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Abstract

The semi-random graph process is a single-player game that begins with an
empty graph on n vertices. In each round, a vertex u is presented to the player
independently and uniformly at random. The player then responds by selecting a
vertex v and adds the edge uv to the graph. For a fixed (monotone) increasing
graph property, the player’s objective is to force the graph to satisfy this property
with high probability in as few rounds as possible.

We focus on the problem of constructing a subgraph isomorphic to an arbitrary,
fixed graph H. In [3], it was proved that asymptotically almost surely one can
construct H in t rounds, for any t ≫ n(d−1)/d where d 󰃍 2 is the degeneracy of H.
It was also proved that this result is sharp for H = Kd+1 and conjectured that it is
so for all graphs H. We prove this conjecture, and the conjecture’s generalization
to a semi-random s-uniform hypergraph process for every s 󰃍 2.

Mathematics Subject Classifications: 05C80, 05C65

1 Introduction

In this paper, we consider the semi-random process suggested by Peleg Michaeli (see [2]
and [3, Acknowledgements]), formally introduced in [3], and studied recently in [2, 9, 6,
8, 13, 5, 7, 15]. This process can be viewed as a “one player game”.

1.1 Definitions

The process starts from G0, the empty graph on the vertex set [n] := {1, 2, . . . , n} where
n 󰃍 1. In each step t 󰃍 1, a vertex ut is chosen uniformly at random from [n]. Then, the

aMathematics Institute, University of Warwick, Coventry, UK (natalie.behague@warwick.ac.uk).
bDepartment of Mathematics, Toronto Metropolitan University, Toronto, ON, Canada
(trent.marbach@gmail.com, pralat@torontomu.ca).

cFaculty of Mathematics and Computer Science, Adam Mickiewicz University, Poznań, Poland
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player (who is aware of graph Gt−1 and vertex ut) must select a vertex vt and add the
edge utvt to Gt−1 to form Gt. The player aims to build a (multi)graph satisfying a given
property P as quickly as possible. It is convenient to think of ut as receiving a square,
and vt as receiving a circle, so every edge in Gt joins a square with a circle. Equivalently,
we may view Gt as a directed graph where arcs go from ui to vi, i = 1, . . . , t. To make
the process well defined, we allow parallel edges (for example, if some vertex receives n
squares, a parallel edge is necessary).

A strategy S is defined by specifying, for each n 󰃍 1, a sequence of functions (ft)
∞
t=1,

where for each t ∈ N, ft(u1, v1, . . . , ut−1, vt−1, ut) is a distribution over [n] that depends
on the vertex ut, and the history of the process up until step t − 1. Then, vt is chosen
according to this distribution. If ft is an atomic distribution, that is non-random, then vt
is fully determined by u1, v1, . . . , ut−1, vt−1, ut. We denote by (Gi(n)[S])ti=0 the sequence
of random (multi)graphs obtained by following the strategy S for t rounds; we shorten
Gt(n)[S] to Gt or Gt(n) when clear.

Suppose P is a monotonically increasing property of graphs. We say that a function
τP(n) is a threshold for P if the following two conditions hold:

(a) there exists a strategy S so that if t := t(n) ≫ τP(n), then limn→∞ P[Gt ∈ P ] = 1,
and

(b) for every strategy S, if t := t(n) = o(τP(n)), then limn→∞ P[Gt ∈ P ] = 0.

Here and throughout we write an ≫ bn if bn = o(an). We also say that an event holds
asymptotically almost surely (a.a.s.) if it holds with probability tending to one as n → ∞.

1.2 Main Result

In this paper, we focus on the problem of constructing a sub-graph isomorphic to an
arbitrary, fixed graph H. Let PH be the property that H ⊆ Gt. It turns out that the
threshold τPH

can be determined in terms of the degeneracy of H.
For a given d ∈ N, a graph H is d-degenerate if every sub-graph H ′ ⊆ H has minimum

degree δ(H ′) 󰃑 d. The degeneracy of H is the smallest value of d for which H is d-
degenerate. It was proved in [3] that for any graph H of degeneracy d ∈ N, τPH

󰃑 n(d−1)/d.

Theorem 1 ([3, Theorem 1.10]). Let H be a fixed graph of degeneracy d ∈ N. Then,
there exists a strategy S so that whenever t ≫ n(d−1)/d,

lim
n→∞

P[Gt ∈ PH ] = 1.

For completeness and as a warm-up, we re-prove this theorem in Section 2.4.
Note that for d = 1, that is, when H is a forest, Theorem 1 implies immediately that

τPH
= 1. For d 󰃍 2, it was proved in [3] that τPH

= n(d−1)/d when H = Kd+1, the
complete graph on d + 1 vertices, and conjectured that the equality holds for all graphs
of degeneracy d. As our main result, we prove this conjecture here.
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Theorem 2. Let H be a fixed graph of degeneracy d 󰃍 2. Then, for any strategy S, if
t = o(n(d−1)/d), then

lim
n→∞

P[Gt ∈ PH ] = 0.

Combining Theorems 1 and 2 we get the following corollary.

Corollary 3. Let H be a fixed graph of degeneracy d ∈ N. Then, τPH
= n(d−1)/d.

1.3 Background

The semi-random process was also recently studied in the context of perfect matchings [10]
and Hamilton cycles [8, 9, 6, 5]. For both structures, since the goal is to create a spanning
subgraph with bounded maximum degree, the length of the process leading to constructing
them must be, trivially, of order Ω(n). In all above papers, a matching bound of O(n) is
established, however, the multiplicative constants were not determined precisely. Cliques,
chromatic number, and independent sets were considered in [7].

