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Abstract

Given a graph H, a perfect H-factor in a graph G is a collection of vertex-
disjoint copies ofH spanning G. Kühn and Osthus showed that the minimum degree
threshold for a graph G to contain a perfect H-factor is either given by 1− 1/χ(H)
or by 1− 1/χcr(H) depending on certain natural divisibility considerations. Given
a graph G of order n, a 2-edge-coloring of G and a subgraph G′ of G, we say
that G′ has high discrepancy if it contains significantly (linear in n) more edges
of one color than the other. Balogh, Csaba, Pluhár and Treglown asked for the
minimum degree threshold guaranteeing that every 2-edge-coloring of G has an H-
factor with high discrepancy and they settled the case where H is a clique. Here
we completely resolve this question by determining the minimum degree threshold
for high discrepancy of H-factors for every graph H.

Mathematics Subject Classifications: 05C35

1 Introduction

Combinatorial discrepancy concerns itself with problems of the following form: Given a
ground set S and a family of subsets H of S, does there exist a 2-coloring (or k-coloring)
of S such that each set in H contains roughly the same number of elements from each of
the colors? The theory studies conditions guaranteeing that such a coloring does or does
not exist. We refer the reader to [19, Chapter 4] for an overview. In recent years there
has been considerable interest in discrepancy-type problems on graphs. Here, S is the set
of edges of a graph G, and H is a family of subgraphs of G (e.g. Hamilton cycles, perfect
matching, clique-factors). Thus, the goal is to find conditions on G which guarantee that
in every 2-coloring of the edges of G, there exists a subgraph of a certain type whose
coloring is unbalanced, namely one color appears significantly more than the other. One
of the first investigations of this type is by Erdős, Füredi, Loebl and Sós [8], who studied
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the discrepancy of bounded-degree spanning trees in 2-colorings of the complete graph. In
recent years the subject was revived and there are many new works: subgraph discrepancy
problems have been studied for Hamilton cycles [3, 10, 11, 9], spanning trees [11], clique-
factors [4] and powers of Hamilton cycles [5], among others. In this paper we settle
the problem of minimum degree thresholds for the discrepancy of H-factors, resolving a
question of Balogh, Csaba, Pluhár and Treglown [4]. Let us give the precise definitions.

Definition 1. For a graph G, a 2-edge-coloring (or just 2-coloring) of G is a function
f : E(G) → {−1, 1}. For a 2-coloring f and a subgraph G′ of G, the discrepancy of G′ is
defined as

f(G′) =


e∈E(G′)

f(e).

Given a graph H, an H-factor is a graph consisting of vertex-disjoint copies of H. A
perfect H-factor of a graph G is an H-factor which is a spanning (i.e. covering all vertices)
subgraph of G. Clearly, this is only possible if |G|, the number of vertices in G, is divisible
by |H|. Our main result determines the minimum degree threshold guaranteeing that in
every 2-edge-coloring of G, there is a perfect H-factor with discrepancy linear in n. Before
stating this result, we give some background.

The study of perfect H-factors of graphs has a long and rich history. Tutte’s famous
theorem gives a necessary and sufficient condition for a graph to have a perfect K2-factor,
namely a perfect matching. On the computational side, Kirkpatrick and Hell [13] showed
that for a fixed graph H, finding a perfect H-factor in an input graph G is NP-complete
whenever H has a connected component of size at least three. It is therefore desirable
to find sufficient conditions ensuring that a graph G has a perfect H-factor. One such
direction of research is the study of minimum degree conditions. The fundamental Hajnal-
Szemerédi[12] theorem states that for every r  2, every graph G with order n divisible
by r and with minimum δ(G)  (1− 1/r)n has a perfect Kr-factor. This bound is tight,
as can be seen by taking a balanced complete r-partite graph and moving one vertex from
one part to another. Indeed, the resulting graph has minimum degree (1 − 1/r)n − 1
but no perfect Kr-factor. Alon and Yuster [2] proved an asymptotic generalization of the
Hajnal-Szemerédi theorem to all graphs, by showing that for every graph H, if G is an n-
vertex graph with n divisible by |H| and with δ(G)  (1− 1

χ(H)
+ε)n, then G has a perfect

H factor (where ε > 0 is arbitrary and n is large enough in terms of ε). Later, using their
celebrated blow-up lemma, Komlós, Sárközy and Szemerédi [15] improved the error term
εn to a constant depending on H. It turns out, however, that 1− 1

χ(H)
is not always the

correct threshold for forcing a perfect H-factor. Komlós [14] (see also [1, 20]) introduced
the so-called critical chromatic number χcr(H) and showed that having minimum degree
(1 − 1

χcr(H)
+ ε)n already suffices for guaranteeing an H-factor that covers almost all

vertices of G (we give the precise definition of χcr shortly). Finally, the ultimate result
in this direction was obtained by Kühn and Osthus [18], who determined the minimum
degree threshold for the existence of a perfect H-factor for every graph H, showing that
this threshold is either 1− 1

χ(H)
or 1− 1

χcr(H)
, depending on certain divisibility conditions.

To state this result, we need to introduce the following definitions.
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Given a graph H, let r = χ(H) be the chromatic number of H. Let C be the class of
all r-vertex-colorings of H. For c ∈ C, let σ(c) denote the size of the smallest color class
in c. Let σ(H) = minc∈C σ(c). The following is the definition of the critical chromatic
number:

χcr(H) :=
(χ(H)− 1)|H|
|H|− σ(H)

.

For each c ∈ C with color classes of size s1  s2  · · ·  sr, let

D(c) := {si+1 − si : 1  i  r − 1}.

Let D(C) be the union of D(c) over all c ∈ C and let hcfχ(H) be the greatest common
divisor of the elements in D(C). Let hcfc(H) denote the largest common divisor of the
orders of the connected components of H. Define a parameter hcf(H) as follows: If r  3,
then set hcf(H) = 1 if hcfχ(H) = 1, and if r = 2, then set hcf(H) = 1 if hcfχ(H)  2
and hcfc(H) = 1. In all other cases, hcf(H) ∕= 1. Now define

χ∗(H) =


χ(H) if hcf(H) ∕= 1,

χcr(H) otherwise.

Note that r − 1  χcr(H)  χ∗(H)  r for every H with χ(H) = r. Also, if H has only
balanced r-colorings (i.e. if in every r-coloring of H, all color-classes have the same size),
then hcf(H) ∕= 1, hence χ∗(H) = χ(H) = r.

The aforementioned result of Kühn and Osthus [18] states that 1 − 1/χ∗(H) is the
minimum degree threshold for the existence of a perfect H-factor. More precisely, they
prove the following:

Theorem 2 ([18]). For every graph H there exists a constant C such that every graph G
whose order n is divisible by |H| with

δ(G)  (1− 1/χ∗(H))n+ C

contains a perfect H-factor. Moreover, for every m0 there exists a graph J of order
m  m0 such that m is divisible by H with

δ(J) = (1− 1/χ∗(H))m− 1

such that J does not contain a perfect H-factor.

We now move on to discrepancy of H-factors. For a graph H, the H-factor discrepancy
threshold forH, denoted by δ∗(H), is defined as the infimum δ which satisfies the following:
for every η > 0 there exists γ > 0 and n0, such that for every graph G of order n  n0

and δ(G)  (δ+η)n, with |H| dividing n and for every 2-edge-coloring f of G there exists
a perfect H-factor F in G with |f(F )|  γn. In other words, δ∗(H) is the (normalized)
minimum degree threshold guaranteeing an H-factor with linear discrepancy. Trivially,
δ∗(H)  1 − 1/χ∗(H), because 1 − 1/χ∗(H) is the minimum degree threshold for the
existence of a perfect H-factor.

The study of minimum degree discrepancy thresholds for H-factors was initiated by
Balogh, Csaba, Pluhár and Treglown [4], who determined δ∗(Kr).
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Theorem 3 ([4]). δ∗(Kr) = max{3/4, 1− 1/(r + 1)}

Balogh et al. [4] further asked for the discrepancy threshold of other graphs H. Our
main result completely settles this problem, determining the value of δ∗(H) for every
graph H. We split the statement into three cases: χ(H) = 2, χ(H) = 3 and χ(H)  4.
First, for bipartite H, we have the following:

Theorem 4. For every graph H with χ(H) = 2, it holds that

δ∗(H) =






3
4

if H is regular,

1/2 if H is non-regular and there exists ρ > 0 such that for every

connected component U of H it holds that eH(U) = ρ|U |,
1− 1/χ∗(H) otherwise.

To state our results for r-chromatic graphs, r  3, we first need to introduce some
definitions. Given a graph G, a blowup of G is any graph obtained from G by replacing
each vertex x ∈ V (G) with a vertex-set Vx and replacing edges xy ∈ E(G) with complete
bipartite graphs (Vx, Vy). The b-blowup of G is the blowup where |Vx| = b for every
x ∈ V (G). Given a 2-edge-coloring c of G, a blowup of (G, c) is a blowup of G whose
edges are colored according to c, namely, where for xy ∈ E(G), all the edges in the
complete bipartite graph (Vx, Vy) have color c(xy). We denote the coloring of this blowup
also by c. A central strategy of our argument is to find so-called templates, defined as
follows:

Definition 5 (Template). Given graphs F,H and a 2-edge-coloring c of F , we say that
(F, c) is a template for H if there exists a blowup B of (F, c) and two perfect H-factors of
B with different discrepancies.

The size of the template (F, c) is simply |F |. Next, we introduce the following impor-
tant parameters of a graph H.

Definition 6 (K(H), δ0(H)). Let H be an r-chromatic graph. The set of non-template
colorings of H, denoted K(H), is the set of all 2-edge-colorings c of Kr such that (Kr, c)
is not a template for H.

Let δ0(H) be the maximum over all δ such that there exists a coloring c ∈ K(H) and
a blowup B of (Kr, c), such that δ(B) = δ · |B| and B has a perfect H-factor F with
c(F ) = 0 (by the definition of K(H), this implies that c(F ) = 0 for every perfect H-factor
F in B). If there exists no such c ∈ K(H) then let δ0(H) = 0.

Note that δ0(H)  1 − 1/r because every r-partite graph B has minimum degree at
most (1 − 1/r)|B|. In Section 5 we show that the maximum in Definition 6 is attained
and also provide an algorithm which computes δ0(H). Note that if r = 2 then δ0(H) = 0,
because every blowup of K2 is monochromatic so all its perfect H-factors have non-zero
discrepancy.

Observe that δ∗(H)  δ0(H). Indeed, by the definition of δ0(H), there exist c ∈ K(H)
and a blowup B of (Kr, c) with δ(B) = δ0(H)|B| such that every perfect H-factor of B

the electronic journal of combinatorics 31(3) (2024), #P3.33 4



u

v1 w1

v2 w2

u

v1 w1

v2 w2

u

v1 w1

v2 w2

Figure 1: The three different types of butterflies up to isomorphism.

(and there exists one) has discrepancy zero. Then, for every b ∈ N, the b-blowup B′ of
(B, c) has a perfect H-factor with discrepancy zero. Note that B′ is also a blowup of
(Kr, c) and since c ∈ K(H), every perfect H-factor of B′ must have zero discrepancy. As
we can choose b arbitrarily large, we get that δ∗(H)  δ(B)/|B| = δ0(H).

Next we state our result for 3-chromatic graphs. Here the following graphs, called
butterflies, play an important role. A butterfly is a 2-edge-colored graph (L, c), where L
consists of two triangles u, v1, w1 and u, v2, w2 intersecting in a single vertex u, and the
coloring c is “antisymmetric” in the sense that c(uv1) = −c(uv2), c(uw1) = −c(uw2) and
c(v1w1) = −c(v2w2) (see Figure 1).

Theorem 7. For every graph H with χ(H) = 3, it holds that

δ∗(H) =






3
4

if H is regular,

max{1− 1/χ∗(H), δ0(H), 4/7} if H is non-regular and some butterfly is

not a template for H,

max{1− 1/χ∗(H), δ0(H)} otherwise.

For k  4, the following definition, which we call the k-wise C4-condition, plays an
essential role in determining the value of δ∗(H).

Definition 8 (C4-Condition). For an integer k  4, we say that a graph H fulfills the
k-wise C4-condition if for every (proper) k-vertex-coloring of H with parts A1, A2, . . . , Ak,
we have that

eH(A1, A2) + eH(A3, A4) = eH(A1, A3) + eH(A2, A4).

Note that if H satisfies the k-wise C4-condition for some k  5, then H also satisfies
the (k − 1)-wise C4-condition, as each proper (k − 1)-coloring of H is also a proper k-
coloring (by taking the last color-class to be empty). Observe also that if H satisfies
the k-wise C4-condition then so does every H-factor. To state our result for r-chromatic
graphs with r  4, it is convenient to state the following two conditions. In the entire
paper, we write a ≡m b for a ≡ b (mod m).

Condition 9. H fulfills the (r + 1)-wise C4-condition and additionally, r ≡4 0 or H is
regular.
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Condition 10. H fulfills the r-wise C4-condition and is regular.

