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Abstract

Let bℓ(n) denote the number of ℓ-regular partitions of n. Congruences proper-
ties modulo powers of 2 for b4(n) have been considered subsequently by Andrews–
Hirschhorn–Sellers, Chen, Cui–Gu, Xia, Dai, and Ballantine–Merca. In this paper,
we present an approach which can be utilized to prove “self-similar” congruence
property satisfied by the generating function of b4(n). As an immediate conse-
quence, one can obtain dozens of congruence families modulo powers of 2 enjoyed
by b4(n). These results not only generalize some previous results, but also can be
viewed as a supplement to Keith and Zanello’s comprehensive study of the con-
gruence properties for ℓ-regular partition functions. Finally, we also pose several
conjectures on congruence families, internal congruence families and self-similar
congruence properties for 4-, 8- and 16-regular partition functions.

Mathematics Subject Classifications: 11P83, 05A17

1 Introduction

Throughout, we always assume that q is a complex number such that |q| < 1 and adopt
the following customary notation:

(a; q)∞ =
∞∏
j=0

(1− aqj),

(a1, a2, . . . , am; q)∞ = (a1; q)∞(a2; q)∞ · · · (am; q)∞.

A partition λ of a positive integer n is a finite weakly decreasing sequence of positive
integers λ1 ⩾ λ2 ⩾ · · · ⩾ λr such that

∑r
i=1 λi = n. The numbers λi are called the parts
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of the partition λ. Let p(n) denote the number of partitions of n with the convention that
p(0) = 1. The generating function of p(n), derived by Euler, is given by

∞∑
n=0

p(n)qn =
1

(q; q)∞
.

In 1919, Ramanujan [25] discovered three celebrated partition congruences modulo 5, 7
and 11 satisfied by p(n), namely,

p(5n+ 4) ≡ 0 (mod 5), (1)

p(7n+ 5) ≡ 0 (mod 7), (2)

p(11n+ 6) ≡ 0 (mod 11). (3)

Motivated by (1)–(3), many scholars considered congruence properties for various parti-
tion functions. Congruence properties of partition functions have motivated a tremendous
amount of research for over a century.

For an integer ℓ ⩾ 2, a partition is called ℓ-regular if all of the parts are not divisible by
ℓ. In classical representation theory, ℓ-regular partitions of n parameterize the irreducible
ℓ-modular representations of the symmetric group Sn when ℓ is prime [15]. Let bℓ(n)
denote the number of ℓ-regular partitions of n. The generating function of bℓ(n) is given
by

∞∑
n=0

bℓ(n)q
n =

(qℓ; qℓ)∞
(q; q)∞

.

In 2009, Andrews [1] introduced the partition function ped(n) while considering the fol-
lowing classical identity of Lebesgue [17]:

∞∑
n=0

(
n∏

i=1

1 + qi

1− qi

)
qn(n+1)/2 =

(−q2; q2)∞
(q; q2)∞

=:
∞∑
n=0

ped(n)qn.

Partition-theoretically, ped(n) denotes the number of partitions of n with even parts dis-
tinct (and odd parts unrestricted). A slight calculation reveals that there are as many
partitions of n with even parts distinct as 4-regular partitions of n, that is, for any n ⩾ 0,
ped(n) = b4(n). Using some q-series manipulations, Andrews, Hirschhorn and Sellers [3,
Theorem 3.5] proved that for any α ⩾ 1 and n ⩾ 0,

b4

(
32α+1n+

17× 32α − 1

8

)
≡ 0 (mod 2), (4)

b4

(
32α+2n+

11× 32α+1 − 1

8

)
≡ 0 (mod 2), (5)

b4

(
32α+2n+

19× 32α+1 − 1

8

)
≡ 0 (mod 2). (6)
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With the help of the theory of Hecke eigenforms, Chen [6, p. 941] obtained the following
congruence families modulo 4 satisfied by b4(n):

b4

(
52α+2 +

r × 52α+1 − 1

8

)
≡ 0 (mod 4), (7)

