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Abstract

We prove that any class of permutations defined by avoiding a partially ordered
pattern (POP) with height at most two has a regular insertion encoding and thus
has a rational generating function. Then, we use Combinatorial Exploration to
find combinatorial specifications and generating functions for hundreds of other
permutation classes defined by avoiding a size 5 POP, allowing us to resolve several
conjectures of Gao and Kitaev (2019) and of Chen and Lin (2024).

Mathematics Subject Classifications: 05A15, 05-08, 68W30

1 Introduction

A permutation of size n is a linear ordering of the elements {1, . . . , n}. When we want to
refer to individual entries in a permutation π of size n, we write π = π(1)π(2) · · · π(n). We
say that a permutation π of size n contains a permutation σ of size k ⩽ n if π contains a
(not necessarily consecutive) subword π(i1)π(i2) · · · π(ik) with i1 < i2 < · · · < ik such that
π(iℓ) < π(im) if and only if σ(ℓ) < σ(m); in other words, this subword is order-isomorphic
to σ. In this context, we often refer to σ as a pattern. For example, the permutation
3714652 of size 7 contains the pattern 132 because the subword π(3)π(6)π(7) = 152 is
order-isomorphic to 132. There are eight other occurrences of 132 in π as well. On the
other hand, π avoids (i.e., does not contain) the pattern 3124.

This containment relation on permutations defines an infinite poset on the set of all
permutations of all sizes. Sets of permutations that are downward closed in this poset
are called permutation classes. Each permutation class can be uniquely described by
the (possibly infinite) minimal set of permutations that it does not contain, called its
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basis. We use the notation Av(B) to denote the class with basis B. Permutation classes
have been extensively studied; we refer the interested reader to Kitaev’s book on the
subject [13] and Vatter’s comprehensive survey [22].

A partially ordered pattern (POP) of size k is a poset on k elements labeled with the
symbols {1, . . . , k}. We say that a permutation π of size n contains a POP P of size k if π
contains a (not necessarily consecutive) subword π(i1)π(i2) · · · π(ik) with i1 < i2 < · · · < ik
such that π(iℓ) < π(im) if ℓ < m in P . Compare this to the definition of pattern avoidance
above; for two elements ℓ and m that are incomparable in P , there is no restriction on
the relative order of the values π(iℓ) and π(im) in an occurrence of the pattern P in π.

Consider for example the poset P =
3
1

2 4 . The permutation π = 4726135

contains the subword π(3)π(4)π(5)π(7) = 2615 at indices (i1, i2, i3, i4) = (3, 4, 5, 7) which
satisfies the condition above. For instance, 3 < 1 in P and π(i3) < π(i1). Since 2 and 4
are incomparable in P , we do not require either π(i2) < π(i4) or π(i2) > π(i4). In fact,
swapping π(i2) and π(i4) gives a new permutation π′ = 4725136 that also contains an
occurrence of P at the same indices.

If σ is a permutation that contains a POP P and π is a permutation that contains σ,
then π also contains P . This implies that the set of permutations that avoid a given POP
is downward closed in the permutation containment order and therefore is a permutation
class. We use the notation Av(P ) to denote the class of permutations avoiding the POP
P . It will always be clear in context whether we are using this Av(P ) notation or the
earlier Av(B) notation for the permutations avoiding the basis B.

It turns out that it is easy to compute the basis of Av(P ), as Gao and Kitaev [11]
implicitly observe. A linear extension of a poset is a total order on its elements that obeys
the relations of the poset.

Theorem 1. For a POP P , the basis of the permutation class Av(P ) is the set of per-
mutations that are the (group-theoretic) inverse of a linear extension of P .

Before proving Theorem 1, we present an example demonstrating why inverses of

permutations need to be considered. Let P =

2
3
1
4

. As P is already a total order, its only

linear extension is itself. If a permutation π contains P at the indices i1 < i2 < i3 < i4,
the relations 2 < 3 < 1 < 4 in P imply that π(i2) < π(i3) < π(i1) < π(i4). Therefore π
contains the pattern 2314−1 = 3124 at these indices. This shows that Av(P ) = Av(3124).

Proof. Let P be a POP and let {L1, L2, . . . , LN} be the set of linear extensions of P .
We first claim that a permutation avoids P if and only if it avoids each Li. To see
this, first assume that the permutation π contains an occurrence of P at the subword
π(i1)π(i2) · · · π(ik). Reorder these entries so that π(iℓ1) < π(iℓ2) < · · · < π(iℓk). This
shows that the subword π(i1)π(i2) · · · π(ik) is an occurrence of total order T = ℓ1 < ℓ2 <
· · · < ℓk. If a < b in P , then π(ia) < π(ib) which implies that a < b in T . Therefore T is
a linear extension of P . Conversely, assume π contains some linear extension T of P . An
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occurrence of T in π is also an occurrence of P because the relations of P are a subset
of the relations of T . This completes our first claim, and we can now conclude that the
set of permutations avoiding P is equal to the set of permutations that avoid all linear
extensions of P .

