the vertex
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with the second-highest number. Our first step is a reduction: we show that it is sufficient
to consider the case where cmax = n− 1, with the help of the following lemma.

Lemma 30. Let max and nextMax be defined as above, and assume that c is strongly
stable, i.e. cmax < n− 1. Define a configuration c′ by:

c′i =


cmax + 1 if i = max,

cnextMax − 1 if i = nextMax,

ci otherwise.

Then c′ ∈ StoRecn.

In words, Lemma 30 tells us that if c ∈ StoRecn is strongly stable, then we can make
another SR state from c by moving one grain from vertex nextMax to vertex max.

Proof. Let c ∈ StoRecn such that cmax < n − 1. Note that since n > 3 we must have
cnextMax > 0 since otherwise the set [n] would violate Equation (11). We show that there

exists an orientation O of Kn, compatible with c, such that max
O−→ nextMax. If such an

orientation exists, then let O′ be the orientation O with max
O′←− nextMax and all other

edges unchanged. By construction, O′ is compatible with c′, and the lemma is proved. It
is thus sufficient to show the existence of such an orientation O.

Consider an orientation O compatible with c, and suppose we have nextMax
O−→ max

(otherwise there is nothing more to prove). We may also assume that inOnextMax = cnextMax,
since otherwise we may simply flip the orientation of (nextMax,max) without changing
the compatibility of the orientation. We will show that we can find a directed cycle of

length 3 or 4 in O which contains the edge nextMax
O−→ max (see Figure 4 for how the

4-cycle is constructed). Flipping this directed cycle then yields the desired orientation.

Since cmax < n − 1 there must exist i ∈ [n], i 6= nextMax, such that max
O−→ i. If

i
O−→ nextMax, we have a 3-cycle max

O−→ i
O−→ nextMax

O−→ max. Otherwise consider the

set of vertices j such that j
O−→ nextMax. By construction there are cnextMax > 0 such

vertices. And for at least one of these, we must have i
O−→ j, since otherwise there would be

at least cnextMax+1 incoming edges at i (cnextMax for those such vertices j, plus 1 for the edge

max
O−→ i). This would imply ci > inOi > cnextMax+1, which would contradict the definition

of nextMax. Therefore there exists a 4-cycle max
O−→ i

O−→ j
O−→ nextMax

O−→ max.
Thus in all cases we have shown the existence of a directed cycle in O containing the

edge nextMax
O−→ max. Flipping this cycle (and leaving other edges unchanged) gives us

the desired compatible orientation O′ with the edge nextMax
O′←− max, which concludes

the proof of the lemma.

We now complete the proof of Theorem 26. Assume first that c is strongly stable, i.e.
cmax < n− 1, and let c′ be defined as in the statement of Lemma 30. Define c′′ to be the
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max nextMax

j1 jk = j jcnextMax· · · · · ·i

Figure 4: Illustrating the 4-cycle construction. Among the edges (i, j1), · · · , (i, jcnextMax
),

there must be at least one edge directed i
O−→ jk, which forces the necessary directed cycle

(in red).

configuration c′ where the values at vertices max and nextMax are switched, that is:

c′′i =


cnextMax − 1 if i = max,

cmax + 1 if i = nextMax,

ci otherwise.

Clearly, by symmetry, since c′ is SR by Lemma 30, so is c′′. If we define k := cmax −
cnextMax + 1 > 1, we have:

c =
k

k + 1
c′ +

1

k + 1
c′′. (14)

Thus we have shown that if c is SR and strongly stable, we can write c as a convex
sum of two SR states whose maximal number of grains are strictly greater than that of
c. By iterating this process, we will eventually be able to write c as a convex sum of
configurations which are not strongly stable. It is thus sufficient to consider the case
where c is not strongly stable, i.e. cmax = n− 1.