where α ⩾ 1, n ⩾ 0 and r ∈ {13, 21, 29, 37}. Utilizing the p-dissection of Ramanujan’s
classical theta function ψ(q) (see [10, Theorem 2.1]), Cui and Gu [10, Theorem 3.7] proved
that for any α ⩾ 0 and n ⩾ 0,

b4

(
p2α+2n+

(8i+ p)× p2α+1 − 1

8

)
≡ 0 (mod 2), (8)

where p ⩾ 5 is prime and 1 ⩽ i ⩽ p − 1. It is worth pointing out that (7) is a stronger
form of the case p = 5 in (8). Later, Xia [29] found that the moduli in some cases in (5)
and (6) can be improved. More precisely, he [29, Theorem 1] proved that for any α ⩾ 1
and n ⩾ 0,

b4

(
34α+4n+

11× 34α+3 − 1

8

)
≡ 0 (mod 8), (9)

b4

(
34α+4n+

19× 34α+3 − 1

8

)
≡ 0 (mod 8). (10)

By using the theory of quadratic forms, Dai [12, Theorem 1.2] established an infinite
family of congruences modulo 8 for b4(n). In particular, he derived that for any α ⩾ 0
and n ⩾ 0,

b4

(
72α+2n+

r × 72α+1 − 1

8

)
≡ 0 (mod 8), (11)

where r ∈ {13, 20, 27, 34, 41, 48}. Other congruence properties for b4(n) have been consid-
ered successively by Gordon and Ono [14], Pennison [23], Lovejoy and Osburn [18], Chen
[7, 8], Merca [19], and Cui and Gu [11].

In a recent paper, Ballantine and Merca [4] derived some congruences modulo 16 and
64 for b4(n) by using the Smoot’s Mathematica implementation [26] of Radu’s algorithm
on Ramanujan–Kolberg identities for partition functions. More specifically, they [4, The-
orems 5.1 and 5.4] proved that

b4(25n+ α) ≡ 0 (mod 16), α ∈ {8, 13, 18, 23}, (12)

b4(49n+ β) ≡ 0 (mod 64), β ∈ {13, 20, 27, 34, 41, 48}. (13)

Moreover, in a recent paper, Keith and Zanello [16] studied systematically the density of
odd values in bℓ(n), in particular establishing lacunarity modulo 2 for specified coefficients;
self-similar congruence properties modulo 2; and congruences families in arithmetic pro-
gression. Further, for any ℓ ⩽ 28, they either established new results of these types where
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none were known, extend previous ones, or conjectured that such results are impossible.
For example, they [16, Theorem 7] proved the following self-similar congruence property
for b3(n):

∞∑
n=0

b3(26n+ 14)qn ≡
∞∑
n=0

b3(2n)q
13n (mod 2).

Obviously, (12) is a stronger form of the case α = 0 in (7), and (13) is a stronger form of the
case α = 0 in (11). Moreover, both (7) and (11) are the stronger forms of the cases p = 5
and p = 7 in (8), respectively. Motivated by (4)–(11) and the work of Keith and Zanello,
there are two natural questions. One is whether there exist corresponding congruence
families which contain (12) and (13) as special cases. The other is whether there are
some self-similar congruence properties modulo powers of 2 for b4(n). In this paper,
we consider the following self-similar congruence properties enjoyed by the generating
function of b4(n):

∞∑
n=0

b4

(
pn+

p2 − 1

8

)
qn ≡ cp

∞∑
n=0

b4(n)q
pn (mod 2k),

where p ⩾ 5 is prime, k ⩾ 1 and cp is a constant depending on p.