For a total order L = ℓ1 < ℓ2 < · · · < ℓk, we define perm(L) to be the permutation
(ℓ1ℓ2 · · · ℓk)−1. We now claim that π contains the total order T = τ(1) < τ(2) < · · · < τ(k)
if and only if π contains the pattern perm(T ). To this end, assume π(i1)π(i2) · · · π(ik)
is an occurrence of T , so that π(iτ(1)) < π(iτ(2)) < · · · < π(iτ(k)). Let σ denote the
pattern contained in π at these same indices. Since the smallest entry of this occurrence
is π(iτ(1)) it follows that σ(τ(1)) = 1. Similarly, σ(τ(j)) = j for all 1 ⩽ j ⩽ k. Therefore
σ = τ−1 = perm(T ). Conversely, suppose π(i1)π(i2) · · · π(ik) is an occurrence of σ. Of the
entries in the subword, the one with the smallest value is π(iσ−1(1)), while the next smallest
value is π(iσ−1(2)) and so on. Therefore, π(iσ−1(1)) < π(iσ−1(2)) < · · · < π(iσ−1(k)) and
therefore the subword is an occurrence of the total order σ−1(1) < σ−1(2) < · · · < σ−1(k).

From the two preceding claims, it follows that permutations avoiding P are precisely
those avoiding the inverse of all linear extensions of P , and therefore the basis of Av(P )
is {perm(L1), perm(L2), · · · , perm(LN)}.

We call a permutation class C a POP class if C = Av(P ) for some POP P . Not
all permutation classes are POP classes, e.g., there is no poset P such that Av(P ) =
Av(1234, 1432). Theorem 1 gives an easy test for whether a class is a POP class. Given
any permutation class Av(B) for which all basis elements have the same length, form the
total orders labeled by the inverses of the permutations in B. Let P be the intersection of
these total orders (i.e., the intersection of the sets of relations each implies). If Av(B) is
a POP class, then P must be its associated poset, and so Theorem 1 can be used to check
whether the basis of Av(P ) is B. The Sage [20] script in the Github repository https:

//github.com/jaypantone/bipartite-pops can be used to check if a permutation class
is a POP class.

The number of permutation classes avoiding a subset of patterns of size n is, of course,
2n!, but the number of POP classes of size n is given by the sequence 1, 1, 3, 19, 219, 4231,
130023, . . . (starting with n = 0), which is A001035 in the OEIS [18]. Section 3 explores
the topic of the number of POP classes taking certain symmetries into account.

In 2005, Kitaev [12] introduced the notion of partially ordered patterns (POPs) as a
way of studying generalized permutation patterns and other objects. Later, in 2019, Gao
and Kitaev [11] studied the version of POP classes that we defined above, in particular
determining the enumeration of several infinite families of POP classes and many specific
POP classes whose posets have size 4. They included several tables of conjectural links
between POP classes whose posets have size 4 or 5 and other combinatorial objects.
Several of these conjectures were later proved by Yap, Wehlau, and Zaguia [23]. Recently,
Kitaev and Pyatkin [14], among other things, enumerated many POP classes whose poset
has height (length of the longest chain) at most 2. They call such posets bipartite and so
we will use the same terminology, but this should not be confused with the notion of a
bipartite graph. Every bipartite poset has a Hasse diagram whose graph is bipartite, but
not every poset with a bipartite Hasse graph has height at most 2.
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J1 J2 J3 J4

Figure 1: The four vertical juxtapositions used to characterize permutation classes with
a regular insertion encoding.

In Section 2, we show that the generating function of any POP class whose poset is
bipartite can be algorithmically computed using techniques from the field of permutation
patterns, proving the following theorem.

Theorem 2. A POP class has a regular insertion encoding if and only if it is bipartite.

In Section 3, we discuss symmetries of the POP containment relation, and we use
Theorem 2 to compute the enumeration of many new bipartite POP classes, extending
the classifications given by Kitaev and Pyatkin. In Section 4, we use the Combinatorial
Exploration framework of Albert, Bean, Claesson, Nadeau, Pantone, and Ulfarsson [3] to
derive combinatorial specifications and compute generating functions for all POP classes
of size 4 and many non-bipartite POP classes whose posets have size 5. Section 5 addresses
six conjectures of Gao and Kitaev [11]. Within Subsection 5.4, we prove a conjecture of
Chen and Lin [10] regarding the enumeration of nine permutation classes.

2 Bipartite POP classes have regular insertion encodings

The insertion encoding, introduced by Albert, Linton, and Ruškuc [7], is a language-
theoretic approach that describes how a permutation is built by repeatedly adding a
new maximum element. When this language is regular, Vatter [21] gave an algorithm
for computing the rational generating function. A simple test determines whether a
permutation class has a regular insertion encoding. In order to describe the test, we need
the following definition.

The vertical juxtaposition of two classes C and D is the set of permutations for which
there is some value i such that the entries strictly below i form a permutation in C and
the entries above and including i form a permutation in D. For example, Figure 1 shows
the four juxtapositions relevant to this work. The vertical juxtaposition J1 contains the
set of permutations consisting of an increasing sequence on top of an increasing sequence.
The juxtaposition of two permutation classes is a permutation class, and Atkinson [8]
gave a method for computing its basis. This method shows J1 = Av(321, 2143, 2413),
J2 = Av(123, 3142, 3412), J3 = Av(132, 312), and J4 = Av(213, 231).