The following result determines δ∗(H) for H with χ(H)  4.

Theorem 11. For every graph H with r = χ(H)  4, it holds that

δ∗(H) =






1− 1/(r + 1) H fulfills Condition 9,

1− 1/r H fulfills Condition 10 but not Condition 9,

max{1− 1/χ∗(H), δ0(H)} H violates both Conditions 9 and 10.

In the next section, we explain the notation that we use throughout the paper. Then,
in Section 3, we give a short overview of the proof and explain the main ideas. In Section 4
we prove two general lemmas that will play an important role in our proofs. In Section 5,
we establish properties of the parameter δ0(H), and describe a construction of a graph H∗

(depending on H) that is important in some of our arguments. Section 6 is split into two
subsections. First, we recall the notions related to Szemerédi’s regularity lemma and the
blowup lemma. And second, we introduce the general setup of how we use the regularity
lemma in our proofs. This setup is used throughout the rest of the paper. Section 7
deals with templates, giving conditions on H that guarantee that various colored graphs
are templates for H. In Section 8 we prove the lower bounds on δ∗(H) in Theorems 4, 7
and 11. Sections 9, 10 and 11 contain key lemmas that are used in the proofs of the
main result. More specifically, in Section 9 we show how to find perfect H-factors of high
discrepancy if the coloring of G is unbalanced in a specific way. Section 10 covers graphs
H which violate the C4-condition, and Section 11 covers graphs H which are non-regular.
Using the tools from Sections 9-11, we then easily derive the main results (Theorems 4, 7
and 11) in Section 12. To end the paper, in Section 13 we give examples of graphs H
which fall into different cases of the three main theorems. The purpose of these examples
is to show that all cases in Theorems 4, 7 and 11 are necessary.

2 Notation

Given a graph G, let V (G) denote the set of vertices of G, E(G) the set of edges and
e(G) = |E(G)|. Let |G| denote the number of vertices in G. Given two sets U, V ∈ V (G),
we write G[U ] for the graph induced by U on G and G[U, V ] for the graph with edges with
one endpoint in U and the other in V . Also, let eG(U, V ) = e(G[U, V ]), and let eG(U)
denote the number of edges in G[U ]. For v ∈ V (G), let dG(v) denote the number of edges
incident to v in G.

For a 2-edge-coloring c of a graph G, we write G+, G− for the subgraph of G consisting
of the edges of color +1 and −1, respectively. Note that c(G) = e(G+) − e(G−) =
2e(G+)− e(G). For a color c ∈ {1,−1}, we use Gc for G+ if c = 1 and for G− if c = −1.

Given a blowup B of G and a set of vertices U ⊆ V (G), we write VU for ∪u∈UVu and
given a vertex u ∈ V (B), we refer to the vertex in V (G) corresponding to the cluster of
u by V G

u .
Throughout the paper, H is a fixed graph and r is the chromatic number of H. An

r-coloring of H always means a proper r-vertex-coloring. We identify an r-coloring with
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its set of color classes, usually denoted A1, . . . , Ar. We think of the parts as ordered,
namely permuting them gives a different r-coloring. An r-coloring A1, . . . , Ar is called
balanced if |A1| = · · · = |Ar|, and unbalaned otherwise.

3 Proof Overview

In this section we give a high level overview of our proofs. Some of our arguments apply
to any graph H, while some require H to have certain properties. We start by explaining
the general setup.

We employ a similar strategy to that used by Balogh, Csaba, Pluhár and Treglown [4]
to determine δ∗(Kr). Given a 2-edge-coloring of the graph G, we apply a colored version
of Szemerédi’s regularity lemma and consider the corresponding reduced graph R which,
by standard techniques, naturally inherits a 2-edge coloring fR from G and has essentially
the same minimum degree relative to its number of vertices. A crucial ingredient of our
proof is the notion of a template (Definition 5) which has been introduced in a slightly
different form in [4]. The importance of this notion is that if there is a subgraph F ⊆ R
of size independent of n such that (F, fR) is a template for H, then, by definition, there
is a blowup of F such that there are two H-factors of (F, fR) with different discrepancies.
A standard application of the blowup lemma then implies that we can tile a set U of
Ω(n) vertices of G in the clusters of the regular partition corresponding to V (F ) with
two different H-factors whose discrepancies differ by Ω(n). Taking U to be of small linear
size, the graph G\U still has high enough minimum degree to force a perfect H-factor by
Theorem 2. It is then easy to see that by adding the two H-factors of U to this perfect
H-factor of G \ U, we obtain two perfect H-factors of G whose discrepancies differ by
Ω(n), hence one of them must have absolute discrepancy Ω(n), as needed. This shows
that finding small templates for H in the reduced graph suffices for finding an H-factor
of high discrepancy.

Let us explain another important aspect of the notion of a template. If a certain
coloured graph (F, c) is not a template for H, then by definition, for every blowup B of
(F, c), all perfect H-factors of B have the same discrepancy. If this discrepancy equals
0 (e.g. this happens if (F, c) is symmetric with respect to the two colours), then this
provides us with a lower bound construction for δ∗(H). The most important special case
is when F = Kr (where r = χ(H)) which leads us to the definition of δ0(H). Indeed,
δ0(H) is the best lower bound on δ∗(H) that one can obtain by considering blowups of a
coloured Kr (apart from the potential divisibility constraints which are encapsulated by
the parameter χ∗(H).)

By the above discussion, we may assume that the reduced graph R has no subgraph on
O(1) vertices which is a template for H. This can be exploited from two angles. Taking
a fixed colored graph (F, c) which is a template for H, we obtain structural information
about R as it must be (F, c)-free. On the other hand, the fact that a certain coloured
graph F is not a template gives us structural information about H. More precisely, we
obtain that for every r-coloring of H, the sizes of the color classes and the number of
edges between the pairs of them must satisfy certain linear equations. A typical example
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is Lemma 45. (We sometimes also have constraints in terms of k-colorings of H for
k = r + 1 or r + 2. An example is the C4-condition, see Definition 8.)

It is possible that there is no small subgraph of R forming a template for H, e.g. if
all edges in R have color 1. However, if the coloring of R is so unbalanced, we can find
a perfect H-factor in G with high discrepancy. So, roughly speaking, our strategy is to
show that either R has a small template for H, or the coloring of R must be in some sense
unbalanced, allowing us to find a perfect H-factor with high discrepancy by other means.
A concrete example is Lemma 57, which shows that if all r-cliques in R have positive
discrepancy, then we can indeed find a perfect H-factor of high discrepancy, provided we
assume additionally that H is not regular. So to illustrate our strategy in more detail, let
us consider the case when H is not regular, so that Lemma 57 applies and we may assume
that not all r-cliques in R have positive discrepancy, and by symmetry not all r-cliques
have negative discrepancy. Then, since R has minimum degree larger than 1− 1/(r− 1),
it is not difficult to show that there are two r-cliques L1 and L2 sharing r − 2 vertices,
where one of them has positive discrepancy, while the other has negative discrepancy. If
the coloring on L1 ∪ L2 is a template for H, we are done, and otherwise H must have a
certain structure. Now, by the minimum degree condition on R, for v ∈ L1 \L2, there are
many vertices u such that L1∪{u}\{v} forms an r-clique. We show that, essentially, the
edges from u to L1 \ {v} must be colored in the same way as those from v to L1 \ {v} (or
else R contains a template for H). Such arguments eventually lead to showing that one
of the colors is represented significantly more in R than the other color. For example, in
one of the cases in the proof of Lemma 68, we show that there is a set of size more than
3n/4 which is entirely monochromatic. This allows us to find a perfect H-factor with high
discrepancy.

Another ingredient in our proof is the idea of using certain complete r-partite graphs
(where r = χ(H)). More precisely, in order to find a perfect H-factor, we sometimes
instead find a perfect H∗-factor for a certain complete r-partite graph H∗, and then tile
each copy of H∗ with copies of H. The advantage of working with complete r-partite
graphs (rather than with general r-partite graphs) is that they consist of r-cliques, and
our templates for H also consist of r-cliques. Thus, assuming that there are no small
templates for H allows us to deduce things about the colors of the edges of copies of H∗.
Typically, we show that H∗ is colored as a blowup of Kr, namely, that all bipartite graphs
between color classes are monochromatic. In order to use this approach, H∗ must satisfy
certain properties. First, it must contain a perfect H-factor. And second, the minimum
degree threshold for the existence of an H∗-factor must be only slightly larger than that
of H, so that our minimum degree assumptions guarantee the existence of an H∗-factor.
Such a graph H∗ is constructed in Lemma 18.

4 General Lemmas

In this section we give two general lemmas which are essential to the proofs of our main
results. The following simple lemma allows us to find a “chain” of r-cliques connecting
two given r-cliques in a graph of sufficiently high minimum degree. Such a lemma has
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already appeared in previous works, see e.g. [5]. For completeness, we include a proof.

Lemma 12. Let k ∈ N, let J be an m-vertex graph, and let L,L′ ⊆ J be two copies of
Kk.

1. If δ(J) > k−1
k
m, then there is a sequence L1, L2, . . . , Lℓ ⊆ J of k-cliques with L1 = L,

Lℓ = L′ and |Li ∩ Li+1| = k − 1 for each 1  i < ℓ.

2. If δ(J) > k−2
k−1

m, then there is a sequence L1, L2, . . . , Lℓ ⊆ J of k-cliques with L1 = L,
Lℓ = L′ and |Li ∩ Li+1|  k − 2 for each 1  i < ℓ.

Proof. We start with the first item. Here we assume that δ(J) > k−1
k
m, which implies

that every k vertices have a common neighbour. It is enough to find a sequence L =
L1, . . . , Lℓ = L′ with |Li∩Li+1|  k−1 (i.e. we can repeat cliques). We prove the claim by
reverse induction on t := |L∩L′|. If t  k−1 then there is nothing to prove. Suppose then
that t  k−2. Write L∩L′ = {s1, . . . , st}, L\L′ = {x1, . . . , xk−t}, L′\L = {y1, . . . , yk−t}.
We define vertices z1, . . . , zk−t−1 inductively as follows. Let z1 be a common neighbour
of s1, . . . , st, x1, . . . , xk−t−1, y1. For 2  i  k − t − 1, let zi be a common neighbour of
s1, . . . , st, xi, . . . , xk−t−1, z1, . . . , zi−1, y1. Write Mi = {s1, . . . , st, xi, . . . , xk−t−1, z1, . . . , zi}
for 1  i  k − t − 1. Then M1, . . . ,Mk−t−1 are k-cliques, |M1 ∩ L|  k − 1, and
|Mi ∩ Mi+1|  k − 1 for 1  i  k − t − 2. Also, L′′ := {s1, . . . , st, z1, . . . , zk−t−1, y1} is
a k-clique, |L′′ ∩ Mk−t−1|  k − 1 and |L′′ ∩ L′|  t + 1. By the induction hypothesis,
there is a chain L′′ = N1, . . . , Nℓ = L′ with |Ni ∩ Ni+1|  k − 1 for 1  i  ℓ − 1. Now
L,M1, . . . ,Mk−t−1, N1, . . . , Nℓ = L′ is the required chain.

Next, we prove Item 2 by reducing to Item 1. Here we assume that δ(J) > k−2
k−1

m,
which implies that every k−1 vertices have a common neighbour, and hence every (k−1)-
clique is contained in a k-clique. Take M ⊆ L,M ′ ⊆ L′ of size k−1 each. By Item 1 with
parameter k−1, there are (k−1)-cliques M = M1, . . . ,Mℓ = M ′ with |Mi∩Mi+1|  k−2
for each 1  i  ℓ − 1. Let Li be a k-clique containing Mi, where L1 = L and Lℓ = L′.
Then L1, . . . , Lℓ is the required sequence.

The next lemma is a key reason why the C4-condition is one of the determining factors
for the value of δ∗(H). The lemma allows us to control the discrepancy of subgraphs
fulfilling the C4-condition in blowups of regular colorings of Kk (i.e., 2-edge-colorings in
which the color-classes form regular graphs). We will later apply this lemma to H-factors
(using that an H-factor satisfies the C4-condition if H does), to deduce that a regular
coloring of Kk is not a template for H.

Lemma 13. Let c be a 2-edge-coloring of Kk, k  2, and suppose that K+
k is d-regular

for some d ∈ N. Let B be a blowup of (Kk, c) and J an arbitrary subgraph of B. If J
fulfills the k-wise C4-condition, then

c (J) =
2d− k + 1

k − 1
e(J).

Proof. First, we estimate the number of edges of J contained in the blowup of a given
2-factor of Kk. Here, by “2-factor” we mean a disjoint union of cycles covering V (Kk).
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Claim 14. Let C be a 2-factor in Kk and C ′ the corresponding graph in B (i.e., the
blowup of C). Then

e(J ∩ C ′) =
2

k − 1
e(J).

