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Abstract

We study the combinatorial Hopf algebra of noncommutative symmetric func-
tions in superspace sNSym, introduced by Fishel, Lapointe and Pinto. We in-
troduce a family of primitive elements of SNSym and extend the noncommutative
elementary and power sum functions to superspace. Then, we give formulas relating
these families of functions. Also, we introduce noncommutative ribbon Schur func-
tions in superspace and provide an explicit formula for their product. We show that
the dual basis of these functions is given by a family of the so—called fundamental
quasisymmetric functions in superspace. This allows us to obtain an explicit formula
for the coproduct of fundamental quasisymmetric functions in superspace. Addi-
tionally, by projecting the noncommutative ribbon Schur functions in superspace,
we define a new basis for the algebra of symmetric functions in superspace.

Mathematics Subject Classifications: 05E05, 16T05, 16T30

1 Introduction

The classical ring of symmetric functions Sym is a very important object in algebraic
combinatorics. This has been widely studied due to its rich properties and multiple
applications in several areas such as representations theory, algebraic geometry and Lie
algebras [28, 32]. Symmetric functions are important not only in mathematics, but also in
connection with integrable models in physics [30]. Due to this connection, and motivated
by a supersymmetric generalization of the Calogero-Moser—Sutherland model [7, 10], a
new class of functions called symmetric functions in superspace was developed in [8, 9],
generalizing the classical symmetric functions.
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A symmetric function in superspace is obtained by considering the classical infinite
collection of commutative variables x = (z1, s, ...) together with an infinite collection of
anticommutative variables § = (01, 6s, ...), that is, 6;0; = —6,6;. In particular, 62 = 0. As
it was shown in [11], the classical bases of Sym, as the monomials, power—sum, elementary
and homogeneous symmetric functions, can be naturally extended to superspace. More
complex bases as Schur, Jack and Macdonald polynomial were also extended and studied
in [4, 5, 12, 27, 13, 22, 19]. The combinatorial tools used to study these objects are the
so—called superpartitions, which generalize the classical partitions of numbers.

A superpartition is a pair A = (A% A®), where A® is a strictly decreasing partition,
possibly including a zero, and A® is a usual partition. The degree |A| of A is the sum of
the components of A* with the ones of A®. The fermionic degree df(A) of A is the length
of A®. In particular, every usual partition can be regarded as a superpartition with null
fermionic degree.

Thus, given a superpartition A = (Aq,...,Ap; A1, .., Ay), some of the classical
symmetric functions in superspace [11] are defined as follows:

o Monomial symmetric functions in superspace:

1 .
mA(x7 9) = n_A' Z 90(1) s Hg(m)xg(ll) .- -xﬁ?n), with na! = nas (O)!nAs(l)! e

O’GGn
where nys(7)! is the number of i’s in A®.

o Power-sum symmetric functions in superspace: px = Pa, - DA PApmss ** * PA,, Where
n n
ﬁk:ZGZ-xf and pT:fo, for k>0,r>1.
i=1 i=1

e Elementary symmetric functions in superspace: ey = €y, -+ - €5, €n,.,, " * * €A, , Where

e = mr) and e, =mgr), for k>=0,r>1

e Complete homogeneous symmetric functions in superspace:

hA = hAl c. hAmhAm_H tee hAm where
hy = Z (A +1)mpy and h, = Z mpa, for k>=0,r>1.
|A|=k, df(A)=1 |A|=r, df(A)=0

Note that if A® = (), we obtain the corresponding classical symmetric function.

Recall that classical Schur functions can be obtained from Macdonald polynomials
P\(q,t) by taking ¢ = t. Schur functions in superspace are defined by means of the
Macdonald polynomials in superspace Py(q,t) [4, Section 4]. A first kind of these functions
is obtained by taking ¢ =t = 0 [4, Subsection 7.1] and a second kind is obtained by taking
q =t = oo [4, Proposition 28]. On the other hand, the classical ribbon Schur functions are
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a special case of the so—called skew Schur functions. In superspace, these functions were
defined by taking the adjoint of the two kinds of Schur functions in superspace mentioned
above [27, Section 9]. A suitable definition of ribbon Schur functions in superspace has
not yet been provided.

It is well known that Sym has a Hopf algebra structure [15]. In [16], the set of
symmetric functions in superspace was also given with a Hopf algebra structure sSym,
which has explicit formulas for the product, coproduct and antipode in terms of the bases
given above. This Hopf algebra is commutative, cocommutative (up a sign), self dual [16,
Proposition 4.8] and contains Sym as a Hopf subalgebra.

Another important ring related to symmetric functions is the one of quasisymmetric
functions QSym [21]. The Hopf structure of QSym has several applications in the theory
of symmetric functions such as an expansion of the Macdonald polynomial in terms of the
so—called fundamental quasisymmetric functions [21]. The fundamental quasisymmetric
functions provide an important basis of QSym, since they share similar properties with
Schur functions. The product, coproduct and antipode of these type of functions in
superspace is an open problem. Here, we lead with this problem.

The dual structure of QSym, defined in [20], is the Hopf algebra of noncommutative
symmetric functions NSym. It was shown in [20] that there is a connection of NSym
with the Solomon’s descent algebra, which is applied to the study of formal power series
with coefficients in a noncommutative algebra. The usual bases of QSym and NSym are
indexed by compositions of numbers.

It was shown in [16] that both QSym and its dual NSym can be extended to su-
perspace as the Hopf algebras of quasisymmetric function in superspace sQSym and of
noncommutative symmetric functions in superspace sSNSym, respectively. These struc-
tures can be Zo—graded by means of the fermionic degree, which implies that they can
be regarded as Hopf superalgebras. In superspace, the classical bases are indexed by
the so—called dotted compositions, that is, tuples of nonnegative integers in which some
of their components are labelled by a dot. In particular, classical compositions can be
regarded as dotted compositions with no dotted components. The vector space sQSym
has a basis formed by the monomial quasisymmetric functions in superspace M,, with
a = (aq,...,a4) a dotted composition, defined by

M, = Z O O

11 1 )
11 <<tk

where each n; is either 0 if a; is labelled by a dot or 1 otherwise. The product of these
monomials in sQSym can be described by means of overlapping shuffles. The coproduct
of a monomial is obtained by deconcatenating its components. Since monomial symmetric
functions in superspace m can be expanded in terms of the M,’s, then sSym is a Hopf
subalgebra of sQSym. See [16] for details.

The Hopf algebra sSNSym has a basis {H, | « is a dotted composition} that is dual
to the monomial quasisymmetric functions in superspace, that is, (Hq, Ms) = dap.

In this paper, we study the structure of sSNSym. The results obtained here extend
the classical theory of noncommutative symmetric functions.
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It is known that sNSym is isomorphic to the free algebra generated by the family
of elements H, := H,) and H, = H,y. Moreover, the coproducts of H, and H, are
similar to the ones of h, and h, in sSym, respectively. See [16, Proposition 6.2]. Note
that NSym is the Hopf subalgebra generated by the H,,’s.

In Section 2, we recall basic notions and results about Hopf algebras and Lie superal-
gebras. In Section 3, we study dotted compositions and characterize one of their lattice
structures. The combinatorics of these objects will be used to describe most of the results
in this paper.

Section 4 is dedicated to study in detail the Hopf structure of sSNSym. We show that
sNSym admits a grading via the degree of a dotted composition. In particular, we deduce
that the dimension of its nth homogeneous component sNSym,, is 2 - 3"~!. By means of
this grading, we show in Proposition 10 that the antipode S : sSNSym — sNSym can be
described by the formula:

S(H.) = (D)) ST (—1) P H,,

B=rev(a)

In this section we also present two Hopf subalgebras of sSNSym that can be realized as
polynomial structures (Subsection 4.1).

Recall that the classical noncommutative power sum function P, is a primitive element
of NSym, and is therefore also of SNSym. In Subsection 4.3, by direct study of the
structure of sSNSym, we deduce the existence of a second family of primitive elements
{U,, | n > 0}, different from the analogous power functions in superspace, which can be
described recursively by means of the following relation:

n—1
k=0

We show that these functions are indeed primitive (Proposition 11), and we write these
elements in terms of the generators (Proposition 12). We conclude this section by proving
that the primitive part of SNSym is the free Lie superalgebra generated by {P, | n €
N} U{V¥, | n € No} (Proposition 15).

Noncommutative versions of the elementary and power sum symmetric functions were
introduced in [20] by means of generating functions. These functions, S,, and P, respec-
tively, form other bases for NSym satisfying the following relations:

n n

n—1
Z Hkpnfk = an, and Z(—l)nikaSn,k = Z(—l)nikSan,k =0.
k=0

k=0 k=0

In Section 5, by means of the generating functions with two parameters defined in [11,
Section 3], we introduce families of noncommutative elementary and power sum functions
in superspace, which form new bases {S,} and {P,} of SNSym. Here, we study these
bases and extend results from the classic theory. Noncommutative elementary functions
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in superspace consist of two subfamilies, the classical functions S,, and a new kind of func-
tions S,. We show relations of these functions with the generators of sSNSym (Proposition
16) and that the antipode of H,, is given by S(H,) = (—1)"*'S, (Proposition 17). Also,
as S, is a linear combination of products U,S; (Proposition 18), the coproduct of S,
can be analogously written as the one of H,, and in consequence S(S,) = (—=1)"*'H,,
(Proposition 19). Similarly, noncommutative power sum functions in superspace consist
of two subfamilies, the functions P, mentioned above and a new kind of functions Pn
We show that each P, can be written as a sum of Lie superbrackets [P;, ¥;] (Proposition
22) and, as a consequence, we get that P, is a primitive element of sNSym. Moreover,
we conclude that the Lie superalgebras generated by P;, ¥; and P;, P, coincide (Corollary
25).

The classical noncommutative ribbon Schur functions were introduced in [20] via quasi
determinants. In Section 6, we introduce these functions in superspace. As there are
two kinds of skew Schur functions in superspace, there are two kinds of fundamental
quasisymmetric functions in superspace [16, Subsection 5.5]. Here we give two families
of noncommutative ribbon Schur functions in superspace, dual to the fundamental ones
mentioned above, by means of two partial orders on dotted compositions introduced in
[16]:

R,=H,—)Y Rs, Ro=H,— )Y Rg
a<p a=<r8

We provide explicit formulas for the product of these functions (Theorem 26 and Subsec-
tion 6.1), which can be described combinatorially via both a new kind of ribbon diagrams
and planar rooted trees:

_J Rap if rg(c), B € No,
Rafls = { R.3+ Rocp otherwise,

R Ry= f?aﬂ + Raop if 1g(a), 1 €N,
o Ros otherwise.