Theorem 3 ([7, Proposition 13]). A class C = Av(B) has a regular insertion encoding if
and only if each of the four permutation classes J1, J2, J3, and J4 contains at least one
basis element β from B.
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In other words, the class C = Av(B) has a regular insertion encoding if among the
elements of B, at least one is the juxtaposition of two increasing sequences, at least one
is the juxtaposition of two decreasing sequences, at least one is the juxtaposition of an
increasing sequence on top of a decreasing sequence, and at least one is the juxtaposition
of a decreasing sequence on top of an increasing sequence.

We prove Theorem 2 in two parts.

Theorem 4. If a POP class has a regular insertion encoding, its associated poset is
bipartite.

Proof. Suppose C = Av(B) is a POP class associated with a non-bipartite poset P ,
implying that P contains a chain with three elements, a < b < c. Thus, for every element
β ∈ B, we must have β(a) < β(b) < β(c). This implies that the subword at indices a, b,
and c of each basis element is an occurrence of the same pattern.

As there exists some size three permutation that is contained in every β ∈ B, and as
all six size 3 permutations appear in one of the bases of J1, J2, J3, and J4, it must be
the case that one of these four classes contains no element of B. Therefore C does not
have a regular insertion encoding.

For example, the class associated with the poset
3
1

2 4 5

has a basis containing the six

permutations of size 5 that have the value 1 at index 3, have the value 2 at index 1, and
the values 3, 4, and 5 in any order at the indices 2, 4, 5; the six permutations are 23145,
23154, 24135, 24153, 25134, and 25143. Now consider the chain 3 < 1 < 5. The existence
of this chain implies that the subword β(1)β(3)β(5) is an occurrence of 213 in all six basis
elements. Since 213 is a basis element of J4, it follows that J4 does not contain any of
the six basis elements.

Theorem 5. A POP class whose associated poset is bipartite has a regular insertion
encoding.

Proof. Let C = Av(B) be a POP class with associated bipartite poset P with n elements.
Let L denote the elements of P that are the lower elements in a chain of size two and let
U denote the remaining elements. Assume |L| = k. We will construct, for each class J1,
J2, J3, and J4, a linear extension of P whose corresponding permutation is in the class.

Any permutation in which the entries at the indices in L have the values {1, . . . , k}
and the entries at the indices in U have the values {k + 1, . . . , n} is in B. (Note that
B contains other permutations as well.) The permutation in which the entries at indices
in L are increasing, and the entries at indices in U are increasing is in J1. Similarly,
by swapping one or both of the increasing sequences for a decreasing sequence, we find
permutations in B from each of J2, J3, and J4. Therefore, by Theorem 3, C has a regular
insertion encoding.

We illustrate this proof with an example as well. Let C be the POP class with the

associated poset
2

5

4

1

6 3

. In this case L = {2, 4, 6} and U = {1, 3, 5}. We then construct
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the four permutations 415263 ∈ J1, 615243 ∈ J2, 435261 ∈ J3, and 635241 ∈ J4. These
are the four permutations with the entries 123 or 321 at the indices in L and the entries
456 or 654 at the indices in U .

Theorems 4 and 5 together prove our main result, Theorem 2.
Vatter [21] describes an algorithm to determine the generating function of any class

with a regular insertion encoding. The Combinatorial Exploration framework [3], which
we discuss in the next section, can perform this computation more efficiently. Conse-
quently, we can use Theorem 2 to rederive some of the enumerative results in [11], and
[14] in a uniform manner and address several of their open questions.

In light of Theorem 2 it is natural to wonder if perhaps tripartite POPs (those whose
longest chain has length 3) have some similarly nice characterization of their generating

functions. This is unlikely, given the class Av(1234, 1324) = Av

(
1

2 3
4
)

which is

conjectured by Albert, Homberger, Pantone, Shar, and Vatter [5] to have a non-D-finite
generating function.

3 Equivalences of POP classes

3.1 Symmetric equivalence

The reverse of the permutation π = π(1)π(2) · · · π(n) is πR = π(n) · · · π(2)π(1), the
complement of π is πC defined by πC(i) = n+1−π(i), and we have already discussed the
inverse π−1. These three operations preserve pattern containment, e.g., if σ is contained
in π, then σR is contained in πR. We extend these operations to permutation classes by
defining, for example, CR = {πR : π ∈ C}. If C = Av(B), then CR = Av({βR : β ∈ B}),
and similarly for complement and inverse.

If C can be obtained from D by some sequence of these three operations, then we say
that C is symmetrically equivalent to D, and it’s easy to see that in this case C and D
have the same counting sequence. The resulting equivalence classes have sizes 1, 2, 4, or
8.

While there are 2n! permutation classes avoiding a (possibly empty) subset of permu-
tations of size n, the number of equivalence classes under symmetry is, of course, smaller,
approximately one-eighth the size. Starting with n = 1, the counting sequence starts
2, 3, 21, 2139264, and the OEIS sequence A277086 gives a triangle of numbers that refines
these numbers by the size of the basis; the numbers above is the sequence of row sums of
that triangle. When restricting only to those permutation classes that are POP classes,
the counting sequence for the number of equivalence classes under symmetry starting with
n = 1 is 1, 2, 7, 64, 1068, 32651. We added this sequence to the OEIS as entry A366705,
but have not found a formula to quickly compute further terms.

