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Abstract

Answering a recent question of Patchell and Spiro, we show that when a d-
dimensional cube of side length n is filled with letters, the word CAT can appear
contiguously at most (3d−1/2)nd times (allowing diagonals); we also characterize
when equality occurs (in the toroidal analogue of the problems) and extend our
results to words other than CAT.

Mathematics Subject Classifications: 05D05, 05A05

1 Cats in grids and cubes

1.1 Cats in grids

Suppose we label an n × n grid with the letters C, A, and T. We can look for triples of
consecutive letters (appearing horizontally, vertically, and diagonally as in a wordsearch)
that spell out the word CAT. What is the maximum number of such CAT’s in the grid?
Patchell and Spiro [3] showed that the number of CAT’s is at most 2n2. They also
constructed an example with (3/2)n2−O(n) CAT’s and conjectured that this construction
is asymptotically optimal.1 In this paper, we will confirm their conjecture in a very precise
sense.

It is more natural to replace the n × n grid with the discrete torus (Z/nZ)2. Notice
that this operation of “gluing” opposite sides of the n× n grid can add only O(n) CAT’s.
Patchell and Spiro’s construction is as follows, for n a multiple of 4: Label the point (x, y)
with the letter A if x is even; label (x, y) with C if x ≡ 1 (mod 4); and label (x, y) with
T if x ≡ 3 (mod 4). In other words, the letters appear in vertical stripes, and the order
of the stripes is

. . .CATACATA . . . .
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1The formulation in terms of CAT’s appears in Sam Spiro’s personal list of open problems [4].
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See the left part of Figure 1. Let us count the number of CAT’s in this labeling: Each C
is part of exactly 6 CAT’s (2 horizontal CAT’s and 4 diagonal CAT’s), and there are n2/4
C’s, so we get (3/2)n2 CAT’s in total.

C A T A C A T A
C A T A C A T A
C A T A C A T A
C A T A C A T A
C A T A C A T A
C A T A C A T A
C A T A C A T A
C A T A C A T A

C A T A C A T A
T A C A T A C A
C A T A C A T A
T A C A T A C A
C A T A C A T A
T A C A T A C A
C A T A C A T A
T A C A T A C A

Figure 1: The original (left) and modified (right) 2-dimensional Patchell–Spiro labelings
for n = 8, drawn without wrap-around. (Here, the bottom-left corner of each grid corre-
sponds to the point (1, 1).) Notice that each A is part of 3 CAT’s and each C or T is part
of 6 CAT’s.

We will also need the following modification of the Patchell–Spiro construction: Label
(x, y) with A if x is even; label (x, y) with C if x is odd and x + 2y ≡ 1 (mod 4); and
label (x, y) with T if x is odd and x+ 2y ≡ 3 (mod 4). In other words, the A’s appear in
vertical stripes as before, and the other vertical stripes alternately have the patterns

. . .TCTCTC · · · and . . .CTCTCT . . . .

See the right part of Figure 1. By the same computation as in the previous paragraph,
there are (3/2)n2 CAT’s. Our main result (below) will imply that these labelings contain
the maximum possible number of cats.

1.2 Cats in cubes

Spiro and Patchell also asked what happens in higher dimensions. Now, we label (Z/nZ)d
(n ⩾ 3) with the letters C, A, and T. An occurrence of CAT is a triple of points (x, x+y, x+
2y) with the labels C, A, T (in that order), where x ∈ (Z/nZ)d and y ∈ {−1, 0, 1}d \ {0}.

As expected, we have higher-dimensional analogues of the constructions from the
previous subsection. Suppose n is a multiple of 4. Fix some ϵy ∈ {1, 3} for each y =
(y1, . . . , yd−1) ∈ {0, 1}d−1, and label the point (x1, . . . , xd) ∈ (Z/nZ)d as follows. If xd is
even, then label (x1, . . . , xd) with A. Now suppose xd is odd, and let y ∈ {0, 1}d−1 be
the reduction of (x1, . . . , xd−1) modulo 2; label (x1, . . . , xd) with C if xd ≡ ϵy (mod 4),
and label it with T if xd ≡ ϵy + 2 (mod 4). In other words, we label each coset (y, 1) +
(2Z/nZ)d with alternating hyperplanes (orthogonal to the xd-direction) of C’s and T’s,
and ϵy determines whether we “start” with C or with T. We can obtain equivalent
constructions by translating and by distinguishing a coordinate other than xd, and we
obtain d·22d−1+1 examples in this way. The same computation as in the previous subsection
shows that these d · 22d−1+1 generalized Patchell–Spiro labelings each have (3d−1/2)nd

CAT’s. Our main result is that these labelings are optimal in all dimensions.
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Theorem 1. In any labeling of (Z/nZ)d (n ⩾ 3) with the letters C, A, and T, the number
of CAT’s is at most (3d−1/2)nd. Moreover, equality is attained if and only if n is a multiple
of 4 and the labeling is a generalized Patchell–Spiro labeling.

