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Abstract

For a tree T , let V2(T ) denote the set of vertices of T having degree 2. Let
G be a connected graph. A spanning tree T of G with V2(T ) = ∅ is called a
homeomorphically irreducible spanning tree (or a HIST) of G.

We focus on two relaxations of HISTs as follows:
(1) A spanning tree T of G such that the maximum order of components of the
subgraph of T induced by V2(T ) is bounded.
(2) A spanning tree T of G such that |V2(T )| is bounded.
A spanning tree satisfying (1) was recently introduced by Lyngsie and Merker, and
a spanning tree satisfying (2) is known as a tool for constructing a HIST. In this
paper, we define a star-path system, which is a useful concept for finding a spanning
tree satisfying (1) or (2) (or both). To demonstrate how the concept works, we
characterize forbidden subgraph conditions forcing connected graphs to have such
spanning trees.
Mathematics Subject Classifications: 05C05, 05C75

1 Introduction

In this paper, all graphs are finite, simple, and undirected. Let G be a graph. Let V (G)
and E(G) denote the vertex set and the edge set of G, respectively. For u ∈ V (G),
let NG(u) and dG(u) denote the neighborhood and the degree of u, respectively; thus
NG(u) = {v ∈ V (G) : uv ∈ E(G)} and dG(u) = |NG(u)|. For an integer i ⩾ 0, let
Vi(G) = {u ∈ V (G) : dG(u) = i}. For a subset U of V (G), let G[U ] denote the subgraph
of G induced by U . Let C(G) be the family of components of G. For a graph H, G is said
to be H-free if G contains no induced copy of H. For a family H of graphs, G is said to
be H-free if G is H-free for every H ∈ H. In this context, the members of H are called
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forbidden subgraphs. For two families H1 and H2 of graphs, we write H1 ⩽ H2 if for
every H2 ∈ H2, there exists H1 ∈ H1 such that H2 contains a copy of H1 as an induced
subgraph. Note that if H1 ⩽ H2, then every H1-free graph is also H2-free.

A spanning tree of a graph G without vertices of degree 2 is called a homeomorphically
irreducible spanning tree (or a HIST) of G, i.e., a spanning tree T of G is a HIST if
and only if V2(T ) = ∅. A structure of HISTs is sometimes used as an essential tool
to construct graph classes; for example, in an explicit class of edge-minimal 3-connected
plane graphs given by Halin [11], HISTs play a key role. Motivated from such importance,
the existence of a HIST has been widely studied (for example, see [1,3,4,10,12,13,15,16]).
In [8], the authors have characterized the forbidden subgraph conditions for the existence
of a HIST. Further relationships between forbidden subgraphs and homeomorphically
irreducible trees are studied in [5, 9].

Let G be a connected graph. For a spanning tree T of G, let ξ(G, T ) be the maximum
order of components of the subgraph of T induced by V2(T ), i.e., ξ(G, T ) = max{|V (P )| :
P ∈ C(T [V2(T )])}. Let ξ(G) = min{ξ(G, T ) : T is a spanning tree of G}. Note that
G has a HIST if and only if ξ(G) = 0. Recently, Lyngsie and Merker [14] weakened the
concept of HISTs by focusing on the value ξ(G), and they proved the following two results:

(1) There exists an integer d such that every connected graph G with minimum degree
at least d satisfies ξ(G) ⩽ 1.

(2) Every connected graph G with minimum degree at least 3 satisfies ξ(G) ⩽ 2.

Furthermore, other HIST-like structures also received a lot of attention. In the research
of HISTs, we often find a large subtree T of a target graph G such that |V2(T )| is small,
and after that, construct a HIST by properly joining each vertex in V2(T ) with a vertex
in V (G) \ V (T ). Indeed, such a strategy was adopted in many papers (for example,
[10, 13, 15]).

Motivated by the above facts, we study the existence of a spanning tree T with some
restriction on the vertices in V2(T ), and in this paper, we propose a new concept (a star-
path system defined in Section 3) for such problems. To demonstrate how the concept
works, we focus on the existence of spanning trees T such that ξ(G, T ) or |V2(T )| (or both)
is bounded by a constant (compared to the order of G), and characterize the forbidden
subgraph conditions forcing connected graphs to have such spanning trees by using a
star-path system. Specifically, we judge whether or not a family H of connected graphs
satisfies one of the following conditions (but we do not use a star-path system for (F1)
because we find a more concise proof).

(F1) There is no long sequence of vertices of degree 2:
There exists a constant c(H) such that every connected H-free graph G satisfies
ξ(G) ⩽ c(H).

(F2) The number of vertices of degree 2 is small:
There exists a constant c(H) such that every connected H-free graph has a spanning
tree T with |V2(T )| ⩽ c(H).
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Figure 1: The graphs H
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n (1 ⩽ i ⩽ 4).

(F3) No vertices of degree 2 are adjacent:
There exists a constant n(H) such that every connected H-free graph G of order
at least n(H) satisfies ξ(G) ⩽ 1 (i.e., V2(T ) is an independent set of T ).

(F4) Both (F2) and (F3) are satisfied:
There exist two constants c(H) and n(H) such that every connected H-free graph G
of order at least n(H) has a spanning tree T with |V2(T )| ⩽ c(H) and ξ(G, T ) ⩽ 1.

Let n ⩾ 1 be an integer. We let Pn denote the path of order n. Furthermore, we
construct four graphs as follows (see Figure 1):

• Let H
(1)
n be the graph consisting of 3n vertices xi, yi, zi (i ∈ {1, 2, . . . , n}) such that

E(H
(1)
n ) = {xixj : 1 ⩽ i < j ⩽ n} ∪ {xiyi, yizi : 1 ⩽ i ⩽ n}.

• Let H
(2)
n be the graph obtained from H

(1)
n by contracting n vertices x1, x2, . . . , xn to a

vertex x.

• Let H(3)
n be the graph consisting of n+3 vertices xi (i ∈ {1, 2, . . . , n}), y, z, w such that

E(H
(3)
n ) = {xixj : 1 ⩽ i < j ⩽ n} ∪ {x1y, yz, zw}.

• Let H
(4)
n = H

(3)
n − {xixj : 2 ⩽ i < j ⩽ n}.

Our main results are the following.

Theorem 1. A family H of connected graphs satisfies (F1) if and only if H ⩽ {Pn} for
an integer n ⩾ 2.

Theorem 2. A family H of connected graphs satisfies (F2) if and only if H ⩽ {Pn, H
(1)
n ,

H
(2)
n } for an integer n ⩾ 2.
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Theorem 3. A family H of connected graphs satisfies (F3) if and only if H ⩽ {Pn, H
(1)
n ,

H
(3)
n , H

(4)
n } for an integer n ⩾ 2.

Theorem 4. A family H of connected graphs satisfies (F4) if and only if H ⩽ {Pn, H
(1)
n ,

H
(2)
n , H

(3)
n , H

(4)
n } for an integer n ⩾ 2.

In Section 2, we prove Theorem 1. In Section 3, we define a star-path system, which is
the key concept of this paper, and give its fundamental properties. We prove Theorem 2
in Section 4. In Section 5, we simultaneously prove Theorems 3 and 4.

1.1 Further notations and preliminaries

In this subsection, we specify additional notation and introduce useful preliminaries. For
terms and symbols not defined in this paper, we refer the reader to [6].

Let G be a graph. For an integer i ⩾ 0, let V⩾i(G) = {u ∈ V (G) : dG(u) ⩾ i} and
V ̸=i(G) = {u ∈ V (G) : dG(u) ̸= i}. For a subset U of V (G), let NG(U) = (

⋃
u∈U NG(u)) \

U . For two subsets U1 and U2 of V (G), U1 dominates U2 in G if U2 ⊆ NG(U1) ∪ U1.
A subset U of V (G) is a connected dominating set of G if U dominates V (G) in G
and G[U ] is connected. For two disjoint subsets U1 and U2 of V (G), let EG(U1, U2) =
{u1u2 ∈ E(G) : u1 ∈ U1, u2 ∈ U2}. For u, v ∈ V (G), the distance between u and
v, denoted by distG(u, v), is the minimum length of a path of G connecting u and v.
The value diam(G) := max{distG(u, v) : u, v ∈ V (G)} is called the diameter of G. For
a subgraph H of G and a subset F of E(G), let H + F be the subgraph of G with
V (H + F ) = V (H) ∪ {u, v : uv ∈ F} and E(H + F ) = E(H) ∪ F . Let α(G) denote
the independence number of G, i.e., the maximum cardinality of an independent set of
G. Let q(G) = |C(G)|, and let q2(G) denote the number of components of G consisting
of two vertices. For two positive integers n1 and n2, the Ramsey number R(n1, n2) is the
minimum positive integer R such that any graph of order at least R contains a clique of
cardinality n1 or an independent set of cardinality n2.