Proof. Let X = x1x2, . . . , xℓ be an arbitrary cycle in C of length ℓ. Consider any pair
i < j such that the vertices xi, xj are not adjacent on X. Note that for each i there are
ℓ− 3 such j. Since J satisfies the k-wise C4-condition, we have

eJ(Vxi
, Vxi+1

) + eJ(Vxj
, Vxj+1

)− eJ(Vxi
, Vxj

)− eJ(Vxi+1
, Vxj+1

) = 0,

where indices are taken modulo ℓ. Summing over all such pairs i < j, we obtain

(ℓ− 3)


1iℓ

eJ(Vxi
, Vxi+1

)− 2


i,j : |i−j| ∕≡±1 (mod ℓ)

eJ(Vxi
, Vxj

) = 0. (1)

If X is the only cycle in C, then ℓ = k, and by (1),

e(J ∩ C ′) =


1iℓ

eJ(Vxi
, Vxi+1

) = e(J)−


i,j : |i−j| ∕≡±1 (mod ℓ)

eJ(Vxi
, Vxj

) =
2

k − 1
e(J),

as required. Therefore, let us assume that there is a second cycle Y = y1, . . . , yh in C. By
the C4-condition,



1iℓ



1jh


eJ(Vxi

, Vxi+1
) + eJ(Vyj , Vyj+1

)− eJ(Vxi
, Vyj)− eJ(Vxi+1

, Vyj+1
)

= 0.

Reordering the terms in the above equality, we get

h


1iℓ

eJ(Vxi
, Vxi+1

) + ℓ


1jh

eJ(Vyj , Vyj+1
)− 2



1iℓ



1jh

eJ(Vxi
, Vyj) = 0. (2)

Now, we take the sum of (1) over all cycles in C and the sum of (2) over all pairs of cycles
in C. For each cycle X in C, each edge of X is counted k− |X| times when summing (2)
over pairs X, Y with Y ∈ C \ {X}, and is counted |X|− 3 times in (1). Therefore, each
edge of C is counted exactly k − 3 times. Also, each edge e ∈ Kk \ C is counted twice
(with a negative sign) when summing (1) and (2); indeed, if e goes between vertices of
the same cycle X, then e is counted twice in (1), and if e goes between vertices of two
different cycles X, Y , then e is counted twice in (2). All in all, we get that

(k − 3)


uv∈C

eJ(Vu, Vv)− 2


uv∈Kk\C

eJ(Vu, Vv) = 0.

It follows that

e(J ∩ C ′) =


uv∈C

eJ(Vu, Vv) =
2

(k − 1)
e(J).
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We now complete the proof of Lemma 13 using Claim 14. Note that either d or k−1−d
is even because k and d cannot both be odd. Without loss of generality, let us assume
that d is even (else apply the same argument to the complement coloring). Petersen’s
theorem (see e.g. [6, Corollary 2.1.5]) states that a d-regular graph for even d has a 2-
factor. Since removing the edges of a 2-factor produces a regular graph with even degree
d − 2, it follows that the edges of a d-regular graph (with even d) can be decomposed
into 2-factors. Hence, the edges of K+

k can be decomposed into d
2
2-factors. By applying

Claim 14 to each of these 2-factors, we get that

e(J+) =
d

2
· 2

(k − 1)
e(J) =

d

(k − 1)
e(J).

The result follows since

c(J) = e(J+)− e(J−) = 2e(J+)− e(J).

5 The parameters δ0 and H∗

The goal of this section is twofold. First, we consider the parameter δ0(H); we show
that it is well-defined, i.e. that the maximum in Definition 6 is attained, prove some
useful properties of δ0(H) and give an algorithm that computes δ0(H) in finite time. And
second, we describe a construction of a certain complete r-partite graph H∗ that will play
an important role in our proofs.

Proposition 15. Let H be a graph. The maximum in the definition of δ0(H) (see Defini-
tion 6) is attained and δ0(H) ∈ Q. Moreover, there is an algorithm which, given a graph
H, computes δ0(H).

Proof. We present an algorithm for computing δ0(H). From the algorithm, it will be clear
that the maximum in Definition 6 is attained.

The algorithm is as follows. We iterate over all possible 2(
r
2) 2-edge-colorings of Kr.

For each coloring c we need to check whether it is a template with respect to H and if
it is not, to find the maximum value of δ such that there is a blowup B of (Kr, c) with
δ(B) = δ|B| and B has a perfect H-factor with c(F ) = 0.

Fix a 2-edge-coloring c of Kr. Let C ⊆ [r]V (H) denote the set of all proper r-vertex-
colorings of H. Consider a blowup B of (Kr, c) with parts A1, A2, . . . , Ar of sizes |Ai| =
ai, i ∈ [r]. For f ∈ C, we define ai(f) = |{v ∈ V (H)|f(v) = i}|, for i ∈ [r], and g(f) =

uv∈E(H) c(f(u)f(v)), where we denote each vertex in Kr by a color of f . We think of f

as an embedding of H into B. Then, ai(f) counts the number of vertices embedded into
Ai, while g(f) denotes the discrepancy of the embedding.

Now, checking whether (Kr, c) is a template for H can be done using the following
linear program.
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maximize


f∈C

(xf − yf ) · g(f)

subject to


f∈C

xf · ai(f) = ai, ∀i ∈ [r],



f∈C

yf · ai(f) = ai, ∀i ∈ [r],

r

i=1

ai = 1,

ai  0, ∀i ∈ [r]

xf , yf  0, ∀f ∈ C.

We claim that if the maximum in the above linear program is 0, then (Kr, c) is not
a template, otherwise it is. Indeed, there exists an optimal feasible solution for which
the vectors x, y are fractional H-factors of a blowup of (Kr, c) with parts of relative sizes
a1, . . . , ar, whereas the objective function corresponds to the difference in the discrepancies
of the two fractional H-factors. Hence, if the maximum is 0, no two H-factors can have
different discrepancies. On the other hand, if the maximum is nonzero, since the optimum
is attained by some solution vector with rational entries, we may multiply it by a large
number to get a solution with integer entries. It is not difficult to see that this corresponds
to a blowup of (Kr, c) and two H-factors of it with different discrepancies.

Now, suppose we are given a coloring c such that (Kr, c) is not a template for H. We
wish to find a maximum δ such that there is a blowup B of (Kr, c) with δ(B) = δ|B| for
which there is an H-factor with discrepancy 0.

This can be found with the following linear program:

maximize 1− ar

subject to 0  a1  a2  . . . ar,
r

i=1

ai = 1,



f∈C

xf · g(f) = 0,

xf  0, ∀f ∈ C.

Again, there exists an optimal feasible solution to the above linear program correspond-
ing to a blowup B′ of (Kr, c) with relative part sizes a1  a2  . . . ar and a fractional
H-factor x of B′ with discrepancy 0. Multiplying this optimal vector with an appropriate
integer, we obtain an integral vector which corresponds to a blowup B of (Kr, c) and
an H-factor with discrepancy 0 with respect to c. By the ordering of the ai’s it follows
that δ(B) = (1 − ar)|B|, as needed. Finally, since the above linear program has integer
coefficients, it has a rational solution, giving that δ0(H) ∈ Q.
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Next, we prove some useful facts related to δ0(H). We begin with the following simple
claim, stating that the b-blowup of Kr with b = (r − 1)! · |H| can be tiled by copies of H
in a uniform manner.

Lemma 16. Let B be the (r − 1)!|H|-blowup of Kr with parts B1, . . . , Br. Then, there
exists a perfect H-factor F in B such that eF (Bi, Bj) = 2(r − 2)!e(H) for every pair
1  i < j  r. Therefore, if B is colored such that B is the blowup of (Kr, c) for a
coloring c of Kr, then c(F ) = c(Kr) · 2(r − 2)!e(H).

Proof. Let A1, A2, . . . , Ar be the parts of an r-vertex-coloring of H. Then, there exists a
perfect H-factor F of B that contains for every permutation σ : [r] → [r] a copy of H with
the vertices of Ai in cluster Bσ(i) for every 1  i  r. Note that for every 1  i, j  r, by
the symmetry of F we have that

eF (Bi, Bj) =
e(H)|B|

r
2


|H|

.

Using that |B| = r!|H|, the statement follows.

Lemma 16 implies that if K(H) contains a coloring c of Kr with c(Kr) = 0, then δ0(H) =
1−1/r. Indeed, by taking B to be the (r−1)!|H|-blowup of (Kr, c), we get by Lemma 16
that B has a perfect H-factor F with c(F ) = c(Kr) · 2(r− 2)!e(H) = 0. This implies that
δ0(H)  δ(B)/|B| = 1− 1/r by the definition of δ0.

The next lemma gives an important property of δ0(H).

Lemma 17. For every 2-edge-coloring c ∈ K(H) with c(Kr) > 0 the following holds.
Let B be a blowup of (Kr, c) with δ(B) > δ0(H)|B|. Then for every H-factor F of B,
c(F ) > 0.

Proof. Fix c ∈ K(H) with c(Kr) > 0. Let us assume towards a contradiction that there
exists a blowup B of (Kr, c) with δ(B) > δ0(H)|B| and a perfectH-factor F of B such that
c(F )  0. Note that if c(F ) = 0 then δ0(H)  δ(B)/|B| > δ0(H) which is a contradiction.
Therefore, let us assume that c(F ) < 0. We use an intermediate-value argument: we will
take a “union” of B with a balanced blowup of (Kr, c), which has positive discrepancy,
choosing the parameters in such a way that this union B2 will have a perfect H-factor
with discrepancy 0. However, B2 will also have normalized minimum degree as large as
that of B, and this would contradict the definition of δ0(H). The details follow. Let B1

be an (r − 1)!|H|-blowup of (Kr, c). By Lemma 16, there exists a perfect H-factor F1 in
B1 such that

c(F1) = c(Kr) · 2(r − 2)!e(H) > 0.

Let a1  a2  . . .  ar be the sizes of the parts of B. Let B2 be a blowup of (Kr, c)
with parts of sizes b1, b2, . . . br where bi = c(F1) · ai − c(F )(r − 1)!|H|. Note that |B2| =
c(F1)|B| − r · c(F )(r − 1)!|H|, δ(B) = |B| − ar and δ(B2) = |B2| − br. It follows that
δ(B2)
|B2|  δ(B)

|B| . Indeed, this inequality is equivalent to ar  |B|/r, which clearly holds. Let
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F2 be a perfect H-factor in B2 consisting of c(F1) copies of F and −c(F ) copies of F1. It
follows that

c(F2) = c(F1)c(F )− c(F )c(F1) = 0.

By the definition of δ0(H) and since c ∈ K(H), we get that

δ0(H)  δ(B2)

|B2|
 δ(B)

|B| > δ0(H).

As this is a contradiction, the statement must hold.

We now move to define, for every r-chromatic H, a certain r-partite graph H∗ having
several useful properties. Later on, when trying to find an H-factor with high discrepancy,
we often do this by finding an H∗-factor and tiling each copy of H∗ with copies of H. For
r = 2 we simply set H∗ = H. The key case is r  3, handled by the following lemma.
Note that if r  3, then H∗ is complete r-partite.

Lemma 18. Let r  3 and η > 0. For convenience, put α(H) := max{δ0(H), 1 −
1/χ∗(H)}. There exists a graph H∗ = H∗(H, η) such that:

• H∗ is a complete r-partite graph;

• H∗ has a perfect H-factor;

• α(H)  1− 1/χcr(H
∗)  α(H) + η/4.

• If α(H) + η/4 < (r − 1)/r, then hcf(H∗) = 1.

• If δ0(H) < 1− 1/r then δ(H∗)/|H∗| > δ0(H).

Definition 19 (The graph H∗). Let H be an r-chromatic graph and let η > 0. If r = 2
then define H∗ = H, and else define H∗ to be the graph given by Lemma 18.

Proof of Lemma 18. Let A1, A2, . . . , Ar be an r-coloring of H with |Ar| = σ(H). Let
B1 be a blowup of Kr with parts B1

1 , B
2
1 , . . . , B

r
1, where the first r − 1 parts have size

|H| − σ(H), and Br
1 has size (r − 1)σ(H). Let F1 ⊆ B1 be an H-factor containing, for

each 1  i  r−1, a copy of H in which the vertices of Aj are mapped into B
(j+i) (mod r−1)
1

for 1  j  r − 1, and the vertices of Ar are mapped into Br
1. Note that the sizes of

B1
1 , B

2
1 , . . . , B

r
1 are precisely chosen to accommodate these (vertex-disjoint) copies of H.

So F1 is a perfect H-factor of B1.
Let B2 be the |H|-blowup of Kr and let B1

2 , B
2
2 , . . . , B

r
2 be the parts of B2. Similarly

as before, let F2 be a perfect H-factor of B2 containing, for every 1  i  r, a copy of
H in which Aj is mapped into B

(i+j) (mod r)
2 for every 1  j  r. Again, the sizes of

B1
2 , B

2
2 , . . . , B

r
2 are precisely chosen to fit these copies of H, as |H| = |A1|+ · · ·+ |Ar|.