We remark that the analogous result holds more generally in (Z/n1Z)×· · ·× (Z/ndZ):
The maximum number of CAT’s is at most (3d−1/2)n1 · · ·nd, and equality is attained
exactly for the generalized Patchell–Spiro labelings (which exist when some ni is a multiple
of 4 and all ni’s are at least 3). Since the proof of this asymmetric version is identical to
the proof of the symmetric version, we stick with the latter for ease of exposition.

Our proof of Theorem 1 uses simple tools from spectral graph theory (or, equivalently,
Fourier analysis). We remark that the 2-dimensional case of this theorem can also be
proven in a completely elementary way but that this hands-on approach seems not to
generalize to higher dimensions.

1.3 Organization

In Section 2, we prove Theorem 1. In Section 3, we briefly mention how our argument
generalizes to words other than CAT.

2 Proofs

We now prove Theorem 1. Let ω = e2πi/n, and recall that the characters on the group
(Z/nZ)d are the functions

χy(x) := ωy·x,

as y ranges over the elements of (Z/nZ)d. We will study the nd × nd matrix M whose
rows and columns are indexed by (Z/nZ)d; the xy-entry of M is defined to equal 1 if
x − y ∈ {−1, 0, 1}d \ {0}, and to equal 0 otherwise. Since M is the adjacency matrix
of a Cayley graph of (Z/nZ)d, the eigenvectors of M are precisely the characters of
(Z/nZ)d. We can compute the eigenvalues explicitly: If y has bk entries equal to k for
k = 0, . . . , n− 1, then the eigenvalue λy for χy is

λy = Mχy(0) =
∑

v∈{−1,0,1}d\{0}

χy(v)

= −1 +
n−1∏
k=0

bk∑
i=0

bk−i∑
j=0

(
bk
i

)(
bk − i

j

)
ωk(i−j)

= −1 +
n−1∏
k=0

bk∑
i=0

(
bk
i

)
ωki

bk−i∑
j=0

(
bk − i

j

)
ω−kj

= −1 +
n−1∏
k=0

bk∑
i=0

(
bk
i

)
ωki(1 + ω−k)bk−i

= −1 +
n−1∏
k=0

(1 + ωk + ω−k)bk
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= −1 +
n−1∏
k=0

(1 + 2 cos(2πk/n))bk .

In the second line we split the coordinates of y into level sets and then partitioned the
v’s according to the number i of 1’s and the number j of −1’s in each such level set; the
fourth and fifth lines used the Binomial Theorem. Notice that the largest eigenvalue is
λ0 = −1 + 3d. All eigenvalues are greater than or equal to −1 − 3d−1, and equality is
achieved exactly when y has one coordinate equal to n/2 and all other coordinates equal
to 0, i.e., when bn/2 = 1, b0 = d− 1, and bk = 0 for all other k; note that n must be even
for equality to hold.

We remark that this computation has a nice conceptual explanation. Let B be the
adjacency matrix of the cycle graph on n vertices. Our matrix of interest can be expressed
as

M = (B + Idn)
⊗d − Idnd ,

where Idm denotes the m×m identity matrix and the superscript ⊗d denotes the d-fold
tensor product. Hence the eigenvalues of M are the quantities

(µ1 + 1) · · · (µd + 1)− 1,

as µ1, . . . , µd range over eigenvalues of B (and the eigenvectors of M are tensor products
of the eigenvectors of B). The spectrum of B is well known to be {2 cos(2πk/n) : 0 ⩽ k ⩽
n − 1}. This behavior appears whenever one studies the adjacency spectrum of a graph
product.

We are now ready to prove our main lemma, which can also be derived from known
facts about max cuts in regular graphs with specified smallest eigenvalue (see, e.g., [1],
Lemma 3.1). We define #(AC) to be the number of occurrences of AC in our labeling,
i.e., the number of pairs of points (x, x + y) with the labels A for x and C for y, where
x ∈ (Z/nZ)d and y ∈ {−1, 0, 1}d \ {0}. We use analogous notation for counts of other
configurations.

Lemma 2. In any labeling of (Z/nZ)d (n ⩾ 3), we have the inequality

#(AC) + #(AT) ⩽ 3d−1nd.

Moreover, equality is attained if and only if n is even and the locus of the A’s is of the
form {(x1, . . . , xd) : xr ≡ ϵ (mod 2)} for some 1 ⩽ r ⩽ d and some ϵ ∈ {0, 1}.

Proof. Consider the function f : (Z/nZ)d → {−1, 1} that equals 1 at points labeled A
and equals −1 at points labeled C and T. Then, with M as defined above, we have

fTMf = 2(#(AA) + #(CC) + #(TT) + #(CT)−#(AC)−#(AT))

= (3d − 1)nd − 4(#(AC) + #(AT)),

so
#(AC) + #(AT) = ((3d − 1)nd − fTMf)/4. (1)
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Expand f as linear combination of characters, namely,

f =
∑
y

ayχy.

Since |f | = 1 everywhere, we have

nd = ∥f∥22 =
∑
y

|ay|2 · ∥χy∥22 = nd
∑
y

|ay|2

and hence ∑
y

|ay|2 = 1.