The following lemma, that will be used when we prove the “only if” parts of Theo-
rems 2–4, clearly holds.

Lemma 5. Let G be a connected graph. If a cut-vertex u of G satisfies dG(u) = 2, then
dT (u) = 2 for every spanning tree T of G.

In the process of characterizing Pn-free graphs, Camby and Schaudt [2] proved the
following lemma.

Lemma 6 (Camby and Schaudt [2]). Let n ⩾ 4 be an integer, and let G be a connected
Pn-free graph. Then there exists a connected dominating set X of G such that either G[X]
is Pn−2-free or G[X] ≃ Pn−2.

2 Proof of Theorem 1

The following proposition gives the “only if” part of Theorem 1.
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Proposition 7. If a family H of connected graphs satisfies (F1), then H ⩽ {Pn} for an
integer n ⩾ 2.

Proof. Let c = c(H) be a constant such that every connected H-free graph G satisfies
ξ(G) ⩽ c. Since ξ(Pc+3) = c+1, it follows from the definition of c that Pc+3 is not H-free.
This implies that H ⩽ {Pc+3}, as desired.

On the other hand, the following theorem implies that the “if” part of Theorem 1
holds.

Theorem 8. Let n ⩾ 2 be an integer, and let G be a connected Pn-free graph. Then there
exists a spanning tree T of G with ξ(G, T ) ⩽ n− 2.

Proof. We proceed by induction on n. If n = 2, then G ≃ K1; if n = 3, then G is a
complete graph. In either case, the desired conclusion clearly holds. Thus we may assume
that n ⩾ 4. By Lemma 6, there exists a connected dominating set X of G such that either
G[X] is Pn−2-free or G[X] ≃ Pn−2. If G[X] is Pn−2-free, then by the induction hypothesis,
there exists a spanning tree T0 of G[X] with ξ(G[X], T0) ⩽ n − 4; if G[X] ≃ Pn−2, then
T0 := G[X] is a tree with ξ(G[X], T0) = |X| − 2 = n − 4. In either case, there exists a
spanning tree T0 of G[X] with ξ(G[X], T0) ⩽ n− 4.

For each u ∈ V (G) \ X, since X dominates V (G) \ X in G, there exists a vertex
vu ∈ X with uvu ∈ E(G). Let T = T0 + {uvu : u ∈ V (G) \ X}. Since T is a spanning
tree of G, it suffices to show that for an element P of C(T [V2(T )]), |V (P )| ⩽ n − 2.
Note that P is a path. Write P = v1v2 · · · vl. We may assume that l ⩾ 3. Since every
vertex in V (G) \X is a leaf of T , V (P ) ⊆ X. In particular, P is a subgraph of T0. For
an integer i with 2 ⩽ i ⩽ l − 1, since T0 = T [X] and NT (vi) = {vi−1, vi+1}, we have
NT0(vi) = {vi−1, vi+1}. This implies that v2, v3, . . . , vl−1 belong to a common element of
C(T0[V2(T0)]). Consequently, |V (P )| − 2 = l − 2 ⩽ ξ(G[X], T0) ⩽ n− 4, as desired.

3 SP-systems

A tree T is a star if T has a vertex of degree |V (T )|−1 (where a connected graph of order
at most two is regarded as a star). For a star T , a vertex u ∈ V (T ) is a center of T if
dT (u) = |V (T )| − 1. Note that a star T has two centers if and only if |V (T )| = 2. For a
path P , a vertex u ∈ V (P ) is an endvertex of P if dP (u) ⩽ 1.

In this section, we introduce star-path systems (or SP-systems for short), that play a
key role in our argument. We start with an overview of SP-systems: Let G be a graph,
and fix two sets X ⊆ V (G) and X ′ ⊆ NG(X). (When we use the star-path systems in
practice, we fix a vertex x and let X and X ′ be the set of vertices at distance i − 1 and
i from x, respectively.) Let F be a spanning subgraph of G[X ′] whose components are
stars, and take a subgraph L of G[X] so that the components of L are paths and V (L)
dominates the centers of components of F . In fact, we impose more detailed conditions
(S1)–(S9), and prove that we can always find a structure satisfying the conditions (see
Proposition 9). We consider a subgraph of G obtained from F and L by adding some
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Figure 2: An SP-system (F, Y ;L,Z, Z ′) of (G,X,X ′), where the bold lines form an
(F, Y ;L,Z, Z ′)-typical subgraph.

edges between V (F ) and V (L) (and such a subgraph is said to be typical). We prove that
a typical subgraph is a forest and every vertex of degree 2 is an endvertex of a component
of L (see Lemma 11). In our proof of Theorems 2–4, we will construct a spanning tree
with restricted vertices of degree 2 by connecting some typical subgraphs.

Now we define the structure strictly. Let G be a graph, and let X ⊆ V (G) and X ′ ⊆
NG(X). We consider a 5-tuple (F, Y ;L,Z, Z ′) satisfying the following nine conditions (see
Figure 2):

(S1) F is a spanning subgraph of G[X ′] such that every element of C(F ) is a star;
(S2) if u and u′ are centers of distinct elements of C(F ), then uu′ /∈ E(G);
(S3) Y = {u : u is a center of an element of C(F )};
(S4) L is a subgraph of G[X] such that every element of C(L) is a path;
(S5) Y ⊆ NG(V (L));
(S6) {u ∈ Y : NG(u) ∩ V (L) = {v}} ̸= ∅ for every vertex v ∈ V (L);
(S7) Z,Z ′ ⊆ {v : v is an endvertex of an element of C(L)};
(S8) both Z and Z ′ are independent sets of G; and
(S9) for an element P of C(L), |Z ∩ V (P )| = |Z ′ ∩ V (P )| = 1, and if |V (P )| ⩾ 2, then

Z ∩ Z ′ ∩ V (P ) = ∅.

A 5-tuple (F, Y ;L,Z, Z ′) satisfying (S1)–(S9) is called a star-path system (or an SP-
system) of (G,X,X ′). Note that if X ′ = ∅, then (∅, ∅; ∅, ∅, ∅) is the unique SP-system of
(G,X,X ′).

Proposition 9. Let G be a graph, and let X ⊆ V (G) and X ′ ⊆ NG(X). Then there
exists an SP-system of (G,X,X ′).

Proof. We may assume that X ′ ̸= ∅. We first prove that there exists a pair (F, Y ′) of a
graph F and a set Y ′ of centers of elements of F satisfying (S1) and
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(S2’) Y ′ is an independent set of G and |Y ′ ∩ V (S)| = 1 for every S ∈ C(F ).

Take a maximal independent set Y ′ of G[X ′]. Then for each u ∈ X ′ \ Y ′, it follows from
the maximality of Y ′ that there exists a vertex wu ∈ NG(u) ∩ Y ′. Let F be a spanning
subgraph of G[X ′] with E(F ) = {uwu : u ∈ X ′\Y ′}. Then every element of C(F ) is a star
and Y ′ is a set of centers of elements of F such that |Y ′ ∩ V (S)| = 1 for every S ∈ C(F ).
Thus (F, Y ′) satisfying (S1) and (S2’).

Choose a pair (F, Y ′) satisfying (S1) and (S2’) so that q2(F ) is as small as possible.
We prove the following claim which implies that F satisfies (S2).
Claim 10. Write C(F ) = {S1, S2, . . . , Sk} and V (Si) ∩ Y ′ = {yi} for each integer i with
1 ⩽ i ⩽ k.

(i) For an integer i with 1 ⩽ i ⩽ k, if |V (Si)| = 2, then EG(V (Si), Y
′ \ {yi}) = ∅.

(ii) For integers i and j with 1 ⩽ i < j ⩽ k, if |V (Si)| = |V (Sj)| = 2, then EG(V (Si),
V (Sj)) = ∅.