Gao and Kitaev [11] give two operations on a poset P that produce a new poset P ′

such that that Av(P ) and Av(P ′) are symmetrically equivalent. First, complementing the
labels of a poset P of size n, by which we mean replacing each label i with n+1− i, gives
a poset P ′ such that Av(P ′) = Av(P )R. Second, forming P ′ by reversing each relation
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of P (i.e., if a < b in P , then b < a in P ′), we have that Av(P ′) = Av(P )C . These
operations are insufficient to generate the complete equivalence classes under symmetry
of each POP class. For example, the class C = Av(1342, 1432) is a POP class with

poset P =
1
4

2 3
. All eight permutation classes in the symmetry class are POP classes.

In particular, C−1 = Av(1423, 1432) corresponds to the poset
1

3 4
2

, which does not

correspond to either of the two operations described by Gao and Kitaev. We therefore
pose the following question.

Question 6. When is the inverse of a POP class also a POP class? When it is, is there
an operation on posets that can be defined in a uniform way to transform the poset of
one class into the poset of its inverse, without an intermediate translation into a set of
permutations.

This question is trivial for classes defined by avoiding a single permutation since these
POP classes are defined by posets that are chains. However, Av(123, 132, 231) is a POP
class, while its inverse Av(123, 132, 312) is not.

3.2 Wilf equivalence

Two permutation classes areWilf-equivalent if they have the same number of permutations
of each size. Clearly, symmetrically equivalent classes are Wilf-equivalent, but there are
many examples of non-symmetrically equivalent classes that are also Wilf-equivalent, a
classic example being Av(123) and Av(132). When we are interested in computing the
generating function of many POP classes, we can therefore restrict ourselves to one POP
class from each symmetry class.

Gao and Kitaev [11] noted several examples of Wilf-equivalence among POP classes
that are not symmetrically equivalent, and later Kitaev and Pyatkin [14] provided a
complete classification of the Wilf-equivalence classes of POP classes whose poset has the
shape , which they call N -patterns. They later ask whether a similar classification
can be performed for M -patterns, those with posets of the shape . As these posets
are all bipartite, Theorem 2 shows that their generating functions can be algorithmically
computed, and this extends to what we will call zig-zag classes of arbitrary size, those
whose poset has shape · · · . If P is a zig-zag poset of size n, then the size of the basis
of the class Av(P ) is the nth Euler number, as proved by Stanley [19, Exercise 3.66(c)].
The number of zig-zag classes of size n is n! when n is even and n!/2 when n is odd.

We have performed the computation necessary to determine the Wilf-equivalence
classes for zig-zag classes of size 5 (M -classes) and of size 6 using the Tilescope software
package [9] developed by Albert, Bean, Claesson, Nadeau, Pantone, and Ulfarsson [3],
which we describe in more detail in the next section. Figure 2 shows the classification
of the 60 M -classes into 23 Wilf-equivalence classes. The 720 zig-zag classes of size
6 split into 177 Wilf-equivalence classes, of which only five are non-trivial. These five
are shown in Figure 3. A list of all Wilf-equivalence classes for size 5 and 6 zig-zag
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classes and their generating functions can be found at the Github repository https:

//github.com/jaypantone/bipartite-pops.
In contrast to the situation for general POP classes described in Section 3.1, we con-

jecture that the two operations described by Gao and Kitaev fully describe all symmetry
classes of zig-zag classes.

Conjecture 7. If two zig-zag classes are symmetrically equivalent, then one is formed by
complementing the labels of the other or by reversing all of the relations of the other, or
both.

If this conjecture is true, then the number of symmetry classes of zig-zag classes is
given by sequence A262480 in the OEIS.

4 Using Tilescope to enumerate size 5 POP classes

Combinatorial Exploration introduced by Albert, Bean, Claesson, Nadeau, Pantone, and
Ulfarsson [3] is a domain-agnostic algorithmic framework for discovering combinatorial
specifications for sets of combinatorial objects. A combinatorial specification is a way
of describing the structure of a set of objects, and from a specification, one can often
derive many useful results, including a generating function of the set, polynomial counting
algorithms, random sampling routines, and more. This framework is experimental because
you are not always guaranteed to find a specification in finite time; however, it is verifiably
correct once such a result is found.

The Tilescope software package [9] is an implementation of Combinatorial Exploration
for the field of permutation patterns. Although Tilescope is guaranteed to find a spec-
ification for every permutation class with a regular insertion encoding (which was used
to produce Figures 2 and 3), there is no such guarantee in general. In [3] Tilescope was
used to enumerate every permutation class whose basis contained only size 4 patterns
except for Av(1324), which has no known polynomial-time enumeration formula. As a
result, one can consider all size 4 POP classes to have been enumerated except Av(1324).
All of the enumerative results of [3] are cataloged on the Permutation Pattern Avoidance
Library (PermPAL) [2], which can be found at https://permpal.com.