Suppose therefore that c ∈ StoRecn with cmax = n− 1. To simplify notation, we may
assume without loss of generality that c = cinc (since DRPolyn and StoRecn are invariant
under permutation), i.e. c1 6 c2 6 cn = n − 1. We may also assume that c /∈ DetRecn.
By Corollary 17 we may then define

j := max{i ∈ [n], ci < i− 1}, (15)

and since cn = n− 1 we have j < n.
By construction, we have that for all i 6 j, ci 6 cj < j − 1. Thus the restriction of c

to [j], defined by c∣∣[j] := (c1, . . . , cj), is a stable configuration on Kj. Since Equation (11)

holds for all A ⊆ [n], it necessarily holds for all A ⊆ [j], and so by Theorem 18 we have
c∣∣[j] ∈ StoRecj. By the induction hypothesis, we can therefore write:

c∣∣[j] =
k∑
i=1

λic
(i), (16)
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for c(1), . . . , c(k) ∈ DetRecj, and λ1, . . . , λk ∈ [0, 1] with
k∑
i=1

λi = 1. Now for i ∈ {1, . . . , k},

define configurations c̃(i) ∈ Confign by

c̃
(i)
` :=

{
c
(i)
` if ` 6 j,

c` if ` > j.

By construction, we have c =
k∑
i=1

λic̃
(i), so it remains to show that c̃(i) ∈ DetRecn for

i ∈ {1, . . . , k}. But this follows immediately, using Dhar’s burning criterion (Theorem 5),
from the fact that c(i) ∈ DetRecj, and that by construction c` > `− 1 for ` > j. Indeed,
from this latter fact, we can burn vertices n, n− 1, . . . , j + 1 in that order, so that we are
left with c(i), which is DR, so all remaining vertices are also burned. This concludes the
proof of Theorem 26.

Remark 31. Note that in Equation (14), both c′ and c′′ have the same level as c. As
such, the same proof works when restricting to SR and DR states of a fixed level. That
is, the set of SR states with level k (for fixed k) is the set of integer lattice points in the
polytope of DR states with level k. Setting k = 0 then gives Corollary 28, as explained
in Section 4.1.

5 Partially stochastic sandpile models

In this section, we introduce a notion of partially stochastic sandpile model, in which
some of the vertices topple stochastically, and the others deterministically. Let n > 0 and
k ∈ [n]0. We define the k-partial SSM on Kn as the model in which the vertices {1, . . . , k}
topple stochastically, i.e. according to Equation (5), while the vertices {k+1, . . . , n} topple
deterministically, i.e. according to Equation (2). For k = 0 we get the ASM, while for
k = n we get the SSM. We let PartStoRec(k)n denote the set of recurrent states for the
k-partial SSM, and refer to its elements as k-SR states.

Since partial (stochastic) topplings always have a positive probability of being full
(deterministic), elementary Markov chain theory gives us the following.

Proposition 32. The sequence
(

PartStoRec(k)n

)
06k6n

is increasing for inclusion, i.e.

DetRecn = PartStoRec(0)n ⊆ PartStoRec(1)n ⊆ · · · ⊆ PartStoRec(n)n = StoRecn. (17)

We know that for n > 3, we have DetRecn ( StoRecn, so at least one of these
inclusions must be strict. In fact, we can show the following.

Proposition 33. For n > 3, we have DetRecn ( PartStoRec(1)n . In words, having just
one vertex topple stochastically yields a recurrent state that is not DR.
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Proof. Fix n > 3. We define a stable configuration c = (c1, . . . , cn) ∈ Stablen by c1 =
c2 = c3 = 1 and ci = n − 1 for all i > 3 (maximal stable number of grains). First, note
that c is not DR, since the induced cycle {1, 2, 3} is a forbidden subconfiguration (for
Condition (iii) of Theorem 5). It is therefore sufficient to show that c ∈ PartStoRec(1)n ,
i.e. that c is recurrent for the partially stochastic sandpile model in which vertex 1 topples
stochastically, and all other vertices deterministically.