Proof. (i) Fix an integer i with 1 ⩽ i ⩽ k, and suppose that |V (Si)| = 2. Write
V (Si) \ {yi} = {xi}.
Let j be an integer with 1 ⩽ j ⩽ k and j ̸= i. It suffices to show that xiyj /∈ E(G).
By way of contradiction, suppose that xiyj ∈ E(G). For the moment, we assume
that |V (Sj)| ⩾ 2. Let S ′

i = Si − {xi}, S ′
j = Sj + yjxi and F ′ = (F − (V (Si) ∪

V (Sj))) ∪ S ′
i ∪ S ′

j. Then V (S ′
i) ∩ Y ′ = V (S ′

i) = {yi}, V (S ′
j) ∩ Y ′ = {yj} and yj is

a center of S ′
j. In particular, (F ′, Y ′) satisfies (S1) and (S2’) with q2(F

′) < q2(F ),
which contradicts the minimality of q2(F ). Thus |V (Sj)| = 1, i.e., V (Sj) = {yj},
and we have proved that the following holds:

NG(xi) ∩ {yl : 1 ⩽ l ⩽ k, l ̸= i, |V (Sl)| ⩾ 2} = ∅. (1)

Let I = {l : 1 ⩽ l ⩽ k, l ̸= i, xiyl ∈ E(G)}. Note that I ̸= ∅. By (1), if l ∈ I, then
|V (Sl)| = 1. Let S ′′

i = Si + {xiyl : l ∈ I}. Since I ̸= ∅, S ′′
i is a star of order at least

three, and xi is the unique center of S ′′
i . Let F ′′ = (F − (

⋃
l∈{i}∪I V (Sl))) ∪ S ′′

i and
Y ′′ = (Y ′ \ ({yi} ∪ {yl : l ∈ I})) ∪ {xi}. Then by (1) and the definition of I, Y ′′ is
an independent set of G and |Y ′′ ∩ V (S)| = 1 for every S ∈ C(F ′′). Hence (F ′′, Y ′)
satisfying (S1) and (S2’) with q2(F

′′) < q2(F ), which contradicts the minimality of
q2(F ).

(ii) Fix integers i and j with 1 ⩽ i < j ⩽ k, and suppose that |V (Si)| = |V (Sj)| =
2. Write V (Si) \ {yi} = {xi} and V (Sj) \ {yj} = {xj}. By (i), it suffices to
show that xixj /∈ E(G). By way of contradiction, suppose that xixj ∈ E(G). Let
S∗
i = Si + {xixj}, S∗

j = Sj − {xj}, F ∗ = (F − (V (Si) ∪ V (Sj))) ∪ S∗
i ∪ S∗

j and
Y ∗ = (Y ′ \{yi})∪{xi}. Then by (i), NG(xi)∩ (Y ∗ \{xi}) = NG(xi)∩ (Y ′ \{yi}) = ∅.
Hence (F ∗, Y ∗) satisfying (S1) and (S2’) with q2(F

∗) < q2(F ), which contradicts the
minimality of q2(F ).
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Let

Y = Y ′ ∪

 ⋃
S∈C(F )
|V (S)|=2

V (S)

 .

Then (F, Y ) satisfies (S3).
Recall that Y ⊆ X ′ ⊆ NG(X). Take a set A ⊆ X dominating Y in G so that |A| is as

small as possible. Then by the minimality of |A|, we have

{u ∈ Y : NG(u) ∩ A = {v}} ̸= ∅ for every vertex v ∈ A. (2)

Note that for the graph L0 with V (L0) = A and E(L0) = ∅, C(L0) consists of paths of
order one. Take a spanning subgraph L of G[A] such that every element of C(L) is a path
so that q(L) is as small as possible. Considering (2), we can easily verify that (F, Y ;L)
satisfies (S4)–(S6).

Write C(L) = {Q1, Q2, . . . , Qm}, and for each integer i with 1 ⩽ i ⩽ m, write Qi =
zi,1zi,2 · · · zi,ηi . Let Z = {zi,1 : 1 ⩽ i ⩽ m} and Z ′ = {zi,ηi : 1 ⩽ i ⩽ m}. Suppose that
Z is not an independent set of G. Then zi,1zj,1 ∈ E(G) for some integers i and j with
1 ⩽ i < j ⩽ m, and hence the path Q′ := zi,ηizi,ηi−1 · · · zi,1zj,1zj,2 · · · zj,ηj is a subgraph of
G[A]. Consequently, L′ := (L−(V (Qi)∪V (Qj)))∪Q′ is a spanning subgraph of G[A] such
that every element of C(L′) is a path and q(L′) < q(L), which contradicts the minimality
of q(L). Thus Z is an independent set of G. By symmetry, Z ′ is also an independent set
of G. Therefore, (F, Y ;L,Z, Z ′) satisfies (S7)–(S9).

We remark that the proof of Proposition 9 is constructive. For an SP-system
(F, Y ;L,Z, Z ′) of (G,X,X ′), we construct a subgraph of G as follows: For each u ∈ Y ,
it follows from (S5) that there exists a vertex vu ∈ V (L) with uvu ∈ E(G). Let

H =


F −

⋃
S∈C(F )
|V (S)|=2

E(S)

 ∪ L

+ {uvu : u ∈ Y }.

Such a subgraph H of G is said to be (F, Y ;L,Z, Z ′)-typical (again see Figure 2).

Lemma 11. Let G be a graph, and let X ⊆ V (G) and X ′ ⊆ NG(X). Let (F, Y ;L,Z, Z ′)
be an SP-system of (G,X,X ′), and let H be an (F, Y ;L,Z, Z ′)-typical subgraph of G.
Then the following hold:

(i) The graph H is a subforest of G with V (H) = V (L) ∪X ′.

(ii) For each component C of H, |V (C) ∩ Z| = 1. In particular, q(H) = |Z| = q(L).

(iii) We have V2(H) ⊆ Z ∪ Z ′.

(iv) For P ∈ C(L), if |V (P )| = 1, then V (P )∩Z = V (P )∩Z ′ ⊆ V⩾1(H); if |V (P )| ⩾ 2,
then V (P ) ∩ (Z ∪ Z ′) ⊆ V⩾2(H).
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Proof. By the definition of H, (i) and (ii) clearly hold. For each u ∈ Y , let vu be the
vertex as in the definition of H.

We first show that

X ′ ∩ V2(H) = ∅. (3)

Recall that X ′ =
⋃

S∈C(F ) V (S). Thus it suffices to show that V (S) ⊆ V ̸=2(H) for every
S ∈ C(F ). If |V (S)| ⩾ 3, then

• for the unique vertex u in V (S) ∩ Y , NH(u) = (V (S) \ {u}) ∪ {vu}, and so dH(u) =
(|V (S)| − 1) + 1 ⩾ 2 + 1, and

• for every vertex u′ ∈ V (S) \ Y , the neighborhood of u′ in H consists of the unique
vertex in V (S) ∩ Y , and so dH(u

′) = 1.

Thus we may assume that 1 ⩽ |V (S)| ⩽ 2, and let u ∈ V (S). Since V (S) ⊆ Y , the vertex
vu has been defined. By the definition of H, we have NH(u) = {vu}, and in particular,
dH(u) = 1. Since u ∈ V (S) is arbitrary, we have V (S) ⊆ V1(H). Consequently, (3) holds.

Now we prove (iii) and (iv). Note that

V (H) \X ′ =

 ⋃
P∈C(L)

V (P ) \ (Z ∪ Z ′)

 ∪

 ⋃
P∈C(L)

V (P ) ∩ (Z ∪ Z ′)

 .

Furthermore, for P ∈ C(L), if |V (P )| = 1, then V (P ) = V (P ) ∩ Z = V (P ) ∩ Z ′. Hence
by (3), it suffices to show that for P ∈ C(L),

V (P ) ⊆ V⩾1(H), and (4)
if |V (P )| ⩾ 2, then V (P ) ⊆ V⩾2(H) and V (P ) ∩ V2(H) ⊆ Z ∪ Z ′. (5)

By (S6),

{u ∈ Y : vu = v} ̸= ∅ for every vertex v ∈ V (P ), (6)

which implies (4). Assume that |V (P )| ⩾ 2, and let v ∈ V (P ). Since NP (v) ⊆ NH(v), it
follows from (6) that dH(v) ⩾ dP (v) + 1. Hence if v /∈ Z ∪ Z ′, then dH(v) ⩾ dP (v) + 1 =
2 + 1; if v ∈ Z ∪ Z ′, then dH(v) ⩾ dP (v) + 1 = 1 + 1. This implies that (5) holds.