We applied TileScope to size 5 POP classes. In total there are 4231 size 5 POP
classes, but only 1068 after considering symmetric equivalence. Of these 1068 classes,
223 have a regular insertion encoding, so TileScope was able to find a specification for
these, and we were able to compute the rational generating functions for these POPs. For
the remaining 845, TileScope found a specification for 590 of them. We computed the
generating function for 223 of these 590 using automatic kernel method style techniques.
For the other 367 of the 590, we could not derive a generating function either because
the system of equations has more than one catalytic variable or because our automatic
methods exceeded available memory or time. Even in these cases, the specification still
produces a polynomial-time algorithm that can be used to generate terms of the counting
sequence.
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2
4
1
5
3

24253
1−4x−x2+3x3−x4−2x5

1−5x+2x2+5x3−4x4−4x5

1
4
2
5
3

24033
1−5x+2x2+8x3−2x5

1−6x+6x2+8x3−8x4−6x5

2
5
1
4
3

24092
1−5x+5x2−7x3+2x4

(1−x)(1−5x+4x2−6x3)

1
4
3
5
2

24394
(1−x)(1−6x+10x2−9x3+6x4)

1−8x+22x2−31x3+26x4−14x5+2x6

1
5
3
4
2

24280
(1−x)(1−6x+9x2−3x3−4x4+2x5)
1−8x+21x2−23x3+4x4+10x5−4x6

3
5
2
1
4

23974
1−6x+9x2−3x3−4x4+x5

1−7x+14x2−9x3−5x4+4x5

1
5
3
2
4

24234
(1+x)(1−2x)(1−4x+3x2−x3)2

1−10x+36x2−54x3+17x4+40x5−51x6+40x7−26x8+4x9

1
2
3
4
5

23856
1
2
3
5
4

24272
1
3
2
4
5

24176
3
2
1
4
5

24388
2
1
3
5
4

24216
2
3
1
5
4

24391
(1−3x)(1−4x+2x2)
(1−4x)(1−2x)2

1
3
2
5
4

23868
1
5
4
3
2

24125
(1−x)3(1−3x)3

(1−2x)(1−11x+46x2−92x3+89x4−35x5)

1
2
4
5
3

24211
2
3
1
4
5

24293
(1−x)(1−7x+14x2−7x3)
(1−2x)(1−7x+14x2−9x3)

2
5
1
3
4

24387
1−7x+15x2−13x3+5x4+x5

1−8x+21x2−24x3+11x4

1
4
3
2
5

24453
3
4
1
2
5

24224
1
5
2
3
4

24441
1−7x+16x2−16x3+4x4

1−8x+22x2−28x3+12x4

1
4
2
3
5

24361
1−5x+5x2−5x3

1−6x+9x2−8x3+2x4

3
2
1
5
4

24457
(1+x)(1−2x)2(1−3x)2(1−x)4

1−14x+81x2−248x3+413x4−294x5−149x6+482x7−414x8+158x9−8x10

1
3
4
5
2

24038
(1−3x)(1−x)2(1−5x+5x2)

(1−2x)(1−9x+28x2−37x3+19x4)

2
4
1
3
5

24381
1−4x−x2+2x3

1−5x+2x2+4x3−2x4−2x5

3
1
2
5
4

24329
1−9x+30x2−48x3+39x4−13x5+2x6

(1−x)(1−2x)(1−7x+15x2−13x3+2x4)

1
3
5
4
2

24079
(1−x)(1−6x+9x2−4x3+x4)
1−8x+21x2−24x3+11x4−2x5

1
4
5
3
2

24410
(1−x)(1−6x+9x2−5x3)
1−8x+21x2−25x3+12x4

3
5
1
2
4

24338
(1+x)(1−2x)(1−5x+5x2−3x3)

1−7x+13x2−3x3−12x4+10x5−4x6

1
5
2
4
3

24385
1−5x+4x2−2x3

1−6x+8x2−4x3

2
5
3
1
4

23879
1−3x−4x2−4x3

1−4x−2x2+4x4

1
5
4
2
3

24414
(1+x)(1−2x)(1−3x)2(1−x)6

1−14x+82x2−260x3+470x4−428x5−4x6+492x7−619x8+344x9−54x10+30x11

Figure 2: The Wilf-equivalence classes of size 5 zig-zag classes. Only one class from each
symmetry class is shown. Below each poset is the PermPal ID of the class.
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6
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6

6
5
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2

1
3
2
4
5
6

3
2
1
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5
6

1
2
4
3
5
6

1
3
2
4
6
5

5
6
4
3
1
2

4
5
6
3
1
2

1
4
2
3
5
6

1
2
5
3
4
6

5
2
1
4
3
6

1
6
3
4
5
2

Figure 3: The nontrivial Wilf-equivalence classes of size 6 zig-zag classes. All other Wilf-
equivalence classes consist of only a single symmetry class.
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Min. Poly. Order 1 2 3 4 5 6 7 8 9 10 11 12

# of size 5 POPs 223 93 42 32 8 22 7 6 7 5 0 1

Table 1: The number of POPs of size 5 with a given degree of minimal
polynomial.

Table 1 shows the order of the minimal polynomials of the 446 size 5 POP classes
for which Tilescope finds a specification and we are able to solve the resulting system of
equations. For example, there are five size 5 POP classes for which we found an algebraic
generating function with minimal polynomial of order 10. One example is Av(13542,
14523, 14532, 15324, 15423, 15432, 24513, 25314, 25413) for which the minimal polynomial
is

x7F (x)10 − x6 (3x+ 2)F (x)9 + x5
(
3x2 + 6x− 1

)
F (x)8 − x4 (x− 1)

(
x2 + 7x+ 4

)
F (x)7

+ x3 (2x+ 1)
(
x2 − 3x− 2

)
F (x)6 + x2

(
3x3 + 7x2 − 3x+ 1

)
F (x)5

− x2
(
3x2 − 4x− 3

)
F (x)4 − x (x+ 2) (x+ 1)F (x)3 + 2x2F (x)2 + (x+ 1)F (x)− 1.