Theorem 1. Let S be defined by

S ∈ {(5, 4), (7, 6), (11, 2), (13, 4), (19, 2), (23, 6), (29, 4), (31, 8), (37, 4),
(43, 2), (47, 7), (53, 4), (59, 2), (61, 4), (67, 2), (71, 6), (79, 7),

(83, 2), (101, 4), (103, 6), (107, 2), (109, 4), (127, 11), (131, 2)}. (14)

Then for any (p, k) ∈ S,

∞∑
n=0

b4

(
pn+

p2 − 1

8

)
qn ≡ cp

∞∑
n=0

b4(n)q
pn (mod 2k), (15)

where cp is given in the following table:

Table 1: A table of values of cp

p 5 7 11 13 19 23 29 31 37 43 47 53
cp 3 9 1 11 1 25 11 33 3 1 49 3
p 59 61 67 71 79 83 101 103 107 109 127 131
cp 1 11 1 9 81 1 3 41 1 11 129 1

Remark 2. Two remarks on Theorem 1 are in order. First, all powers of the moduli in
(15) are best possible. Moreover, the missing pairs of (14) are covered by (8). In other
words, the moduli in (15) are always 2 in these cases.
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As an immediate consequence of (15), we establish the following infinite families of
congruences and internal congruences enjoyed by b4(n). From this perspective, we give a
positive answer to the first question as mentioned before. For a given formal power series∑∞

n=0 f(n)q
n, an internal congruence of f(n) is a congruence of the form

f(An+B) ≡ λ f(Cn+D) (mod M),

where λ is an integer andM is a positive integer, An+B and Cn+D are certain arithmetic
progressions.

Corollary 3. Let S be defined as in (14). Then for any (p, k) ∈ S, α ⩾ 0 and 1 ⩽ i ⩽
p− 1,

b4

(
p2α+2n+

(8i+ p)× p2α+1 − 1

8

)
≡ 0 (mod 2k). (16)

Moreover, for any n ⩾ 0,

b4

(
p2n+

p2 − 1

8

)
≡ cpb4(n) (mod 2k),

where cp is given in Table 1.

The following theorem provides another self-similar congruence property modulo 4
satisfied by b4(n). Compared to Theorem 1, the self-similar congruence property in the
following theorem is valid for any prime p ⩾ 5.

Theorem 4. Let p ⩾ 5 be a prime number such that p ≡ 3 (mod 4). Then

∞∑
n=0

b4

(
pn+

p2 − 1

8

)
qn ≡

∞∑
n=0

b4(n)q
pn (mod 4). (17)

The rest of this paper is organized as follows. In Section 2, we introduce some ter-
minology and collect necessary results in the theory of modular forms. Section 3 gives
the proofs of Theorem 1 and Corollary 3. In Section 4, we provide a proof of Theorem
4. We conclude this paper with some remarks, and pose some conjectures on self-similar
congruence properties on b4(n), b8(n) and b16(n) in Section 5.

2 Preliminaries

We first recall some terminology in the theory of modular forms. The full modular group
is given by

Γ =

{(
a b
c d

)
: a, b, c, d ∈ Z, and ad− bc = 1

}
,
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and for a positive integer N , the congruence subgroup Γ0(N) is defined by

Γ0(N) =

{(
a b
c d

)
∈ Γ: c ≡ 0 (mod N)

}
.

Let γ be the matrix

(
a b
c d

)
hereinafter. Let γ act on τ ∈ C∪{∞} by the linear fractional

transformation

γτ =
aτ + b

cτ + d
.

This is understood to mean that if c ̸= 0, then γ(−d/c) = ∞, and γ∞ = a/c; if c = 0
then γ∞ = ∞.

Let N , k be positive integers and H = {τ ∈ C : Im(τ) > 0}. A holomorphic function
f : H → C is called a modular function of weight k for Γ0(N), if it satisfies the following
two conditions:

(1) for all γ ∈ Γ0(N), f(γτ) = (cτ + d)kf(τ);
(2) for any γ ∈ Γ, (cτ + d)−kf(γτ) has a Fourier expansion of the form

(cτ + d)−kf(γτ) =
∞∑

n=nγ

a(n)qnwγ
,

where a(nγ) ̸= 0, qwγ = e2πiτ/wγ , and

wγ =
N

gcd(c2, N)
.