First, we define a configuration c′ by c′ := c−α1 +α2, i..e. c′1 = 0, c′2 = 2, c′3 = 1, and
c′i = n − 1 for all i > 3. We claim that c′ is DR by applying Dhar’s burning algorithm.
After burning the sink, all vertices i > 3 are unstable, and can be burned. This leaves us
with the cycle {1, 2, 3} again, but this time it can be burned in order 2, 3, 1.

Since c′ is DR, there exists a configuration d = (b1, . . . , bn) such that DetStab(cmax +
d) = c by Condition (i) of Theorem 5. Moreover, since c′1 = 0, the last vertex to topple in
the deterministic stabilisation of cmax + d must be vertex 1. Indeed, toppling any other
vertex sends a grain to 1, so if the last toppling in the stabilisation is not at 1 we would
have c′1 > 0.

We now consider the same stabilisation sequence up to the last toppling of 1 excluded,
and change that toppling of 1 so that it sends a grain to each neighbour except vertex
2 (this is now a stochastic toppling which has positive probability of occurring). This
modifies the resulting configuration by moving one grain from 2 to 1 in c′, yielding exactly
the configuration c. We have thus shown that c can be obtained from cmax through a
finite sequence of grain additions and topplings for the 1-partial SSM, meaning that c is
recurrent for this model, as desired.

We can then look into the right-hand end of the sequence in (17), i.e. for which k
we have PartStoRec(k)n = StoRecn. First, we show that if at least three vertices topple
deterministically, then not all SR configurations are reached.

Proposition 34. Let n > 3, and define a configuration c = (c1, . . . , cn) ∈ Confign by

ck =

{
n− 1 if k 6 n− 3,

1 otherwise.

Then c ∈ StoRecn \ PartStoRec(n−3)n .

Proof. Let c be as in the statement of the proposition. We first show that c is SR. For

this, consider the orientation O of Kn such that n − 2
O−→ n − 1

O−→ n
O−→ n − 2, j

O−→ k
if j > n − 2 and k 6 n − 3, and the edges {k, k′} for k, k′ 6 n − 3 are oriented in any
arbitrary manner. In words, we construct a directed cycle on the last three vertices, orient
all other edges incident to one of those vertices as outgoing (away from the cycle), and
choose an arbitrary direction for the remaining edges. By construction we have inOj = 1

for any j > n − 2, and since ck = n − 1 > inOk for any k 6 n − 3, the orientation O is
compatible with c, and c is SR by Theorem 6.

We now show that c is not (n−3)-SR. Seeking contradiction, assume that c is (n−3)-
SR. This implies that c can be reached from cmax through a sequence of grain additions and
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topplings, where the topplings are stochastic for the first (n−3) vertices, and deterministic
for the last 3. But since each of the last 3 vertices has one grain of sand, they each
must topple at least once in this sequence. Consider the final topplings of each of these,
and without loss of generality assume that this occurs in order n− 2, n− 1, n. Since the
topplings of (n−1) and n both send a grain to (n−2), and since (n−2) doesn’t subsequently
topple (we considered the final topplings in the sequence leading to c), then (n− 2) must
have at least two grains in the final stable configuration reached, i.e. cn−2 > 2. This gives
the desired contradiction (cn−2 = 1 by definition), and the proposition is proved.

Remark 35. The proof of Proposition 34 indicates that one thing stopping a configuration
from being partially SR is a (1, 1, 1) cycle on vertices which topple fully. In fact, it is a little
bit more complex than that. For example, for n = 4, the configurations which are SR,
but not 1-SR, are (3, 1, 1, 1) (the counter-example from Proposition 34), and (0, 2, 2, 2).
The orientation compatible with the first is as in the proof above, while the orientation

compatible with the second is 2
O−→ 3

O−→ 4
O−→ 2, and 1

O−→ j for j ∈ {2, 3, 4}. Note that
this configuration is minimal recurrent, so this orientation is unique up to a flipping of
the (2, 3, 4)-cycle.

The above suggests that what stops a configuration from being partially SR is in fact
precisely a “forced” cycle on vertices which topple fully. We make this observation precise
in the following technical lemma.