It is notable that all of the size 5 POP classes for which we found a rational gener-
ating function are bipartite and thus have a regular insertion encoding guaranteeing this
rationality. This leads us to conjecture that all POPs with a rational generating function
have a regular insertion encoding.

Conjecture 8. A POP class has a rational generating function if and only if it is bipartite.

The proof of Theorem 3 shows that every permutation class that does not have a
regular insertion encoding has a subclass Av(σ) where σ is a permutation of size 3. This
subclass has an algebraic generating function. This, however, does not prove that such
a class cannot have a rational generating function; consider for example the result of
Albert, Brignall, and Vatter [4] that says every proper permutation class is the subclass
of a permutation class with a rational generating function.

5 Resolving some conjectures of Gao and Kitaev

In Gao and Kitaev [11], Table 5 lists six different POP classes of size 5 that do not have
a regular insertion encoding and for each one makes a conjecture that their counting
sequence is the same as an existing OEIS sequence. We have reproduced their Table 5
below, here labeled Table 2. For ease of reference, we will refer to their conjectures as
Conjecture GK.1 through Conjecture GK.6 according to their row in the table. Through
the use of Tilescope to enumerate many size 5 POP classes, we are able to refute Conjec-
ture GK.1, affirm Conjectures GK.2, GK.3, GK.4, and GK.5, and provide more numerical
evidence for the correctness of Conjecture GK.6.
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Poset

2 3 4

1
5

2 3 4

1
5

4 5
2 3

1

3 4
5

1 2

3
5 4
2 1

3 4
5
1
2

OEIS A216879 A054872 A118376 A212198 A228907 A224295

Table 2: A reproduction, in part, of Table 5 from [11] listing the six conjectures
addressed here.

5.1 Conjecture GK.1

Conjecture GK.1 involves the class G1 = Av

(
2 3 4

1
5

)
= Av(31425, 31524, 32415, 32514,

41235, 41325, 42135, 42315, 43125, 43215) and the OEIS sequence A216879 defined as the
solution to an equation involving Jacobi theta functions. The conjecture that the counting
sequence for G1 is (a shift of) A216879 is incorrect. One can use a software library like
Permuta [1] or PermLab [6] to quickly check that the number of permutations of size 10
in G1 is 443, 592, while the corresponding term in A216879 is 443, 594.

Furthermore, Tilescope was able to find a combinatorial specification for G1.
1 This

allows us to determine that the generating function for G1 is algebraic, satisfying the
minimal polynomial

(4x− 1)F (x)4 − (16x− 6)F (x)3 + (x2 + 24x− 13)F (x)2 − (16x− 12)F (x) + 4x− 4 = 0

The counting sequence for this class has been added to the OEIS as entry A366706.

5.2 Conjecture GK.2

Conjecture GK.2 involves the class G2 = Av

(
2 3 4

1
5

)
= Av(41235, 41325, 42135, 42315,

43125, 43215) and the OEIS sequence A054872 defined as the number of permutations
of size n in the class Av(12345, 13245, 21345, 23145, 31245, 32145). Note that these two
classes are not symmetrically equivalent.

Tilescope found a combinatorial specification for G2
2 that leads to a univariate system

of 136 equations that can be solved to derive the generating function

1 + 2x− 2x2 − x
√
1− 8x+ 4x2

which matches the generating function given in the OEIS sequence, thus confirming Con-
jecture GK.2. Tilescope has also found a combinatorial specification for the class described
by the OEIS sequence.3.

1https://permpal.com/perms/id/24008/
2https://permpal.com/perms/id/23934/
3https://permpal.com/perms/id/23656/
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The PermPAL database actually contains six additional permutation classes with this
same generating function, plus two more whose generating function we could not find but
whose enumeration matches up to at least size 100, leading us to conjecture that they are
also Wilf-equivalent.

Table 3 lists these ten classes, all of which turn out to be POPs.4 On PermPAL, all
classes are stored using the symmetry with the lexicographically smallest basis. That
symmetry may not be a POP, so here we choose a symmetry of each that is a POP and
in most cases gives the same shape. The PermPAL entry for each class can be accessed
at the url

https://permpal.com/perms/[PermPAL ID]

where “[PermPAL ID]” is replaced by the ID given in the table.
Note that the first row is the class in the definition of the OEIS sequence and the

second to last row is the POP that Conjecture GK.2 is concerned with.

1 2 3

4
5

Av(12345, 13245, 21345,
23145, 31245, 32145)

23656 yes

1 2 3

5
4

Av(12354, 13254, 21354,
23154, 31254, 32154)

23660 yes

1 2 4

3
5

Av(12435, 13425, 21435,
23415, 31425, 32415)

23663 yes

1
2 4 5

3
Av(12534, 12543, 13524,

13542, 14523, 14532)
23949 no

1 2 5

3
4

Av(12453, 13452, 21453,
23451, 31452, 32451)

23667 yes

1 2 4

5
3

Av(12534, 13524, 21534,
23514, 31524, 32514)

23669 no

Poset Permutation Class PermPAL ID GF known?