In particular, if nγ ⩾ 0 for all γ ∈ Γ, then we call that f is a modular form of weight k for
Γ0(N).It is known that if f1(τ) and f2(τ) are modular functions of weight k1 and k2 for
Γ0(N), respectively, then f1(τ)f2(τ) is a modular function of weight k1 + k2 for Γ0(N).

A modular function with weight 0 for Γ0(N) is referred to as a modular function for
Γ0(N). For a modular function f(τ) of weight k with respect to Γ0(N), the order of f(τ)
at the cusp a/c ∈ Q ∪ {∞} is defined by

orda/c(f) = nγ

for some γ ∈ Γ such that γ∞ = a/c. It is known that orda/c(f) is well-defined, see [13, p.
72].

Radu [24] developed the Ramanujan–Kolberg algorithm to derive Ramanujan–Kolberg
identities on a class of partition functions defined in terms of eta-quotients using modular
functions for Γ0(N). A description of the Ramanujan–Kolberg algorithm can be found in
Paule and Radu [22]. Smoot [26] developed a Mathematica package RaduRK to implement
Radu’s algorithm.

the electronic journal of combinatorics 31(3) (2024), #P3.32 6



Let the partition function a(n) be defined by

∞∑
n=0

a(n)qn =
∏
δ|M

(qδ, qδ)rδ∞, (18)

where M , δ are positive integers, and rδ are integers. For any m ⩾ 1 and 0 ⩽ t ⩽ m− 1,
Radu [24] defined

gm,t(τ) = q(t+ℓ)/m

∞∑
n=0

a(mn+ t)qn, (19)

where

ℓ =
1

24

∑
δ|M

δrδ,

and gave a criterion for a function involving gm,t(τ) to be a modular function with respect
to Γ0(N), where N satisfies the following: let κ = gcd(1−m2, 24),

1. for every prime p, p |m implies p |N ;

2. for every δ |M with rδ ̸= 0, δ |M implies δ |mN ;

3. κmN2
∑

δ|M
rδ
δ
≡ 0 (mod 24);

4. κN
∑

δ|M rδ ≡ 0 (mod 8);

5. 24m
gcd(κ(−24t−

∑
δ|M δrδ),24m)

|N ;

6. if 2 |m, then κN ≡ 0 (mod 4) and 8 |Ns, or 2 |s and 8 |N(1− j), where
∏

δ|M δ|rδ| =
2sj, and j, s ∈ Z, j is odd.

Given a positive integer n and an integer x, we denote by [x]n the residue class of x
modulo n. Let

Z∗
n = {[x]n ∈ Zn : gcd(x, n) = 1} and Sn = {y2 : y ∈ Z∗

n}.

Define the set

Pm(t) =


ts+ s− 1

24

∑
δ|M

δrδ


m

: s ∈ S24m

 .

The Dedekind eta-function η(τ) is defined by

η(τ) = q1/24
∞∏
n=1

(1− qn),

where q = e2πiτ and τ ∈ H.
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Theorem 5. [24, Theorem 45] For a partition function a(n) defined as in (18), and
integers m ⩾ 1, 0 ⩽ t ⩽ m − 1, suppose that N is a positive integer satisfying the
conditions (1)–(6). Let

F (τ) =
∏
δ|N

ηsδ(δτ)
∏

t′∈Pm(t)

gm,t′(τ),

where sδ are integers. Then F (τ) is a modular function for Γ0(N) if and only if sδ satisfy
the following

(1) |Pm(t)|
∑

δ|M rδ +
∑

δ|N sδ = 0;

(2)
∑

t′∈Pm(t)

(1−m2)(24t′+
∑

δ|M δrδ)

m
+ |Pm(t)|m

∑
δ|M δrδ +

∑
δ|N δsδ ≡ 0 (mod 24);

(3) |Pm(t)|mN
∑

δ|M
rδ
δ
+
∑

δ|N
N
δ
sδ ≡ 0 (mod 24);

(4)
(∏

δ|M(mδ)|rδ|
)|Pm(t)|∏

δ|N δ
|sδ| is a square.