4 Proof of Theorem 2

4.1 The “if” part of Theorem 2

Throughout this subsection, we fix an integer n ⩾ 2. We recursively define si (i ⩾ 0) with
s0 = 1 and si = (n− 1)R(n, si−1 +1)− 1 for each integer i ⩾ 1. Then 4

∑
1⩽i⩽n−3 si +1 is

a constant depending only on n. We prove the following theorem, which implies that the
“if” part of Theorem 2 holds.
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Theorem 12. Let n ⩾ 2 be an integer, and let G be a connected {Pn, H
(1)
n , H

(2)
n }-free

graph. Then there exists a spanning tree T of G with |V2(T )| ⩽ 4
∑

1⩽i⩽n−3 si + 1.

Proof. Let x ∈ V (G). For each integer i ⩾ 0, let Xi = {y ∈ V (G) : distG(x, y) = i}. Let
p = max{i ⩾ 0 : Xi ̸= ∅}. If p ⩾ n− 1, then a shortest path of G connecting x and Xn−1

is an induced path of order n, which contradicts the Pn-freeness of G. Thus p ⩽ n − 2.
If p ⩽ 1, then the spanning subgraph T of G with E(T ) = {xy : y ∈ X1} is a tree with
V2(T ) ⊆ {x}. Thus we may assume that p ⩾ 2.

Let Wp = Xp. We recursively define an SP-system (Fi, Yi;Li−1, Zi−1, Z
′
i−1) of

(G,Xi−1,Wi) for i = p, p − 1, . . . , 1 and a subset Wi of Xi for i = p − 1, p − 2, . . . , 0
as follows: Let i be an integer with 1 ⩽ i ⩽ p, and assume that Wi (⊆ Xi) has been
defined. Since Wi ⊆ Xi ⊆ NG(Xi−1), it follows from Proposition 9 that there exists an
SP-system (Fi, Yi;Li−1, Zi−1, Z

′
i−1) of (G,Xi−1,Wi). Let Wi−1 = Xi−1 \ V (Li−1). Note

that if Wi = ∅, then (Fi, Yi;Li−1, Zi−1, Z
′
i−1) = (∅, ∅; ∅, ∅, ∅) and Wi−1 = Xi−1.

Claim 13. For every integer i with 0 ⩽ i ⩽ p− 1, |Zi| ⩽ 2si.

Proof. Fix an integer i with 0 ⩽ i ⩽ p − 1, and suppose that |Zi| ⩾ 2si + 1. Since
|Z0| ⩽ |X0| = |{x}| = 1 = s0, we have i ⩾ 1. For each u ∈ Zi, it follows from (S6) that
there exists a vertex yu ∈ Yi+1 with NG(yu) ∩ Zi = {u}. Take a set Ii ⊆ Zi so that

(I1) {yu : u ∈ Ii} is an independent set of G, and
(I2) subject to (I1), |Ii| is as large as possible.

By (S2) and (S3), no two edges of G[Yi+1] are adjacent. Hence |Ii| ⩾ ⌈ |Zi|
2
⌉ ⩾ ⌈2si+1

2
⌉ =

si + 1.
For j = i − 1, i − 2, . . . , 0, we recursively define subsets Uj and Ij of Xj as follows:

Assume that Ij+1 has been defined. Since Xj dominates Ij+1 in G, we can take a minimum
set Uj ⊆ Xj dominating Ij+1 in G. Let Ij ⊆ Uj be a maximum independent set of G.
Note that U0 = I0 = {x}.

For every integer j with 0 ⩽ j ⩽ i − 1 and every vertex u ∈ Uj, it follows from the
minimality of Uj that there exists a vertex yu ∈ Ij+1 with NG(yu) ∩ Uj = {u}. Since
|Ii| ⩾ si + 1 and |I0| = |{x}| = 1 = s0, there exists an integer h with 1 ⩽ h ⩽ i such that
|Ih| ⩾ sh + 1 and |Ih−1| ⩽ sh−1. Suppose that |Ih| ⩾ (n− 1)|Uh−1|+ 1. Then there exists
a vertex w ∈ Uh−1 such that |NG(w) ∩ Ih| ⩾ ⌈ |Ih|

|Uh−1|
⌉ ⩾ ⌈ (n−1)|Uh−1|+1

|Uh−1|
⌉ = n. Take a set

J ⊆ NG(w) ∩ Ih with |J | = n. Recall that for each u ∈ Ii ∪ (
⋃

0⩽j⩽i−1 Uj), the vertex yu

has been defined. Hence {w} ∪ J ∪ {yu : u ∈ J} induces a copy of H(2)
n in G, which is a

contradiction. Thus (n− 1)|Uh−1| ⩾ |Ih| ⩾ sh + 1 = (n− 1)R(n, sh−1 + 1), i.e., |Uh−1| ⩾
R(n, sh−1 + 1). By the definitions of h and Ih−1, we have α(G[Uh−1]) = |Ih−1| ⩽ sh−1.
Thus there exists a clique C ⊆ Uh−1 of G with |C| = n. Then C ∪ {yu, yyu : u ∈ C}
induces a copy of H(1)

n in G, which is a contradiction.

Recall that Xp = Wp and for an integer i with 0 ⩽ i ⩽ p−1, Xi is the disjoint union of
V (Li) and Wi. Furthermore, W0 ⊆ {x} and W0 might be the empty set. Hence V (G) is
the disjoint union of Wi ∪V (Li−1) (1 ⩽ i ⩽ p) and W0. For each integer i with 1 ⩽ i ⩽ p,
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let Hi be an (Fi, Yi;Li−1, Zi−1, Z
′
i−1)-typical subgraph of G. Since V (Hi) = Wi ∪V (Li−1),

H∗ :=
⋃

1⩽i⩽p Hi is a spanning forest of G−W0. For each integer i with 1 ⩽ i ⩽ p−1 and
for each v ∈ Zi, take a vertex zv ∈ NG(v)∩Xi−1. Let T = H∗+(

⋃
1⩽i⩽p−1{vzv : v ∈ Zi}).

For each C ∈ C(H∗), it follows from Lemma 11 (ii) that |C ∩ (
⋃

0⩽i⩽p−1 Zi)| = 1. Hence

for an integer i with 2 ⩽ i ⩽ p and for a vertex v ∈ V (Hi),
there exists a path of T connecting v and Xi−2 (= V (Li−2) ∪Wi−2). (7)

Note that at least one of H2 and H1 is a non-empty graph. If H2 is non-empty, then it
follows from (7) that x ∈ V (T ); if H1 is non-empty, then {x} = Z0 ⊆ V (H1). In either
case, we have x ∈ V (T ). This together with (7) implies that T is a spanning tree of G.

For an integer i with 1 ⩽ i ⩽ p − 1 and for an element P of C(Li) with |V (P )| ⩾ 2,
by Lemma 11 (iv) and the construction of T , V (P ) ∩ Z ⊆ V⩾3(T ). This together with
Lemma 11 (iii) implies that

V2(T ) ⊆

( ⋃
0⩽i⩽p−1

Z ′
i

)
∪

{
zv : v ∈

⋃
1⩽i⩽p−1

Zi

}
.

Recall that p ⩽ n−2. It follows from Claim 13 that |V2(T )| ⩽
∑

1⩽i⩽p−1(|Zi|+|Z ′
i|)+|Z ′

0| ⩽
2
∑

1⩽i⩽p−1 |Zi|+ 1 ⩽ 4
∑

1⩽i⩽p−1 si + 1 ⩽ 4
∑

1⩽i⩽n−3 si + 1. Consequently, T is a desired
spanning tree of G.

4.2 The “only if” part of Theorem 2

In this subsection, we prove the following proposition, which gives the “only if” part of
Theorem 2.

Proposition 14. If a family H of connected graphs satisfies (F2), then
H ⩽ {Pn, H

(1)
n , H

(2)
n } for an integer n ⩾ 2.