Perfect matchings and Hamilton cycles are just two special cases of the property of
containing a given graph Hn as a spanning subgraph. As was reported in [2], Noga Alon
asked, more generally, whether for any fixed sequence of graphs Hn with maximum degree
∆(Hn) 󰃑 ∆ for all n and Hn containing at most n vertices, one can construct a copy of
Hn in Gt on n vertices a.a.s. for t = O(n). This question was answered positively in
a strong sense in [2], where it was shown that such an Hn can be constructed a.a.s. in
(3∆/2 + o(∆))n rounds. They also proved that if ∆ ≫ log(n), then this upper bound
improves to (∆/2 + o(∆))n rounds. Note that this result applies to fixed subgraphs too,
but this bound is far too weak. Indeed, we will show that the property of containing
a fixed subgraph has a threshold of order o(n). Consequently, we will be interested in
finding the correct exponent of n rather than multiplicative constants.

The semi-random process may be extended or generalized in various ways. For exam-
ple, in [11] the authors consider a no-replacement variant of the process in which squares
follow a permutation of vertices selected uniformly at random. Once each vertex is cov-
ered with a square, another random permutation is drawn, and the process continues.
Another variant was studied in [4] in which a random spanning tree of Kn is presented to
the player who can keep one of the edges. In [15], the process presents k squares, and to
create an edge the player selects one of them, and freely chooses a circle to connect to.

1.4 Hypergraphs

In this paper, we propose a natural generalization of the semi-random process to hyper-
graphs (cf. [14]). Fix r 󰃍 1 to be the number of randomly selected vertices per step, and

s 󰃍 r to be the uniformity of the hypergraph. The process starts from G
(r,s)
0 , the empty

hypergraph on the vertex set [n], where n 󰃍 1. In each step t 󰃍 1, a set Ut of r vertices is
chosen uniformly at random from [n]. Then, the player replies by selecting a set of s− r

vertices Vt and the edge Ut ∪ Vt is added to G
(r,s)
t−1 to form G

(r,s)
t . We assume that Ut and

Vt are disjoint so that the resulting hypergraph is an s-uniform hypergraph, or shortly an
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s-graph. As was the case with graphs, in order for the process to be well defined we will
allow parallel edges.

If r = 1 and s = 2, then this is the semi-random graph process described above. On
the other hand, if r = s (that is, the player chooses Vt = ∅ for all t), then G

(r,r)
t is just a

uniform random r-graph process with t edges selected with repetitions.
In this paper, we will focus on the case where r = 1. In this case, at each step one

vertex is randomly selected and the player chooses s− 1 vertices. For simplicity, we will
refer to the s-graph G

(1,s)
t simply as G

(s)
t .

As before, the goal of the player is to build an s-graph G
(s)
t satisfying a given property

P as quickly as possible, and we focus on the property PH of possessing a sub-s-graph
isomorphic to an arbitrary, fixed s-graph H. We define strategies and the threshold τPH

identically to the graph case.
In Section 3 we show that for uniform hypergraphs, the case r = 1 resembles the

graph case and the degeneracy of an s-uniform hypergraph H is still the only parameter
that affects the threshold for the property H ⊆ G

(s)
t . As for graphs, for a given d ∈ N,

a hypergraph H is d-degenerate if every sub-hypergraph H ′ ⊆ H has minimum degree
δ(H ′) 󰃑 d (where the minimum degree of a hypergraph is the minimum degree over all
vertices). The degeneracy of H is the smallest value of d for which H is d-degenerate.

In particular, we have the following theorems that are counterparts of Theorem 1 and
Theorem 2.

Theorem 4. Let r = 1, s 󰃍 2, and let H be a fixed s-uniform hypergraph of degeneracy
d ∈ N. Then, there exists a strategy S so that whenever t ≫ n(d−1)/d,

lim
n→∞

P[G(s)
t ∈ PH ] = 1.

Theorem 5. Let r = 1, s 󰃍 2, and let H be a fixed s-uniform hypergraph of degeneracy
d 󰃍 2. Then, for any strategy S, if t = o(n(d−1)/d), then

lim
n→∞

P[G(s)
t ∈ PH ] = 0.

As a result, combining Theorems 4 and 5, we get the following corollary.

Theorem 6. Let r = 1 and let H be a fixed s-uniform hypergraph of degeneracy d ∈ N.
Then, τPH

= n(d−1)/d.

The proofs of these results follow the same approach as in the graph case.

1.5 Organization

In the next section we prove Theorems 1 and 2, while in Section 3 we concentrate on
Theorems 4 and 5. The last section presents a number of open problems, including the
problem of the hypergraph case when the number of randomly selected vertices r satisfies
1 < r < s. Some further results on this case will be presented in a follow-up paper.
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2 Proofs for graphs

2.1 Outline

First, in Subsection 2.4, we prove Theorem 1 which sets an upper bound on τPH
. Then,

in Subsection 2.5, a proof of Theorem 2 is given that provides a matching lower bound. A
probabilistic lemma, established in Subsection 2.3, is utilized in both proofs. The proof
of Theorem 2 is much more involved and requires an auxiliary notion of vertex weighting
w. In Lemma 8 we show that the weights are bounded from below by δ(H). Then, in
Lemma 9, we bound the number of possible images of a vertex v of H in Gt in terms of
w(v). Combined, these two lemmas yield the proof of Theorem 2. Before all that, we
include a brief compendium on the degeneracy of graphs and hypergraphs.

2.2 Degeneracy

We start with some useful basic facts about degeneracy. Recall that for a given d ∈ N,
a hypergraph H is d-degenerate if every sub-hypergraph H ′ ⊆ H has minimum degree
δ(H ′) 󰃑 d. The degeneracy of H is the smallest value of d for which H is d-degenerate.

The d-core of a hypergraph H is the maximal (with respect to inclusion) induced
subgraph H ′ ⊆ H with minimum degree δ(H ′) 󰃍 d. (Note that the d-core is well defined,
though it may be empty. Indeed, if S ⊆ V (H) and T ⊆ V (H) induce sub-hypergraphs
with minimum degree at least d, then the same is true for S ∪ T .) If H has degeneracy
d then it has a non-empty d-core. Indeed, by definition, H is not (d − 1)-degenerate
and so it has a sub-hypergraph H ′ with δ(H ′) 󰃍 d. We immediately get that if H has
degeneracy d, then there exists an ordering of the vertices of H, (v1, v2, . . . , vk), such that
for each ℓ ∈ [k] vertex vℓ has degree at most d in the sub-hypergraph induced by the set
{v1, v2, . . . , vℓ}.