Radu also gave lower bounds of the orders of F (τ) at cusps of Γ0(N).

Theorem 6. [24, Theorem 47] For a partition function a(n) defined as in (18), and
integers m ⩾ 1, 0 ⩽ t ⩽ m− 1, let

F (τ) =
∏
δ|N

ηsδ(δτ)
∏

t′∈Pm(t)

gm,t′(τ),

be a modular function for Γ0(N), where sδ are integers and N satisfies the conditions
(1)–(6). Let {s1, s2, . . . , sϵ} be a complete set of inequivalent cusps of Γ0(N), and for each

1 ⩽ i ⩽ ϵ, let γi =

(
ai bi
ci di

)
∈ Γ be such that γi∞ = si. Then

ordsi(F (τ)) ⩾
N

gcd(c2i , N)

(
|Pm(t)|p(γi) + p∗(γi)

)
,

where

p(γi) = min
λ∈{0,1,...,m−1}

1

24

∑
δ|M

rδ
gcd2(δ(ai + κλci),mci)

δm
, (20)

and

p∗(γi) =
1

24

∑
δ|N

sδ
gcd2(δ, ci)

δ
. (21)

The following theorem of Sturm [27] plays an important role in proving congruences
using the theory of modular forms.

Theorem 7. [27, Theorem 1] Let k be an integer and g(τ) =
∑∞

n=0 c(n)q
n a modular

form of weight k for Γ0(N). For any given positive integer u, if c(n) ≡ 0 (mod u) holds
for all n ⩽ k

12
N

∏
p|N, p prime

(
1 + 1

p

)
, then c(n) ≡ 0 (mod u) holds for any n ⩾ 0.
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3 Proofs of Theorem 1 and Corollary 3

This section is devoted to the proofs of Theorem 1 and Corollary 3.
The following lemma plays a vital role in the proof of Theorem 1.

Lemma 8. For any prime p ⩾ 5, let k1 =
⌈
(p2 − 1)/(32p)

⌉
and k2 =

⌈
(3p2 − 3)/(32p2)

⌉
.

Then for any constant c, we have

η24k1(τ)η16k2(2pτ)

η8k2(pτ)

(
qp/8

η(pτ)

η(4pτ)

∞∑
n=0

b4

(
pn+

p2 − 1

8

)
qn − c

)

is a modular form of weight 12k1 + 4k2 for Γ0(4p).

Proof. Since the generating function of b4(n) is

∞∑
n=0

b4(n)q
n =

(q4; q4)∞
(q; q)∞

, (22)

taking M = 4, (r1, r4) = (−1, 1), m = p, t = (p2 − 1)/8 in Theorem 5 yields that N = 4p
satisfies the conditions (1)–(6), and for (s1, s2, s4, sp, s2p, s4p) = (0, 0, 0, 1, 0,−1), we get
that

F (τ) = qp/8
η(pτ)

η(4pτ)

∞∑
n=0

b4

(
pn+

p2 − 1

8

)
qn

is a modular function for Γ0(4p).
From [9, p. 354], the set of inequivalent cusps of Γ0(4p) is given by{

0,
1

2
,
1

4
,
1

p
,
1

2p
, ∞

}
.

Next we compute the lower bounds of F (τ) at the cusps of Γ0(4p). For s = 0, let

γ =

(
0 −1
1 0

)
. (23)

We have γ∞ = 0. In view of (20) and (21), we get

p(γ) = − p

32
and p∗(γ) =

1

32p
.

Thus, from Theorem 6, we obtain that

ord0(F (τ)) ⩾ −p
2 − 1

8
.
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In the same vein, we deduce that

ord1/2(F (τ)) ⩾ 0, ord1/4(F (τ)) ⩾ 0,

ord1/p(F (τ)) ⩾
p2 − 1

8p
, ord1/2p(F (τ)) ⩾ 0,

and

ord∞(F (τ)) ⩾ −p
2 − 1

8p
.