Also, we show their relation with other bases of SNSym (Proposition 30, Proposition 31,
Proposition 32 and Proposition 33).

In Section 7, we conclude the paper by showing the interaction of SNSym with other
Hopf algebras. First, we extend the identification of NSym as a substructure of the
noncommutative version of the Connes—Kreimer Hopf algebra [17, 25, 18, 24], obtaining
a Hopf algebra generated by planar rooted trees. Thus, the description of the coproduct
of sSNSym can be given in terms of the admissible cuts of these trees (Proposition 34).
Secondly, due to the dual relation between sSNSym and sQSym, we show that, for every
dotted composition «, M, can be written in terms of the fundamental quasisymmetric
functions in superspace. This implies that the set of these functions is a basis of sSQSym.
Furthermore, we provide formulas for the coproduct of these functions, which can be
described by means of a new type of diagrams that extend the classical ribbon diagrams
(Theorem 36). Finally, in Subsection 7.3, we study the morphism 7 : SNSym — sSym,
introduced in [16], obtaining new relations for symmetric functions in superspace and new
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bases for sSym by means the projection of noncommutative ribbon Schur functions in
superspace on sSym (Theorem 44): r, := m(R,) and 7 1= 7(Ra).

In the present paper, every linear algebraic structure will be taken over the field of
rational numbers Q. The word algebra will mean associative algebra with unit and the
word coalgebra will mean coassociative coalgebra with counit.

For every positive integer n, we will denote by [n] the set {1,...,n}, and set [n]y =

{0} U [n]. As usual, the symmetric group on [n| will be denoted by &,,.

2 Hopf algebras

Here, we recall some notions about bialgebras and Hopf algebras.

A bialgebra is a vector space ‘H endowed with an associative product m: HQ®H — H
together with a unit v : Q — H, and a coassociative coproduct A : H — H ® H together
with a counit € : H — Q, which are compatible, that is, the coproduct and the counit are
algebra morphisms. The reduced coproduct of H is defined by A(z) = A(z) —r®1—-1Qx
for all x € H. We say that H is graded if there are subspaces Hg, Hi,... of H, called
homogeneous components, satisfying the conditions

H=EDH., HM;CHiy 1,20, AH,) S P HioH;

n=>0 i+j=n

Moreover, H is called connected whenever Hg ~ Q.
A bialgebra H, as above, is said to be a Hopf algebra if there is a linear map S : H — H,,
called antipode, satisfying the relations

mo(S®id)oA=uoe=mo (id®S) o A.

Note that, as A : H — H ® H must be an algebra morphism, the bialgebra structure
of H depends on the product of H ® H. In particular, if H is graded, this product may
be defined as (m ® m) o (id ®7 ®id), where 7 : H ®@ H — H @ H is the twist map defined
by 7(z @ y) = (—1)®(y ® x) with x € H, and y € H,,.

An element = of a Hopf algebra #H is called primitive, if A(z) = 1®@x+2® 1 or
equivalently A(z) = 0.

It is known that if H is a connected graded bialgebra, then it is a Hopf algebra with
antipode defined recursively by S(1) = 1 and for  in some homogeneous component,

S(x) =— (9[: + Z S(Jc(l))x(g)> , where A(z) =x1)® @) (Sweedler’s notation).
(1)
See for instance [23, Proposition 1.4.14].
Now, we describe the dual notion of a connected graded Hopf algebra H = @’Hn

n=0
with finite dimensional homogeneous components.

THE ELECTRONIC JOURNAL OF COMBINATORICS 31(3) (2024), #P3.28 6



First, observe that (H ® H)* ~ H* ® H*, and that H ® H is also graded as a vector
space. More specifically,

HoH=PHSH), where (HOH),=)H:® Hus

n=0 k=0

This, together with the coproduct A of H induce a product mg on

"=,

n=0

given by the composition
ma: H QH D (HOH) S 1,

where A*(f)(z) := foA(z) with f € (HRH)*, x € H.
The product m of H induces a coproduct A, of H* defined as follows

Ag:H ™ (HOH) S H @ HY,

where m*(f)(z®vy) = fom(z®y) withz @y e HOH, [ € H"

The structure (H*, mgq, Ay) is called the dual Hopf algebra of H.

For more details about Hopf algebras, see, for example [23, 18].

We conclude this section with some results about Hopf superalgebras (Theorem 1).

Recall that a vector space V is called Zs—graded if it can be written as a direct sum
V =Vy®Vi. An element v € V is called homogeneous if it belongs to Vy U Vi, and its
degree v is the index ¢ € Zs such that v € V. A Zy—graded algebra is called a superalgebra,
and a Zo—graded coalgebra is called a supercoalgebra.

A Hopf superalgebra H is a Hopf algebra in the category of Zs—graded vector spaces.
The compatibility between the product and coproduct is respect to the structure of su-
peralgebra of H ® H given by

(a®b)(c®d) = (—1)¥ac @ bd.

For a Zy-graded vector space V' = Vy ® Vi, the free algebra T'(V) = @,., V*" is a Hopf
superalgebra with Z,—grading induced by V' and coproduct defined by A(v) = v®@1+1®w
forallveV.

A Lie superalgebra is a Zo—graded vector space L = Lo & L; together with a bilinear
map [,]: L x L — L, called Lie superbracket, satisfying the following conditions:

1. [LZ,LJ] Q Li-l—j for Z,] S ZQ.
2. [u,v] = =(=1)"[v,u| for all u,v € L.

3. (=1)"[u, [v,w]] + (=1)"[v, [w,u]] + (=1)""[w, [u,v]] = 0 for all u,v,w € L.
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Observe that if A is a superalgebra, then A is a Lie superalgebra with the Lie superbracket
[a,b] = ab — (—1)™ba.

Free Lie superalgebras and enveloping algebras of a Lie superalgebra are defined sim-
ilarly as for classical Lie algebras, by considering the Z,—grading. See [2, 31] for more
details.

Theorem 1 (]2, Theorem 2.10], [31, Theorem 6.2.1]). Let V' be a Zy—graded vector space,
let X be a basis of homogeneous elements of V', and let [X] be the Lie subsuperalgebra of
T(V) generated by X. Then, [X] is the free Lie superalgebra generated by X. Furthermore,
[X] coincides with the primitive part of the Hopf superalgebra T'(V').

3 Dotted compositions

In what follows, N = {1,2,...} and Ny = {0,1,...}.

A dotted composition is a tuple o = (aq,...,a,) whose components, denoted by
o, ..., belong to the set NUN,. A component of « is called dotted if it belongs
to Ng. We call k the length of o and denoted it by {(«v). The fermionic degree of « is the
number df(«) of dotted components of it. The degree of « is the number || obtained by
adding its fermionic degree with the numerical values of its components.

For instance, below the six dotted compositions of degree two:

(L,1) (0,1 (1,00 (0,00 (2 (1)

For a length k& dotted composition a, we will denote by rg(«) the rightmost component
of a, that is, rg(a) = a. Note that «; is its leftmost component. Also, if oy = -+ = ay,
we denote a by (a¥) instead.

Graphically, dotted compositions are represented by ribbon diagrams that extend the
classical ones, that is, m € NUN is represented by m boxes, and if m is dotted, a bullet
is added either on the left or on the right.

[T --- [ o111 - [] [T [Je

The diagram with all its dots on the left is called the left ribbon diagram of the dotted
composition. Similarly, we define the right ribbon diagram. For instance, below the left
and right ribbon diagrams of (2, 3,0, 1,2, 2).

o ] l®

D D
o = I:I:;I:D
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Proposition 2. For every positive integer n, the number of dotted compositions of degree
nis2-3""1. See [26, A025192)].

Proof. Observe that every dotted composition of degree n can be obtained from a usual
composition (by,...,b) of the same degree by replacing some of its components b; with
a; € N, where a; = b; — 1. In particular, 0 is gotten when 1 is replaced with it. Thus,
there are 2% dotted compositions of degree n that can be obtained in this manner from
a usual composition as above. For each k € [n], there are (Zj) usual compositions of
degree n and length & [26, A007318]. Hence, there are (2:1)2’“ dotted compositions of
degree n and length k. Therefore, the number of dotted compositions of degree n is

- n—1 k_n n—1 k+1 - n—1 k n—1 __ n—1
Z(k:—1>2 —Z<k>2 _2;% L) =2aeyt=2.3 O

k=1 k=0

Given two dotted compositions o and 3, we denote by af the dotted composition
obtained by concatenating o with 8. If § = (x) for some x € NU N , we denote a3 by ax
instead. A convex partition of a dotted composition « is a tuple of dotted compositions
(B1, ..., Bk) such that a = By - - - By.

In order to describe one of the partial orders on dotted compositions introduced in
[16], we first extend the sum operation of Ny = {0,1,2, ...} to Ny UNy as follows:

meén=r, mdn=7r, mdn=7r, mdn=0, where r=m+n.

For instance, _ . o o
lel1=2 0epl=1 1e60=1 0p0=0

Note that the length two compositions of m € N U Ny, with respect to &, are given by
cutting internally its left and right ribbon diagrams. For instance, for 2 and 2, we have:

11 02 i1 11 200
[I]1 e[I] e [] [[T]e [IT]e

Remark 3. Note that @ is not associative in general, indeed (1@ 1) ®1=2@1 =10 and
on the other hand 1 @ (1 @ i) =1® 0 = 1. However, if at most one of z,y, z belongs to
N, then (x®y) Dz =12® (y®z). This property will be important to describe the partial
order on dotted compositions.

As defined in [16, Subsection 5.3], for «, 3 dotted compositions of degree n, we say
that 8 covers «, if § is obtained by @©—-summing two consecutive components of o that
are not both dotted. The closure of this relation is the partial order simply denoted by
=, which gives a structure of poset to the collection of all dotted compositions of degree
n.