For graphs, this implies a useful reformulation of degeneracy: a graphH is d-degenerate
if and only if the edges of H can be oriented to form a directed acyclic graph D with
maximum out-degree at most d. In other words, there exists a permutation of the vertices
of H, (v1, v2, . . . , vk), such that for every directed edge (vi, vj) ∈ D we have i > j and
the out-degrees are at most d. For example, the degeneracy of the complete graph Kk is
k − 1, and any acyclic tournament embodies the aforementioned orientation.

2.3 Useful Lemma

Let us first state the following simple but useful lemma. The proofs of Theorems 1 and
2, as well as (since the lemma does not depend on s) those of Theorems 4 and 5, will rely
on it.

Lemma 7. Let t = o(n) and let ω = ω(n) be any function tending to infinity as n → ∞.

Let x ∈ N and let X
(x)
t be the number of vertices in Gt with precisely x squares on them,

that is, the number of vertices in Gt with out-degree x. Then the following holds:

(a) EX(x)
t = (1− o(1)) tx

x!nx−1 .
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(b) If t = n(x−1)/x/ω, then a.a.s. X
(x)
t = 0.

(c) If t = n(x−1)/xω, then for any y ∈ N a.a.s. X
(x)
t 󰃍 y.

Proof. Let Yt(i), i = 1, . . . , n, be the number of squares on vertex i in Gt. It follows
from our random model that each Yt(i) is a random variable with binomial distribution
Bin(t, 1/n). Note, however, that the random variables Yt(i) for i = 1, . . . , n are not
independent. The same observation applies to the indicator random variables It(i)

(x),
where for each i = 1, . . . n, It(i)

(x) = 1 if Yt(i) = x and 0 otherwise. Thus

X
(x)
t =

n󰁛

i=1

It(i)
(x),

and, since t = o(n) and x is a constant, we immediately get that

EX(x)
t = n

󰀕
t

x

󰀖󰀕
1

n

󰀖x 󰀕
1− 1

n

󰀖t−x

= (1− o(1))
ntx

x!nx
exp

󰀕
−t− x

n
+O(t/n2)

󰀖

= (1− o(1))
tx

x!nx−1
.

If t = n(x−1)/x/ω, then EX(x)
t = o(1) and so a.a.s. X

(x)
t = 0 by the first moment method.

On the other hand, if t = n(x−1)/xω, then EX(x)
t ∼ ωx/x! → ∞ as n → ∞. Set X := X

(x)
t

for convenience. To turn the above estimate of expectation EX into the desired lower
bound on X itself, we are going to apply the second moment method, or Chebyshev’s
inequality, with the variance expressed in terms of the second factorial moment (this form
fits well the cases when all summands constituting X are pairwise dependent):

P
󰀕
|X − EX| > 1

2
EX

󰀖
󰃑 4Var(X)

(EX)2
= 4

󰀕
E(X(X − 1))

(EX)2
+

1

EX
− 1

󰀖
. (1)

Since EX → ∞ as n → ∞, it suffices to show that E(X(X − 1)) ∼ (EX)2. By symmetry,

E(X(X − 1)) = n(n− 1)P(It(1)(x) = It(2)
(x) = 1),

while

P(It(1)(x) = It(2)
(x) = 1) =

󰀕
t

x

󰀖󰀕
t− x

x

󰀖󰀕
1

n

󰀖2x 󰀕
1− 2

n

󰀖t−2x

∼ t2x

x!2n2x
,

and, thus, indeed, E(X(X − 1)) ∼ (EX)2. Consequently, a.a.s. X
(x)
t 󰃍 ωx/(3x!) and, in

particular, X
(x)
t 󰃍 y, regardless of the value of y ∈ N.
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2.4 Upper Bound

In this section, we will re-prove Theorem 1. We do it for completeness as well as to
highlight challenges in proving the lower bound.

Proof of Theorem 1. LetH be a graph on k vertices V (H) = {v1, v2, . . . , vk} of degeneracy
d ∈ N. As such, we may assume that for each ℓ ∈ [k], vertex vℓ has at most d neighbours
among {v1, v2, . . . , vℓ−1}. We orient edges of H so that for all edges vivj it holds that
j < i. As a result, the maximum out-degree is equal to d.

The player can create the oriented graph H in t ≫ n(d−1)/d rounds by using the
following simple strategy. The process is divided into k phases labelled with ℓ ∈ [k], each
consisting of t/k rounds. We proceed by an inductive argument. At the beginning of
phase ℓ, we assume that a copy of the induced subgraph H[{v1, v2, . . . , vℓ−1}] has been
already created in G(ℓ−1)t/k.

Note that the property is vacuously satisfied at the beginning of phase 1. At the
beginning of phase 2, we may select any vertex to obtain a copy of H[v1]. Therefore, let
ℓ 󰃍 2. Let us fix one such copy and let ui be the image of vi, i = 1, . . . , ℓ− 1 in that copy.

Let Nℓ ⊆ {v1, v2, . . . , vℓ−1} be the neighbours of vℓ in H that come earlier in the vertex
ordering. By construction, h := |Nℓ| 󰃑 d. Let w1, . . . , wh be the images of the vertices of
Nℓ in the fixed copy of H[{v1, v2, . . . , vℓ−1}] in G(ℓ−1)t/k.