Proof. Let c = c(H) be a constant such that every connected H-free graph has a spanning
tree T with |V2(T )| ⩽ c. Since Pc+3 is a tree and |V2(Pc+3)| = c+1, Pc+3 is not H-free, i.e.,
there exists a graph H ∈ H such that Pc+3 contains a copy of H as an induced subgraph.
Hence

H ⩽ {Pc+3}. (8)

For an integer i ∈ {1, 2} and a spanning tree T of H(i)
c+3, it follows from Lemma 5 that

{yj : 1 ⩽ j ⩽ c+ 3} ⊆ V2(T ), and so |V2(T )| ⩾ c+ 3. This implies that neither H
(1)
c+3 nor

H
(2)
c+3 is H-free, and so

H ⩽ {H(1)
c+3, H

(2)
c+3} (9)

By (8) and (9), we obtain H ⩽ {Pc+3, H
(1)
c+3, H

(2)
c+3}, as desired.
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5 Proof of Theorems 3 and 4

5.1 The “if” parts of Theorems 3 and 4

Throughout this subsection, we fix an integer n ⩾ 2, and let R = R(n − 1, n − 1) and
R′ = R(2n − 1, n). We prove the following theorem, which implies that the “if” parts of
Theorems 3 and 4 hold.

Theorem 15. Let G be a connected {Pn, H
(1)
n , H

(3)
n , H

(4)
n }-free graph of order at least

(3RR′ − 3R +R′ + 1)n−2 + 2. Then the following hold:

(i) There exists a spanning tree T of G such that V2(T ) is an independent set of T .

(ii) If G is H
(2)
n -free, then there exists a spanning tree T of G such that V2(T ) is an

independent set of T and |V2(T )| ⩽ 4nR′ − 2n+ 1.

We start with two lemmas. The following lemma is well-known (see, for example, [7]).

Lemma 16. Let G be a connected graph. Then |V (G)| ⩽ ∆(G)diam(G) + 1.

In the proof of Theorem 15 (ii), we will use the following lemma.

Lemma 17. Let G be an H
(2)
n -free graph, and let X ⊆ V (G) and X ′ ⊆ NG(X). Let

S := (F, Y ;L,Z, Z ′) be an SP-system of (G,X,X ′), and let A be a subset of V (G)\(X∪X ′)
such that Z ⊆ NG(A) and NG(A) ∩X ′ = ∅. Then |Z ′| ⩽ (2n− 2)|A|.

Proof. By way of contradiction, suppose that (2n− 2)|A| + 1 ⩽ |Z ′| (= |Z|). Since Z ⊆
NG(A), there exists a vertex a ∈ A such that |NG(a)∩Z| ⩾ ⌈ |Z|

|A|⌉ ⩾ ⌈ (2n−2)|A|+1
|A| ⌉ = 2n−1.

Let Z̃ = NG(a) ∩ Z. By (S8), Z̃ is an independent set of G. For each v ∈ Z̃, it follows
from (S6) that there exits a vertex uv ∈ Y with NG(uv) ∩ V (L) = {v}. By (S2) and
(S3), no two edges of G[{uv : v ∈ Z̃}] are adjacent. In particular, α(G[{uv : v ∈ Z̃}]) ⩾
⌈ |{uv :v∈Z̃}|

2
⌉ ⩾ ⌈2n−1

2
⌉ = n. Take an independent set I of G[{uv : v ∈ Z̃}] with |I| = n.

Then I ∪ {v ∈ Z̃ : uv ∈ I} ∪ {a} induces H
(2)
n in G, which is a contradiction.

Proof of Theorem 15. Since G is Pn-free, diam(G) ⩽ n−2. Since |V (G)| ⩾ (3RR′−3R+
R′+1)n−2+2, it follows from Lemma 16 that ∆(G) ⩾ 3RR′− 3R+R′+2. Let x ∈ V (G)
be a vertex with dG(x) = ∆(G) (⩾ 3RR′ − 3R + R′ + 2). For each integer i ⩾ 0, let
Xi = {y ∈ V (G) : distG(x, y) = i}.
Claim 18. Let l ⩾ 3 be an integer. Suppose that Xl ̸= ∅, and let x0x1 · · · xl be a shortest
path of G connecting x and Xl, where x0 = x.

(i) We have |(NG(x1) ∪NG(x2)) ∩X1| ⩾ dG(x)−R + 1.

(ii) If l ⩾ 4, then |NG(x2) ∩X1| ⩾ dG(x)− 2(R− 1).

(iii) We have l ⩽ 4.
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Proof. Note that xi ∈ Xi for every integer i with 0 ⩽ i ⩽ l and x1 ∈ NG(x2). If there
exists a clique C ⊆ X1 \ (NG(x1) ∪ NG(x2)) with |C| = n − 1, then {x3, x2, x1, x} ∪ C

induces a copy of H(3)
n in G; if there exists an independent set I ⊆ X1 \ (NG(x1)∪NG(x2))

with |I| = n − 1, then {x3, x2, x1, x} ∪ I induces a copy of H(4)
n in G. In either case, we

obtain a contradiction. Thus

|X1 \ (NG(x1) ∪NG(x2))| ⩽ R− 1. (10)

(i) By (10),

|(NG(x1) ∪NG(x2)) ∩X1| = |X1| − |X1 \ (NG(x1) ∪NG(x2))| ⩾ dG(x)− (R− 1).

(ii) Suppose that l ⩾ 4. If there exists a clique C ′ ⊆ (NG(x1) ∩ X1) \ NG(x2) with
|C ′| = n− 1, then {x4, x3, x2, x1} ∪C ′ induces a copy of H(3)

n in G; if there exists an
independent set I ′ ⊆ (NG(x1)∩X1)\NG(x2) with |I ′| = n−1, then {x4, x3, x2, x1}∪
I ′ induces a copy of H

(4)
n in G. In either case, we obtain a contradiction. Thus

|(NG(x1)∩X1)\NG(x2)| ⩽ R−1. This together with (10) implies that |X1\NG(x2)| =
|X1 \ (NG(x1) ∪NG(x2))|+ |(NG(x1) ∩X1) \NG(x2)| ⩽ 2(R− 1). Consequently, we
have

|NG(x2) ∩X1| = |X1| − |X1 \NG(x2)| ⩾ dG(x)− 2(R− 1).

(iii) Suppose that l ⩾ 5. If there exists a clique C ′′ ⊆ NG(x2) ∩ X1 with |C ′′| = n − 1,
then {x5, x4, x3, x2}∪C ′′ induces a copy of H(3)

n in G; if there exists an independent
set I ′′ ⊆ NG(x2) ∩X1 with |I ′′| = n− 1, then {x5, x4, x3, x2} ∪ I ′′ induces a copy of
H

(4)
n in G. In either case, we obtain a contradiction. Thus |NG(x2) ∩X1| ⩽ R − 1.

On the other hand, since R′ ⩾ 2, it follows from (ii) that

|NG(x2) ∩X1| ⩾ dG(x)− 2(R− 1)

⩾ (3RR′ − 3R +R′ + 2)− 2(R− 1)

⩾ (6R− 3R + 2 + 2)− 2(R− 1)

= R + 6,

which is a contradiction.

Claim 19. Let l ∈ {3, 4}. Let X̃l ⊆ Xl, and let (F, Y ;L,Z, Z ′) be an SP-system of
(G,Xl−1, X̃l). Then there exists a set A ⊆ Xl−2 dominating Z in G such that

(i) {v ∈ Z : NG(v) ∩ A = {a}} ̸= ∅ for every vertex a ∈ A,

(ii) |A| ⩽ R′ − 1,

(iii) if l = 3, then |(NG(a) ∪ NG(b)) ∩ X1| ⩾ dG(x) − R + 1 for every pair of vertices
a ∈ A and b ∈ NG(a) ∩ Z, and
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(iv) if l = 4, then |NG(a) ∩X1| ⩾ dG(x)− 2(R− 1) for every vertex a ∈ A.

Proof. If X̃l = ∅, then (F, Y ;L,Z, Z ′) = (∅, ∅; ∅, ∅, ∅), and hence A = ∅ is the desired set
satisfying (i)–(iv). Thus we may assume that X̃l ̸= ∅.

Note that Xl−2 dominates Z (⊆ Xl−1) in G. Take a minimum set A ⊆ Xl−2 dominating
Z in G. We prove that A is a desired set. For each v ∈ Z, it follows from (S6) that there
exists a vertex uv ∈ Y such that NG(uv) ∩ V (L) = {v}.

By the minimality of A, for each a ∈ A, there exists a vertex va ∈ Z such that
NG(va) ∩ A = {a}. In particular, (i) holds.