Thus, we get

ord0(F (τ)− c) ⩾ −p
2 − 1

8
, ord1/2(F (τ)− c) ⩾ 0, ord1/4(F (τ)− c) ⩾ 0,

ord1/p(F (τ)− c) ⩾ 0, ord1/2p(F (τ)− c) ⩾ 0, ord∞(F (τ)− c) ⩾ −p
2 − 1

8p
.

By Theorem 1.64 and Theorem 1.65 in [21], one easily obtains that

F1(τ) = η24(τ) and F2(τ) =
η16(2pτ)

η8(pτ)

are modular forms with weight 12 and 4 for Γ0(4p), respectively, and the orders at the
cusps of Γ0(4p) are

ord0(F1(τ)) = 4p, ord1/2(F1(τ)) = p, ord1/4(F1(τ)) = p,

ord1/p(F1(τ)) = 4, ord1/2p(F1(τ)) = 1, ord∞(F1(τ)) = 1,

ord0(F2(τ)) = 0, ord1/2(F2(τ)) = 1, ord1/4(F2(τ)) = 1,

ord1/p(F2(τ)) = 0, ord1/2p(F2(τ)) = p, ord∞(F2(τ)) = p.

Therefore, we obtain that the orders of F k1
1 (τ)F k2

2 (τ)(F (τ) − c) at all cusps of Γ0(4p)
are nonnegative. Since both F (τ) and c are modular functions with weight 0 for Γ0(4p),
we conclude that F k1

1 (τ)F k2
2 (τ)(F (τ) − c) is a modular form with weight 12k1 + 4k2 for

Γ0(4p). The proof is therefore complete.

Now, we turn to prove Theorem 1.

Proof of Theorem 1. By Lemma 8 and Sturm’s Theorem, in order to prove

∞∑
n=0

b4

(
pn+

p2 − 1

8

)
qn ≡ cp

(q4p; q4p)∞
(qp; qp)∞

(mod 2k)

for some k ⩾ 1, we only need to check the coefficients of the first lp = 2(p+ 1)(3k1 + k2)
terms of the expansion for

η24k1(τ)η16k2(2pτ)

η8k2(pτ)

(
qp/8

η(pτ)

η(4pτ)

∞∑
n=0

b4

(
pn+

p2 − 1

8

)
qn − cp

)
(24)
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Table 2: A table of values of lp

p 5 7 11 13 19 23 29 31 37 43 47 53
lp 48 64 96 112 160 192 240 256 532 616 672 756
p 59 61 67 71 79 83 101 103 107 109 127 131
lp 840 868 1360 1440 1600 1680 2652 2704 2808 2860 3328 4224

are congruent to 0 modulo 2k. The corresponding lp of Theorem 1 are displayed in Table
2.

This completes the proof of Theorem 1.

Remark 9. From Table 2, one can see that the lp values are growing quite rapidly, so that
the time of checking the first lp coefficients in (24) is also growing quite expeditiously.
For example, it only takes less than 25 seconds to check the first lp coefficients in (24)
for 5 ⩽ p ⩽ 23, and it takes about 1 minute to check the first lp coefficients in (24) for
p = 29, 31. However, in order to test the first lp coefficients in (24) for p = 37, it will take
about 13 minutes.

Next, we prove Corollary 3.

Proof of Corollary 3. In view of (15), we get for any (p, k) ∈ S,

b4

(
p2n+

p2 − 1

8

)
≡ cpb4(n) (mod 2k), (25)

and for 1 ⩽ i ⩽ p− 1,

b4

(
p2n+

(8i+ p)× p− 1

8

)
≡ 0 (mod 2k). (26)

Iterating α− 1 times in (25), we have

b4

(
p2αn+

p2α − 1

8

)
≡ cαp b4(n) (mod 2k).

Substituting (26) into the above congruence gives (16).