The goal of the player (in this phase) is to create an image uℓ of vertex vℓ that
is adjacent to w1, . . . , wh. In order to achieve this, when some vertex receives its ith
square during this phase, 1 󰃑 i 󰃑 h, the player simply connects this vertex with wi.
It follows from Lemma 7(c) with x = d and y = k that a.a.s. at least k vertices re-
ceive d squares during this phase, in which case we can find such a vertex distinct from
u1, . . . , uℓ−1. Therefore a.a.s. the fixed copy of H[{v1, v2, . . . , vℓ−1}] can be extended to a
copy of H[{v1, v2, . . . , vℓ−1, vℓ}]. Since the number of phases is k = O(1), a.a.s. a copy of
H is created in k phases, and the proof is finished.

2.5 Lower Bound

In this section, we prove the main result of this paper, Theorem 2.
Let H be a graph on k vertices and m edges that may contain loops and parallel edges.

Fix an ordering of the edges (e1, e2, . . . , em) of H, and fix an orientation of each edge. We
will analyze the probability of an oriented copy of H arising in Gt where the edges of
H are added to Gt in this specified order and the edge orientations in Gt (from squares
to circles) respect the edge orientations of H. Since, for a fixed H, there is only a finite
number of ways to order and orient the edges, we can sum these probabilities to get the
desired bound on the occurrence of any copy of H in Gt. Later on, we will formally prove
this simple observation. For now, let us restrict ourselves to a given orientation and a
given order of edges, and assume that the player’s goal is to create a copy of H with these
additional constraints.

To highlight the main challenge in proving the result, consider a simple example with
H = C4, the cycle of length 4. If the cycle is oriented so that one of the vertices has out-
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degree 2, then it follows immediately from Lemma 7(b) that a.a.s. one cannot accomplish
the task in o (

√
n) rounds, and we are done. However, if the cycle is oriented so that each

vertex has out-degree 1, then no non-trivial bound can be deduced from the lemma.
In order to deal with all possible scenarios, for a given orientation and order, we define

a weight function on the vertices of the graph H. This function is meant to measure
how much of the difficulty in creating a copy of H hinges upon a given vertex. We will
then show (see Lemma 8) that if H is d-degenerate, then all vertices of its d-core H ′

have weight at least d. On the other hand, we will show (see Lemma 9) that even if H ′

contains just one vertex of weight at least d, then the expected number of copies of H ′ in
Gt is O(td/nd−1), regardless of the strategy of the player. As a result, if t = o(n(d−1)/d),
then the expectation tends to zero, and the desired conclusion holds by the first moment
method: a.a.s. there is no copy of H ′, and thus of H, in Gt.

In order to prove Lemma 8 it is helpful to allow directed graphs that contain loops,
including potentially several loops on the same vertex, to make the inductive step work.
We call such a graph loopy.

As promised, we recursively define a weight function wH : V → N∪{0} on the vertices
of a loopy graph H = (V,E) that is dependent on the edge order and orientation. Let H0

be the edgeless graph on vertex set V and define the weighting wH0 : V → N ∪ {0} to be
uniformly zero. For 1 󰃑 i 󰃑 m = |E|, let Hi have vertex set V and edge set {e1, e2, . . . , ei}
(so Hm = H). In particular, Hi is Hi−1 with edge ei added. Let ei be the directed edge
xi → yi (where we may have yi = xi). Define wHi

: V → N ∪ {0} by

wHi
(xi) = wHi−1

(xi) + 1

and for all other vertices v ∈ V ,

wHi
(v) =

󰀫
max{wHi

(xi), wHi−1
(v)} if xi ⇝ v in Hi

wHi−1
(v) otherwise,

where xi ⇝ v denotes that there is a directed path from xi to v. See Figure 1 for an
example of the updating rule. Note that for every i the weights of vertices on a directed
path in Hi form a non-decreasing sequence and that for every v ∈ V we have wi(v) 󰃑 i.

ei

4

4

2

2 2

1

S

Hi

2

1

4

3

3

2 2

13

1

32 1

Hi�1

4

4

4

Figure 1: An example of a vertex weighting on Hi−1 and the updated weighting on Hi.
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The weight of a vertex v relates implicitly to the number of vertices that are images
of v in the copies of H in Gt, where a higher weight means fewer copies (cf. Lemma 9
below). In particular, it counts how many times the random process must pick v in order
to create a copy of H with an additional technical constraint that the weights cannot
decrease along directed paths. The intuition is as follows. Suppose there is a number of
images of xi lying within copies of Hi−1 in Gt. Only a fraction of them will become an
image of xi in a copy of Hi, as the random process must choose them (assign a square) at
a later time. Similarly, as the player assigns only one circle at a time, the pool of images
of yi in copies of Hi will shrink as the process progresses. Hereditarily, the same applies
to the vertices further away from xi in Hi but accessible from it by directed paths.

Lemma 8. If a loopy graph H has minimum degree δ = δ(H) (where a loop edge v → v
contributes one to the degree of v), then wH(v) 󰃍 δ for every vertex v.

Proof. We prove the statement by induction on the number of edges m = |E(H)|. The
base case is trivial. If m = 0, then H = H0, δ(H0) = 0, and all vertices have weight zero
by definition.

For the inductive step, assume that m 󰃍 1 and the result holds for all graphs with
fewer than m edges. Let δ = δ(Hm). Clearly, Hm−1 has minimum degree δ or δ − 1.
If Hm−1 has minimum degree δ then we are done, as wHm(v) 󰃍 wHm−1(v) 󰃍 δ for every
vertex v.

Suppose then that Hm−1 has minimum degree δ− 1 and that wHm−1(v) 󰃍 δ− 1 for all
v. Let em = xm → ym. We have wHm(xm) = wHm−1(xm) + 1 󰃍 δ. Let S be the set of all
vertices v with a directed path from xm to v in Hm. We know that xm ∈ S (there is a
degenerate directed path from xm to xm) and wHm(v) 󰃍 wHm(xm) 󰃍 δ for any v ∈ S. If
S = V (Hm) then we are done, so suppose not and let T = V (Hm) \ S.