Note that two dotted compositions that are comparable with respect to < have the
same degree and fermionic degree. Also, a dotted composition is maximal respect to <
if it has a unique component or its components are all dotted, that is, the length and
fermionic degree coincide.
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Proposition 4. For every positive integer n, the number of dotted compositions < (1) is
(n +2)2"1,

Proof. Let a be a dotted composition satisfying a < (). Denote by @ the tuple obtained
by removing the zeros and all dots from the components of a. Note that a has a unique
component in N and that @ is a composition of n. For k € [n], we will count the number
of dotted compositions a < (n) such that ¢(a) = k.

Recall that n has (Zj) compositions of length k. Then, there are (k+ 1) (Zj) dotted
compositions a < (n) such that 0 is a component of o and ¢(&) = k. On the other hand,
there are k:(Zj) dotted compositions o < (n) in which the unique component belonging
to N is not 0. Hence, there are (2k + 1)(7~]) dotted compositions a = (1) satisfying
¢(@) = k. Therefore, the number of dotted compositions < (n) is

i(%ﬂ)(Z:D = (n+2)2"", O

k=1

For instance, there are eight dotted compositions < (2).
o[ 1]
N
ta OH IEF| )
\ / I

2

o[T1~
Ce[

(2)

For a dotted composition o, we denote by o' the upper closure of o with respect to
=, that is, o' is the upset {8 | @ < 3}. Note that o = {a} if o is maximal with respect
to <. Moreover, if « is a usual composition of degree n, then o' has a maximum given
by (n).

If df (o) > 1, we characterize the maximal elements in o by means of the following
proposition.

Proposition 5. Let o be a dotted composition with s := df(a) > 1, and let m be a
mazimal element in of. Then, each component of m is obtained by ®-summing the
components of a dotted composition in some convex partition (fi,...,[0s) of a whose
elements have exactly one dotted component. More specifically, m = (Bl, e ,Bs), where
Bi s the ®—sum of all components of [3;.

Proof. Tt follows directly from the definition of the partial order <. n

For instance, for a = (0, 1,2,3,1,2, 4), the upset o contains the following six maximal
elements:
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4 The Hopf structure of sNSym

In this section, we describe the Hopf structure of noncommutative symmetric functions
in superspace sSNSym, introduced in [16].

Recall that, as in the classical case, the set of monomial quasisymmetric functions in
superspace M,, with a a dotted composition, form a basis of the Hopf algebra sQSym.

The Hopf algebra of noncommutative symmetric functions in superspace sSNSym is
the dual structure of the Hopf algebra of quasisymmetric functions in superspace, given
by

(Ho, Mg) = 6ap, where «,f are dotted compositions.

As it was shown in [16], the algebra structure of sSNSym is freely generated by the set
{H,|re NUN}. The generators H, will be called noncommutative complete homogeneus
symmetric function in superspace. For a length k£ dotted composition a, we write H, =
H,, ---H,,. Theset {H, | ais a dotted composition} is a basis of SNSym.

As with sQSym, the algebra sSNSym admits a grading by the fermionic degree. With
respect to this grading, SNSym ® sNSym can be given with the following product:

(i®g) (f®g)= (‘Udf(gl)df(h) fi fo ® g192, where  fi, 91, f2,92 € SNSym. (3)

Since sSNSym is a free algebra, it is enough to define the coproduct A on its generators
and so extend it as an algebra morphism, with respect to the product in (3). Thus, we
have:

A(H,) = Z H,® H,, where p,q,reNy UNy, and H,=1.

pDg=r

As in [16], for every nonnegative integer n, we will write H;, by H,, instead. Note that
A(1) =1® 1 and, for every n € N, we have the following:

n

k=0 k=0

There is another grading of sSNSym given by the degree of dotted compositions. Thus,
if v is a dotted composition, then H,, is an homogeneous element of degree |a|. For every
n € N, we denote by sNSym,, the subspace spanned by the elements H, such that « is
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a dotted composition of degree n. By Proposition 2, dim(sNSym,) = 2 - 3""!. Fixing
sNSym, = K, we have that

sNSym = @ sNSym,,,

n=0

is a connected graded bialgebra, and then a Hopf algebra. Note that sSNSym is cocom-
mutative up a sign and that NSym is a Hopf subalgebra of it.

Remark 6. Note that if « is a dotted composition, the coproduct of H, depends both on
the fermionic degree of o and on the action of A on each H,,. In particular, if df(«) €
{0,1}, the summands of A(H,) are all positive. Otherwise, some of these summands can
be negative. For instance, if a = (0, 1,0), we have
A(H,) = H|3|®1+ HD®H.+H.®HD+H,®H5
-H,®H, + Ho® H, — H, ® H; +1® H, .
O : . Q

o[ Je

In Subsection 7.1, we will give formulas to compute the coproduct of H, in terms of trees.

4.1 Polynomial Hopf subalgebras

Here, we present two simple Hopf subalgebras of sSNSym, which can be realized as Hopf
algebras of polynomials in one variable.

The first one is the well known Hopf subalgebra of sSNSym generated by H;, which is
isomorphic to the classical Hopf structure of polynomials in one variable X, by identifying
H, with this variable. It is easy to check the following

n

n
A(H(ln)) = Z (k’) H(ln—k) ® H(lk), where H(lo) = 1.
k=0

The second substructure is the Hopf subalgebra of sNSym generated by H,. To
describe the coproduct of Hg.y = Ho--- Ho, n times, for 0 < k& < n we define the
following number

) 1 iftk=0ork=n,
Cln,k)=4 0 ) if n is even and k is odd,
Cn—1,k—1)+C(n—1,k) otherwise.

Note that if n is odd and k is even, then

Cln,k)=C(n,k+1)=C(n—1,k). (4)
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Diagrammatically,

n = 1

n= 1 1

n= 1 0 1 1
n=23 1 1 1 1 1 1
n= 1 0 2 0 1 1 2 1
n= 1 1 2 2 1 1 1 3 3 1
n = 1 0 3 0 3 0 1 1 4 6 4 1
n= 11 3 3 3 3 1 1

n==~§ 1 0 4 0 6 0 4 0 1

Observe that the classic Pascal triangle appears whenever n and k are both even.
More specifically, we have the following result.

Proposition 7. We have C(2n,2k) = ( > for all 0 < k < n. In consequence, we obtain
- n—1 ~ n—1
C(2n —1,2k) = ( i ) and C(2n—1,2k—1) = (/{:—1)'

Proof. We proceed by induction on n. If n = 0, it is clear because k = 0 as well. If n > 0,
by applying (4) and the induction hypothesis, we have

C(2n,2k) = C(2n — 1,2k — 1) + C(2n — 1, 2k)
=C(2n — 2,2k — 2) é(zn —2,2k)
=C( Q(n —1),2 C(2(n —1),2k)
- n — 1
B k
=() :
Proposition 8. For 0 < k < n, we have A(Hgn)) = C(n, k) H (on—+) @ Hgry, where

k=0

Proof. We proceed by induction on n. The result is obvious if n € {1,2}. If n > 3,
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assume that claim is true for smaller values. By the induction hypothesis, we have

n—1
k=

:H(O)®1 0n1®H+Z D*C(n — 1,k) Hgn xy ® Hp

Z n — 1 k‘ H(On (k+1)) ® H(0k+1)

k=1

-1
+3 [C(n — 1k = 1)+ (1) C(n — 1, k)| Hgnory ® Hyey.

If n is even, we have C'(n—1,1) = C(n, 0) =1, and so 1—C(n—1,1) = 0. For k odd, we
have C'(n — 1,k —1) = C(n —1,k), then C(n — 1,k —1) + (= )kC’(n —1,k) =0, because
(—1)* = —1. For k even, we have C'(n — 1,k — 1)+ (~1D)*C(n—1,k) = C(n— 1,k — 1) +
C(n—1,k)=C(n,k).

Now, assume that n is odd. If k is even, by using (4), we have C(n — 1,k — 1) +
(=1)C(n—1,k) = C’(n —1,k)=C(n, k). Finally, if k is odd, we have Cln—1,k—1)+
(-D*C(n—1,k) =C(n—1,k—1) = C(n, k). O

By using Proposition 8 and Proposition 7, we obtain

n

n
° A(H(Ozn)) = Z (k’) H(02n72k) (%9 H(()%).

k=0

n—1
n—1 n—1
o A(Hgon 1)) = Z( N >H(02n 1-2k) ® H oy +Z( 1)H(02n2k) ® Hgor 1y
k=0

By identifying H, with the variable X, we obtain a new structure on the set P of
polynomials in one variable. In particular, the fermionic degree inherits an algebraic
structure on P ® P given by

(Xml ® sz) . (Xm ® an) — (_1)m2n1Xm1+n1 ® Xm2+n2.

Note that the algebraic structures presented above differ in their coalgebraic structure.
For instance, the coproducts of X*, with respect to the identifications above, are given
respectively by

X1 4+4X°0 X +6X2 X2 4+4X X3 +10X* and X*'@1+2X?@X’+1@ X%

THE ELECTRONIC JOURNAL OF COMBINATORICS 31(3) (2024), #P3.28 14



4.2 Antipode

Recall that the antipode of a connected graded bialgebra H can be defined as in (1).
For a dotted composition «, denote by rev(a) the dotted composition obtained by
reversing its components.
It is well known that [23, Remark 5.3.4], for a usual composition «, we have

S(Ha)= Y (=1)WH,. (5)

B=rev(a)

A similar result can be generalized for dotted compositions up a sign that depends on the
fermionic degree. Previously, we determine the antipode of generators indexed by dotted
compositions of length one.

Proposition 9. For every integer n > 0, we have S(H,) = Z (-1 H,.
a=(n)

Proof. We proceed by induction on n. Since A(Hy) = 0, S(ffo) = jlf{o. Consider n > 1
and assume the claim is true for all k < n. By applying (1), as A(H,) = Z;é(Hk ®
H, + H,_j ® Hy), we obtain the following formula

S(H,) = < S Hy p+ S(H,- k)Hk>>

k:O

By rewriting Z S( H k) Hpn_k as Z S(H,_x)Hy and applying the induction hypothesis,
k=1

k=0
we obtain

3
—

S(H,) = —Hp+ > > (=)W HyH + (-1 O Hy [,
k=1 p=(mh) 0 g=(m)

B
Il

where m = n — k. On the other hand, if o < (n), then either H, = HzH,, for some
k € [n] and 8 < (m), or H, = HzH}, for some k € [n]o and 8 < (7). Hence, the result
follows. O

For instance, from the lattice in (2), we obtain

S(Hpe ) = —Hm,+ng+de+HE,+H HE—HE—HE.