(Table 3, continued on next page)

4It is not necessarily the case that if a class C is a POP class, and D is Wilf-equivalent to C, then D or
some symmetry of D will be a POP. For example, Av(132, 231) is a POP, and it is Wilf-equivalent to
the symmetry class {Av(132, 213),Av(231, 312)}, neither of which are POPs.
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(Table 3, continued from previous page)

1 2 5

4
3

Av(12543, 13542, 21543,
23541, 31542, 32541)

23671 yes

1 3 4

2
5

Av(14235, 14325, 24135,
24315, 34125, 34215)

23673 yes

2 3 4

1
5

Av(41235, 41325, 42135,
42315, 43125, 43215)

23934 yes

1 3 5

2
4

Av(14253, 14352, 24153,
24351, 34152, 34251)

23678 yes

Poset Permutation Class PermPAL ID GF known?

Table 3: The ten permutation classes known or conjectured to be counted by
OEIS A054872.

5.3 Conjecture GK.3

Conjecture GK.3 involves the class G3 = Av

(
4 5

2 3
1

)
= Av(51423, 51432, 52413,

52431, 53412, 53421, 54312, 54321) and the OEIS sequence A118376 defined as the “num-
ber of trees of weight n where nodes have positive integer weights and the sum of the
weights of the children of a node is equal to the weight of the node.” Tilescope finds a
specification for G3

5 that leads to a bivariate system of 26 equations that can be solved
with kernel method techniques to find the generating function

5− 4x−
√
1− 8x+ 8x2

4− 4x

which matches (a shift of) the generating function given for A118376.
In fact, there are sixteen classes in the PermPAL database that appear to have this

same enumeration, shown in Table 4. For twelve of these, we can solve the resulting
system of equations to find the generating function shown above. The remaining four
have either bivariate systems of equations that are too big for us to solve or trivariate
systems of equations for which no solving method is known; for these four we confirm
using their specifications that their enumerations match A118376 up to size 100.

5https://permpal.com/perms/id/23703/
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1 2
4 3

5 Av(12345, 12435, 13425, 21345,
21435, 23415, 31425, 32415)

23703 yes

1
2 3 5
4 Av(12354, 12453, 13254, 13452,

14253, 14352, 15243, 15342)
24143 yes

1 2
3 5

4 Av(12354, 12453, 13254, 21354,
21453, 23154, 31254, 32154)

23704 yes

1 2
5 3

4 Av(12354, 12453, 13452, 21354,
21453, 23451, 31452, 32451)

23705 yes

1 3
4 2

5 Av(13245, 14235, 14325, 23145,
24135, 24315, 34125, 34215)

23948 yes

2 3
4 1

5 Av(31245, 32145, 41235, 41325,
42135, 42315, 43125, 43215)

24088 yes

1
2 4 5
3 Av(12534, 12543, 13524, 13542,

14523, 14532, 15423, 15432)
24094 yes

3
2 4 5
1 Av(45123, 45132, 52134, 52143,

53124, 53142, 54123, 54132)
23711 yes

1 2
4 5

3 Av(12534, 12543, 13524, 21534,
21543, 23514, 31524, 32514)

23712 no

1 5
2 4

3 Av(13542, 14523, 14532, 23541,
24513, 24531, 34512, 34521)

23714 no

1 3
5 2

4 Av(13254, 14253, 14352, 23154,
24153, 24351, 34152, 34251)

23717 no

2
3 4 5
1 Av(41523, 41532, 51234, 51243,

51324, 51342, 51423, 51432)
23721 yes

2
1 4 5
3 Av(21534, 21543, 31524, 31542,

41523, 41532, 51423, 51432)
23723 no

1 5
3 2

4 Av(13452, 14253, 14352, 23451,
24153, 24351, 34152, 34251)

23724 yes

Poset Permutation Class PermPAL ID GF known?

(Table 4, continued on next page)
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(Table 4, continued from previous page)

2 3
5 1

4 Av(31254, 32154, 41253, 41352,
42153, 42351, 43152, 43251)

24002 yes

2
1 3 5
4 Av(21354, 21453, 31254, 31452,

41253, 41352, 51243, 51342)
24376 yes

Poset Permutation Class PermPAL ID GF known?

Table 4: The sixteen permutation classes known or conjectured to be counted by
OEIS A118376.

5.4 Conjecture GK.4

Conjecture GK.4 involves the class G4 = Av

(
3 4
5

1 2
)

= Av(45123, 45213, 54123,

54213) and the OEIS sequence A212198 defined as the “leading diagonal of triangle in

A211321”, which itself is defined as enumerating “marked mesh patterns of type R
(2,0,2,0)
n ”

as defined by Kitaev and Remmel [15]. The set of permutations that avoid marked mesh
patterns of this type form the permutation class Av(45312, 45321, 54312, 54321). Martinez
and Savage [16] proved that this leading diagonal sequence is also the counting sequence for
inversion sequences avoiding the patterns 201 and 210. Chen and Lin [10] and Pantone [17]
have enumerated these, finding their generating function to be

2− x− x
√
1− 8x

2 (1− 2x+ 2x2)
.

Chen and Lin [10] then found bijections that linked four permutation classes (G4, the class
defined by A212198, and two more classes avoiding four patterns of size five) with inversion
sequences avoiding the patterns 201 and 210. They also conjecture that nine further
classes defined by avoiding four patterns of size five have the same counting sequence.