Note that by definition, there are no directed edges in Hm from a vertex in S to a
vertex in T . Indeed, suppose that ei = xi → yi with xi ∕∈ T and yi ∈ T . Since xi ∕∈ T ,
xm ⇝ xi in Hm and so also xm ⇝ yi. We get yi ∕∈ T which gives us a contradiction (see
Figure 1). We construct a series of auxiliary graphs Fi for i = 0, 1, . . . ,m on vertex set T
as follows. Let F0 be the empty graph on vertex set T . For each 1 󰃑 i 󰃑 m, consider the
edge ei = xi → yi in Hm.

• If xi, yi ∈ T then let Fi be Fi−1 with edge xi → yi added.

• If xi ∈ T, yi ∕∈ T , then let Fi be Fi−1 with loop edge xi → xi added (with multiplicity
if xi → xi is already included as an edge).

• Otherwise, if xi ∕∈ T , let Fi = Fi−1.

These graphs naturally inherit the edge ordering from Hm.
Since xm ∕∈ T , em = xm → ym is not added to Fm and so we know that Fm has strictly

fewer than m edges. We also have that dFm(v) = dHm(v) for all v ∈ T , since there are
no edges ei = xi → yi with xi ∕∈ T and yi ∈ T . Thus by the inductive hypothesis, the
weighting wFm : T → N ∪ {0} has wFm(v) 󰃍 δ for all v ∈ T .
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On the other hand, we can also show inductively that wFi
(v) = wHi

(v) for all v ∈ T
and all i 󰃑 m. This certainly holds for i = 0. Since there are no directed edges from
S to T in Hm, the set of vertices v ∈ T with xi ⇝ T is the same in both Hi and Fi,
for all i. Thus, if ei = xi → yi with xi ∈ T , we can see that for v ∈ T with xi ⇝ v,
we have wHi

(v) = max{wHi−1
(v), wHi−1

(xi) + 1} = max{wFi−1
(v), wFi−1

(xi) + 1} = wFi
(v)

and for v ∈ T with xi ∕⇝ v, we have wHi
(v) = wHi−1

(v) = wFi−1
(v) = wFi

(v). For the
same reason, if xi ∕∈ T , then adding edge ei to Hi−1 to get Hi has no effect on vertex
weights within T . In particular, we obtain wHm(v) = wFm(v) 󰃍 δ for all v ∈ T and,
consequently, wHm(v) 󰃍 δ for all v ∈ V (Hm), since we already had that wHm(v) 󰃍 δ for
v ∈ S = V (Hm) \ T . The proof of the lemma is finished.

Recall that Gt is the semi-random graph after t time-steps. Before we can state our
main lemma, we need to introduce a few more definitions. LetH be an oriented graph with
a fixed edge order e1, e2, . . . , em. A homomorphism from H to Gt is a map that respects
the edge orientations and edge ordering in the natural way. Formally, a homomorphism
from H to Gt is an injective function φ : V (H) → V (Gt) such that:

1. if e = u → v is a directed edge in H then φ(u) → φ(v) is a directed edge in Gt

which we call φ(e); and

2. for i < j, the edge φ(ei) was added to Gt at an earlier time-step than the edge φ(ej).

For a vertex v ∈ V (H), define S(v,H; t) to be the set of vertices u in Gt for each of
which there is a homomorphism φ from V (H) to V (Gt) such that u = φ(v). Less formally,
one can think of S(v,H; t) as being the number of vertices within Gt that look like an
image of the vertex v within some copy of the graph H.

We also need a notion of the diameter of an oriented graph. For any ordered pair of
vertices u, v ∈ H for which there exists a directed path from u to v, let d(u, v) be the
length of the shortest such path. Define diam(H) as the maximum value of d(u, v) over
all pairs u, v with a directed path from u to v. (We use the convention that diam(H) = 0
if H is the empty graph.) Note that diam(H) 󰃑 |V (H)| − 1 and that diam(H) is not a
monotone function of graphs.

Lemma 9. Let H be an oriented graph with a fixed edge order (e1, . . . , em), and let wH be
the vertex weighting defined above. Then, for any strategy S of the player, any t < n/2,
and any vertex v ∈ V (H) with w = wH(v),

E |S(v,H; t)| 󰃑 tw

nw−1

󰀃
2(m!)D − 1

󰀄

where D = maxi{diam(Hi)} 󰃑 |V (H)|− 1.

Proof. We will prove a slightly stronger statement: for any vertex v ∈ V (G) and any
i ∈ {0, 1, . . . ,m},

E |S(v,Hi; t)| 󰃑
twi(v)

nwi(v)−1

󰀃
2(wi(v)!)

D − 1
󰀄
, (2)
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where we use the shorthand wi = wHi
. Then, the lemma will follow by taking i = m and

observing that wi(v)! 󰃑 m!. The proof is by induction on i.
The base case is trivial. Indeed, if i = 0, then by the definition of w0, the weighting is

identically zero. Clearly, for all v ∈ V (H),

S(v,H0; t) = n =
t0

n−1

󰀃
2(0!)D − 1

󰀄
,

and so the desired inequality (2) holds.
For the inductive step, suppose that i 󰃍 1 and that (2) holds for Hi−1. We will show

that it also holds for Hi. If wi(v) = 0, then clearly |S(v,Hi; t)| 󰃑 n = t0

n−1

󰀃
2(0!)D − 1

󰀄

and we are done. If wi(v) = 1, then v must be in some edge in Hi. If v has a positive out-
degree in Hi, then each vertex in S(v,Hi; t) has a positive out-degree in Gt. Otherwise, v
has a positive in-degree in Hi, and then each vertex in S(v,Hi; t) has a positive in-degree
in Gt. Either way, |S(v,Hi; t)| 󰃑 t = t1

n0

󰀃
2(1!)D − 1

󰀄
and we are done again.

Moreover, as, obviously,

|S(v,Hi; t)| 󰃑 |S(v,Hi−1; t)|,
the result follows immediately for all vertices v with wi(v) = wi−1(v). Consequently, we
only need to consider vertices v where wi(v) 󰃍 2 and wi(v) ∕= wi−1(v).