Fix two vertices a ∈ A and b ∈ NG(a) ∩ Z, and let P be a shortest path connecting x
and a in G. Then Pabub is a shortest path of G connecting x and Xl. By Claim 18 (i), if
l = 3, then |(NG(a) ∩NG(b)) ∩X1| ⩾ dG(x)−R + 1. By Claim 18 (ii),

if l = 4, then |NG(a) ∩X1| ⩾ dG(x)− 2(R− 1). (11)

Consequently, both (iii) and (iv) hold.
Now we prove (ii). By way of contradiction, suppose that |A| ⩾ R′. For the moment,

we suppose that there exists a clique C ⊆ A of G with |C| = 2n − 1. Since {uva : a ∈
C} ⊆ Y , it follows from (S2) and (S3) that no two edges of G[{uva : a ∈ C}] are adjacent.
In particular, α(G[{uva : a ∈ C}]) ⩾ ⌈ |C|

2
⌉ = ⌈2n−1

2
⌉ = n. Let C ′ ⊆ C be a set with

|C ′| = n such that {uva : a ∈ C ′} is an independent set of G. Since {va : a ∈ C ′} (⊆ Z) is
an independent set of G by (S8), {a, va, uva : a ∈ C ′} induces a copy of H(1)

n in G, which
is a contradiction. Since |A| ⩾ R′, this implies that there exists an independent set I ⊆ A
of G with |I| = n. Recall that n ⩾ 2 and R′ ⩾ n+ 1. If l = 3, then x (∈ X0) is adjacent
to all vertices in I; if l = 4, then it follows from (11) that∣∣∣∣∣⋂

a∈I

(NG(a) ∩X1)

∣∣∣∣∣ ⩾ dG(x)− 2(R− 1)|I|

⩾ (3RR′ − 3R +R′ + 2)− 2(R− 1)(n+ 1)

⩾ (3(n+ 1)R− 3R + (n+ 1) + 2)− 2(R− 1)(n+ 1)

= (n− 2)R + 3n+ 5

> 0.

In either case, there exists a vertex c ∈ Xl−3 adjacent to all vertices in I. Fix a vertex
a∗ ∈ I. Then {uva∗ , va∗ , a

∗, c} ∪ (I \ {a∗}) induces a copy of H
(4)
n in G, which is a

contradiction.

Now we derive some properties of G. We refer to Figure 3 for an illustration.
Let S4 := (F4, Y4;L3, Z3, Z

′
3) be an SP-system of (G,X3, X4). Then by Claim 19, there

exists a set A2 ⊆ X2 dominating Z3 in G such that

(A1) {v ∈ Z3 : NG(v) ∩ A2 = {a}} ̸= ∅ for every vertex a ∈ A2,
(A2) |A2| ⩽ R′ − 1, and
(A3) |NG(a) ∩X1| ⩾ dG(x)− 2(R− 1) for every vertex a ∈ A2.
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H4

X4 (= V (F4))

L3

A2

D3

H ′
4

X3

H3

F3

L2

A1

D2X2

X1

H ′
3

x

Figure 3: The structure of H ′
4 and H ′

3.

Note that if p ⩽ 3, then L3 = ∅ and A2 = ∅. Let D3 = (X3 \ V (L3)) ∩ NG(A2). Since
Z3 ∪D3 ⊆ NG(A2), for each v ∈ Z3 ∪D3, we can take a vertex av ∈ NG(v) ∩ A2. Let H4

be an S4-typical subgraph of G, and let

H ′
4 = H4 + {vav : v ∈ Z3 ∪D3}.

Let X ′
3 = X3 \ (V (L3) ∪ D3). Then no vertex in X ′

3 is adjacent to a vertex in A2,
and hence X2 \ A2 dominates X ′

3 in G. Let S3 := (F3, Y3;L2, Z2, Z
′
2) be an SP-system of

(G,X2 \A2, X
′
3). Then by Claim 19, there exists a set A1 ⊆ X1 dominating Z2 in G such

that

(A’1) {v ∈ Z2 : NG(v) ∩ A1 = {a}} ̸= ∅ for every vertex a ∈ A1,
(A’2) |A1| ⩽ R′ − 1, and
(A’3) |(NG(a) ∪ NG(b)) ∩ X1| ⩾ dG(x) − R + 1 for every pair of vertices a ∈ A1 and

b ∈ NG(a) ∩ Z2.

Note that if X ′
3 = ∅, then L2 = ∅ and A1 = ∅. Let D2 = (X2 \ (A2 ∪ V (L2))) ∩NG(A1).

Since Z2 ∪ D2 ⊆ NG(A1), for each v ∈ Z2 ∪ D2, we can take a vertex av ∈ NG(v) ∩ A1.
Let H3 be an S3-typical subgraph of G, and let

H ′
3 = H3 + {vav : v ∈ Z2 ∪D2}.

In the following, we list some properties of H ′
4 and H ′

3.

(H1) We have V (H ′
4) ∩X4 = X4 and V (H ′

3) ∩X4 = ∅.
(H2) We have V (H ′

4) ∩X3 = V (L3) ∪D3 and V (H ′
3) ∩X3 = X ′

3 (= X3 \ (V (L3) ∪D3)).
In particular, X3 is the disjoint union of V (H ′

4) ∩X3 and V (H ′
3) ∩X3.

(H3) We have V (H ′
4) ∩X2 = A2 and V (H ′

3) ∩X2 = V (L2) ∪D2 (⊆ X2 \ A2).
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(H4) We have V (H ′
4) ∩X1 = ∅ and V (H ′

3) ∩X1 = A1.

For each i ∈ {3, 4}, the following hold:

(H5) By Lemma 11 (i) and (ii), H ′
i is a subforest of G and every component of H ′

i

contains exactly one vertex in Ai−2.
(H6) For each v ∈ V (Hi) \ Zi−1, dH′

i
(v) = dHi

(v).
(H7) By Lemma 11 (iii) and (H6), (V (Hi) \ (Zi−1 ∪ Z ′

i−1)) ∩ V2(H
′
i) = (V (Hi) \ (Zi−1 ∪

Z ′
i−1)) ∩ V2(Hi) = ∅.

(H8) By Lemma 11 (iv) and (H6), for every v ∈ Z ′
i−1, if v ∈ Zi−1, then dH′

i
(v) =

dHi
(v) + |{av}| ⩾ 1 + 1; if v /∈ Zi−1, then dH′

i
(v) = dHi

(v) ⩾ 2.
(H9) By Lemma 11 (iv), for every v ∈ Zi−1 \ Z ′

i−1, dH′
i
(v) = dHi

(v) + |{av}| ⩾ 2 + 1.
(H10) By (A1) and (A’1), for every a ∈ Ai−2, dH′

i
(a) ⩾ |{v ∈ Zi−1 : a = av}| ⩾ 1.

(H11) For every v ∈ Di−1, dH′
i
(v) = 1.

Furthermore, we can easily verify some neighborhood structures of vertices in H ′
i:

(H12) For every v ∈ Z ′
i−1, if v ∈ Zi−1, then NH′

i
(v) ⊆ V (Fi) ∪ {av}; if v /∈ Zi−1, then by

(S8), NH′
i
(v) ⊆ V (Fi) ∪ (V (Li−1) \ Z ′

i−1).
(H13) For every a ∈ Ai−2, NH′

i
(a) = {v ∈ Zi−1 ∪Di−1 : a = av}.

Let
A∗

1 = {a ∈ A1 : |{v ∈ Z2 : av = a}| = 1}.

For each a ∈ A∗
1, write {v ∈ Z2 : av = a} = {ca}. For a ∈ A∗

1, it follows from (A’1) that
NG(ca) ∩ A1 = {a}. It follows from (A’2) that

|X1 \ A1| ⩾ dG(x)− (R′ − 1) ⩾ (3RR′ − 3R +R′ + 2)− (R′ − 1) = 3(RR′ −R + 1).