Proposition 10. For a dotted composition «, we have

S(H.) = (D)) ST (—1) P H,,

B=rev(a)
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Proof. Let « be a dotted composition with k& = ¢(«), and, for each ¢ € [k], let a; be the
fermionic degree of («;). Note that a; = 1 if a; € N and a; = 0 otherwise. If k = 1, the
result follows from (5) or Proposition 9. Now, assume that k£ > 2. Since the antipode is
a signed antihomomorphism, Proposition 9 implies that

S(Ha) = (=1)"S(Ha,) -+ S(Hay) = (1) Y (=1)WHj,

p=rev(a)
where
k—1
a = Zai(aiﬂ + 4 ak).
i=1
Now, we will show that a = (dfga)). Let a4, ..., 0, with 9y < --- < 45, be the dotted
components of «, that is, s = df(a). We have a;;, = --- = a;, = 1 and a; = 0 otherwise.

This implies that

vl
—_

S
I

ai'( 41 —|—+6L13)

J

M A )N

2 2 2 2
1

[V
I
—_ =

.
Il

Note that Proposition 10 is dual to [16, Proposition 5.10] for the antipode of M, in
sQSym.

4.3 Primitive elements

In this section we study the primitive part of SNSym. Recall that the classical noncom-
mutative power sum functions P, are defined recursively by P, = H; and

n—1

> HyPoy=nH, n>1 (6)

k=0

It is known that P, is a primitive element of the Hopf algebra NSym, and that the
primitive part of NSym is the free Lie algebra generated by these functions [20, Subsection
3.1]. Note that, as NSym is a Hopf subalgebra of SNSym, then P, is a primitive element
of sSNSym as well.

Here, we determined another primitive elements of sSNSym, which are defined recur-
sively by ¥, = Hy and

n—1
U, =H,— Y H, ¥, n>1. (7)
k=0

Proposition 11. For every n > 0, V,, is a primitive of SNSym.
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Proof. By definition, W is a primitive, so we proceed by induction on n. Assume the claim
is true for all k£ < n, that is A(Vg) = V. @14+1@Wy. Since A(H,_x) = Z;g H,®H, 11,

we obtain
n—=k
A(H, i )A(T,) = <Z H; ® Hn_;H) (U, @1+ 1@ Uy)
=0
n—k n—k
= D HV®Hyy+ ) Hi® Hy V.
1=0 =0
Hence,
n—1
k=0

= (Hy ® Hy + Hyop, @ Hy)
k=0
n—1 n—k
- (HiV, @ Hy_p—i + Hypjpy @ H;Wy,).
k=0 i=0
Rewriting both sums, we get
A(Y,) = Z(ﬁln—i®Hi+Hi®ﬁn—i> +H,®1+1®H,

=1

k=0 k=0
=1 k=0 k=0
= [(ﬁn_i - Hn_i_kwk> © H+ H; © <ﬁfn_i - Hn_i_kwk>
i=1 k=0 k=0
~ n—1 ~ n—1
4+ (Hn _ Z anqfk) R1+1® (Hn — Zan\ka> .
k=0 k=0
Due to (7), we have
n—i n—1
H, ,— Z H, ; W, =0 and H,—> H, U, =1,.
k=0 k=0

Therefore A(V,,) =¥, @1+ 1 V,.
Recall that P, can be written as, see for instance [23, Equation (5.3.13)],

a=(n)
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Now, by an inductive argument, we have the following proposition for ¥,,.

Proposition 12. For every integer n > 1, U,, is the sum of 2" terms given as

For instance, W3 is given by the following sum of eight terms.
Uy = Hyqy — H, + H, + H, — H, — —|—
o B A

e~ Mo

Recall that if « is a usual composition of length £, then P, = P,
that, see for instance [23, Equation (5.3.14)],

- P,,. It is known

1..

Z Pa, where v, = aj(ag +ag) - (ag + -+ + ay). 9)

This together with (7) imply the following

Hn:@n+z Z iPa 0,

k=0 \a=(n—k) ¢

Remark 13. Since sNSym is free on the H,,’s and H,’s, and the results above imply that
these generators can be written in terms of the P,’s and W¥,’s, we get that sNSym is
free on ¥ := {P, | n € N}U{¥,, | n € Ny}. Note that sSNSym can be regarded as a
Hopf superalgebra by considering the Zs—grading induced by the fermionic degree. Thus,
sINSym is isomorphic, as a Hopf superalgebra, to the free algebra T'(V).

To describe the primitive part of SNSym, we consider the bilinear map [, ] : SNSym x
sNSym — sNSym defined by [H,, Hs] = H,Hz — (—1)¥@HBO H H  for all dotted
compositions «, 5. With this operation, SNSym is a Lie superalgebra. The following
result is immediate.

Proposition 14. If x,y are primitive elements of sSNSym, then [z,y]| is primitive as
well.

As a consequence of Remark 13 and Theorem 1, we get the following result.

Proposition 15. The primitive part of SNSym is the free Lie superalgebra generated by
{P,|neN}U{¥Y, |neNp}.
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5 Noncommutative elementary and power sum functions in su-
perspace

In this section, we introduce noncommutative analogues of elementary (Subsection 5.1)
and power sum (Subsection 5.2) functions in superspace by means of generating functions.
More precisely, we will use two generating functions given in [11, Section 3], adapted to
the noncommutative context. This approach follows the one given in [20, Subsection 3.1].
In each subsection we get that these families of functions form bases of sSNSym.

As in [11, Section 3], we consider ¢ and 7 be two indeterminate parameters with 72 = 0.
In what follows, we write the generating function [11, Equation (3.16)] of the complete
homogeneous functions H,, and F[n, by

At,7) =Y t"(H, + 7H,),

n>0

5.1 Elementary functions

The elementary functions in superspace are defined by means of the following generating
function [11, Equation (3.4)]

o(t,7) = Zt"(Sn +75,) satisfying o(t,7)A\(—t, —7) = 1. (10)
n=0

Observe that (10) coincides with the generating function in [20, Equation (22)], that
defines the classical noncommutative elementary functions, whenever 7 = 0.
The following proposition is a noncommutative analogue of [11, Lemma 22].

Proposition 16. Forn > 1, we obtain the following recursive formulas:

Z(_l)n_kaSn—k = Z(—l)n_kSan_k =0 and
k=0 k=0

> (1) (SpHyoy — SkH,g) = 0.

k=0

Note that .S, is the classical noncommutative elementary function and

0

3
—

i

Proposition 17. For every integer n > 0, we have S(H,) = (—=1)"t1S,. As a conse-
quence,

Sp=(=1)"" > (-1 H,,

a=(n)
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Proof. We proceed by induction on n. Note that S(]:IO) = —S, because Sq = H,. If
n > 1, assume the claim is true for all £ < n. By rewriting the coproduct of H,, as

A(H,) = ZHk ® Hpp, + Z Hy ® H, oy,
k=0 k=0

we obtain

S(1,) = (ﬁn S SH) Y S(ﬁk)Hn_k> |

Proposition 16, the fact that S(Hy) = (—1)*Sj and the induction hypothesis imply that

n n—1
S(H, = - (ﬁn + ) (—1)FSpH,p + Z(—l)“lSank)
k=0

k=1
- ((—1)"Sn]:fo +) (-1 (Skﬁn_k - S“an—k))

n—1
= (-1 (Snf{O + Z(—l)nfk <Skﬁn7k — ngn7k>
k=0

= (=1)"*1S,.
Finally, Proposition 9 implies that 5, = (—=1)""" Y~ (=1)"“ H,. O

a=(n)

n

Proposition 18. For everyn >0, S, = Z(—l)”’k\Pn,kSk.
k=0

Proof. Proposition 17 together with (7) and Proposition 11 imply the following

(—1)"S, = S(H,) = > S(Hoi)S(We) = > S(Hooi)(—Ty).
k=0 k=0
Then, as S(H,_;) = (=1)"7*S,_;., we get
(18, = S-S = (1) S (1),
k=0 k=0
Therefore S, = Z(—l)k\I/kSn_k = Z(—l)”_kllfn_kSk. O
k=0 k=0

Proposition 19. For every n > 0, we have

n

A =3 (Sk® Snk+ S ® i)

k=0

In consequence, S(S,) = (—1)"*'H,,.
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Proof. Proposition 11 implies that A(V,) =¥, ® 1+ 1 ® ¥,. Also, it is known that

k !
= Zsi ® Sk—i = Z Sk—i ® S;.
=0 =0

Thus, by using Proposition 18, we have

n

A(S,) = Z(_l)n_kA(\Pn—k)A(Sk)

k=0
k=0
n k
= [(—1)n_k\lfn,ksi ® Sk_i + Sk ® (_1)n—kaniksﬂ
k=0 i=0
= [(—1)"W;S; @ S + Sk ® (—1)"¥,5;]
i+j+k=n
n k ‘ -
— Z [(Z(_l)k—upk_isi> ® Sy + Snk @ (Z(—l)’“—wk_isi)]
k=0 =0 i=0
(S’k ® Sp—k + Snr ® §k> . O
k=0
For a dotted composition o = (aq,...,as), we set Sy = Sy, -+ Sa,. By Proposition

16 and an inductive argument, we get the following formulas:
H, = Z (_l)f(a)sa and fj]n = Z (_1)6(04)50['
a=x(n) o=()

This implies that {S, | o is a dotted composition} is a basis of SNSym.

5.2 Power sum functions

The power sum functions in superspace, formed by the classical P, and its analogue in
superspace P,, are defined by means of the following generating function [11, Equation

(3.39)]

(¢, 7) := Zt”(Pn +7(n+1)P,) satisfying A(t, 7)IL(t,7) = (td; + 70, )A(t, 7). (11)

n=0

Observe that (11) coincides with the generating function in [20, Equation (23) and Equa-
tion (24)], that defines the classical noncommutative power sum functions given in (6),
whenever 7 = 0.