Let ei = x → y and set wi(x) = w. The condition wi(v) ∕= wi−1(v) only holds if there
is a directed path from x to v in Hi, in which case wi(v) = w too. We will show by
induction on the distance di(x, v) from x to v in Hi that

E |S(v,Hi; t)| 󰃑
tw

nw−1

󰀓
2wdi(x,v) ((w − 1)!)D − 1

󰀔
. (3)

Since di(x, v) 󰃑 diam(Hi) 󰃑 D, this will suffice to prove (2) and so to finish the proof of
the lemma.

From now on we suppress the subscript i in di(x, y). First consider the case d(x, v) =
0, that is, v = x. If u ∈ S(x,Hi; t), then there must be some time t′ < t so that
u ∈ S(x,Hi−1; t

′) and u was selected by the semi-random process at time t′ +1, when the
image of the edge ei was added to create a copy of Hi. The probability that some vertex in
S(x,Hi−1; t

′) was selected by the semi-random process at time t′ + 1 is |S(x,Hi−1; t
′)|/n.

Thus,

E |S(x,Hi; t)| 󰃑
t−1󰁛

t′=0

|S(x,Hi−1; t
′)|

n

and, by the linearity of expectation and (2), valid for i− 1, we have

E |S(x,Hi; t)| 󰃑
t−1󰁛

t′=0

E |S(x,Hi−1; t
′)|

n

󰃑
t−1󰁛

t′=0

(t′)w−1

n (nw−2)

󰀓
2 ((w − 1)!)D − 1

󰀔

󰃑 tw

nw−1

󰀓
2 ((w − 1)!)D − 1

󰀔
,

the electronic journal of combinatorics 31(3) (2024), #P3.30 11



as required.
Now, consider the case d(x, v) > 0, that is, v ∕= x and there is a directed path from

x to v, and suppose that the hypothesis (3) holds for all u with d(x, u) < d(x, v). We
fix a directed path from x to v of minimum length. Let u be the vertex preceding v on
this path, so d(x, u) = d(x, v)− 1. Observe that, by the definition of the weight function,
wi(u) = w.

The number of vertices in S(v,Hi; t) is bounded by the number of edges in Gt that are
the images of the edge u → v under some homomorphism φ from Hi to Gt. We partition
the vertices in S(u,Hi; t) into classes according to how many of the edges they are incident
to are the images of u → v under some homomorphism. If a vertex in S(u,Hi; t) is incident
to exactly a such edges, it contributes at most a vertices to S(v,Hi; t).

Thus, the total contribution to S(v,Hi; t) from all vertices in S(u,Hi; t) that are
incident to at most w such edges is at most w|S(u,Hi; t)|. On the other hand, the
expected number of vertices in S(u,Hi; t) that are incident to exactly a > w edges that
are images of u → v is, by Lemma 7(a), at most 2ta

a!na−1 . Combining these estimates, we
have

E |S(v,Hi; t)| 󰃑 wE |S(u,Hi; t)|+ 2
󰁛

a󰃍w+1

a
ta

a!na−1

󰃑 wE |S(u,Hi; t)|+
2tw

w!nw−1

󰀕
t

n
+

t2

n2
+ . . .

󰀖

󰃑 w
tw

nw−1

󰀓
2wd(x,u) ((w − 1)!)D − 1

󰀔
+

tw

nw−1
· t

n− t
,

since w 󰃍 2. It follows that

E |S(v,Hi; t)| 󰃑
tw

nw−1

󰀕
2wd(x,u)+1 ((w − 1)!)D − w +

t

n− t

󰀖

󰃑 tw

nw−1

󰀓
2wd(x,v) ((w − 1)!)D − 1

󰀔
,

as t < n/2. Thus, inequality (3) holds for all v with a directed path from x to v. This
finishes the proof of the lemma.

Now we combine the two lemmas to prove the theorem.

Proof of Theorem 2. Let H be a graph on k vertices and m edges with degeneracy d. Let
H ′ be the (non-empty) d-core of H so, in particular, H ′ has minimum degree at least
d. We will show that, regardless of the strategy used by the player, a.a.s. H ′ is not a
subgraph of Gt as long as t = o(n(d−1)/d). As a result, the same is true for H ⊇ H ′.

As mentioned at the beginning of this section, it is enough to show that the player
cannot create a copy of H following a specific (but arbitrarily chosen) orientation and
order of the edges of H. Clearly, there are 2mm! different configurations to select from
(which is a large constant, but it does not depend on n). We may consider 2mm! auxiliary
games, one for each configuration, on top of the regular game. Each game (both the
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auxiliary ones and the original one) is played by 2mm! + 1 perfect players aiming to
achieve their own respective goals. All the games are coupled in a natural way, that is,
exactly the same squares are presented by the semi-random process to each of the players.

Fix an edge ordering and an orientation of the edges of H, and consider a perfect
player playing the corresponding auxiliary game. Applying Lemma 8 to the d-core H ′ of
H, we see that wH′(v) 󰃍 d for each vertex v ∈ V (H ′). Thus, by Lemma 9, for each vertex
v ∈ V (H ′)

E |S(v,H ′; t)| 󰃑 td

nd−1

󰀓
2(e(H ′)!)|V (H′)|−1 − 1

󰀔
= O

󰀕
td

nd−1

󰀖
.

Note that the above bound holds for all vertices v ∈ V (H ′). This property is slightly
stronger than we need as we only need it for one vertex of V (H ′). Let us fix then an
arbitrary vertex v0 of H ′. If t = o

󰀃
n(d−1)/d

󰀄
, then we have E |S(v0, H ′; t)| = o(1) and so,

by the first moment method, a.a.s. there are no vertices in S(v0, H
′; t). It follows that

a.a.s. there is no copy of H ′, and thus of H, in Gt with this given order and orientation
of edges. In other words, the player playing this specific auxiliary game does not win the
game a.a.s at time t = o

󰀃
n(d−1)/d

󰀄
.