Lemma 36. Let n > 3 and ` > 1. We define K
(`)
n to be the complete graph on [n]0

where for every k ∈ [n], the edge {k, 0} connecting k to the sink has multiplicity `. Note

that if ` = 1 this is just the usual complete graph K0
n. Let c ∈ StoRec

(
K

(`)
n

)
be SR on

this graph. Let k1, k2, k3 ∈ [n] be three distinct vertices in [n]. Suppose that there exists

an orientation O of Kn, compatible with c, such that k1
O−→ k2, k2

O−→ k3, and k1
O−→ k3.

Then there exists a sequence of grain additions and topplings leading from cmax to c such
that the vertices k1, k2, k3 always topple deterministically. Moreover, the final topplings of
these three vertices are in the order k3, k2, k1, possibly with k3 never toppling.

Proof. First, note that it is sufficient to show the lemma for minimal SR states c. Indeed,
any recurrent configuration can be reached from a certain minimal recurrent configuration
through grain additions, and putting extra grain additions at the end of the additions and
topplings sequence doesn’t change the conclusion of the lemma. Thus we may assume
that an orientation O compatible with c satisfies ci = inOi at all vertices i ∈ [n].

We proceed by induction on n > 3. First, let us show that the statement holds for

n = 3. Fix ` > 1 and let c ∈ StoRec
(
K

(`)
3

)
be minimal recurrent. Without loss of

generality, we choose k1 = 1, k2 = 2, k3 = 3 for the statement. Then, by definition of O,
we have c1 = 0, c2 = 1, c3 = 2. It is straightforward to check that c is DR (e.g. by applying
Dhar’s burning algorithm). Therefore, there exists a sequence of grain additions and full

topplings leading from cmax to c in K
(`)
3 . Moreover, since c1 = 0, vertex 1 must be the

last vertex to topple in this sequence, and since c2 = 1, 2 must be the penultimate vertex
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to topple (it receives one grain from the subsequent toppling of 1, and can’t receive any
other grains). This proves the statement in the case n = 3.

Now fix some n > 4, ` > 1, and assume that the statement holds for (n − 1) and all

`′ > 1. Let c ∈ StoRec
(
K

(`)
n

)
be minimal recurrent. Let k1, k2, k3 and the orientation

O of Kn be as in the statement of the lemma, with ci = inOi for all i ∈ [n]. Choose
some m /∈ {k1, k2, k3}, and to simplify notation, assume that we can take m = n. Let

S ⊆ [n − 1] be the set of vertices i such that n
O−→ i, and T := [n − 1] \ S. Note that by

definition cn = inOn = |T | = n − 1 − |S|. We define a configuration c′ = (c′1, . . . , c
′
n−1) ∈

Config
(
K

(`+1)
n−1

)
by

c′i :=

{
ci − 1 if i ∈ S,
ci otherwise.

(18)

Let O′ be the orientation on Kn−1 obtained by simply removing all edges incident to
n in O. By definition of S, we have:

inO
′

i =

{
inOi − 1 if i ∈ S,
inOi otherwise.

(19)

But since inOi = ci for all i ∈ [n] by assumption, Equations (18) and (19) immediately

imply that inO
′

i = c′i for all i ∈ [n − 1], and so c′ is minimal recurrent on K
(`+1)
n−1 by

Theorem 10.
Now note that k1, k2, k3 and the orientation O′ still satisfy the conditions of Lemma 36

applied to c′ and K
(`+1)
n−1 . We may therefore apply the induction hypothesis, meaning that

c′ can be reached from cmax (on K
(`+1)
n−1 ) through a series of grain additions and topplings,

in which k1, k2 and k3 always topple deterministically, and their final topplings are in the
order k3, k2, k1. We will write SEQ′ to denote this sequence.