Note that if α(H) + η/4  (r− 1)/r, then we can take H∗ = B2, trivially fulfilling all
the necessary conditions. Indeed, the first two items in Lemma 18 are immediate, the third
item holds because χcr(B2) = r and α(H)  1 − 1/r, the fourth item holds vacuously,
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and the fifth item holds because δ(H∗)/|H∗| = 1 − 1/r. Let us therefore assume that
α(H) + η/4 < (r − 1)/r. Hence,

min{1− δ0(H), 1/χ∗(H)}− η/4 = 1− α(H)− η/4 > 1/r.

In particular, χ∗(H) < r, which implies that χ∗(H) = χcr(H) and hcf(H) = 1 by the
definition of χ∗(H). Fix a rational number β in the range 1 − α(H) − 0.2η  β 
1− α(H)− 0.1η, and note that

1/r < β < 1− α(H)  1/χcr(H).

We now define a complete r-partite graph B3 with r−1 equal parts and an rth smaller part,
such that 1/χcr(B3) = β. Indeed, let B3 be a blowup of Kr with (r−1) parts B1

3 , . . . , B
r−1
3

of size k|H|+ ℓ(|H|− σ(H)) each, and one (smaller) part Br
3 of size k|H|+ ℓ(r− 1)σ(H),

where k, ℓ ∈ N are determined later. Note that B3 is essentially a “linear combination”
of B1 and B2, namely, B3 can be partitioned into k copies of B2 and ℓ copies of B1. Since
B1 and B2 each have a perfect H-factor, so does B3. Note that

1/χcr(B3) =
|B3|− |Br

3|
(r − 1)|B3|

=
k|H|+ ℓ(|H|− σ(H))

kr|H|+ ℓ(r − 1)|H| . (3)

We now show that there exist k, ℓ such that 1/χcr(B3) = β. For this, we need the right-
hand side in (3) to equal β. Reordering this equation, we get

k =
ℓ(|H|− σ(H))− ℓ(r − 1)|H|β

r|H|β − |H| .

Note that the term above is of the form ℓ · q for some suitable q ∈ Q. Therefore, there
exists ℓ ∈ N such that k ∈ Z. From now on, fix such k and ℓ. Using 1/r < β < 1/χcr(H),
we get

(r − 1)|H|β < |H|− σ(H)

and
|H| < r|H|β.

Therefore, k > 0.
Our final graph H∗ will be obtained by blowing up B3 by a large integer, and then

changing the sizes of the parts by a small amount to make sure that hcf(H∗) = 1. We now
define this small perturbation. Recall the set D(C) defined in the introduction. For each
s ∈ D(C), let A1

s, A
2
s, . . . , A

r
s be the parts of an r-vertex-coloring of H with A1

s − A2
s = s.

Since hcf(H) = 1, it follows by Bézout’s Identity (see e.g. Theorem 2.3. in [7]) that there
exist integers xs for each s ∈ D(C) such that



s∈D(C)

xss = 1.
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Let B4 be a blowup of Kr with parts B1
4 , B

2
4 , . . . , B

r
4 of size a1, a2, . . . , ar respectively,

where

a1 =


s∈D(C)
xs>0

xs · A1
s −



s∈D(C)
xs<0

xs · A2
s,

a2 =


s∈D(C)
xs>0

xs · A2
s −



s∈D(C)
xs<0

xs · A1
s,

ai =


s∈D(C)

|xs| · Ai
s for 3  i  r.

Note that a1 − a2 =


s∈D(C) xss = 1. Additionally, there exists a perfect H-factor of B4

containing for each s ∈ D(C) with xs > 0, xs copies of H with Ai
s on Bi

4 for 1  i  r;
and for each s ∈ D(C) with xs < 0, −xs copies of H with A1

s on B2
4 , A

2
s on B1

4 and Ai
s

on Bi
4 for 3  i  r. Let a =


1ir ai. Fix a large integer M = M(H, η), to be chosen

later. Let B5 be a blowup of Kr with parts of size b1, b2, . . . , br, where for 1  i  r,

bi = ai + aM · |Bi
3|.

This immediately implies that hcf(B5) = 1, since, using r  3, b1 − b2 = a1 − a2 = 1
(recall that |B1

3 | = · · · = |Br−1
3 |). Note that the vertices of B5 can be partitioned into a

copy of B4 and aM copies of B3. As both B3 and B4 have a perfect H-factor, so does
B5. As χcr(H) < r, we have (r − 1)σ(H) < |H|− σ(H). This implies that br  bi for all
1  i  r − 1, and hence σ(B5) = br = ar + aM |Br

3|. Also, |B5| = a + aM |B3|. Now we
get that

1

χcr(B5)
=

a+ aM |B3|− ar − aM |Br
3|

(r − 1)(a+ aM |B3|)
=

|B3|− |Br
3|

(r − 1)|B3|
− a|Br

3|− ar|B3|
(r − 1)|B3|(a+ aM |B3|)

,

where the second equality above is a simple calculation. Recall that 1/χcr(B3) =
|B3|−|Br

3 |
(r−1)|B3| .

Choose M large enough so that the second term above is at most 0.05η in absolute value.
Then we have

|1/χcr(B3)− 1/χcr(B5)|  0.05η.

Recalling that 1/χcr(B3) = β and using 1− α(H)− 0.2η  β  1− α(H)− 0.1η, we get

1− α(H)− η/4  1/χcr(B5)  1− α(H).

This proves the third item in the lemma. It remains to prove the last item. Note that the
largest part of B5 has size

max
1ir−1

bi  a+ aM · (|B3|− |Br
3|)/(r − 1) = a+ aM · β|B3|,
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where the two equalities use that |B1
3 | = · · · = |Br−1

3 | and that β = 1/χcr(B3). The
minimum degree of B5 is |B5|−maxi bi. Hence,

δ(B5)/|B5|  1− a+ aM · β|B3|
a+ aM |B3|

=
aM(1− β)|B3|
a+ aM |B3|

= 1− β − (1− β)a

a+ aM |B3|
> 1− β − 0.1η  α(H)  δ0(H),

where the strict inequality holds for large enough M . We see that H∗ = B5 fulfills all
necessary conditions.

We end this section with the following important property ofH∗, allowing us to control
the discrepancy of H-factors of H∗ under certain assumptions.

Lemma 20. Let c ∈ K(H) with c(Kr) > 0. Let J be a colored copy of H∗ and suppose that
J is a blowup of (Kr, c). Then for every perfect H-factor F of J it holds that c(F ) > 0.

Proof. The statement holds trivially if r = 2 as then, K2 must be monochromatic. There-
fore, let us assume that r  3. Recall thatH∗ is a complete r-partite graph. By Lemma 17,
we may assume that δ(H∗)  δ0(H)|H∗|. Then, by the definition of H∗ in Lemma 18, we
have δ0(H) = δ(H∗)/|H∗| = 1−1/r. So H∗ is a balanced r-partite graph. Now, let h ∈ N
and J a colored copy of H∗ such that J is an h-blowup of (Kr, c) for some c ∈ K(H) with
c(Kr) > 0. Let F be a perfect H-factor of J and let us assume towards a contradiction
that c(F )  0.

Let B be the (r − 1)!|H|-blowup of (Kr, c). By Lemma 16, there exists a perfect
H-factor F ′ in B with

c(F ′) = c(Kr) · 2(r − 2)!e(H) > 0.

Note that since c ∈ K(H), we get that every perfect H-factor of J must have discrepancy
c(F ) and every perfect H-factor of B must have discrepancy c(F ′).

Next, consider an h ·(r−1)!|H|-blowup B′ of (Kr, c). Clearly, B
′ has a perfect J-factor

FJ containing (r − 1)!|H| copies of J and a perfect B-factor FB containing h copies of
B. Let F1 be a perfect H-factor of B′ obtained by taking the union of a perfect H-factor
of each copy of J in FJ and F2 similarly by taking the union of a perfect H-factor of
each copy of B in FB. As we showed above, we get c(F1) = (r − 1)!|H| · c(F )  0 and
c(F2) = h · c(F ′) > 0. It follows that c(F1) ∕= c(F2) and therefore, (Kr, c) is a template
for H. This contradicts the assumption c ∈ K(H).

6 Regularity and its application

The goal of this section is twofold. First, we recall the well-known Szemerédi’s regularity
lemma and the blowup lemma, which play a key role in our proofs. And second, we
introduce the general setup in which we shall apply these tools. This setup will be used
throughout the rest of the paper.
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6.1 Background on regularity

Let us recall the basic definitions and notation related to the regularity lemma. Given a
bipartite graph G with vertex-classes A,B ⊆ V (G), the density of G is defined as

dG(A,B) =
eG(A,B)

|A||B| .

Given ε, d > 0, we say that G is (ε, d)-regular if

dG(A,B)  d

and for every X ⊆ A with |X|  ε|A| and Y ⊆ B with |Y |  ε|B|, we have that

|dG(A,B)− dG(X, Y )| < ε.

Additionally, we say that G is (ε, d)-superregular if dG(a) > d|B| for every a ∈ A, dG(b) >
d|A| for every b ∈ B, and for every X ⊆ A and Y ⊆ B with |X|  ε|A| and |Y |  ε|B|
we have

dG(X, Y ) > d.

We shall use the following two color version of the regularity lemma.

Lemma 21 ([17]). For every ε > 0 and ℓ0 ∈ N there exists L0 = L0(ε, ℓ0) so that the
following holds. Let d ∈ [0, 1] and let G be a graph on n  L0 vertices with 2-edge-coloring
f . Then there exists a partition V0, V1, . . . , Vℓ of V (G) and a spanning subgraph G′ of G,
such that the following conditions hold:

1. ℓ0  ℓ  L0;

2. dG′(x)  dG(x)− (2d+ ε)n for every x ∈ V (G);

3. the subgraph G′[Vi] is empty for all 1  i  ℓ;

4. |V0|  εn;

5. |V1| = |V2| = · · · = |Vℓ|;

6. for all 1  i < j  ℓ, G′[Vi, Vj]
+ is either an (ε, d)-regular pair or empty.

7. for all 1  i < j  ℓ, G′[Vi, Vj]
− is either an (ε, d)-regular pair or empty.

We call G′ the pure graph of G (for the parameters ε, ℓ0, d). Given a graph G with
2-edge-coloring f and a pure graph G′ of G, the reduced graph R is defined as the graph
on vertices V1, V2, . . . , Vℓ, where Vi and Vj are connected if at least one of G′[Vi, Vj]+ or
G′[Vi, Vj]

− is non-empty. Additionally, we associate with R a 2-edge-coloring fR, where
for ViVj ∈ R, fR(ViVj) = 1 if G′[Vi, Vj]

+ is non-empty and fR(ViVj) = −1 otherwise. The
following is a useful, well-known fact about the reduced graph.
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Lemma 22. Given c > 0, let G be a graph on n vertices with δ(G)  cn and let R be the
reduced graph obtained by applying Lemma 21 to it with some parameters ε, d, ℓ0. Then,
δ(R)  (c− 2d− 2ε)|R|.

We will also use the well-known Blow-up lemma of Komlós, Sárközy and Szemerédi [16].

Lemma 23 (Blow-up lemma[16]). Given a graph K on vertices 1, . . . , k and d,∆ > 0,
there exists ε0 = ε(d,∆, k) > 0 such that the following holds. Given L1, . . . , Lk ∈ N and
ε < ε0, let F

∗ be the graph obtained from K by replacing each vertex i ∈ F with a set Vi of
Li new vertices and joining all vertices in Vi to all vertices in Vj whenever ij is an edge in
K. Let G be a spanning subgraph of F ∗ such that for every edge ij ∈ F the pair (Vi, Vj)G
is (ε, d)-superregular. Then, for every spanning subgraph F of F ∗ with ∆(H)  ∆, G
contains a copy of F in which the vertices playing the role of Vi are mapped to Vi.

To apply the Blow-up lemma, we will need the following simple lemma.

Lemma 24. Let 1  b1  . . .  bt =: b be integers. Let G be a graph and let f be a
2-edge-coloring of E(G). Let W1, . . . ,Wt ⊆ V (G) be pairwise-disjoint with |W1| = · · · =
|Wt| =: m. Let d, ε > 0, and suppose that m ≫ 1/ε ≫ b, t, 1/d. Then there are subsets
W ′

i ⊆ Wi, i = 1, . . . , t, such that:

1. |W ′
i | = bis for each i = 1, . . . , t, where s := ⌊m/b⌋ − ⌊2tεm⌋.

2. For every 1  i < j  t and color c ∈ {±1}, if G[Wi,Wj]
c is (ε, d)-regular then

G[W ′
i ,W

′
j ]
c is (2bε/b1, d/2)-superregular.

The second item of Lemma 24 uses the standard fact that regular pairs can be made
superregular by deleting a small number of vertices. The goal of the first item is to make
it possible to tile W ′

1, . . . ,W
′
t with a graph having a t-coloring with color-classes of size

b1, . . . , bt.