Due to this relation, we get the following noncommutative analogue of [11, Lemma
26).
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Proposition 20. For every n > 0, we have
3 (ﬁzn_kpk vk 1)Hn_kﬁ’k> = (n+1)H,, where Py=0. (12)
k=0

Proof. We have (t0, + 70, )\(t,7) = Z t" [an +7(n+ 1)[:14 . On the other hand,

n=0

AT = Y [Z R (Hy o+ 7 Ho ) (Py + 7(k + 1)By)

n>0 k=0

= Ztn [Z H,_.P.+ TZ((}C + l)Hn_kPJg + gn—kpk)
k=0 k=0

n=0

Then, due to (11), we get (6) and (12). O
Proposition 21. For every n > 0, we have
(n+ 1P, = > (1) rg(a)|Ha,
az(n)
where | rg(a)| denotes the degree of dotted composition (rg(a)).

Proof. We proceed by induction on n. Proposition 20 implies that Py = Hy. Let n > 1
and assume the claim is true for 0 < & < n. By Proposition 20, we have:

n n—1
(n+1)Py=(n+1)Hy, =Y Hy P — Y Hy i(k+1)P
k=1 k=0
By replacing P; as in (8) and applying the induction hypothesis to (k 4 1)P;, we obtain
the following

(n+ )Py = (4 DH, = Hog| D (-1) 9 1g(a)H,

k=1 a=x(k)
n—1
= Hoi| Y (1) rg(a)|H,
=0 o= (k)
= (et DH =) 0y (=D rg(a) H, 2y,
k=1 a=(k)
n—1
> > D rg(a)[Hip-pa
k=0 0= (i)
= (=) rg(@) Hi, gy
k=1 a=(k)
n—1 -
+ (1) rg()| Hn-rya + (n+ 1) H
k=0 o< (i)
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Since {a | a < (n)} = {(n—k)a |k € [n] and o < (K)}U{(n—k)a | k € [n—1]; and o <

(k)Y and ¢((n — k)a) = £((n — k)a) = £(a) + 1, the result follows. O
Proposition 22. Py = U, and for every n = 1, we have
n—1
(n+ )Py = (n+ 1)U, + Y [Py, Uy (13)
k=0

Proof. As H, = H;U, + U, Proposition 20 implies that Py = Hy = U, and 2P, =
2U; + [P, ¥o]. Now, we proceed by induction by assuming the claim is true for all
1 < k < n. By Proposition 20, we have

n—1
(n+1)B, = (n+1)H, — H\IIO—Zank+1Pk—ZH P
k=1 k=1

The induction hypothesis implies that, for each 1 < k < n, we have

k—1
(k+ 1) = (k+ D)W + > [Pes, T4,
i=0
Due to (7), we have (n + 1)H, = (n +1) Z H, V. Then, applying the induction hy-

k=0
pothesis, we have

n—1 n—1 k—1 n
(n+1)P, = nw, + Z n—k)H, 1V, — Z (an Z[Pkfip ‘I/z]) - Zﬁnfkpk-
i—0 k=1

Now, by (6), we have (n — k)H,,_), = ZH” k—;P;, which implies

i
L

0 k=
n—

=
Il
= O

n—1

= Y Py Ui+ Y Hy(PoWo+ -+ P,y y).
k k=1

0
On the other hand, because of (7), we have

n n n—k n—1 n—1
nkPe = (Z Hy 5V ) Pe=> P+ > Hp(YPyj+ -+ Up 1 Py).

k=1 k=1 \j=0 k=0 k=1

Then,

n—1 n n—1 n—1 /n—k—1
S (n—k)Hy k=Y Hy pPo=> [Pop, T+ ( [Pr—k—i» Wi]) '

k=0 k=1 k=0 k=1
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The results above implies that

—_

(n + 1>Pn = (n + 1)\1171 + Z[Pn—ka \Pk] + z_: Hy, ( _Zf [Pn—k—i, Wz])

=0

3

o

£ (o)

=Mn+1)U,+ > [Py Vgl O

@
[y

-
[e=]

Since P,_j and Wy are primitive elements (Subsection 4.3), Proposition 14 implies
that [P,_x, ¥x] is also a primitive element. As an immediate consequence we have the
following result.

Corollary 23. P, is a primitive element of sSNSym for all n > 0.

In the following proposition, we write ¥, in terms of the P’s and P;’s. To simplify

the notation, for gq,..., g, in a Lie algebra, we set
| ifn=1,
91,9l { l91,[92,- -, gn]] ifn>1

Proposition 24. For every n > 0, we have

(—1)t@)+1 i (—1)t) i
\Ijn: —Pal,...,Pai,Pa —Pa17"'7pa7p ’
2 ( e e Pl T v 1o

a:(alz"'7ak)

k—1
where the sum is over all usual compositions a of n, and t, = H(ozi +-Fa+1).
i=1

Proof. The proof follows by applying Proposition 22 and an inductive argument on n. [J
As a consequence, we obtain the following result.
Corollary 25. The Lie superalgebras generated by P;,V; and P,, P; respectively, coincide.

For a dotted composition a = (ay,...,qx), we set P, = P,, -+ P,,. Due to (9),
Proposition 20 and an inductive argument, we get the following formula:

where a = (o, ..., -1, &, @iy, . .., ), and

ai—Fl
arfa +ag)---(ar+- - Faig)(ar o+ 1) (ar b+ 1)

Qo =
This implies that {P, | « is a dotted composition} is a basis of SNSym.
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6 Ribbon Schur functions in superspace

Classical noncommutative ribbon Schur functions were introduced in [20]. These func-
tions form a dual basis of the so—called fundamental quasisymmetric functions [21]. In
superspace, there are two kinds of fundamental quasisymmetric functions [16, Subsection
5.5], which depend on two different partial orders on dotted compositions.

In this section, we extend noncommutative ribbon Schur functions to superspace. We
introduce a first kind of these functions via the partial order defined in Section 3. Then,
we introduce a second kind of these functions via a restriction of this order (Subsection
6.1). These functions form new bases of the Hopf algebra sNSym, which will be shown
to be dual to the fundamental quasisymmetric functions in superspace (Subsection 7.2).
We give explicit formulas for the product of noncommutative ribbon Schur functions in
superspace and write other bases of SNSym in terms of these functions.

Let a be a dotted composition. The noncommutative ribbon Schur function in super-
space R, is defined inductively as follows

R,=H,- > R (14)

a<p

Notice that R, = H, whenever « is maximal. Furthermore, if o is a usual composition,
R, is a classical noncommutative ribbon Schur function.

To characterize the product of ribbon functions in superspace, we introduce a new
(partial) operation ® on dotted compositions. Given a = (ay,...,a,) and = (51,...,[5s)
be two dotted compositions such that o, and 3y are not dotted at once, we define a® 8 =

(a1, 1,0 B By, Pa, ..., Ps). For instance,
o[ 0 of
LI © e = _of []
° L] L1

In particular, due to Remark 3, we obtain the following identities relating ® and the usual
concatenation:

(@op)er=a0 (o), (af)or=aor), (@0Br=a6(bz), zeNUN
The following is the main result of this section.

Theorem 26. Let o, B be two dotted compositions. Then

_J Rag if rg(a), b1 € Ny,
HafRp = { Rog + Racp  otherwise.

To prove Theorem 26, first we need to show Lemma 27, Lemma 28 and Lemma 29.

Lemma 27. Let a be a dotted composition, and let x € NU No.
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1. Ifx €N, then (ax)! ={Bz | a X BIU{BOz|a =< B}

2. If v € N, then (ax)! = {Bz | @ < B} whenever rg(a) is dotted. Otherwise, we have
() ={Bz |a =X BtU{BOz|a =0, 1g(8) € N}.

Proof. By definition, (ax)? = {7 | ax < v}. Note that, in all cases, the set on the right
is contained in (ax)'. Conversely, for v € (az)', we distinguish three cases.

Let x € N. If rg(y) = x, the other components of v are obtained as @-sums of
consecutive components of a. So, v = Sz for some 8 = a. Now, if rg(y) # z, there is i
such that rg(y) = afi] ® x, where ali] is the @—sum of the last £(a) — ¢ — 1 components of
a. Note that at most one of the components that define afi] is dotted. Consider 4" such
that v = 7' rg(y) and define the dotted composition f = +'«[i]. Since 7 is obtained by
G-summing consecutive components of the dotted composition formed by the the first ¢
components of «, we obtain that § = « and v = ©® z.

If z,rg(e) € N, they are not @ summed when consider elements in (az)!. Then
~v = Bz for some dotted composition 5 > «a.

Finally, consider € N and rg(a) € N. As in the first case, if rg(y) = z, there is
B = «a such that v = fz. Now, if rg(y) # z, as above, v = 5 ® z, where = +'a[i] with
ali] € N because z is already dotted. O

Notice that, from the previous lemma, for z,y € NUN, we have

= { T ™ 13

Lemma 28. Let a be a dotted composition, and let x € NU N. Then

R, if rg(a),z € NO,

FoHy = { Row + Rooe  otherwise.

Proof. We proceed by induction on the length of a. If ¢(a)) = 1, we have R, = H,. So,
the result follows because of (14) and (15). Now, if () > 1, assume the result is true
for all dotted compositions of smaller length. Recall that if & < 3, then ¢(5) < ¢(«), and
that, by definition, we have

Ro=H,—» Rs then RoH,=H, —Y RgH,=» R,—Y RgH,.
a=<p a=p az=y a=<p

We distinguish two cases. If v € N, Lemma 27 implies that (az)" = {8z | « < S}U{BOx |
a = (B}. This together with the induction hypothesis implies that

RaHx = Z(Rﬁx + RB@CE) - Z(Rﬁw + RB@:L") - Rax + Ra@x-

a=p a<p

Let # € Ny. If rg(a) € Ny, then rg(8) € Ny for all 8 = «, and, by Lemma 27, we have
(ax)" = {Bz | « < B}. By the induction hypothesis, we obtain

RoH, =Y R — Y Rgy = Raa.

a=p8 a<p
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Now, if rg(a) € N, since {5 = a | rg(8) € N} is nonempty, Lemma 27 implies that
Hax = Z R,Bx + Z R5®x~
a=p a=p,rg(B)eN

On the other hand, by applying the induction hypothesis for 8 > «, we have RgH, = Rg,
if rg(8) € Ny, and RgH, = Rp, + Rae. if rg(8) € N. Hence,

RaHx = Z Rﬁx + Z RB@J} - Z Rﬁz - Z RB@x = Rax + Ra@x-

a=p a=p,rg(B)EN a=<p a=p,rg(B)EN
This concludes the proof. O
Lemma 29. Let a be a dotted composition, and let B = (z,y) for some xz,y € NU No.
Then .
RoRg = { ZZZ + Raop Zofz]fffi“(gi)s’f =
Proof. Notice that, by Lemma 28, we have

p._ { BBy if 7,y € Ny,
g R,R, — R.;c, otherwise.