We have determined by an exhaustive search that in addition to the thirteen classes
that Chen and Lin either prove or conjecture are enumerated by A212198, there are at
most ten more with the same counting sequence whose basis contains only size 5 patterns.
We have enumerated the nine classes in Chen and Lin’s conjecture, as well as six of the
ten new classes. For an additional one of the ten, we find a combinatorial specification
that allows us to compute the first 100 terms of the counting sequence (which match
A212198), but not compute the generating function.

We summarize below the state of the classes now known or conjectured to be counted
by A212198. For each class whose enumeration we claim, a specification can be found
on PermPAL by entering the basis into the search bar. Note that we have listed the
symmetry with the lexicographically minimal basis for each class.
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Enumerated in [10]:
Av(12345, 12354, 21345, 21354)
Av(12453, 12543, 21453, 21543)
Av(13524, 13542, 31524, 31542)
Av(14352, 15342, 24351, 25341)

Conjectured in [10], proved here:
Av(13425, 13452, 31425, 31452)
Av(13452, 13542, 23451, 23541)
Av(13452, 13542, 31452, 31542)
Av(12435, 12453, 21435, 21453)
Av(13542, 14532, 23541, 24531)
Av(12354, 12453, 21354, 21453)
Av(13524, 15324, 23514, 25314)
Av(13425, 13524, 31425, 31524)
Av(13542, 15342, 23541, 25341)

Proved here:
Av(12354, 12435, 21354, 21435)
Av(12453, 12534, 21453, 21534)
Av(13524, 15324, 31524, 51324)
Av(13542, 14352, 23541, 24351)
Av(13524, 15324, 31524, 35124)
Av(13524, 14253, 23514, 24153)

Specification, but unable to compute
generating function:

Av(12453, 14253, 21453, 41253)

Conjectured here:
Av(14325, 14352, 41325, 41352)
Av(13524, 23514, 25314, 31524)
Av(13542, 14352, 31542, 41352)

A symmetry of the class G4 is among those enumerated in [10]. A specification can be
found on PermPAL6 that leads to a univariate system of 22 equations that can be solved
to confirm the generating function.

In total, eleven of the classes listed above are POPS: the four enumerated in [10],
the first six conjectured by [10], and the first that we conjecture here but cannot find a
generating function for. The ten that we can enumerate are listed in Table 5.

1 2
3

4 5
Av(12345, 12354, 21345, 21354) 23634 yes

1 2
3 5

4
Av(12354, 12453, 21354, 21453) 24403 yes

1 2
4

3 5
Av(12435, 12534, 21435, 21534) 24019 yes

1 2
5

3 4
Av(12453, 12543, 21453, 21543) 23641 yes

1 3
4

2 5
Av(14235, 15234, 24135, 25134) 23642 yes

Poset Permutation Class PermPAL ID GF known?

(Table 5, continued on next page)

6https://permpal.com/perms/id/23641/
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(Table 5, continued from previous page)

1 5
2

3 4
Av(13452, 13542, 23451, 23541) 23643 yes

1 3
4 5

2
Av(15234, 15243, 25134, 25143) 23644 yes

1 3
5

2 4
Av(14253, 15243, 24153, 25143) 23645 yes

1 5
2 4

3
Av(13542, 14532, 23541, 24531) 24212 yes

1 5
3

2 4
Av(13542, 14532, 23541, 24531) 24172 yes

Poset Permutation Class PermPAL ID GF known?

Table 5: The ten POP classes known to be counted by OEIS A212198.

5.5 Conjecture GK.5

Conjecture GK.5 involves the class G5 = Av

(
3
5 4
2 1

)
= Av(45123, 45132, 45213, 54123,

54132, 54213) and (a shift of) the OEIS sequence A228907 defined as the series expansion
of the generating function F (x) satisfying the equation

F (x) = 1 +
∑
n⩾0

1− F (x)2n

1− F (x)
xn,

which is algebraic with minimal polynomial

x(x− 1)F (x)3 − x(x− 1)F (x)2 − (2x− 1)F (x)− 1 = 0.

Tilescope finds a specification for G5
7 that leads to a system of 20 equations with one

catalytic variable that can be solved to find the shifted generating function 1 + xF (x)
where F (x) is the generating function from A228907. This is the only permutation class
in the PermPAL database with this counting sequence.

5.6 Conjecture GK.6

Conjecture GK.6 involves the class G6 = Av

(
3 4

5
1
2

)
= Av(45123, 45213) and the

OEIS sequence A224295 which is defined as the counting sequence of Av(12345, 12354).
These two classes are not symmetries, but Av(12345, 12354) is also a POP class.

7https://permpal.com/perms/id/2364/
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We have not been able to enumerate G6, and so we cannot confirm this conjecture.
However, Tilescope is able to find a specification for the class Av(12345, 12354) in the
definition of the sequence. It leads to a system of 23 equations with two catalytic variables,
preventing us from solving it. We are able to generate the first 790 terms of the counting
sequence of this class. PermPal has an additional six classes, each avoiding two patterns
of size five, whose counting sequences match that of Av(12345, 12354) up to at least the
first 100 terms.

As for the class G6, we have computed the first 50 terms in the counting sequence
through different means, and they match the sequence A224295 up to this point, providing
further evidence for this still-open conjecture.
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