Proof of Lemma 24. First, for each i ∈ [t], take an arbitrary Ui ⊆ Wi of size bi⌊m/b⌋  m.
Now fix any 1  i  t, and let Ii be the set of pairs (j, c) such that G[Wi,Wj]

c is (ε, d)-
regular (where j ∈ [t] \ {i} and c = ±1). For (j, c) ∈ Ii, let Bc

i,j be the set of vertices
ui ∈ Ui which have less than (d− ε)|Uj| neighbours in color c in Uj. The (ε, d)-regularity
of G[Wi,Wj]

c and the fact that |Uj|  m
2b

 ε|Wj| imply that |Bc
i,j|  εm. Therefore,

Bi :=


(j,c)∈Ii B
c
i,j satisfies |Bi|  2(t− 1)εm. Hence, |Ui \Bi|  bi · ⌊m/b⌋− 2(t− 1)εm 

bis. So take W ′
i ⊆ Ui \ Bi of size bis (for i ∈ [t]). Note that |W ′

i |  b1m
2b

, using that
m ≫ 1/ε ≫ b, t. Also, |Ui \W ′

i | = bi · (⌊m/b⌋ − s)  2tbεm.
Now let 1  i < j  t and c ∈ {±1} such that G[Wi,Wj]

c is (ε, d)-regular. As
W ′

i ⊆ Ui \ Bi, all vertices in W ′
i have at least (d − ε)|Uj| color-c neighbours in Uj, and

hence at least

(d− ε)|Uj|− |Uj \W ′
j |  (d− ε)|Uj|− 2tbεm > d/2 · |Uj|

neighbours in W ′
j , where the last inequality uses that |Uj|  m

2b
and 1/ε ≫ b, t, 1/d.
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Also, for X ⊆ W ′
i , Y ⊆ W ′

j with |X|  2bε
b1
|W ′

i |, |Y |  2bε
b1
|W ′

j |, we have |X|, |Y |  εm,
and therefore, by the (ε, d)-regularity of G[Wi,Wj]

c, the color-c density between X, Y
is at least d − ε > d/2. This shows that G[W ′

i ,W
′
j ]
c is (2bε/b1, d/2)-superregular, as

required.

6.2 Applying the regularity lemma: the general setup

Here we explain the general setup which we use throughout the rest of the paper. Let
η > 0 be fixed and let γ ≪ η be small enough (depending on η). To prove Theorems
4, 7 and 11, we shall consider a graph G with n  n0 vertices, n divisible by |H|, and
minimum degree δ(G)  (δ+ η)n, for δ corresponding to the particular case of the above
theorems that we are proving, and show that in every 2-edge-coloring of G, there must
exist a perfect H-factor with discrepancy at least γn in absolute value. We say that such
an H-factor has high discrepancy. Proving this statement (for all η) would establish that
δ∗(H)  δ. Note that we may always assume that η is small enough with respect to H.
From now on, fix n0, ε, ℓ0, d0, L0 > 0 such that

1/n0 ≪ γ ≪ 1/L0  1/ℓ0 ≪ ε ≪ d0 ≪ η ≪ 1/|H|,

where L0 is the constant obtained by applying Lemma 21 with ε, ℓ0.
Recall that δ0 and 1− 1/χ∗(H) are (natural) lower-bounds for δ∗(H) for every graph

H. Therefore, throughout this paper, we shall always assume that our target parameter
δ satisfies

δ  max{δ0(H), 1− 1/χ∗(H)}. (4)

So let G be a graph with n  n0 vertices, where n is divisible by |H|, and with
δ(G)  (δ+η)n. Our strategy for finding a perfectH-factor of high discrepancy sometimes
requires us to first find a perfect H∗-factor F ∗ (and then tile each H∗-copy with copies of
H). To this end, we need that |G| is divisible by H∗. Therefore, we shall put aside a small
number of vertices to make the number of remaining vertices divisible by |H∗|. Indeed,
let FRest be a collection of vertex-disjoint copies of H in G, such that |V (FRest)| < |H∗|
and n − |V (FRest)| is divisible by |H∗|. Such a collection exists because G even has a
perfect H-factor, by Theorem 2 and by (4). Set G∗ := G[V (G)\V (FRest)]. Recall that
H∗ depends only on H and η, so |H∗| ≪ γn. Therefore, it will suffice to find a perfect H-
factor of G∗ with high discrepancy (as this will give a perfect H-factor of G with absolute
value discrepancy at least γ

2
n, say). Hence, we concentrate on G∗ from now. With a slight

abuse of notation, we shall use n to denote |G∗|. Note that

δ(G∗)  (δ + 3η/4)n.

Fix an arbitrary 2-edge-coloring f of G∗. Let G′ be the pure graph obtained by
applying Lemma 21 with parameters ε, ℓ0, d0 to G∗ and f . Let R be the corresponding
reduced graph with 2-edge-coloring fR. Using η ≫ d0, ε and Lemma 22, we get that

δ(G′)/n, δ(R)/|R|  δ(G∗)/n− η/4  δ + η/2,
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and by (4), we get that

δ(G′)/n, δ(R)/|R|  max{δ0(H), 1− 1/χ∗(H)}+ η/2. (5)

We shall assume throughout the paper that (5) holds. For a vertex u ∈ V (G′) \ V0, we
denote by V R

u ∈ V (R) the vertex of R corresponding to the part of the regular partition
containing u.

We now show that G′ contains a perfect H∗-factor.

Lemma 25. G′ has a perfect H∗-factor, and hence a perfect H-factor.

Proof. For convenience, set α(H) := max{δ0(H), 1− 1/χ∗(H)}. In this notation, we have

δ(G′)  (α(H) + η/2)n.

We claim that
δ(G′)  (1− 1/χ∗(H∗) + η/4)n.

If α(H)  1− 1/r− η/4 then δ(G′)  (1− 1/r+ η/4), which suffices as χ∗(H∗)  r. And
if α(H)  1− 1/r − η/4, then Lemma 18 guarantees that hcf(H∗) = 1 and hence

1− 1/χ∗(H∗) = 1− 1/χcr(H
∗)  α(H) + η/4  δ(G′)/n− η/4,

as claimed. Now, Theorem 2 guarantees that G′ has a perfect H∗-factor. This also implies
that G′ has a perfect H-factor, because H∗ has a perfect H-factor by Lemma 18.

The next lemma allows us to assume that for each pair of clusters Vi, Vj in the reg-
ular partition, all edges in G′[Vi, Vj] have the same color (namely the color fR(ViVj)).
Equivalently, for every edge xy ∈ E(G′) with x, y /∈ V0, it holds that

fR(V
R
x V R

y ) = f(xy). (6)

We shall assume this throughout the rest of the paper.

Lemma 26. If there exist 1  i < j  ℓ = |R| such that both G′[Vi, Vj]
+ and G′[Vi, Vj]

−

are (ε, d0)-regular, then there exists a perfect H-factor in G′ with high discrepancy.

Proof. For convenience, put U := Vi, V := Vj, and assume that G′[U, V ]+ and G′[U, V ]−

are both (ε, d0)-regular. Then UV ∈ R and fR(UV ) = 1 by the definition of R. By (5),

δ(R) > (1− 1/χ∗(H))|R|  r − 2

r − 1
|R|

and hence, there exists a copy L ⊆ R of Kr containing the edge UV . Let W1,W2, . . . ,Wr

be the clusters of L with W1 = U and W2 = V and let m = (n − |V0|)/|R| denote the
size of each cluster Wi. By definition, all pairs G′[Wi,Wj]

fR(Wi,Wj) are (ε, d0)-regular.
By Lemma 24 with b1 = · · · = bt = (r − 1)!|H|, there are W ′

i ⊆ Wi, i = 1, . . . , r,
with |W ′

1| = |W ′
2| = · · · = |W ′

r|  0.9m and |W ′
i | divisible by (r − 1)!|H|, such that
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G′[W ′
i ,W

′
j ]
fR(Wi,Wj) is (2ε, d0/2)-superregular for each 1  i < j  r, and G′[W ′

1,W
′
2]

−

is also (2ε, d0/2)-superregular. Let G1 ⊆ G′ be the graph on


1ir W
′
i with edges

1i<jr G
′[W ′

i ,W
′
j ]
fR(WiWj). Let G2 ⊆ G′ be the same graph but with G′[W ′

1,W
′
2]

− in

place of G′[W ′
1,W

′
2]

+. Note that |W ′
i |  |Wi|  n

ℓ0
and |W ′

i |  0.9|Wi|  0.9n−εn
L0

 n
2L0

(for each 1  i  r). Therefore,

rn

2L0

 |G1| = |G2| 
rn

ℓ0
.

Let B be the (r − 1)!|H|-blowup of Kr with clusters B1, B2, . . . , Br. By Lemma 16,
B has a perfect H-factor FB such that eFB

(Bi, Bj) = 2(r − 2)!e(H) for every pair 1 
i < j  r. As |W ′

1| = · · · = |W ′
r| and each |W ′

i | is divisible by (r − 1)!|H|, we can apply
Lemma 23 to deduce that there exist perfect B-factors F ′′

1 , F
′′
2 of G1 and G2 respectively.

Taking the H-factor FB of every copy of B in F ′′
1 , F

′′
2 gives us perfect H-factors F ′

1, F
′
2 of

G1, G2, respectively. Moreover, for every 1  i, j  r, we have

eF ′
1
(W ′

i ,W
′
j) = eF ′

2
(W ′

i ,W
′
j) =

|G1|
|B| · 2(r − 2)!e(H).

It follows that

f(F ′
1)− f(F ′

2) = eF ′
1
(W ′

1,W
′
2)− eF ′

2
(W ′

1,W
′
2) =

|G1|
|B| · 4(r − 2)!e(H).

Let G0 = G′ −


1ir W
′
i , and note that

δ(G0)  (1− 1/χ∗(H) + η/4)n,

using (5) and that |G1|  rn
ℓ0

and 1/ℓ0 ≪ η. Also, |V (G0)| is divisible by |H| because
|V (G′)| and

t
i=1 |W ′

i | are. Thus, G0 contains a perfect H-factor F ′ by Theorem 2. Let
Fi := F ′

i ∪ F ′, i = 1, 2. Then F1, F2 are perfect H-factors of G′, and

f(F1)− f(F2) = f(F ′
1)− f(F ′

2) =
|G1|
|B| · 4(r − 2)!e(H)  2γn,

where the last inequality uses that |B| = r!|H|, |G1|  rn
2L0

and γ ≪ 1
|H| ,

1
L0
. Therefore,

at least one of F1, F2 has absolute discrepancy at least γn, as required.

From now on, we shall work under the above setup and repeatedly use (5) and (6).
Recall that our ultimate goal is to find a perfect H-factor of G′ with high discrepancy.
Very roughly, our argument works by showing that either R contains a template for H,
or else R is colored by fR in such an imbalanced way that we can directly find an H-
factor in G′ with high discrepancy. The next lemma handles the case that R contains a
template for H, showing that in that case G′ indeed contains a perfect H-factor with high
discrepancy. The proof of this lemma is similar to that of [4, Claim 6.2] (and also uses
some ideas from the proof of Lemma 26).
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Lemma 27. Let t ∈ N depending only on H, and let T ⊆ R be a subgraph of R of order
t. If (T, fR) is a template for H, then there exists a perfect H-factor in G′ with high
discrepancy.

Proof. Since (T, fR) is a template for H, there exists a blowup B of (T, fR) and two
perfect H-factors F1, F2 of B with fR(F1) > fR(F2). Write V (T ) = {w1, w2, . . . , wt}, let
Bi be the part of B corresponding to wi, and put bi = |Bi|. Suppose that b1  . . . 
bt =: b. Also, let Wi be the cluster of G′ corresponding to wi ∈ V (R), and recall that
|Wi| = (n − |V0|)/|R| =: m for i = 1, . . . , t. Also, recall that if for some 1  i < j  t,
wiwj ∈ R, then G′[Wi,Wj]

fR(wiwj) is (ε, d0)-regular. By Lemma 24, there is an integer
s  0.9m/b and subsets W ′

i ⊆ Wi (i = 1, . . . , t) such that |W ′
i | = bis, and such that for

every pair 1  i < j  t, if wiwj ∈ R then G′[W ′
i ,W

′
j ]
fR(wiwj) is (2bt

b1
ε, d0/2)-superregular.

Let B′ be a blowup of T with parts B′
1, . . . , B

′
t, where B′

i is the cluster corresponding
to wi, and |B′

i| = |W ′
i | = bis. So B′ is the s-blowup of B. Note that we may apply

Lemma 23 with B′ in the role of F ∗ and with


wiwj∈T G′[W ′
i ,W

′
j ]
fR(wiwj) in the role of G.

Clearly, B′ has a perfect B-factor FB consisting of s copies of B (where each copy of B
places the part Bi of B inside the part B′

i of B
′). Let F ′

1, F
′
2 be the perfect H-factors of B′,

obtained by taking the perfect H-factor F1 or F2 respectively of each copy of B in FB. By
Lemma 23, there exist copies F ′′

1 , F
′′
2 of F ′

1, F
′
2 (respectively) in


wiwj∈T G′[W ′

i ,W
′
j ]
fR(wiwj),

with all the vertices on the same corresponding parts (i.e., with B′
i embedded to W ′

i for
i = 1, . . . , t). Now, using that fR(F1)− fR(F2)  1, we get that

f(F ′′
1 )− f(F ′′

2 )  s.