First, we assume that rg(a), z € Ny. If y € Ny, then
R.Rs = Ry(R:R,) = (RyRy)Ry = Rox Ry = Rap.
On the other hand, if y € N, then

RyRs = Ry(R.R, — Ricy)
= (RoR.)R, — RoRyoy
= Rany - Ra(x@y)

= Rawy + Riaz)oy — Rawoy)
== Raﬁv

because z ® y € Ny and (az) Oy = alr ©y).
Now, we assume that {rg(a),z} ¢ Ny. We will distinguish several cases.
In general, if x € N, we have

R.,Rs = R.(R.R,— Ricy)
= (RoRy:)Ry — RoRyoy
- (Ragg + Ra@m)Ry - RaRny
= Ry Ry + Roeally — RoRyoy
= Ruopg+ Riwyoy + Race Ry — RaRyoy-

This equation depends on the set the elements rg(«) and y belong to. If rg(a) € N, then
rg(a ® z) € N, hence

RoRg = Rap + Raz)oy + Riaowyy T Raow)oy — Ra@oy) — Rao@oy) = Ras + Raos
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because (ar) ©y = a(z ©y) and a © (z ©y) = (¢ © ) © y. Now, consider rg(a) € No.
Notice that rg(a ® x) belongs to Ny as well. If y € N, then

Ralts = Rag + ooy + aoayy + Raoney — Ra@ey) — Raooy) = Hap + Racp.
On the other hand, if y € Ny, then
RoRg = Rag + R(ar)oy + R(acw)y — Ra(zoy) = Rag + Racgs-
Finally, consider # € Ny. As {rg(a),z} ¢ Ny, then rg(a) € N. If y € Ny, then
R.Rs = (RyR;)Ry = (Raz + Rocs) Ry = Rap + Raop,
because (¢ ® z)y = a © (zy). If y € N, then

RoRg = (RoR:)Ry — RaRaoy
- (Raa: + Ra@m)Ry - Ra(z@y) - Roc@(:c@y)
= Rap + Razyoy T Raon)y + Race)oy — Ra@oy) — Rao@oy)
- Raﬂ + Ra®5.

This concludes the proof. O

Proof of Theorem 26. Due to Lemma 28 and Lemma 29, the result is true when ¢(5) < 2.
So, we will proceed by induction on the length of 5. Assume that ¢(8) > 3, that is,
B = ~x for some dotted composition v satisfying ¢(v) = ¢(8) — 1, where x = rg(f). In
particular, we have 3 = 1 and rg(vy) # 1. Moreover, by Lemma 28, we obtain

. R\R, if rg(y),z € No,
p R,R, — R, otherwise.

We will distinguish some cases.
First, assume that rg(a), 5 € No. If rg(y),x € Ng, by the induction hypothesis, we
obtain
RoRs = Ro(RyR;) = (RoRy)Ry = Roy Ry = Rop.

On the other hand, if {rg(7), z} ¢ Ny, the induction hypothesis implies that

R.Rz = RQ(R,YRI — R,YQI)
(RQRV)RI — RQRV@C
= Ra'sz - Rah@w)

= Rap + Riay)oz — Rayow)
= Raﬁ

because (y® z); € N and (o) ©@ 2 = a(y ® z).
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Now, assume that {rg(a), 81} ¢ No. If rg(7), z € Ny, by the induction hypothesis, we
obtain
R.Rs = (R.R,)R,
= (Ray + Rucy) Ry
= RO,YR;C + R((X@W)Rm
= Rus + Riaeos
= Raﬁ + Ra@g

because rg(ay) = rg(7),1g(a ©v) € Ny and (a ©®7)z = a ® (yx) = a ® . On the other

hand, if {rg(v),z} ¢ No, then
RoRs = Ry(R R, — Ryou) = (RoRy) Ry — RoRyon.
Since (y ® x); = 1 # x and rg(a ® ) = rg(7), the induction hypothesis implies that

RoRg = (Ray+ Raon) Rz — Raye2) — Raoyom)

Roy Ry + Raoy Ry — Ra(yoz) — Rao(ron)

= Rap + Riay)oz + Raoye + Raoyor — Ra(yoz) = Raopor)
= Raﬁ + Ragg

because a ©® (YO z) = (@@ y)r = a® (yx) = a® f and a(y ©® z) = (ay) © . This
concludes the proof. O

Now, by using the previous results, we write noncommutative ribbon Schur function
in superspace in terms of the noncommutative homogeneous functions in superspace.

Proposition 30. Let a be a dotted composition. Then

R, = Z(_l)f(a)*f(B)Hﬁ_

a=p

Proof. We proceed by induction on the length of . If ¢(«) = 1 the result is obvious. If
¢(a) > 1, assume that the result is true for dotted compositions of smaller length. Let o/
be such that o = o’z with = rg(«). We distinguish two cases.

Ifrg(o),z € Ny, Lemma 28 implies that R, = Ro H,. So, by the induction hypothesis

Ra _ Z(_l)f(a’)ff('Y)H’ny — Z(_1>@(a’)+17€(7x)[_]’yx'

o/ Xy o/ 2y

Since rg(a), z € Ny, then of = {# | a < B} = {yz | &/ <~} = (¢/)", hence

R, = Z(_l)f(a)*f(ﬁ)}[ﬂ.

a=p
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Now, if {rg(a/),z} ¢ Ny, Lemma 28 implies that R, = RaHy — Raroe. So, by the
induction hypothesis, we have

R, = Z(_l)f(a’)—f(v)Hwa _ Z (1)@ Dt

o' <y o Oz=ry
_ Z Z(a )+1=L(yx) I e+ Z Lo/ Ox)+1— K(W)Hy
a' =y a'Oz=y
- Z(_l) (-t g+ Z g
a' <y o' Or=y
— Z(_l)f(a)—f(ﬂ)]—]ﬁ. 0
azp

In what follows of this section, we give explicit formulas to write other noncommutative
functions in superspace, defined in previous sections, in terms of the noncommutative
ribbon Schur functions in superspace.

Proposition 31. Wy = Ry, and for every n > 1, we have ¥,, = (=1)"Ryu ).
Proof. We proceed by induction on n. Note that ¥, = Hy = Ry, and that
Uy = Hy — Hi¥y = Ry — RiRy = R — Ry ) — Ri = =Ry ).

Assume the result is true for all £ < n. So, by definition and the induction hypothesis,
we obtain the following

n—1 n—1
U, = Hy =Y Hy Uy = Ry — RoRy + RuoaRyg) — > Ruok(—1) R g
k=0 k=2

Now, Theorem 26 implies that R,y R 1x oy = R_p1k0) T B k-1),15-1,), hence

n—1 n—1
¥, = Ry 110 — Z(—l)kR(n k1k,0) Z(_l)kR(nf(kfl),lk—l,())
k=2 2
n—1 —
- R(n_1>170) - Z(_l) TL k, 1k 0) + Z k IR(n_(k_l)’lkflx))
n—2 k=2 n—2
= _Z(_l)kR(n—k,lk,O) (_ ) R(l",O) + Z(_1>kR(n—kz,lk,0)'
k=1 k=1
Therefore W,, = (—1)"Rn ). O

Note that 1™ is the minimal element in the lattice of compositions of n with the usual
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order. This implies that

= (=" ) (1) Hy
"5

= (1" Y (-1)VHg
B(n)

= (=1)"S(H,)

= S,

(16)

In the following proposition, we write S, in terms of noncommutative ribbon Schur
functions in superspace.

Proposition 32. We have S, = ZR(1k7071n—k) + Z Rk-1j gn-ry, for alln > 1.
k=0 k=1

Proof. By Proposition 18, Proposition 31 and (16), we have

n—1 n—1
Sn = (_1)71\1/“ + Z(_l)kqjksn—kz - R(l",()) + Z R(lkVO)R(ln—k).
k=0 k=0
Now, by using Theorem 26, we obtain the result
n—1
Sn - R(1n70) + Z [R(lk,('),l"*k) + R(1k7i71n—k—1)}
k=0
- R(l’“,o,l"*k) + Z R(lk—lijlnfk)- D
k=0 k=1

Recall, for the classical case [20, Corollary 3.14], we have

—_

n—

Po=) (-D)*Rur, gy, n>1l (17)
0

iy

To finish, we give a explicit formula of P, in terms of noncommutative ribbon Schur
functions in superspace.

Proposition 33. For everyn > 1, we have

(n+1)FP = =R+ (=1)"Rang)
n—1 k k
LS (z R 43 R<)) |
k=1 =1 1=0

Proof. The result follows by applying inductively Proposition 20, (17) and
Theorem 26. L
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6.1 Ribbon Schur functions of the second kind

As it was shown in [16, Subsection 5.3], there is another partial order on dotted composi-
tions, obtained by restricting <. Specifically, given dotted compositions o and 3, we say
that 8 r—covers «, if [ is obtained by summing two consecutive components of « that
are not dotted. The partial order obtained by the closure of this relation is denoted by
=<, and gives another poset structure to the collection of dotted compositions. Note that
a =, fimplies a = 8. Also, with this order, a dotted composition whose components are
all dotted is comparable only with itself.

For a dotted composition a, we denote by o' the upper closure of a with respect to
=,, that is, o' is the upset {3 | @ <, }. Note that o' has a unique maximal element
obtained by summing all the undotted consecutive components of a. For instance, if
a=(0,1,2,1,3,5,1,2), the maximal of o' is (0,3,1,9,2).

By using this partial order, we define, inductively, a second kind of ribbon Schur
functions ) )

Ro=H,— Y _ Rs.
a=.fB
For instance, Ry 11100 = Ho,1,1,1,0) — Ho,0,1,1.0) — Hoz,n0) T Heoz,0)-

Note that R, = Ra whenever « is a usual composition. Furthermore, if o has no
consecutive undotted components, then R, = H,. For instance, R(i,3,275) = H(izs5)

By adapting Theorem 26, for dotted compositions «, 3, we obtain the following result:

~

Rag otherwise.