Now note that, by definition of K
(`)
n , for any i ∈ [n − 1], we have degK

(`)
n

i = deg
K

(`+1)
n−1

i

(the extra edge to the sink in the latter cancelling out the edge to n in the former).
Therefore, we can “copy” the above sequence SEQ′ of grain additions and topplings into
a sequence SEQ from cmax on K

(`)
n , as follows. Grain additions are unchanged, as are any

topplings that send at most ` grains to the sink. Then, if `+1 vertices are sent to the sink
in a single toppling in the sequence SEQ′, in the “copy” sequence SEQ we send ` grains
to the sink, and one grain to vertex n. With this construction, SEQ is a legal sequence
of grain additions and topplings on K

(`)
n , and by construction we reach a configuration

c′′ ∈ Config
(
K

(`)
n

)
such that c′′i = c′i for all i ∈ [n− 1] (grain movements between vertices

of [n−1] are unchanged). Note also that any deterministic topplings in SEQ′ translate to
deterministic topplings in SEQ. Moreover, the order of topplings is unchanged, so that
in SEQ the final topplings of k1, k2 and k3 are still in the order k3, k2, k1.

Depending on the value of c′′n, we either add grains to vertex n, or repeatedly send a
single grain from n to the sink (this is a stochastic toppling that has positive probability),

until c′′n = n − 1 + ` = degK
(`)
n

n . We then add one final toppling to our sequence by
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toppling vertex n stochastically, sending ` grains to the sink, and one grain to each vertex
in S. This means that the number of grains remaining at n after this toppling is exactly
(n − 1 + `) − (` + |S|) = |T | = cn. Moreover, by construction, if i ∈ S, then i now
has 1 + c′′i = 1 + c′i = ci grains, and if i ∈ T , then i now has c′′i = c′i = ci grains. In
other words, after this final toppling we have exactly reached the configuration c, and
the series of grain additions and topplings applied satisfies the conclusions of Lemma 36.
This completes the proof.

In fact, we only need to apply this in the case ` = 1, but as we saw the general case
was necessary for the proof since the reduction from n to (n− 1) forced the increase from
` to (` + 1). We are now equipped to state our main result of this section, namely that
(n− 2) stochastically-toppling vertices are sufficient to reach all SR configurations.

Theorem 37. Let n > 3. We have

PartStoRec(n−2)n = StoRecn. (20)

Proof. We know from Proposition 32 that PartStoRec(n−2)n ⊆ StoRecn. For the converse,
let c ∈ StoRecn be SR. It is once again sufficient to consider the case where c is minimal
recurrent. Therefore, by Theorem 10, there exists an orientation O of Kn satisfying
inOk = ck for all vertices k. Suppose that there exists such an orientation where the last
three vertices n − 2, n − 1, and n do not form a directed cycle. Then from Lemma 36,
we can find a series of grain additions and topplings leading from cmax to c such that the
last three vertices always topple deterministically, implying that c ∈ PartStoRec(n−3)n ⊆
PartStoRec(n−2)n .

We may therefore assume that any orientation compatible with c has a directed cycle

on the last three vertices. Without loss of generality, assume that n− 2
O−→ n− 1

O−→ n
O−→

n− 2. Flipping the edge n
O−→ n− 2 of O yields an orientation O′, and the configuration

compatible withO′ is c′ = c+αn−αn−2. But the orientationO′ now satisfies the conditions
of Lemma 36. Therefore, there exists a series of grain additions and topplings leading
from cmax to c′ such that the vertices (n−2), (n−1) and n always topple deterministically.
Moreover, the last three topplings of those vertices are n, n− 1, n− 2 in that order.

If we change the final toppling of (n − 2) so that it now sends grains to all vertices
k < n, but doesn’t send a grain to n, this changes the final configuration from c′ to c.
Note that any toppling occurring after that of (n−2) can still occur, since the only change
is n no longer receiving a grain, and n’s last toppling is before that of (n− 2). As such,
we have constructed a sequence of grain additions and topplings leading from cmax to c
in which vertices (n− 1) and n always topple deterministically (since this was the case in
the sequence leading to c′, and we left those topplings unchanged). This means exactly
that c ∈ PartStoRec(n−2)n , and the theorem is proved.