Now let G0 = G′−


1it W
′
i , and note that δ(G0)  (1−1/χ∗(H)+η/4)n, using (5) and

t

i=1

|W ′
i | 

t

i=1

|Wi|  tm  tn/ℓ0 ≪ ηn,

as 1
ℓ0

≪ 1
|H| , η, and t depends only on H. Also, |V (G0)| is divisible by |H| because |V (G′)|

and
t

i=1 |W ′
i | are. Now, by Theorem 2, G0 has a perfect H-factor F ′. Thus, both F ′∪F ′′

1

and F ′ ∪ F ′′
2 are perfect H-factors of G′, and

f(F ′ ∪ F ′′
1 )− f(F ′ ∪ F ′′

2 ) = f(F ′′
1 )− f(F ′′

2 )  s  0.9m

b
 0.9(1− ε)n

L0b
 γn,

using that m = (n− |V0|)/|R|  (1− ε)n/L0, and that γ ≪ ε, 1/L0 ≪ 1/b, as b depends
only onH. Now we see that F ′∪F ′′

1 or F ′∪F ′′
2 has discrepancy at least γn, as required.

7 Templates

Lemma 27 states that in order to find anH-factor with high discrepancy, it suffices to show
that the reduced graph R contains a template for H. The present section is thus dedicated
to various constructions of such templates. These constructions form a substantial and
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crucial part of our proofs. In most cases, the templates consist of either a single Kr or two
copies of Kr sharing r−1 or r−2 vertices. Our results typically state that either a certain
colored graph is a template for H, or else H has a certain “uniformity property”, e.g. H is
regular, only has balanced r-colorings, or has the same number of edges between any two
parts in any r-coloring. Each of the following subsections deals with one such uniformity
property and gives a suitable template for graphs violating the property. The basic idea
for proving that a certain configuration L is a template for H is usually the same: we
define a (carefully chosen) perfect H-factor F1 of a (carefully chosen) blowup of L, and
then modify F1 by moving some vertices to different blowup-clusters, thus obtaining a
second perfect H-factor F2. We then observe that if this modification did not change the
discrepancy (i.e. if F1, F2 have the same discrepancy), then H must have the relevant
uniformity property. The implementation of this rough idea for the various uniformity
properties can be quite involved.

7.1 Disconnected bipartite graphs

In this section, we consider disconnected bipartite graphs H. We show that if H has two
connected components with different average degrees then the colored graph consisting of
two disjoint edges of different color is a template for H.

Lemma 28. Suppose that H is bipartite and there exist two connected components U,W ⊆
V (H) of H such that eH(U)/|U | ∕= eH(W )/|W |. Let e1, e2 be two disjoint edges and c be
a 2-coloring of e1, e2 with c(e1) ∕= c(e2). Then (e1 ∪ e2, c) is a template for H.

Proof. Write e1 = x1y1, e2 = x2y2. without loss of generality, suppose that c(e1) = 1,
c(e2) = −1. Fix a 2-coloring A1, A2 of H, and let Ui = U ∩ Ai, Wi = W ∩ Ai, i = 1, 2.
Let B be a blowup of (e1 ∪ e2, c) with

|Vx1 |, |Vy1 | = 2|U ||W |,
|Vx2 |, |Vy2 | = 2|U ||H|+ 2|W |(|H|− |U |).

Our goal is to find two perfect H-factors F1, F2 of B with different discrepancies.
The idea is simple: F1 will contain copies of H in which U = U1 ∪ U2 is mapped onto
Vx1 , Vy1 and H − U is mapped onto Vx2 , Vy2 , while F2 will contain copies of H in which
W = W1∪W2 is mapped onto Vx1 , Vy1 and H−W is mapped onto Vx2 , Vy2 . The fact that
H[U ] and H[W ] have different average degrees will imply that F1 and F2 have a different
number of edges of color 1 (since all edges between Vx1 , Vy1 have color 1, and all edges
between Vx2 , Vy2 have color −1). This will imply that c(F1) ∕= c(F2). To make this scheme
work, we need two additional ideas. First, F1 will have H-copies mapping U1 to Vx1 and
U2 to Vy1 , as well as H-copies mapping U2 to Vx1 and U1 to Vy1 ; there will be the same
number of copies of the two types. This “symmetrization” allows us to take Vx1 , Vy1 to
be of the same size, as each H-copy adds |U |/2 vertices on average to Vx1 and Vy1 . When
describing this construction, we will say that we take copies of H with each permutation
of U1, U2 on Vx1 , Vy1 . (This language is also used later on in this section.) We will do the
same for the H-copies in F2 with respect to W1,W2.

the electronic journal of combinatorics 31(3) (2024), #P3.33 24



The above scheme tiles Vx1 ∪ Vy1 with (|Vx1 | + |Vy1 |)/|U | copies of H in F1, and with
(|Vx1 | + |Vy1 |)/|W | copies of H in F2. A problem that might occur is that F1, F2 use a
different number of vertices in Vx2 ∪ Vy2 . This must be avoided because F1, F2 need to be
perfect H-factors of B. To remedy this, we add additional H-copies to F1, F2 which only
use vertices from Vx2 ∪Vy2 . By appropriately choosing the number of these copies, as well
as the size of Vx2 , Vy2 , we can make sure that F1, F2 tile B. The details follow.

Define two perfect H-factors F1, F2 of B, each containing 4(|U |+ |W |) copies of H, as
follows:

• F1 contains |W | copies of H for each permutation of U1, U2 on Vx1 , Vy1 and each
permutation of A1\U1, A2\U2 on Vx2 , Vy2 . Additionally, F1 contains 2|U | copies of
H for each permutation of A1, A2 on Vx2 , Vy2 .

• F2 contains |U | copies of H for each permutation of W1,W2 on Vx1 , Vy1 and each
permutation of A1\W1, A2\W2 on Vx2 , Vy2 . Additionally, F2 contains 2|W | copies of
H for each permutation of A1, A2 on Vx2 , Vy2 .

Note that the choice of |Vx1 |, |Vy1 |, |Vx2 |, |Vy2 | exactly corresponds to the definition of
F1, F2. For example, the number of vertices of F1 in Vx2 is exactly 2 · |W | · (|A1 \ U1| +
|A2 \ U2|) + 2|U | · (|A1|+ |A2|) = 2|W |(|H|− |U |) + 2|U ||H| = |Vx2 |, and similarly for F2

and the other three clusters Vy2 , Vx1 , Vy1 .
Next, observe that

e(F+
1 ) = eF1(Vx1 , Vy1) = 4|W |eH(U)

and
e(F+

2 ) = eF2(Vx1 , Vy1) = 4|U |eH(W ).

As |W |eH(U) ∕= |U |eH(W ), we have that e(F+
1 ) ∕= e(F+

2 ). Also, e(F1) = e(F2) because
F1, F2 are both perfect H-factors of B. Hence,

c(F1) = 2e(F+
1 )− e(F1) ∕= 2e(F+

2 )− e(F2) = c(F2).

This implies that (e1 ∪ e2, c) is a template for H, as required.

7.2 Non-regular graphs

In this section we consider non-regular graphs H. As always, r denotes the chromatic
number of H.

Lemma 29. Let L1, L2 be two copies of Kr sharing r − 1 vertices with 2-edge-coloring c
such that c(L1) ∕= c(L2). If H is non-regular then (L1 ∪ L2, c) is a template for H.

Proof. Let u, v ∈ V (H) be two vertices with dH(u) ∕= dH(v). Fix an r-vertex-coloring of
H with parts A1, A2, . . . , Ar. Let Aiu be the part containing u and Aiv the one containing
v (possibly iu = iv). Write L1 ∩ L2 = {q2, q3, . . . , qr}, L1\L2 = {s} and L2\L1 = {t}. Let
B be a blowup of (L1 ∪ L2, c) with

• |Vs| = (r − 1)!,
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• |Vt| = (r − 1)!(|Aiu |+ |Aiv |− 1) and

• |Vqi | = (r − 2)!(2|H|− |Aiu |− |Aiv |) for 2  i  r.

We now define certain H-copies in B. For each permutation σ : {2, . . . , r} → [r] \ {iv},
let Xσ be a copy of H in which Aiv is embedded into Vt and Aσ(i) is embedded into Vqi

for all 2  i  r. Let X ′
σ be the copy of H obtained from Xσ by moving v from Vt to

Vs. Similarly, for each permutation τ : {2, . . . , r} → [r] \ {iu}, let Yτ be a copy of H in
which Aiu is embedded into Vt and Aτ(i) is embedded into Vqi for all 2  i  r. Let Y ′

τ

be the copy of H obtained from Yτ by moving u from Vt to Vs. We define all these H-
copies such that the copies in each of the sets F1 := {Xσ, Y

′
τ}σ,τ and F2 := {Yτ , X

′
σ}σ,τ are

pairwise-disjoint and partition V (B); note that the sizes of Vs, Vt, Vq2 , . . . , Vqr are precisely
chosen to allow this. In other words, F1, F2 are perfect H-factors of B. We now calculate
c(F1)− c(F2). By definition,

c(Xσ)− c(X ′
σ) =

r

i=2

(c(tqi)− c(sqi)) · eH(v, Aσ(i)).

For each j ∈ [r] \ {iv} and 2  i  r, there are exactly (r − 2)! permutations σ with
σ(i) = j. Hence, summing over all σ, we get



σ

(c(Xσ)− c(X ′
σ)) =

r

i=2

(c(tqi)− c(sqi))


j∈[r]\{iv}

(r − 2)! · eH(v, Aj)

=
r

i=2

(c(tqi)− c(sqi)) · (r − 2)! · dH(v)

= (c(L2)− c(L1)) · (r − 2)! · dH(v).

Similarly, 

τ

(c(Yτ )− c(Y ′
τ )) = (c(L2)− c(L1)) · (r − 2)! · dH(v).

We get that

c(F1)− c(F2) =


σ

(c(Xσ)− c(X ′
σ))−



τ

(c(Yτ )− c(Y ′
τ ))

= (c(L2)− c(L1)) · (r − 2)! · (dH(v)− dH(u)) ∕= 0,

using that c(L1) ∕= c(L2) by assumption and dH(u) ∕= dH(v). The fact that c(F1) ∕= c(F2)
means that (L1 ∪ L2, c) is a template with respect to H.

We now use Lemma 29 to show that certain colorings of Kr+1 are templates for H.

Corollary 30. Let L be a copy of Kr+1 with 2-edge-coloring c such that L+ is non-regular.
If H is non-regular then (L, c) is a template for H.
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Proof. Since L+ is non-regular, there exist u, v ∈ V (L) such that c(u, L) ∕= c(v, L). Let
U = V (L)\{v} and V = V (L)\{u}. It is not hard to see that |U ∩ V | = r − 1 and

c(L[U ])− c(L[V ]) = c(u, L)− c(uv)− (c(v, L)− c(uv)) ∕= 0.

The statement follows by Lemma 29.

7.3 Different degrees to different parts

In this section we consider another “uniformity property” defined in terms of vertex-
degrees. Here, we assume that there is an r-coloring of H such that some vertex has
different degrees to two color-classes. We show that in this case, a certain configuration
is a template for H.

Lemma 31. Let L1, L2 be two copies of Kr sharing r− 1 vertices with {x} = L1\L2 and
{y} = L2\L1. Let c be a 2-edge-coloring of L1 ∪ L2 with c(L1) = c(L2) such that there
exists a vertex z ∈ L1∩L2 with c(xz) = −c(yz) = 1. If H has an r-coloring A1, A2, . . . , Ar

and a vertex a1 ∈ A1 such that dH(a1, A2) ∕= dH(a1, A3), then (L1 ∪ L2, c) is a template
for H.

Proof. We have

0 = c(L1)− c(L2) =


w∈L1∩L2

(c(xw)− c(yw)).

Since z ∈ L1 ∩ L2 satisfies c(yz) = −c(xz) = 1, there must exist w ∈ (L1 ∩ L2) \ {z}
such that c(yw) = −c(xw) = −1. Note that this implies that r  3. Write L1 ∩ L2 =
{z, w, v4, . . . , vr}. Let A1, A2, . . . , Ar be an r-vertex-coloring of H such that there exists
a vertex a1 ∈ A1 with dH(a1, A2) ∕= dH(a1, A3). Let B be a blowup of (L1 ∪ L2, c) with

|Vx| = 1,

|Vy| = 2|A1|− 1,

|Vz| = |Vw| = |A2|+ |A3|,
|Vvi | = 2|Ai| for 4  i  r.