RQRB — { RO‘B + Ra@ﬁ lf rg<a)7 /81 € NJ (18)

A

For instance, R2,1) - Ry 13 = Ra1,1,1,8) T B3 and Ry s - Reyy = R 1321
As a consequence of (18), we have:

a=f8

The following follows directly by induction:

n

U, = RO, and V¥, = Z(_l)n_k}?(ln—k,k) forall n>1,
k=0
gn = (—]_)mR(lnfnL’m) + Z Z(_]‘)kR(lm_k,k,ln_m) fOI‘ al]. n 2 ]_
m=0 m=0 k=0

7 Related structures

7.1 sNSym as a Hopf algebra of trees

In this subsection, we give a realization of SNSym as a Hopf algebra of planar rooted
trees.
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Hopf algebras generated by trees have been widely studied and there is an extensive
literature on it. See for example [25, 18, 1]. The Connes—Kreimer Hopf algebra, generated
by rooted trees, was introduced in [6] and its noncommutative version Hpg for planar
rooted trees was given simultaneously in [17, 25]. The coalgebra structure of these Hopf
algebras can be described in terms of cuts of trees.

It was shown in [18, 24] that NSym can be realized as a Hopf subalgebra of Hpg.
Here, we extend this description for sSNSym, by identifying its generators with certain
type of planar rooted trees. Cf. [14].

For a planar rooted tree ¢, we define the degree of it, denoted by deg(t), as the number
of its non-root nodes. Recall that a ladder tree is a planar rooted tree with only one
branch. For n > 0, we will denote by ¢, the unique ladder tree of degree n, and we will
identify H, with this tree. The generator H,, is identified with the planar rooted tree ¢, of
degree n + 1 obtained by gluing the roots of a coloured ladder tree of degree one with t,,.
The coloured node of ¢, represents the fermionic degree of H,. For instance, for n < 2,
we have:

A Y
1 H1 H2 Ho Hl H2

Given a dotted composition a with k = ((«), we identify H, = Hy, - - Hq, with the

forest t, = to, - - - ta,, and 1 is identified with ¢,. For instance, for a = (2,0, 2, 3), we have:

SRR IR Y

Hence, the product is obtained by concatenating forests with the assumption that
toto = tota = t, for all dotted composition «.

To the describe the coproduct, we consider admissible cuts on trees. A cut on a planar
rooted tree t is any subset of edges of it. A cut is called admissible if each branch of the
tree contains at most one edge of it. The set of all admissible cuts of a tree ¢ is denoted
by adm(t). Note that the empty cut of ¢ is admissible.

Given a planar rooted tree t and an admissible cut ¢ of it, we call components of t
respect to ¢, the subtrees of ¢ obtained by removing the edges of ¢ from ¢t. We denote
by R°(t) the component containing the root of t. On the other hand, by adapting the
classical case, we denote by P¢(t) the planar tree obtained by removing the non-root nodes
of R°(t) from t and then contracting its edges. For instance,

'vi o
- RC(I3') = %
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It is easy to see that via the identification H,, + t,,, with m € NU NO, the coproduct of
sNSym can be described by means of the following formula

Altm)= Y P(t)®R(t). (19)

c€adm(t)

The notions described above can be extended to the forests ¢, = t4, - - - to,, With a a
dotted composition of length k. Indeed, an admissible cut c of t,, is a tuple ¢ = (¢q, ..., ),
where each ¢; is an admissible cut of t,,, possibly empty. Thus, P¢(t,) and R°(t,) are
given by the following forests:

Pe(ta) = P (tay) - P*(tay),  B(ta) = B (tay) - - B (lay):

We will see in Proposition 34 that the summands of A(t,) can be described by P¢(t,)®
R¢(t,) up a sign induced by the fermionic components of .

Let a be a dotted composition with j = df(«), and let ¢ be a cut of t,. If j > 1, we
denote by o, the unique permutation in &; given by the reordering of the coloured nodes
of t, in P(t,) ® R°(t,). We define the sign of ¢ as follows:

sgn(c):{ 1 if 7 =0,

sgn(o.) otherwise.

For instance, if o = (2,0,2,3,1), we have:
‘\g 2 % 3 4
fo = ? ’xé %
2 3 4 ‘\g %
R AL VE P Re(L,) = e
where 0. = (2,3,4,1) and sgn(c) = sgn(o,) = (—1)3 = —1.
Proposition 34. For a dotted composition o, we have

Alty) = Z sgn(c)P(ty) @ R%(ty).

ccadm(ta)

Proof. Let j = df(a). We proceed by induction on k := {(«). If k = 1, the result follows
from (19). If £ > 1, assume the claim is true for smaller values. We will show that the
summands on both sides of the equation coincide. Notice that A(t,) = A(ta)A(ta,),
where o/ = (ay,...,a,_1). Now, by the induction hypothesis, the summands of A(t,/)
can be written as sgn(c’)P¢ (ty) ® R (ty), where ¢ = (c1,...,cr_1) is an admissible cut
of to. The summands of A(t,,) can be written as P%(t,,) ® R%(t,,), where ¢ is an
admissible cut of ¢,,. Hence, a summand of A(t,) has the following form:

[sgn() P (twr) ® R (tar)] - [P (ta,) ® R*(tay,)]
= sgn(c)(— 1) P (tar) P*(ta,) ® R (tar) R (tay,),
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where a = df(R%(ty)) and b = df(P%(t,,)). Observe that ¢ = (ci1,...,cr1,cx) is an
admissible cut of t,, satisfying

Pe(ta) ® R*(ta) = P (tar) P (tay,) ® R (ta) R (o). (20)

Now, we will show that sgn(c) = sgn(c/)(—=1)%. If j = 0 it is obvious. For j > 1, we
distinguish three cases.

If ap € N, then 0. = 0. and b= 0.

If oy, € Ny and b = 0, then sgn(c/)(—1)* = sgn(ow). Since the coloured node of A(t,, )
belongs to R%*(t,, ), then o, = (04(1),...,00(j —1),7). Thus, the number of inversions
of o and o, coincide, and so sgn(o.) = sgn(c).

If a, € Ny and b = 1, then sgn(¢)(—1)* = sgn(oy)(—1)*. Since oy is determined
by the order of coloured nodes of P¢(t,) ® R (ty), there is i € [j — 1] such that the
nodes positioned in o (1),...,0.(i) belong to P¢(t,) and the nodes positioned in o (i +
1),...,00(j — 1) belong to R (t,). This together with (20) imply that a = j — 1 — 4 and
. = (0g(1),...,00(1),j,00(i +1),...,00(j —1)). Thus, the number of inversions of o,
is the one of o plus j — 1 — . So, sgn(o.) = sgn(oy)(—1)7717" = sgn(ow)(—1)"

Similarly, we prove that for each admissible cut ¢ of t,, sgn(c) P(t,) ® R(t,) can be
represented as a summand of A(t,). This concludes the proof. O

7.2 Fundamental quasisymmetric functions in superspace

The dual structure of sSNSym is the Hopf algebra of quasisymmetric functions in super-
space sQSym. This relation is determined by a pairing (-,-) : sQSym ® sNSym — Q,
which satisfies (M, Hg) = 0ap-

Now we introduce the set of fundamental quasisymmetric functions in superspace { L}
as the basis of sQSym obtained by dualizing the noncommutative ribbon Schur functions
in superspace { Rz} defined in Section 6.

Definition 35. The fundamental quasisymmetric functions in superspace {L,} are de-
fined by
<L0H Rﬁ) = 6045'

In the following theorem, we show that this basis coincides with the set of fundamental
quasisymmetric functions introduced in [16], with respect to the partial order < defined in
Section 3. Moreover, we write M, in terms of Lg and provide a formula for the coproduct
of fundamental quasisymmetric functions in superspace.

Theorem 36. Let o be a dotted composition. Then

Lo=Y Mg, My=>» (-1)OLs  A(Ly)= >  Ly®L,

BRa Bl By=a or fOY=8

Proof. As {M,} forms a basis of sQSym, we can write L, as a linear combination
Lo =) ¢, M,
v
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For a dotted composition 3, we have (L, Hg) Z cy (M

Since (M., Hg) = 0 if v #  and (M,, Hg) = 0 if v = f, then ¢z = (Lo, Hg). This
implies that

Lo =Y (Lo, Hg)Ms.
B

Now, as Hg = Z R, then

B2y

if
T T R TRE

B2y

Thus, Lo = »  Mp.

B
Similarly, as {L,} is dual to the basis {R,}, then it is also a basis of sQSym. Thus,
Ma = 2,8<MQ7R/3>L5

= Y ML D) O L

B B2y
- Z Z<Ma,(_1)f(ﬁ)—f('y)HA¥> Lg.
B LB=xv

Now, Z<M"“ (=1 A H ) is 0 if a < B and it is (—1)“D =4 otherwise. Hence,

B2y
M, = Z(_l)ﬁ(ﬁ)—f(a)[/ﬁ'
Bl
The last assertion follows from Theorem 26 and the duality. [

For a dotted composition «, the coproduct of L, can be obtained by considering all
possible horizontal (o« = ) and vertical (o« = @ 7y) splittings of the ribbon diagram of
«. For instance, for o = (1, 3,2), we have

(1)(3,2) (1,3)( (1,3,2)(

DEEH]DEEH]DEEH]HH el

(1,20(1,2)  (1,3,1)0(1) (1,3)0(0,2) (1,2)0(1,2) (1,1)0(2,2)

Note that, to obtain all possible vertically splittings of o we need to consider both the
left and the right diagram of it. This description extends the one for classical ribbon
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diagrams, see [23, Proposition 5.2.15]. Thus,

Lo ®1

Adg) = 18Ip+ oS lp + Lpm ®Llm *+ L

+L6®DL:B]+LIEP®[EE:|+LEFD®LE] +E|£J:E®L

O

+LE|I'®L';D+ LE|3®L|:ED+ LE®DL:ED.