Now, again using the orthogonality of characters, we can bound

fTMf =
∑
y

|ay|2 · ∥χy∥22 · λy

⩾ (−1− 3d−1)nd,

with equality if and only if n is even and the only nonzero ay’s are the y’s with one entry
equal to n/2 and all other entries equal to 0. We claim that since f is {−1, 1}-valued, this
equality condition in fact implies that only a single such ay is nonzero. Indeed, suppose
the nonzero ay’s correspond to y1, . . . , yk, where each yi has zi-entry equal to n/2 and all
other entries equal to 0. Then, by considering the vectors x with zi-entries in {0, 1} (for
1 ⩽ i ⩽ k) and all other entries equal to 0, we see that f(x) assumes all of the values

k∑
i=1

ϵiayi

for ϵi ∈ {−1, 1}. In particular, there are at least k + 1 such values, and so k must equal
1, as claimed. Notice that these possibilities correspond precisely to the configurations
described in the “moreover” statement of the lemma.

To complete the proof, we return to Equation 1 and find that

#(AC) + #(AT) ⩽ ((3d − 1)nd − (−1− 3d−1)nd)/4 = 3d−1nd,

as desired.

Theorem 1 now follows easily.

Proof of Theorem 1. Since each occurrence of CAT contains an occurrence of CA and an
occurrence of AT, we immediately deduce from Lemma 2 that

#(CAT) ⩽ (3d−1/2)nd.

It remains only to characterize when equality holds. Suppose #(CAT) = (3d−1/2)nd.
Then, by Lemma 2, n is even and the locus of the A’s is of the form {(x1, . . . , xd) : xr ≡ ϵ
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(mod 2)} for some 1 ⩽ r ⩽ d and some ϵ ∈ {0, 1}. After translating and permuting the
coordinates, we may assume that this locus is the set of points (x1, . . . , xd) with xd even.

We now analyze the C’s and T’s. Since equality holds, it must be the case that each
CA extends to a CAT, and likewise for each AT. If the point (x1, . . . , xd) is labeled C, then
(x1, . . . , xd + 2) must be labeled T and hence all of

(x1 ± 2, x2, . . . , xd), (x1, x2 ± 2, x3, . . . , xd), . . . , (x1, . . . , xd−2, xd−1 ± 2, xd)

are labeled C. The same holds with the roles of C and T exchanged. Iterating this
observation and conditioning on the labels of the points {0, 1}d−1 × {1}, we arrive at the
generalized Patchell–Spiro labelings. (Notice that n must be a multiple of 4 in order for
the C’s and T’s to alternate as we increase xd by increments of 2.) This completes the
proof.

3 Lions, tigers, and other felines

Patchell and Spiro also asked what happens if CAT is replaced by another word. In
particular, they asked about the case of words with all distinct letters, such as LION and
TIGER. Our argument from the previous section gives the correct count for the maximum
number of occurrences of such a word and completely confirms Conjecture 1 of [3]. (We
thank Sam Spiro for bringing this to our attention.)

Theorem 3. Let w be a word of length r (r ⩾ 2) in which all letters are distinct. In any
labeling of (Z/nZ)d (n ⩾ r), the number of occurrences of w is at most (3d−1/(r − 1))nd.
Moreover, equality is attained if and only if n is a multiple of 2r − 2 and the labeling
is (the obvious w-analogue of) a Patchell–Spiro labeling (or a generalized Patchell-Spiro
labeling, when r = 3).

Let us sketch the proof. Let O denote the set of letters appearing at odd indices of
w, and let E denote the set of letters appearing at even indices of w. Define the function
f : (Z/nZ)d to equal 1 at points labeled with elements of O and to equal −1 at points
labeled with elements of E . The argument of Lemma 2 shows that

#(OE) ⩽ 3d−1nd

(where #(OE) counts occurrences of OE for O ∈ O and E ∈ E), and we have the analogous
characterization of when equality occurs. Moreover,

#(w) ⩽ #(OE)/(r − 1)

(using the fact that each OE can appear in at most one w), and so

#(w) ⩽ (3d−1/(r − 1))nd.

The characterization of equality goes “slice-by-slice” as in the proof of Theorem 1. The
characterization of equality is immediate for r = 2; the r = 3 case is covered by our
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analysis of w = CAT; for r ⩾ 4, one begins as in the proof of the r = 3 case and uses
the further observation that each occurrence of OE consists of two letters that appear
consecutively in w (so, for instance, the second letter of w is the only letter in E that can
appear between an occurrence of the first letter of w and an occurrence of the third letter
of w). It is easy to see that the Patchell–Spiro labelings have (3d−1/(r−1))nd occurrences
of w.

It is interesting to note that only the r = 3 case requires the generalized Patchell–Spiro
labelings in addition to the “original” Patchell–Spiro construction.

The above argument also works for some words with repeated letters. In particular,
we can handle any word in which: (1) no letter appears at both even and odd indices;
and (2) no pair of letters appears consecutively more than once (counting both forward
and backward occurrences). An example of such a word is FELINE, and non-examples
include SKUNK (because the letter K appears in both the second and fifth positions) and
ELEPHANT (because the pair EL appears twice). Even for some examples violating (2),
it is possible to obtain a tight bound along the lines described above. See [2] for some
recent results in this direction.
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