Remark 38. The proof of Theorem 37 seems to suggest that SR configurations don’t
require many stochastic topplings to be reached. Indeed, in the proof we only required
one stochastic toppling on the “forced” cycle, and in fact this toppling in question was
“almost deterministic”, since it kept only one grain at the toppling vertex. It would be
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interesting to formalise this result by stating how many non-deterministic topplings are
needed in general to reach a SR configuration from cmax, and how close these topplings
are to being deterministic.

6 Conclusion and future perspectives

In this paper, we have considered a stochastic variant of the ASM, called SSM, in which
toppling vertices flip a biased coin for each neighbour and decide with probability p to send
a grain to that neighbour, and with probability (1− p) to keep the grain (here p ∈ (0, 1)
is fixed). We have studied the SSM on complete graphs from a combinatorial point of
view, focusing on characterisations of the model’s recurrent states (called SR states). To
our knowledge, this is the first such combinatorial study of a stochastic sandpile model.

We exhibited a stochastic version of the burning algorithm for complete graphs that
establishes in log-linear time whether a given state is SR or not (Theorem 21). We then
showed that the set of SR states is the set of integer lattice points of the convex polytope
of DR states (Theorem 26). In other words, any SR state can be written as a convex sum
of DR states. Finally, we considered a family of partially stochastic sandpile models on
complete graphs, in which some vertices always topple deterministically according to the
ASM rules, while others topple stochastically according to the SSM rules. We showed
that in general the set of recurrent states for these models are distinct from those of both
the ASM and SSM (Propositions 33 and 34), and that if at most two vertices topple
deterministically, we get all SR states (Theorem 37).

There are a number of open questions and directions to be considered by future re-
search. The first is that of more general stochastic burning algorithms, i.e. algorithms
that successively burn (remove) vertices until either all vertices are burned (in which case
the starting configuration is SR), or we reach a forbidden subconfiguration where no more
vertices can be burned (in which case the starting configuration is not SR). Remark 22
explains why two of the more natural burning criteria don’t work in the general case.

Another future research direction that seems natural is to study the SSM on other
graph families. Note that the author has in fact considered the SSM on wheel graphs
in [26], but in this case the difference with the ASM is minimal (there is only one additional
recurrent state). It would be interesting to consider for instance the case of complete
bipartite graphs (with or without a dominating sink), complete split graphs, etc., as has
been done for the ASM.

Another open question is the existence of an explicit enumeration formula for the set
of SR states StoRecn. Such a formula is given in terms of permutohedron lattice points
enumeration in [1, Theorem 5.1], but it is rather complicated. One possible approach to
this would be to use the Tutte-like deletion-contraction relationship given for the so-called
lacking polynomial in [5, Theorem 3.9] (the lacking polynomial is equivalent to the level
polynomial for the SSM, up to a change of variable). One would hope that this could lead
to a reasonably simple recursive formula, but so far this approach has not been successful.
If no such explicit enumeration formula can be found, can asymptotic estimates be given?

Finally, it would be interesting to study the partially stochastic sandpile models fur-
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ther. Table 1 below gives the first few values of |PartStoRec(1)n | for n = 1, . . . , 6. This
sequence is not known in the OEIS [28]. We observe that in general the numbers of 1-SR
states appear a fair amount closer to the numbers of SR states than they are to those
of DR states, albeit our data is quite limited (these numbers are very slow to compute).
This is somehow consistent with Remark 38 that SR states in general don’t require many
stochastic topplings to be reached, so a single vertex toppling stochastically should be
enough to reach most of them. It would be interesting to quantify this observation in
some way, perhaps in terms of asymptotic behaviour of these numbers.

n |DetRecn|
∣∣∣PartStoRec(1)n

∣∣∣ |StoRecn|

1 1 1 1
2 3 3 3
3 16 17 17
4 125 142 144
5 1296 1563 1623
6 16807 21326 22804

Table 1: The numbers of DR, 1-SR, and SR states on Kn, for n ranging from 1 to 6.
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