We also can describe the coproduct of L,, with a a length k dotted composition, by
identifying L, with the forest t,. Thus,

At =181+ 3 S Pl & Ry

=1 c#£0

For instance, for a = (1,3, 2), we have

A(?‘\é%) = .®?‘\§§ - 9®\,§§ + ??@ég + ?‘v%gg%

c208028 + 200 4+ 22008 4 2aast

APLIRTINETS TICRNPTS 1y

Remark 37. By using the ribbon Schur functions of the second kind, defined in Subsection
6.1, we obtain a second kind of fundamental quasisymmetric functions in superspace L.,
which coincide with the ones introduced in [16] with respect to the partial order <,. As
in Theorem 36, we obtain analogous results:

Lo=> Mz  My=)Y (1)L, =3 Ls®L+ Y Ls®Ls,.

6jra ﬁ'<ra B'Y_ BOvY=
rg(B), 7161\'

The coproduct above can be described by splitting ribbon diagrams, where the first sum
represents the horizontal splitting and the second sum represents vertical splitting on
undotted components. For instance,

+L® + L, QL+ Ly ®1+ Lp® L.
M) =16Lp + Lo g fm e g e

7.3 Symmetric functions in superspace

In this subsection, we present some results on symmetric functions in superspace, which
are obtained by the projection 7 from sNSym to sSym defined in [16]. Additionally, we
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obtain a new basis of sSym formed by a new class of functions that we will call ribbon
Schur functions in superspace, which extends the classical ribbon Schur functions in Sym.
Recall that 7 : SNSym — sSym is determined by 7(H,,) := h,, and W(F[n) .= h,. In
particular, this morphism extends the classical morphism from NSym to Sym.
The following proposition characterizes the action of 7w on the families of noncommu-

tative functions in superspace.

Proposition 38. For every n > 0, we have 7(S,) = €, and 7(P,) = 7(¥V,,) = py.

Proof. First, as 7w is a Hopf algebra morphism, we have m o S = S o w, where S de-
notes the antipodes of sSNSym and sSym respectively. Thus, we obtain 7(S(H,)) =
7((=1)""1S,) = (=1)"*'x(S,), and S(n(H,)) = S(h,) = (—1)""'&, [16, Corollary 4.5].
So, (—=1)"*'x(S,) = (—1)"*'¢,. Hence, n1(S,) = &,.

For the second part, we proceed by induction on n. Since py = ho and Py = H,, then
7r(]50) = po. Now, let n > 1, and assume the result is true for 0 < k < n. By [11, Lemma

26], we have

n—1

k=0
By applying 7 on both sides of (12), the induction hypothesis implies that 7(P,) = pp.
Similarly, by applying 7 on (13), we obtain 7(V,) = w(F,), because the Lie brackets
become zero due to the commutativity of the product in sSym whenever one of the

elements has null fermionic degree. O]

n

n—1
Proposition 39. Forn > 1, we have p, = h, — Z N_i1pr and €, = Z(—l)"’kﬁn,kek.
k=0 k=0

Proof. 1t is a consequence of Proposition 38, (7) and Proposition 17. O

Now, we introduce the ribbon Schur functions in superspace. In the classical case,
ribbon Schur functions can be regarded as a special case of skew Schur functions sy,
which are indexed by the so-called skew partitions A/u, where A\, u are partitions such
that the Young diagram of u is contained in the one of A\. The Young diagram of \/pu is
obtained by removing the boxes of the diagram of p from the one of A. This diagram is
called a ribbon diagram if it is connected and contains no 2 x 2 block. In this case, we
can identity A\/p with a composition . Thus, the ribbon Schur function r, is defined as
Sx/u- See [32, Section 7.15] for details.

In superspace, two kinds of Schur functions were defined by means of a specialization
of the parameters of the so-called Macdonald polynomials in superspace. On the other
hand, two kinds of skew Schur functions in superspace were defined in relation with a
generalization of the Littlewood-Richardson coefficients, see [27] for details.

Here, for a dotted composition a, we define the ribbon Schur functions in superspace
ro by projecting the noncommutative ribbon Schur functions in superspace R, on sSym,
that is, r, = 7(R,).
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In what follows of this subsection we will identify a superpartition with the unique
dotted composition obtained by dotting its fermionic part.

Recall that if « is a usual composition, & denotes the partition obtained by sorting its
component in nonincreasing order. Similarly, for a dotted composition «, we will denote
by & the tuple obtained by sorting in nonincreasing order, both the dotted components
and the undotted components. Note that, since the fermionic part of a superpartition
must be strictly decreasing, & is a superpartition only if the dotted components of « are

all different. For instance, if a = (1,2,3,2,3,1,4), then & = (4,2,1,3,3,2,1), that is

R~ = =
i ;

e
[T ]e

For a dotted composition o with k = ¢(«), we define h, = hqy, - - ha,. Note that,
as h%, = 0 for all m € Ny, then h, = 0 whenever a has repeated dotted components.
Further, if & is a superpartition, we have h, = (—1)7(®hg, where o(a) is the number of
inversions of the permutation of the dotted components of «, obtained when computing
a. For instance, h(i,2,3,2,3,1,4) = —h(472,1737372’1).

Below, we obtain an expansion of a ribbon Schur function in superspace in terms of
complete homogeneous functions in superspace, which generalizes the well known formula
for classical ribbon Schur functions [29].

Proposition 40. For a dotted composition a, we have

ra = S (= 1))@

a=zp
Conversely, for a superpartition A, we have hy = Z 8.
A=B

Proof. This is a consequence of Proposition 30, the definition of r, and the fact that
m(Hg) = 0 whenever 8 has repeated dotted components. O]

For instance, for a = (0,1,2,1), we have
Ta = —=heo11) +2ha01 T hein — Pei) — hao):
It follows from Theorem 26 that, for dotted compositions «, 8, the product of r, with
rg is given as follows:
rary = Tap if rg(a),ﬂl € No, (21)
Tap + Tapp Otherwise.

Proposition 41. For every n > 0, we have rn g = Z(—l)kr(ln—k)r(k).
k=0
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Proof. We proceed by induction on n. The result is obvious if n = 0. Now, assume the
claim is true for values less than or equal to n. Thus,

n

Tn gy = Z(—l)k'r(lnfk)r(,%).

k=0

By multiplying by 71y on both sides of the equation above, with respect to the product
n (21), and by applying the induction hypothesis, we obtain

—_

n—1
T(1n+170) + T.(Z,l”_l,f)) = (—1>k7’(1n+17k)7’(k) + Z(_:l)kr(zlnflfk)r(’%) + (—1)”T(1)T(n)
k=0

3

3 =
= o

— n—1
(_1k)’f’(1n+1—k)r(k) ‘I‘ Z(_l)k(/’n(ll"*l*k,k) + T(Z,ln_k_2,(k~i>l)))
k=0 k=0

+(=1)" iy + (1) )T
n—1
_ (—1k)7’(1n+17k)7,(k) + T(2,1n-1,0) + (_1)71717,(77.—.}-1)
k=0
+(=1)"r@yrm)
n+1
Therefore, T(1nt1,0) = Z(—l)kr(lnH*k)T(l&)- -
k=0
Proposition 42. We have:
o= (=1)"rangy  rangy = D (D enihi  Ba= D (=) e iy
k=0 k=0

Proof. The first equality follows directly by applying 7 in Proposition 31. The second
assertion is a consequence of Proposition 41 and the fact that, in the classical case,
T(11) = €;, where ¢; is the classical elementary symmetric function and Ty = Bk The last
result follows directly from the first two equalities. O]

Using the bijection between ribbon diagrams and compositions discussed in Section
3, the set of classical ribbon Schur functions indexed by partitions is a basis of Sym [3].
We conclude this section by extending this result to superspace.

For dotted compositions «, § with a = df(«) and b = df(8), we set ro x5 = 0 if rg(a)
and 3, are dotted, and r, *r5 = 740 otherwise. Thus, as r,rg = (—1)®rgr,, the product
(21) implies the following:

Tap = (—1)rare — T4 * 7. (22)

Lemma 43. Let « be a dotted composition such that & is a superpartition and df(a) > 1.
Then
ra = (=1)7%rs + Zcuru where  {(p) < l(a) and c, € Z.
o
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Proof. We proceed by induction on k := ¢(«). If £ = 1 the result is obvious. If £ > 1,
assume the claim is true for smaller values. Let «; be the maximal dotted component
of a. Consider 8 = (ay,...,q;-1) with b = df(f) and v = (e, ..., k) with ¢ = df(7).
Then, by (21) and (22), we have

ro = (=1)%rrg—rgxr,
= (_1>bCT(Oéi ----- U, OL 5oy OG—1) + (_1)bc7,7 *¥Tg —Tpg*xTy

= (_]‘)bcraiT(OéiJrl7---70%70417---7061'—1) + (_1>bc+1rai T (g1 ey 0p,01 00 —1)
+(=1)%r, xrg —r5 % T,
Now, by applying the induction hypothesis on w := (@11, ..., Qg, aq,...,q;_1), we obtain
To = (_l)bc-i-a(w)?aai@ + Z Culy = (_1)0(007«& + Z Cul iy
p p
where £(p) < (). O

Theorem 44. The set {ry | A is a superpartition} is a basis of sSym.

Proof. Let a be a dotted composition. It is enough to show that r, is a linear combination
of elements in {rp}. If df(a) = 0, the result is true due to the classical case. For df(a) > 1,
we proceed by induction on k := ¢(«). If k = 1, the result is obvious. If k£ > 1, we assume
the claim is true for dotted compositions of smaller length. We will distinguish two cases.
If a has repeated dotted components, then h, = 0. So, by Proposition 40, we have

o, = Z(_l)f(a)—f(ﬁ)w(ﬁ)hg — Z(_l)é(a)—f(ﬂ)w(ﬁ) Z r,.
asz=xy

a=<p a=<p

Since £(y) < ¢(B) < £(«) for each y above, the result is obtained by applying the induction
hypothesis to r,.
Now, assume that & is a superpartition. Lemma 43 implies that

ra = (=1)7"rs + Zc,ﬂ’u where ((p) < {(a) and ¢, € Z.
w
We conclude the proof by applying the induction hypothesis on each r,,. O]

Remark 45. Analogously, we can extend the results above to a second kind of ribbon Schur
function in superspace, obtained by projecting R,, that is, 7, = 7(R,). In particular, we
obtain the following formulas.

N f’alB -+ TAQQB lf rg(oz),ﬁ (= R]7 - B ke .
Tl = { Tap otherwise. Pn = Z( 1) T(n—k i)
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