This holds for every edge ordering and every orientation of the edges of H. As men-
tioned earlier, the number of such orderings and orientations is a constant depending only
on m = |E(H)|. Thus, by the union bounds over all auxiliary games, a.a.s. all players
playing auxiliary games lose their own respective games. It follows that a.a.s. a perfect
player playing the original game loses too (if not, the other players could all mimic the
same strategy, and one of them would win her game). The proof is finished.

3 Proofs for hypergraphs when r = 1

In the case when r = 1, for each step t of the semi-random process for hypergraphs, a
single vertex ut is chosen uniformly at random from [n], the same as for the process on
graphs. The player then replies by selecting a set of s−1 vertices Vt, and the edge {ut}∪Vt

is added.
The proofs of Theorems 4 and 5 follow the same approach as in the graph case con-

sidered in Section 2 and, therefore, we only sketch them here emphasizing the required
differences. The proof of Theorems 4 is again based on Lemma 7 and, indeed, proceeds
mutatis mutandis.

Proof of Theorem 4. Follow the same approach as in the proof of Theorem 1, dividing
the process into phases where in each phase, the next vertex according to the degeneracy
ordering is added. In each phase, we must create all edges in which the new vertex is the
last vertex. Since r = 1 these can be constructed in exactly the same way.

Now we outline the proof of Theorem 5 by discussing the necessary changes in the
proof of the graph counterpart, which is Theorem 2. Let H be a hypergraph on k vertices
and m edges. For the purposes of the proof of Lemma 10, we allow H to be not necessarily
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uniform, but with every edge containing at most s vertices, and we also allow there to be
potentially multiple copies of edges on < s vertices. Call such a hypergraph s-bounded.
This is analogous to the so-called loopy graphs used in the proof of Lemma 8.

Fix an ordering of the edges (e1, e2, . . . , em) of H, and for each edge ei fix a leading
vertex xi. Given such an H, define an auxiliary directed graph(H) on the same vertex
set V where for each edge ei ∈ H, we have that graph(H) contains the directed edges
xi → u for every u ∈ ei \ {xi}. Note that the only property of graph(H) we will use is
whether two vertices have a directed path between them, so while we will add any arcs
in opposite directions, we do not add any parallel arcs that are in the same direction.

As in the graph case, we recursively define a weight function wH : V → N ∪ {0} on
the vertices of H = (V,E) that is dependent on the edge order and choice of leading
vertices. Let H0 be the empty hypergraph on vertex set V and define the weighting
wH0 : V → N ∪ {0} to be uniformly zero. For 1 󰃑 i 󰃑 m = |E|, let Hi have vertex set V
and edge set {e1, e2, . . . , ei} (so Hm = H). In particular, Hi is Hi−1 with edge ei added.
Define wHi

: V → N ∪ {0} by

wHi
(xi) = wHi−1

(xi) + 1

and for all other vertices v,

wHi
(v) =

󰀫
max{wHi

(xi), wHi−1
(v)} if xi ⇝ v in graph(Hi)

wHi−1
(v) otherwise,

where xi ⇝ v denotes that there is a directed path from xi to v.

Lemma 10. If an s-bounded hypergraph H has minimum degree δ = δ(H), then wH(v) 󰃍
δ for every vertex v.

Proof. The proof follows the same approach as the proof of Lemma 8, using induction on
the number of edges m = |E(H)|. The base case m = 0 is trivial.

For the inductive step, let δ = δ(Gm). If Gm−1 has minimum degree δ then we are
done, so we assume Gm−1 has minimum degree δ− 1 and that wGm−1(v) 󰃍 δ− 1 for all v.
We have wGm(xm) = wGm−1(xm) + 1 󰃍 δ. Let S be the set of all vertices v where there is
a directed path from xm to v in graph(Gm).

We know that xm ∈ S and wGm(v) 󰃍 wGm(xm) 󰃍 δ for any v ∈ S. If S = V (Gm) then
we are done, so suppose not and let T = V (Gm) \ S. We construct a series of auxiliary
hypergraphs Fi for i = 0, 1, . . . ,m on vertex set T as follows. Let F0 be the empty graph
on vertex set T . For each 1 󰃑 i 󰃑 m, consider the edge ei in Gm.

• If xi ∈ T then let Fi be Fi−1 with edge ei ∩ T added (with multiplicity if already
included).

• Otherwise, if xi ∕∈ T , let Fi = Fi−1.

Fm has strictly fewer than m edges and for all v ∈ T , the degree dFm(v) = dGm(v).
Thus by the inductive hypothesis, the weighting wFm : T → N ∪ {0} has wFm(v) 󰃍 δ for
all v ∈ T . On the other hand, we can also show that wFi

(v) = wGi
(v) for all v ∈ T and

all i 󰃑 m by the same argument as in Lemma 8.
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Let Gt = G
(1,s)
t be the semi-random hypergraph after t time-steps and let ut be the

single vertex in the randomly chosen set Ut at time t. Before we can state our main
lemma, we need to generalize some of our earlier definitions to hypergraphs. Let H be
an hypergraph with a fixed edge order e1, e2, . . . , em where each edge ei is assigned a
leading vertex xi ∈ ei. A homomorphism from H to Gt is a map that respects the leading
vertices and edge ordering in the natural way (analogously to the graph case). For a
vertex v ∈ V (H), define S(v,H; t) to be the set of vertices in Gt which are the image φ(v)
for some homomorphism φ from V (H) to V (Gt). We also define the diameter diam(H)
of the hypergraph to be the diameter of the auxiliary graph graph(H), in the same sense
as defined in Section 2.