We now define certain H-copies in B. For a permutation σ : {4, . . . , r} → {4, . . . , r},
let Xσ be a copy of H in which A1 is embedded into Vy, A2 is embedded into Vz, A3

is embedded into Vw and Aσ(i) is embedded into Vvi for every 4  i  r. Let Yσ be
the H-copy obtained from Xσ by swapping A2 and A3, i.e. embedding A2 into Aw and
A3 into Az. Let X ′

σ (resp. Y ′
σ) be the H-copy obtained from Xσ (resp. Yσ) by moving

a1 from Vy to Vx. We define all these H-copies such that the copies in each of the sets
F1 := {Xσ, Y

′
σ}σ and F2 := {Yσ, X

′
σ}σ are pairwise-disjoint and partition V (B); note that

the sizes of Vx, Vy, Vz, Vw, Vv4 , . . . , Vvr are precisely chosen to allow this. In other words,
F1, F2 are perfect H-factors of B. We now calculate c(F1)− c(F2). By definition,

c(Xσ)− c(X ′
σ) = (c(yz)− c(xz)) · dH(a1, A2) + (c(yw)− c(xw)) · dH(a1, A3)

+
r

i=4

(c(yvi)− c(xvi)) · dH(a1, Aσ(i)).
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For every two indices 4  i, j  r, there are exactly (r−4)! permutations σ with σ(i) = j.
Hence,


σ dH(a1, Aσ(i)) = (r − 4)! · dH(a1, A4 ∪ · · · ∪ Ar). We get that



σ

(c(Xσ)− c(X ′
σ)) = (r − 3)! · (c(yz)− c(xz)) · dH(a1, A2)

+(r − 3)! · (c(yw)− c(xw)) · dH(a1, A3)

+(r − 4)! ·
r

i=4

(c(yvi)− c(xvi)) · dH(a1, A4 ∪ · · · ∪ Ar).

By the same argument,


σ

(c(Yσ)− c(Y ′
σ)) = (r − 3)! · (c(yz)− c(xz)) · dH(a1, A3)

+(r − 3)! · (c(yw)− c(xw)) · dH(a1, A2)

+(r − 4)! ·
r

i=4

(c(yvi)− c(xvi)) · dH(a1, A4 ∪ · · · ∪ Ar).

Hence,

c(F1)− c(F2) =


σ

(c(Xσ)− c(X ′
σ))−



σ

(c(Yσ)− c(Y ′
σ))

= (r − 3)! ·

dH(a1, A2)− dH(a1, A3)


·

c(yz)− c(xz)− c(yw) + c(xw)



∕= 0,

using that dH(a1, A2) ∕= dH(a1, A3) by assumption and that c(yz)−c(xz) = 2 and c(yw)−
c(xw) = −2. As c(F1) ∕= c(F2), it follows that (L1 ∪ L2, c) is a template for H.

7.4 Unbalanced r-colorings

In this section we consider graphs H having an unbalanced r-coloring (recall that an r-
coloring A1, . . . , Ar is called balanced if |A1| = · · · = |Ar|). We shall prove the following.

Lemma 32. Suppose that r  4. Let L1, L2 be two copies of Kr sharing r − 2 vertices,
and let c be a 2-edge-coloring of L1∪L2 such that L+

1 is d-regular and L+
2 is d′-regular for

some d ∕= d′. If H fulfills the r-wise C4-condition and has an unbalanced r-coloring, then
(L1 ∪ L2, c) is a template for H.

Let us give an overview of the proof of Lemma 32. Assuming thatH satisfies the r-wise
C4-condition allows us to control the discrepancy of H-factors via Lemma 13. Indeed, this
lemma implies that the discrepancy of an H-factor in any blowup of Kr with a 2-edge-
coloring for which K+

r is d-regular, is simply determined by d and the number of copies
of H in the factor. We will make use of this observation by considering two different
H-factors of a carefully chosen blowup of L1∪L2. Each H-copy in both H-factors will be
contained in the blowup of L1 or L2, and the two H-factors will differ on the number of
H-copies of each type (here we will use that H has an unbalanced r-coloring). This will
guarantee that the two H-factors have different discrepancies. The detailed proof follows.
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Proof of Lemma 32. Let A1, A2, . . . , Ar be the parts of an unbalanced r-coloring of H
with |A1|  |A2|  . . .  |Ar| and |A1| < |Ar|. Write L1 ∩ L2 = {v3, v4, . . . , vr} and
{xi, yi} = Li \ L3−i for i = 1, 2. Let B be the blowup of (L1 ∪ L2, c) with

• |Vx1 | = |Vx2 | = |Vy1 | = |Vy2 | = (|A1|+ |A2|)(|Ar−1|+ |Ar|) and

• for each 1  i  r − 2, |Vvi | = 2

|A1|+ |A2|


|Ai+2|+ 2


|Ar−1|+ |Ar|


|Ai|.

Let F1, F2 be the following two perfect H-factors of B.

• F1 contains (|Ar−1|+ |Ar|) copies of H with each permutation of A1, A2 on Vx1 , Vy1

and for each 3  i  r, Ai on Vvi . Additionally, F1 contains (|A1| + |A2|) copies of
H with each permutation of Ar−1, Ar on Vx2 , Vy2 and for each 1  i  r − 2, Ai on
Vvi+2

.

• F2 contains (|A1|+ |A2|) copies of H with each permutation of Ar−1, Ar on Vx1 , Vy1

and for each 1  i  r − 2, Ai on Vvi+2
. Additionally, F2 contains (|Ar−1| + |Ar|)

copies of H with each permutation of A1, A2 on Vx2 , Vy2 and for each 3  i  r, Ai

on Vvi .

By definition, each copy of H in F is contained either in the blowup of L1 or in the
blowup of L2. Let F1|L1 , F1|L2 denote the copies of H in F1 which are contained in the
blowup of L1, L2, respectively, and define F2|L1 , F2|L2 similarly. Since F1|L1 satisfies the
r-wise C4-condition, we can apply Lemma 13 to the blowup B[V (F1|L1)] of the r-clique
(L1, c). As L

+
1 is d-regular, Lemma 13 gives

c(F1|L1) =
2d− r + 1

r − 1
e(F1|L1).

Similarly, we get

c(F1|L2) =
2d′ − r + 1

r − 1
e(F1|L2),

c(F2|L1) =
2d− r + 1

r − 1
e(F2|L1),

c(F2|L2) =
2d′ − r + 1

r − 1
e(F2|L2).

Additionally, by the definition of F1, F2 we have that e(F1|L1) = e(F2|L2) = 2(|Ar−1| +
|Ar|)e(H) and e(F1|L2) = e(F2|L1) = 2(|A1|+ |A2|)e(H). We get that

c(F1)− c(F2) = c(F1|L1)− c(F2|L2) + c(F1|L2)− c(F2|L1)

=
4(d− d′)

r − 1
(|Ar−1|+ |Ar|− |A1|− |A2|)e(H) ∕= 0,

using that d ∕= d′ and that |Ar−1|+ |Ar|− |A1|− |A2| > 0. so we see that c(F1)−c(F2) ∕= 0,
implying that (L1 ∪ L2, c) is a template for H.
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7.5 Non-uniform r-colorings

An r-coloring of H is called uniform if the number of edges between any two color-classes
is the same. We will say that H is uniform if it only has uniform colorings:

Definition 33. A graph H is called uniform if for every r-coloring of H with parts
A1, A2, . . . , Ar, it holds that eH(Ai, Aj) = e(H)/


r
2


for all 1  i < j  r.

The following lemma gives a template for non-uniform graphs H under some additional
conditions.

Lemma 34. Let L1, L2 be two copies of Kr sharing r−2 or r−1 vertices, let V ⊆ L1∩L2

of size r − 2 and let ei := Li \ V . Let c be a 2-edge-coloring of L1 ∪ L2 such that

c(L1)− c(e1)− c(L2) + c(e2) /∈ {−4(r − 2),−2(r − 2), 0, 2(r − 2), 4(r − 2)}.

If H fulfills the r-wise C4-condition and is non-uniform, then (L1 ∪ L2, c) is a template
for H.

Before proving Lemma 34, let us note some simple facts. Clearly, a non-uniform
coloring must have at least three parts, so r  3. We also need the following easy claim.

Claim 35. If H is non-uniform, then there exists an r-coloring of H with parts A1, . . . , Ar

such that eH(A1, A2) ∕= eH(A1, A3).

Proof. Fix any non-uniform r-coloring B1, . . . , Br of H, and let 1  i < j  r and
1  k < ℓ  r such that eH(Bi, Bj) ∕= eH(Bk, Bℓ). Then i = k or eH(Bi, Bj) ∕= eH(Bi, Bk)
or eH(Bi, Bk) ∕= eH(Bk, Bℓ), and by renaming the parts we get the desired r-coloring
A1, . . . , Ar with eH(A1, A2) ∕= eH(A1, A3).

Proof of Lemma 34. Write ei = xiyi, i = 1, 2. Note that {x1, y1} may intersect {x2, y2}
(namely, if |L1 ∩ L2| = r − 1). Without loss of generality, let us assume that if these
sets intersect then x1 = x2, so that y1 ∕= y2 always holds. Let S be the bipartite graph
between {x1, y1} and V (so S ⊆ L1), and let T be the bipartite graph between {x2, y2}
and V (so T ⊆ L2). Observe that

c(S)− c(T ) = c(L1)− c(e1)− c(L2) + c(e2),

so
c(S)− c(T ) /∈ {−4(r − 2),−2(r − 2), 0, 2(r − 2), 4(r − 2)}. (7)

by assumption. Also, as S and T contain 2(r − 2) edges each, we have |c(S) − c(T )| 
4(r − 2). Thus, (7) implies that c(S) − c(T ) is not a multiple of 2(r − 2). For v ∈ V ,
define g(v) := c(vx1) + c(vy1) − c(vx2) − c(vy2). We claim that there are u, v ∈ V with
g(u) ∕= g(v). Indeed, suppose otherwise. Then there exists g ∈ N such that each vertex
v ∈ V has g(v) = g. Then

c(S)− c(T ) =


v∈V

g(v) = g(r − 2).
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Note also that g is even since g(v) is an even number for every v ∈ V . But now we
see that c(S) − c(T ) is a multiple of 2(r − 2), a contradiction. We conclude that there
exist vertices u, v ∈ V with g(u) ∕= g(v). Note that this also implies that r  4. Write
V = {u, v, v5, v6, . . . , vr}. By Claim 35, there is an r-coloring A1, A2, . . . , Ar of H with
eH(A1, A2) ∕= eH(A1, A3). Let B be a blowup of (L1 ∪ L2, c) with

• |Vx1 | = |Vx2 | = |A1|,

• |Vy1 | = |Vy2 | = |A4|,

• |Vu| = |Vv| = |A2|+ |A3|,

• |Vvi | = 2|Ai| for every 5  i  r.

Here, Vx1 , Vx2 are distinct parts even if x1 = x2. Note that B is a blowup of H also in the
case x1 = x2, as then Vx1 ∪ Vx2 is the part corresponding to the vertex x1 = x2.

We now define four H-copies in B, denoted F1,1, F1,2, F2,1, F2,2. All four copies embed
Ai into Vvi for every 5  i  r. Also, F1,1 and F2,1 embed A1 into Vx1 and A4 into Vy1 ,
while F1,2 and F2,2 embed A1 into Vx2 and A4 into Vy2 . Finally, F1,1 and F2,2 embed A2

into Vu and A3 into Vv, while F1,2 and F2,1 embed A2 into Vv and A3 into Vu. We define
these copies such that Fi := {Fi,1, Fi,2} forms a perfect H-factor of B for every i = 1, 2;
this is possible due to our choice of the cluster sizes of B.

We now show that c(F1)−c(F2) ∕= 0. First observe that for an edge zw ∈ E(L1∪L2), if
zw /∈ {x1, y1, x2, y2}× {u, v} then eF1(Vz, Vw) = eF2(Vz, Vw). Indeed, if z, w ∈ {v5, . . . , vr}
then this is immediate. If z ∈ {x1, y1, x2, y2} and w ∈ {v5, . . . , vr} then eF1,1(Vz, Vw) =
eF2,1(Vz, Vw) and eF1,2(Vz, Vw) = eF2,2(Vz, Vw), so the assertion holds. If z ∈ {u, v} and w ∈
{v5, . . . , vr} then eF1,1(Vz, Vw) = eF2,2(Vz, Vw) and eF1,2(Vz, Vw) = eF2,1(Vz, Vw), so again the
assertion holds. The case {z, w} = {u, v} is also immediate. We see that the bipartite
graph (Vz, Vw) does not contribute to c(F1) − c(F2) unless zw ∈ {x1, y1, x2, y2} × {u, v}.
By definition, we have

c(F1[Vx1 ∪ Vx2 ∪ Vy1 ∪ Vy2 , Vu ∪ Vv]) = (c(ux1) + c(vx2)) · eH(A1, A2)

+(c(uy1) + c(vy2)) · eH(A4, A2)

+(c(vx1) + c(ux2)) · eH(A1, A3)

+(c(vy1) + c(uy2)) · eH(A4, A3),

and similarly,

c(F2[Vx1 ∪ Vx2 ∪ Vy1 ∪ Vy2 , Vu ∪ Vv]) = (c(vx1) + c(ux2)) · eH(A1, A2)

+(c(vy1) + c(uy2)) · eH(A4, A2)

+(c(ux1) + c(vx2)) · eH(A1, A3)

+(c(uy1) + c(vy2)) · eH(A4, A3).