This together with (A2), (A3), (A’2) and (A’3) leads to∣∣∣∣∣∣
( ⋂

a∈A2

NG(a)

)
∩

 ⋂
a∈A∗

1

(NG(a) ∪NG(ca))

 ∩ (X1 \ A1)

∣∣∣∣∣∣− 2|A2| − |A∗
1| − 3

⩾ |X1 \ A1| − 2(R− 1)|A2| − (R− 1)|A∗
1| − 2|A2| − |A∗

1| − 3

= |X1 \ A1| − R(2|A2|+ |A∗
1|)− 3

⩾ 3(RR′ −R + 1)−R(2(R′ − 1) + (R′ − 1))− 3

= 0,

and hence there exist 2|A2| + |A∗
1| + 3 vertices y1, y2, y3, wa (a ∈ A2), w

′
a (a ∈ A2) and

za (a ∈ A∗
1) in X1 \ A1 such that

• for each a ∈ A2, awa, aw
′
a ∈ E(G), and

• for each a ∈ A∗
1, there exists a vertex c̃a ∈ {a, ca} such that c̃aza ∈ E(G).
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Note that (
⋂

a∈A2
NG(a))∩(

⋂
a∈A∗

1
(NG(a)∪NG(ca)))∩(X1\A1) = X1\A1 if A2 = A∗

1 = ∅.
In particular, y1, y2 and y3 are defined no matter whether A2 ∪ A∗

1 is the empty set or
not. Let B1 = {y1, y2, y3} ∪ {wa, w

′
a : a ∈ A2} ∪ {za : a ∈ A∗

1} and C̃ = {c̃a : a ∈ A∗
1}. Let

D′
2 = (X2 \ (A2 ∪ V (L2) ∪D2)) ∩NG(B1). For each v ∈ D′

2, let bv ∈ NG(v) ∩ B1.
Let X ′

2 = X2 \ (A2 ∪ V (L2) ∪D2 ∪D′
2). Then no vertex in X ′

2 is adjacent to a vertex
in A1 ∪B1, and hence X1 \ (A1 ∪B1) dominates X ′

2 in G. Let S2 := (F2, Y2;L1, Z1, Z
′
1) be

an SP-system of (G,X1 \ (A1 ∪B1), X
′
2), and let D1 = X1 \ (A1 ∪B1 ∪ V (L1)). Let H2 be

an S2-typical subgraph of G, and let

H ′
2 = H2 + {xv : v ∈ Z1 ∪D1}.

Then the following properties, which are similar to (H1)–(H13):

(H14) We have V (H ′
2) ∩ (X4 ∪X3) = ∅.

(H15) We have V (H ′
2) ∩X2 = X ′

2 (= X2 \ (A2 ∪ V (L2) ∪D2 ∪D′
2)). This together with

(H3) implies that X2 is the disjoint union of V (H ′
4) ∩ X2, V (H ′

3) ∩ X2, D′
2 and

V (H ′
2) ∩X2.

(H16) We have V (H ′
2) ∩ X1 = V (L1) ∪ D1 (= X1 \ (A1 ∪ B1). This together with (H4)

implies that X1 is the disjoint union of V (H ′
3) ∩X1, B1 and V (H ′

2) ∩X1.
(H17) By Lemma 11 (i) and (ii), H ′

2 is a subtree of G.
(H18) For each v ∈ V (H2) \ Z1, dH′

2
(v) = dH2(v).

(H19) By Lemma 11 (iii) and (H18), (V (H2)\ (Z1∪Z ′
1))∩V2(H

′
2) = (V (H2)\ (Z1∪Z ′

1))∩
V2(H2) = ∅.

(H20) By Lemma 11 (iv) and (H18), for every v ∈ Z ′
1, if v ∈ Z1, then dH′

2
(v) = dH2(v) +

|{x}| ⩾ 1 + 1; if v /∈ Z1, then dH′
2
(v) = dH2(v) ⩾ 2.

(H21) By Lemma 11 (iv), for every v ∈ Z1 \ Z ′
1, dH′

2
(v) = dH2(v) + |{x}| ⩾ 2 + 1.

(H22) For every v ∈ D1, dH′
2
(v) = 1.

(H23) For every v ∈ Z ′
1, if v ∈ Z1, then NH′

2
(v) ⊆ V (F2) ∪ {x}; if v /∈ Z1, then by (S8),

NH′
2
(v) ⊆ V (F2) ∪ (V (L1) \ Z ′

1).

Let

T = (H ′
4 ∪H ′

3 ∪H ′
2) + {awa, aw

′
a, xwa : a ∈ A2}+ {xa : a ∈ A1}+ {c̃aza : a ∈ A∗

1}
+ {vbv : v ∈ D′

2}+ {xyi : yi : 1 ⩽ i ⩽ 3}

(see Figure 4). Then the following hold:

(T1) By Claim 18 (iii), Xi = ∅ for all integers i ⩾ 5. Hence by (H1), (H2), (H5),
(H14)–(H17), T is a spanning tree of G.

(T2) Since dT (v) = dH′
4
(v) for every v ∈ V (H4) ∪ D3, it follows from (H7)–(H9) and

(H11) that (V (H4) ∪D3) ∩ V2(T ) ⊆ Z ′
3.

(T3) For every a ∈ A2, it follows from (H10) that dT (a) = dH′
4
(a) + |{wa, w

′
a}| ⩾ 1 + 2.

(T4) For every a ∈ A∗
1, if c̃a = a, then by (H10), dT (c̃a) = dT (a) = dH′

3
(a) + |{za, x}| ⩾

1+2; if c̃a = ca, then by (H8) and (H9), dT (c̃a) = dT (ca) = dH′
3
(ca)+ |{za}| ⩾ 2+1.

In particular, C̃ ⊆ V⩾3(T ).
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H4

X4 (= V (F4))

L3

A2

D3

H ′
4

H3

F3

D2

H ′
3A∗

1 A1

L2 F2

L1

H2

H ′
2

X3

D′
2

B1

x

X2

X1 D1

Figure 4: The structure of T , where the dashed lines represent that some edges between
two sets are used in T , and the bold lines represent that all edges between two sets are
used in T .

(T5) A vertex v ∈ V (H3) ∪D2 satisfies dT (v) = dH′
3
(v) if and only if v /∈ C̃. Hence by

(H7)–(H9), (H11) and (T4), we have (V (H3) ∪D2) ∩ V2(T ) ⊆ Z ′
2 \ C̃.

(T6) Let a ∈ A1 \ A∗
1. Then by (A’1) and the definition of A∗

1, we have |{v ∈ Z2 : av =
a}| ⩾ 2. This together with (H10) implies that dT (a) = dH′

3
(a)+ |{x}| ⩾ |{v ∈ Z2 :

av = a}|+ 1 ⩾ 2 + 1.
(T7) Let a ∈ A∗

1 \ C̃. Then by (H10), dT (a) = dH′
3
(a) + |{x}| ⩾ 1 + 1.

(T8) For every a ∈ A2, dT (wa) = |{v ∈ D′
2 : wa = bv}|+ |{a, x}| ⩾ 2 and dT (w

′
a) = |{v ∈

D′
2 : w

′
a = bv}|+ |{a}| ⩾ 1.

(T9) For every a ∈ A∗
1, dT (za) = |{v ∈ D′

2 : za = bv}|+ |{c̃a}| ⩾ 1.
(T10) For every integer i with 1 ⩽ i ⩽ 3, dT (yi) = |{v ∈ D′

2 : yi = bv}|+ |{x}| ⩾ 1.
(T11) For every v ∈ D′

2, dT (v) = |{bv}| = 1.
(T12) Since dT (v) = dH′

2
(v) for every v ∈ V (H2) ∪ D1 (= V (H ′

2) \ {x}), it follows from
(H19)–(H22) that (V (H2) ∪D1) ∩ V2(T ) ⊆ Z ′

1.
(T13) We have dT (x) ⩾ |{yi : 1 ⩽ i ⩽ 3}| = 3.
(T14) By (T2) and (T3), V (H ′

4) ∩ V2(T ) ⊆ Z ′
3. By (T4)–(T7), V (H ′

3) ∩ V2(T ) ⊆ (Z ′
2 \

C̃) ∪ (A∗
1 \ C̃). By (T8)–(T13), (B1 ∪ D′

2 ∪ V (H ′
2)) ∩ V2(T ) ⊆ B1 ∪ Z ′

1. Hence
V2(T ) ⊆ Z ′

3 ∪ (Z ′
2 \ C̃) ∪ (A∗

1 \ C̃) ∪ B1 ∪ Z ′
1.