4 Proof of Theorem 4

In this section, we give a proof of Theorem 4.
Before stating the proof of Theorem 4, we need to recall Ramanujan’s theta function,

given by

f(a, b) =
∞∑

n=−∞

an(n+1)/2bn(n−1)/2 = (−a,−b, ab; ab)∞, |ab| < 1, (27)
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where the last identity in (27) is the well-known Jacobi triple product [2, p. 17, Eq.
(1.4.8)]. Two important cases of f(a, b) are

φ(q) := f(q, q) =
∞∑

n=−∞

qn
2

=
(q2; q2)5∞

(q; q)2∞(q4; q4)2∞
, (28)

ψ(q) := f(q, q3) =
∞∑

n=−∞

q2n
2−n =

∞∑
n=0

qn(n+1)/2 =
(q2; q2)2∞
(q; q)∞

.

Replacing q by −q in (28) yields that

φ(−q) = (q; q)2∞
(q2; q2)∞

.

The following p-dissections for φ(−q) and ψ(q) play an important role in the proof of
Theorem 4.

Lemma 10. Let p ⩾ 5 be prime. Then

φ(−q) = φ
(
−qp2

)
+ 2

(p−1)/2∑
j=1

qj
2

f
(
−qp2+2pj,−qp2−2pj

)
, (29)

ψ(q) =

(p−3)/2∑
n=0

qk(k+1)/2f
(
q(p

2+(2k+1)p)/2, q(p
2−(2k+1)p)/2

)
+ q(p

2−1)/8ψ
(
qp

2)
, (30)

Further, for 0 ⩽ k ⩽ (p− 3)/2,

k2 + k

2
̸≡ p2 − 1

8
(mod p).

Proof. The identity (29) follows immediately from [5, p. 49]. The identity (30) appears
in [10, Theorem 2.1].

Now, we are in a position to prove Theorem 4.

The proof of Theorem 4. From (22) we find that

∞∑
n=0

b4(n)q
n =

(q4; q4)∞
(q; q)∞

=
(q4; q4)2∞
(q2; q2)4∞

· (q2; q2)4∞
(q; q)∞(q4; q4)∞

≡ φ(−q2) · ψ(q) (mod 4). (31)

For a prime p ⩾ 5, 0 ⩽ j ⩽ (p − 1)/2, 0 ⩽ k ⩽ (p − 1)/2, let us consider the following
congruence equation

2j2 +
k2 + k

2
≡ p2 − 1

8
(mod p),
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which implies that

(4j)2 + (2k + 1)2 ≡ 0 (mod p).

Since p ≡ 3 (mod 4), then we have
(−1

p

)
= −1, we further get j = 0 and k = (p − 1)/2,

where
(•
•

)
is the Legendre symbol. Substituting (29) and (30) into (31), we find that

∞∑
n=0

b4

(
pn+

p2 − 1

8

)
qn ≡ φ(−q2p)ψ(qp) ≡

∞∑
n=0

b4(n)q
pn (mod 4), (32)

where we have used (31) in the last congruence. The congruence (17) thus follows.
This completes the proof of Theorem 4.

5 Final remarks

We conclude this paper with several remarks.
Firstly, the numerical evidence suggests the following self-similar congruence property

modulo 4 for b4(n), which contains Theorem 4 as a special case.

Conjecture 11. Let p ⩾ 5 be a prime number such that p ̸≡ 1, 17 (mod 24). Then

∞∑
n=0

b4

(
pn+

p2 − 1

8

)
qn ≡ cp

∞∑
n=0

b4(n)q
pn (mod 4),

where cp = −1 or 1.

Secondly, the powerful result of Gordon and Ono [14, Theorem 1] suggests the following
identity:

lim
X→∞

#{0 ⩽ n < X : b2k(n) ≡ 0 (mod 2m)}
X

= 1, (33)

where k ⩾ 1 andm ⩾ 1. Quite recently, Merca [20] established some congruences modulo 4
and 8 for b2(n) by utilizing the Smoot’s Mathematica implementation of Radu’s algorithm.
More precisely, he [20, Theorem 1] proved that for any n ⩾ 0 and 1 ⩽ i ⩽ 4,

b2
(
5(5n+ i) + 1

)
≡ 0 (mod 4).