Lemma 11. Let H be an s-graph with a fixed edge order e1, e2, . . . , em where each edge ei
is assigned a leading vertex xi ∈ ei. Let wH be the vertex weighting defined above. Then,
for any strategy S of the player, any t < n/2, and any vertex v ∈ V (H) with w = wH(v),

E |S(v,H; t)| 󰃑 tw

nw−1

󰀓
2 ((s− 1)mm!)D − 1

󰀔

where D = maxi{diam(Hi)} 󰃑 |V (H)|− 1.

Proof. The proof of this lemma follows the exact same approach as the proof of Lemma
9. Specifically, one can show by induction on i that if hypergraph H has m edges then
for any vertex v ∈ V (H) and any i ∈ {0, 1, . . . ,m},

E |S(v,Hi; t)| 󰃑
twi

nwi−1

󰀓
2 ((s− 1)wiwi!)

D − 1
󰀔
,

where wi = wHi
(v). There are two changes needed in the proof. The first is to use the

directed paths given by the auxiliary graphs graph(Hi), whereas in the original proof the
Hi’s were themselves oriented.

The second is where the extra (s− 1)wD factor arises. It comes when considering the
case where d(x, v) > 0 and there is a directed path from x to v. We fix a directed path
from x to v in graph(Hi) of minimum length and let u be the vertex preceding v on this
path, so d(x, u) = d(x, v)− 1.

There must be a hyperedge e of Hi containing both u and v in which u is the leading
vertex. We partition the vertices in S(u,Hi; t) into classes according to how many of the
hyperedges they are incident to are the images of e under some homomorphism. If a
vertex in S(u,Hi; t) is incident to exactly a such hyperedges, then it contributes at most
(s−1)a vertices to S(v,Hi; t). This is the number of hyperedges multiplied by the number
of other vertices in each hyperedge.

Thus, the total contribution to S(v,Hi; t) from all vertices in S(u,Hi; t) that are
incident to at most wi such edges is at most (s−1)wi|S(u,Hi; t)|. On the other hand, the
expected number of vertices in S(u,Hi; t) that are incident to exactly a > wi edges that
are images of e is, by Lemma 7(a), at most 2ta

a!na−1 . Combining these estimates, we have

E |S(v,Hi; t)| 󰃑 (s− 1)wiE |S(u,Hi; t)|+ 2
󰁛

a󰃍wi+1

(s− 1)a
ta

a!na−1
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and the rest of the proof follows along the same lines as before.

Now we combine the two lemmas to prove the lower bound.

Proof of Theorem 5. Let H be a hypergraph on k vertices and m edges with degeneracy
d. Let H ′ be the (non-empty) d-core of H so, in particular, H ′ has minimum degree at
least d.

Using the same coupling argument as in the proof of Theorem 2 one can see that,
regardless of the strategy used by the player, a.a.s. H ′ is not a sub-hypergraph of Gt as
long as t = o(n(d−1)/d). As a result, the same is true for H ⊇ H ′.

4 Open Problems

Let us finish the paper with a few open problems. The value of τPH
is determined for

any uniform hypergraph H (if r = 1); see Theorem 6. (This covers the case when H is a
graph.) In fact, we establish that a.a.s. one may construct H in t ≫ n(d−1)/d rounds but
cannot do it in t = o

󰀃
n(d−1)/d

󰀄
rounds, where d is the degeneracy of H.

Note that the nature of our proofs means that they work equally well when H has
parallel edges and/or if H is a non-uniform hypergraph with all edges of size at most s. (In
the graph case, this amounts to a multi-graph with loops.) The definition of degeneracy
has to be adjusted accordingly but the proofs go through without any alteration.

It remains to investigate the probability of success after t = cn(d−1)/d rounds, where c
is some fixed positive constant. It is natural to expect that an optimal strategy produces
(1 + o(1))f(c) copies of H in expectation for some deterministic function f(c), and then
the limiting probability that the strategy fails falls into the open interval (0, 1). Under
some structural properties of H, it may actually tend to exp(−f(c)), per analogy with
the purely random (hyper)graph (see [12, Chapter 3]). However, determining an optimal
strategy and analyzing it might be challenging.

Problem 12. Determine the limiting probability that PH holds for t = cn(d−1)/d for some
positive constant c.

Note also that Theorem 6 applies to a fixed hypergraph H. If the order of H is an
increasing function of n, then our results do not apply. In the extreme but quite natural
case, H may have n vertices, so the player is after a spanning sub-hypergraph of G

(r,s)
t

isomorphic to H. For graphs, as mentioned in the introduction, we know that a.a.s. one
may construct a copy of a graph with bounded degree in (3∆/2 + o(∆))n rounds [2].
However, these upper bounds are asymptotic in ∆. When ∆ is constant in n, such as
in both the perfect matching and the Hamiltonian cycle setting, determining the optimal
dependence on ∆ of the number of rounds needed to construct H remains open. A
good starting point (apart from matchings and Hamiltonian cycles already considered
in [8, 9, 6]) might be to investigate F -factors, that is, spanning subgraphs whose all
components are isomorphic to a fixed connected graph.
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Problem 13. Given a graph F , estimate the number t of rounds needed to a.a.s. construct
an F -factor in Gt on n vertices, where n is divisible by |V (F )|.

For hypergraphs, we know much less in the case when r, the number of randomly
selected vertices at each step, is greater than 1. We can define τ

(r)
PH

analogously to τPH
by

replacing G
(s)
t = G

(1,s)
t with G

(r,s)
t . In particular, τ

(1)
PH

is the τPH
explored in detail in this

paper. The most ambitious goal would be to obtain a general formula for τ
(r)
PH

.

Problem 14. Given an s-graph H and an integer 2 󰃑 r < s, determine τ
(r)
PH

.

In [1], we obtained a general lower bound τ
(r)
PH

󰃍 nr−(k−s+r)/m, where k = |V (H)| and
m = |E(H)|, showed its optimality for certain classes of hypergraphs and better bounds
for some others. However, the general question remains wide open. To answer it, we
believe, one would need to come up with entirely new strategies of the player.
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