(T15) Let v ∈ Z ′
3. By (H12), (T2) and (T3), if v ∈ Z3, then NT (v) = NH′

4
(v) ⊆ V (F4) ∪

{av} ⊆ V ̸=2(T ); if v /∈ Z3, then NT (v) = NH′
4
(v) ⊆ V (F4) ∪ (V (L3) \ Z ′

3) ⊆ V ̸=2(T ).
(T16) For every v ∈ Z ′

2 \ Z2, it follows from (H12) and (T5) that NT (v) = NH′
3
(v) ⊆

V (F3) ∪ (V (L2) \ Z ′
2) ⊆ V ̸=2(T ).

(T17) Let v ∈ Z2∩Z ′
2 be a vertex with av /∈ A∗

1. Then it follows from (T6) that dT (av) ⩾ 3.

the electronic journal of combinatorics 31(3) (2024), #P3.31 18



Hence by (H12) and (T5), NT (v) = NH′
3
(v) ⊆ V (F3) ∪ {av} ⊆ V ̸=2(T ).

(T18) Let v ∈ Z ′
2 \ C̃. We show that NT (v) ⊆ V ̸=2(T ). By (T16) and (T17), we may

assume that v ∈ Z2 ∩ Z ′
2 and av ∈ A∗

1. Since v /∈ C̃, it follows from (T4) that
av ∈ C̃ ⊆ V⩾3(T ). This together with (H12) and (T5) implies that NT (v) =
NH′

3
(v) ⊆ V (F3) ∪ {av} ⊆ V ̸=2(T ), as desired.

(T19) Let a ∈ A∗
1 \ C̃. Then by (T4), the unique vertex v ∈ Z2 with av = a satisfies

v = c̃a (∈ C̃ ⊆ V⩾3(T )). This together with (H13), (T5) and (T13) implies that
NT (a) = NH′

3
(a) ∪ {x} ⊆ D2 ∪ {v, x} ⊆ V ̸=2(T ).

(T20) For every a ∈ A2, it follows from (T3), (T11) and (T13) that NT (wa) = {v ∈ D′
2 :

wa = bv} ∪ {a, x} ⊆ V ̸=2(T ) and NT (w
′
a) = {v ∈ D′

2 : wa = bv} ∪ {a} ⊆ V ̸=2(T ).
(T21) For every a ∈ A∗

1, it follows from (T4) and (T11) that NT (za) = {v ∈ D′
2 : za =

bv} ∪ {c̃a} ⊆ V ̸=2(T ).
(T22) Let b ∈ B1. We show that NT (b) ⊆ V ̸=2(T ). By (T20) and (T21), we may assume

that b = yi for an integer i with 1 ⩽ i ⩽ 3. Then by (T11) and (T13), we have
NT (b) ⊆ {v ∈ D′

2 : yi = bv} ∪ {x} ⊆ V ̸=2(T ), as desired.
(T23) Let v ∈ Z ′

1. By (H23), (T12) and (T13), if v ∈ Z1, then NT (v) = NH′
2
(v) ⊆ V (F2)∪

{x} ⊆ V ̸=2(T ); if v /∈ Z1, then NT (v) = NH′
2
(v) ⊆ V (F2) ∪ (V (L1) \ Z ′

1) ⊆ V ̸=2(T ).

By (T14), (T15), (T18), (T19), (T22) and (T23), V2(T ) is an independent set of T .
This together with (T1) implies that (i) holds.

We next prove that (ii) holds. It suffices to show that if G is H(2)
n -free, then |V2(T )| ⩽

4nR′ − 2n+ 1. By (A2) and (A’2),

|Ai| ⩽ R′ − 1 for each i ∈ {1, 2}. (12)

Applying Lemma 17 with

(X,X ′, S, A) ∈ {(X3, X4, S4, A2), (X2 \ A2, X
′
3, S3, A1), (X1 \ (A1 ∪ B1), X

′
2, S2, {x})},

we have

|Z ′
i−1| ⩽ (2n− 2)|Ai−2| for each i ∈ {3, 4}, and (13)
|Z ′

1| ⩽ (2n− 2)|{x}| = 2n− 2. (14)

Recall that B1 = {y1, y2, y3} ∪ {wa, w
′
a : a ∈ A2} ∪ {za : a ∈ A∗

1}. Hence by (T14) and
(12)–(14),

|V2(T )| ⩽ |Z ′
3|+ |Z ′

2 \ C̃|+ |A∗
1 \ C̃|+ |B1|+ |Z ′

1|
⩽ |Z ′

3|+ |Z ′
2|+ |A1|+ (3 + 2|A2|+ |A1|) + |Z ′

1|
⩽ (2n− 2)|A2|+ (2n− 2)|A1|+ |A1|+ (3 + 2|A2|+ |A1|) + (2n− 2)

= 2n(|A2|+ |A1|+ 1) + 1

⩽ 2n(2(R′ − 1) + 1) + 1,

which proves (ii).
This completes the proof of Theorem 15.

the electronic journal of combinatorics 31(3) (2024), #P3.31 19



5.2 The “only if” part of Theorems 3 and 4

In this subsection, we prove the following proposition, which gives the “only if” part of
Theorems 3 and 4.

Proposition 20. Let H be a family of connected graphs.

(i) If H satisfies (F3), then H ⩽ {Pn, H
(1)
n , H

(3)
n , H

(4)
n } for an integer n ⩾ 2.

(ii) If H satisfies (F4), then H ⩽ {Pn, H
(1)
n , H

(2)
n , H

(3)
n , H

(4)
n } for an integer n ⩾ 2.

Proof. We first suppose that H satisfies (F3), and show that (i) holds. Let n0 = n0(H)
be a constant such that every connected H-free graph of order at least n0 has a spanning
tree T such that V2(T ) is an independent set of T . We may assume that n0 ⩾ 4. Let
H ∈ {Pn0 , H

(3)
n0 , H

(4)
n0 }, and let T be a spanning tree of H. Then there exist two adjacent

vertices u and v of H such that both u and v are cut-vertices of H and dH(u) = dH(v) = 2.
Hence by Lemma 5, u, v ∈ V2(T ), and in particular, V2(T ) is not an independent set of
T . Since H and T are arbitrary, neither Pn0 nor H

(3)
n0 nor H

(4)
n0 is H-free, and so

H ⩽ {Pn0 , H
(3)
n0

, H(4)
n0

} (15)

Let T ′ be a spanning tree of H(1)
n0 . Since T ′ is connected, T ′′ := T ′[{xi : 1 ⩽ i ⩽ n0}] is a

tree. Then there exists an integer h with 1 ⩽ h ⩽ n0 such that dT (xh) = 1. Furthermore,
it follows from Lemma 5 that yh ∈ V2(T

′). This implies that xhyh ∈ E(T ′), and hence
dT ′(xh) = dT ′′(xh) + |{yh}| = 2. In particular, xh, yh ∈ V2(T

′), and so V2(T
′) is not an

independent set of T ′. Since T ′ is arbitrary, H(1)
n0 is not H-free, and so

H ⩽ {H(1)
n0

}. (16)

By (15) and (16), we obtain H ⩽ {Pn0 , H
(1)
n0 , H

(3)
n0 , H

(4)
n0 }, which proves (i).

Next we suppose that H satisfies (F4), and show that (ii) holds. It is clear that H

satisfies (F3). Hence by (i), there exists an integer n1 ⩾ 2 such that

H ⩽ {Pn1 , H
(1)
n1

, H(3)
n1

, H(4)
n1

}. (17)

Since H satisfies (F4), there exist two constants c′(H) and n′(H) such that every connected
H-free graph G of order at least n′(H) has a spanning tree T with |V2(T )| ⩽ c′(H). Let
r = max{c′(H), n′(H)− 1}. Note that r is a constant depending on H only. Let G be a
connected H-free graph. If |V (G)| ⩽ n′(H) − 1, then any spanning trees T of G satisfy
|V2(T )| ⩽ |V (G)| ⩽ n′(H) − 1 ⩽ r; if |V (G)| ⩾ n′(H), then there exists a spanning tree
T with |V2(T )| ⩽ c′(H) ⩽ r. In either case, G has a spanning tree T with |V2(T )| ⩽ r. In
particular, H satisfies (F2). Hence by Proposition 14, there exists an integer n2 ⩾ 2 such
that

H ⩽ {Pn2 , H
(1)
n2

, H(2)
n2

}. (18)

Let n∗ = max{n1, n2}. Then by (17) and (18), we obtain H ⩽ {Pn∗ , H
(1)
n∗ , H

(2)
n∗ , H

(3)
n∗ , H

(4)
n∗ },

as desired.
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