Using some q-series identities and iterative computations, the second author [28] proved a
large number of internal congruences and congruences modulo powers of 2 for b2(n). For
example, he proved that for any n ⩾ 0,

b2

(
5256n+

5256 − 1

24

)
≡ 257 b2(n) (mod 512) (34)
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and

b2

(
5256αn+

(24i+ 5)× 5256α−1 − 1

24

)
≡ 0 (mod 512), (35)

where α ⩾ 1. Further, the second author conjectured that there are some internal con-
gruence families and congruence families modulo high powers of 2 satisfied by b2(n). The
internal congruence (34) and congruence (35) are just two special cases. Following a
similar strategy of proving (15), one can derive the following congruence relations:

∞∑
n=0

b4(125n+ 78)qn ≡ 25
∞∑
n=0

b4(n)q
5n (mod 32), (36)

∞∑
n=0

b4(343n+ 300)qn ≡ 17
∞∑
n=0

b4(n)q
7n (mod 128), (37)

∞∑
n=0

b4(1331n+ 1830)qn ≡ 5
∞∑
n=0

b4(n)q
11n (mod 8), (38)

here we only check the first 96, 352 and 2040 terms, respectively. Based on (36)–(38) and
the second author’s conjecture on b2(n) (see [28]), we pose the following conjecture.

Conjecture 12. Let p ⩾ 5 be a prime number. If there exist two positive integers cp and
kp such that

∞∑
n=0

b4

(
pn+

p2 − 1

8

)
qn ≡ cp

∞∑
n=0

b4(n)q
pn (mod 2kp),

∞∑
n=0

b4

(
pn+

p2 − 1

8

)
qn ̸≡ cp

∞∑
n=0

b4(n)q
pn (mod 2kp+1),

then for any α ⩾ 1 and n ⩾ 0,

b4

(
p2

α

n+
p2

α − 1

8

)
≡ ĉp,αb4(n) (mod 2kp+α−1) (39)

and

b4

(
p2

α

n+
(8i+ p)× p2

α−1 − 1

8

)
≡ 0 (mod 2kp+α−1), (40)

where ĉp,kp is a constant related to p and α.

Thirdly, Cui and Gu [10] also derived the following self-similar congruence properties
for b8(n) and b16(n), namely, for any prime p ⩾ 5,

∞∑
n=0

b8

(
pn+

7p2 − 7

24

)
qn ≡

∞∑
n=0

b8(n)q
pn (mod 2), if p ≡ 5 (mod 6), (41)

∞∑
n=0

b16

(
pn+

5p2 − 5

8

)
qn≡

∞∑
n=0

b16(n)q
pn (mod 2), if p ≡ 3 (mod 4). (42)
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Based on numerical evidence, we pose the following conjectures, which can be viewed
as the corresponding complements of (41) and (42).

Conjecture 13. Let p ⩾ 5 be a prime number.

(i) If p ̸≡ 7 (mod 24), then

∞∑
n=0

b8

(
pn+

7p2 − 7

24

)
qn ≡

∞∑
n=0

b8(n)q
pn (mod 2).

(ii) If p ≡ 7 (mod 24), then

∞∑
n=0

b8

(
pn+

7p2 − 7

24

)
qn ̸≡

∞∑
n=0

b8(n)q
pn (mod 2).

(iii) If p ≡ 13, 17, 19, 23 (mod 24), then

∞∑
n=0

b8

(
pn+

7p2 − 7

24

)
qn ≡

∞∑
n=0

b8(n)q
pn (mod 4).

Conjecture 14. Let p ⩾ 5 be a prime number such that p ≡ 17 (mod 24). Then

∞∑
n=0

b16

(
pn+

5p2 − 5

8

)
qn ≡

∞∑
n=0

b16(n)q
pn (mod 2).

Finally, it is natural to ask whether there exist some internal congruence families and
congruence families similar to (39) and (40) for b2k(n) with k ⩾ 3.
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