It follows that

c(F1)− c(F2) =(c(ux1) + c(vx2)− c(vx1)− c(ux2)) · (eH(A1, A2)− eH(A1, A3))

+ (c(uy1) + c(vy2)− c(vy1)− c(uy2)) · (eH(A4, A2)− eH(A4, A3)).
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By the C4-condition, we also have that

eH(A1, A2) + eH(A4, A3)− eH(A1, A3)− eH(A4, A2) = 0.

Adding this multiplied by (c(uy1)+ c(vy2)− c(vy1)− c(uy2)) to the previous equation, we
get

c(F1)− c(F2) =(c(ux1) + c(vx2)− c(vx1)− c(ux2) + c(uy1) + c(vy2)− c(vy1)− c(uy2))

· (eH(A1, A2)− eH(A1, A3))

=(g(u)− g(v)) · (eH(A1, A2)− eH(A1, A3)) ∕= 0,

using that g(u) ∕= g(v) and that eH(A1, A2) ∕= eH(A1, A3) by assumption. So c(F1) ∕= c(F2)
and hence (L1 ∪ L2, c) is a template for H.

7.6 Graphs violating the C4-condition

Here we show that if H violates the k-wise C4-condition and c is a coloring of Kk, then
(Kk, c) is a template for H unless c has some very specific structure. This is given by the
following definition and lemma.

Definition 36. For some k  1, Kk,+ is a copy of (Kk, c) where c is a 2-edge-coloring
of Kk with all edges of color 1. The (Kk,+)-star is the copy of (Kk, c) where c is a
2-edge-coloring of Kk such that the edges of color 1 induce a star with k − 1 leaves. We
call the root of this star the head of the (Kk,+)-star. Define Kk,− and the (Kk,−)-star
analogously.

Lemma 37. Let k  4 and let c be a 2-edge-coloring of Kk such that (Kk, c) is neither
monochromatic nor a star. If H does not fulfill the k-wise C4-condition, then (Kk, c) is a
template for H.

Proof. We need the following claim, which appears implicitly in [4, proof of Claim 6.4].
For completeness, we give a proof.

Claim 38. There exist vertices a1, a2, a3, a4 ∈ V (Kk) such that

c(a1a2) + c(a3a4) ∕= c(a1a3) + c(a2a4).

Proof. Let us assume towards a contradiction that for every a1, a2, a3, a4 ∈ V (Kk) it holds
that

c(a1a2) + c(a3a4) = c(a1a3) + c(a2a4). (8)

Fix an arbitrary vertex a ∈ V (Kk). If dK+
k
(a)  3, let b, c, d ∈ NK+

k
(a) be three arbitrary

vertices. By (8), it follows that c(bc) = c(cd). As this holds for arbitrary b, c, d ∈ NK+
k
(a),

we get that either all the edges in Kk[NK+
k
(a)] have color 1 or they all have color −1.

Therefore, NK−
k
(a) is not empty as otherwise, Kk colored by c is monochromatic or a star.

By symmetry, if dK−
k
(a)  3 then NK+

k
(a) is non-empty.

the electronic journal of combinatorics 31(3) (2024), #P3.33 32



We have dK+
k
(a) + dK−

k
(a) = k − 1  3. Without loss of generality, let us assume

that dK+
k
(a)  2. Let b, c ∈ NK+

k
(a) and d ∈ NK−

k
(a). By (8), we get that c(bc) = 1 and

c(bd) = c(cd) − 1. Since this holds for arbitrary b, c ∈ NK+
k
(a) and d ∈ NK−

k
(a), we get

that all the edges in Kk[NK+
k
(a)] have color 1 and all the edges in Kk[NK+

k
(a), NK−

k
(a)]

have color −1. Thus, if dK−
k
(a) = 1 then Kk colored by c is a copy of a (Kk,−)-star

(whose head is the unique vertex in NK−
k
(a)). So dK−

k
(a)  2. Now, by a symmetrical

argument to the above, we get that all the edges in Kk[NK+
k
(a), NK−

k
(a)] have color 1,

which is a contradiction.

Let V (Kk) = {a1, a2, . . . , ak} with a1, a2, a3, a4 as in the statement of the above claim.
As H violates the k-wise C4-condition, there exists a k-coloring A1, A2, . . . , Ak of H with

eH(A1A2) + eH(A3A4) ∕= eH(A1A3) + eH(A2A4).

Let B be a blowup of (Kk, c) with

• |Va1 | = |Va4 | = |A1|+ |A4|,

• |Va2 | = |Va3 | = |A2|+ |A3|, and

• |Vai | = 2|Ai| for 5  i  k.

We now define two perfect H-factors F1 and F2 of H, each consisting of two copies of
H. Each H-copy in F1 and F2 embeds Ai into Vai for every 5  i  k.

• F1 contains a copy of H with A1 on Va1 , A2 on Va2 , A3 on Va3 and A4 on Va4 and a
second copy of H with A1 on Va4 , A2 on Va3 , A3 on Va2 and A4 on Va1 .

• F2 contains a copy of H with A1 on Va1 , A2 on Va3 , A3 on Va2 and A4 on Va4 and a
second copy of H with A1 on Va4 , A2 on Va2 , A3 on Va3 and A4 on Va1 .

We now calculate c(F1)− c(F2). Note that for each 5  i < j  k, we have that

eF1(Vai , Vaj) = 2eH(Ai, Aj) = eF2(Vai , Vaj).

For 5  i  k and j ∈ {1, 4}, we get

eF1(Vai , Vaj) = eH(Ai, A1) + eH(Ai, A4) = eF2(Vai , Vaj),

and for j ∈ {2, 3}

eF1(Vai , Vaj) = eH(Ai, A2) + eH(Ai, A3) = eF2(Vai , Vaj).

Additionally, we have

eF1(Va1 , Va4) = 2eH(A1, A4) = eF2(Va1 , Va4),

eF1(Va2 , Va3) = 2eH(A2, A3) = eF2(Va2 , Va3),
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eF1(Va1 , Va2) = eF1(Va3 , Va4) = eF2(Va1 , Va3) = eF2(Va2 , Va4) = eH(A1, A2) + eH(A3, A4),

and

eF2(Va1 , Va2) = eF2(Va3 , Va4) = eF1(Va1 , Va3) = eF1(Va2 , Va4) = eH(A1, A3) + eH(A2, A4).

Combining all of the above, we get that

c(F1)− c(F2) =


i∈{1,4}



j∈{2,3}

c(aiaj) · (eF1(Vai , Vaj)− eF2(Vai , Vaj))

= (c(a1a2) + c(a3a4)− c(a1a3)− c(a2a4))

· (eH(A1, A2) + eH(A3, A4)− eH(A1, A3)− eH(A2, A4)) ∕= 0.

Therefore, (Kk, c) is a template for H.

7.7 Balanced H-tilings with non-uniform edge distribution

In the previous section, we saw that if H violates the r-wise C4-condition, then (Kr, c)
is a template for H for every coloring c of Kr except for some very special cases. In this
section we continue investigating when a given coloring of Kr is a template for H, this
time assuming that H does satisfy the r-wise C4-condition. We shall see that if c is a
coloring of Kr such that K+

r is not regular, then (Kr, c) is a template for H unless every
H-factor, i.e. disjoint union of copies of H, has a certain uniformity property. The precise
statement is given by the following definition and lemma. Recall that by “H-factor” we
simply mean a graph consisting of vertex-disjoint copies of H.

Definition 39. We say that an r-chromatic graph F is balanced-uniform if every balanced
r-coloring of F with parts A1, A2, . . . , Ar satisfies that eF (Ai, Aj) = e(F )/


r
2


for all

1  i < j  r.

Lemma 40. Suppose that r  4 and r ∕= 5, and assume that H satisfies the r-wise C4-
condition. Let c be a 2-edge-coloring of Kr such that K+

r is non-regular. If there exists a
non-balanced-uniform H-factor, then (Kr, c) is a template for H.

The condition that K+
r is non-regular is necessary; indeed, it follows from Lemma 13

that (Kr, c) is not a template for H if K+
r is regular and H fulfills the r-wise C4-condition.

Also, the assumption that there exists a non-balanced-uniform H-factor is necessary for
the proof method. Indeed, in the proof of Lemma 40 we show that the balanced blowup
B of (Kr, c) has two H-factors with different discrepancies, (this showing that (Kr, c) is
a template). However, if H-factor were balanced-regular, then every perfect H-factor F
of B would have exactly e(F )/


r
2


edges between any two parts of B (as B is balanced),

and so c(F ) = c(Kr) · e(F )/

r
2


, meaning that every perfect H-factor of B would have the

same discrepancy.
For the proof of Lemma 40 we need the following simple claim.

Claim 41. Suppose that r  4 and H satisfies the r-wise C4-condition. Let F be a non-
balanced-uniform H-factor. Then there exists a balanced r-coloring A1, . . . , Ar of F such
that eF (A1, A2) ∕= eF (A3, A4).
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Proof. By definition, there is a balanced r-coloring A1, . . . , Ar of F such that eF (Ai, Aj)
are not all equal. By renaming the parts, we may assume that eF (A1, A2) > e(F )/


r
2


.

Then there are 1  i < j  r such that eF (Ai, Aj) < e(F )/

r
2


. Now, if i, j /∈ {1, 2} then

we are done. Else, suppose without loss of generality that i = 1. Let k ∈ [r] \ {1, 2, j}.
We may assume that eF (A1, A2) = eF (Aj, Ak) and eF (A1, Aj) = eF (A2, Ak), as otherwise
we are done. Now we get that

eF (A1, A2) + eF (Aj, Ak)− eF (A1, Aj)− eF (A2, Ak) = 2eF (A1, A2)− 2eF (Ai, Aj) > 0,

contradicting the assumption that H fulfills the r-wise C4-condition.

Proof of Lemma 40. Let c be as in the statement. For a vertex u ∈ V (Kr), denote

c(u,Kr) :=


v∈V (Kr)\{u}

c(uv).

Let a, b ∈ V (Kr) be the two vertices maximizing c(a,Kr) + c(b,Kr) and d, e ∈ V (Kr)
the vertices minimizing c(d,Kr) + c(e,Kr). In other words, a, b are the two vertices with
highest degree in K+

r , and d, e are the two vertices with lowest degree. As r  4, we may
assume that a, b, d, e are distinct. Since K+

r is non-regular,

c(a,Kr) + c(b,Kr) > c(d,Kr) + c(e,Kr). (9)

Let F be a non-balanced-uniform H-factor. By Claim 41, there is a balanced r-coloring
A1, A2, . . . , Ar of F such that eF (A1, A2) ∕= eF (A3, A4). Let B be a 4(r− 4)! |F |

r
-blowup of

(Kr, c). Let F1 and F2 be the following two perfect F -factors of B.

• F1 contains each copy of F with each permutation of A1, A2 on Va, Vb, each permu-
tation of A3, A4 on Vd, Ve, and each permutation of A5, A6, . . . , Ar on the remaining
clusters of B.

• F2 contains each copy of F with each permutation of A1, A2 on Vd, Ve, each permu-
tation of A3, A4 on Va, Vb, and each permutation of A5, A6, . . . , Ar on the remaining
clusters of B.

Note that F1, F2 each have 4(r − 4)! copies of F . As |A1| = · · · = |Ar| = |F |
r
, the size of

B exactly matches these F -factors. Clearly, every F -factor is also an H-factor, as F is
a union of disjoint copies of H. Hence F1, F2 are perfect H-factors of B. We now show
that c(F1)− c(F2) ∕= 0. Put X = V (Kr)\{a, b, d, e}. By symmetry, we have for all v ∈ X:

• eF1(Va, Vv) = eF1(Vb, Vv) = eF2(Vd, Vv) = eF2(Ve, Vv) =: y1,

• eF2(Va, Vv) = eF2(Vb, Vv) = eF1(Vd, Vv) = eF1(Ve, Vv) =: y2.

If r = 4 then X is empty, and we set y1 = y2 = 0. We also have

eF1(Vu, Vv) = eF2(Vu, Vv)
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for all u, v ∈ X and all u ∈ {a, b}, v ∈ {d, e}. Finally, observe that

eF1(Va, Vb) = eF2(Vd, Ve) = 4(r − 4)! · eF (A1, A2),

eF1(Vd, Ve) = eF2(Va, Vb) = 4(r − 4)! · eF (A3, A4).

Therefore, eF1(Va, Vb) ∕= eF1(Vd, Ve) holds by our choice of A1, A2, A3, A4. For convenience,
let us denote

h(u, v) := c(uv) · (eF1(Vu, Vv)− eF2(Vu, Vv))

for uv ∈ E(Kr). From the above, we see that h(u, v) is non-zero only if uv ∈ {ab, cd} or
v ∈ X, u ∈ {a, b, c, d}. Also, in the latter case we have h(u, v) = y1 − y2 if u ∈ {a, b} and
h(u, v) = y2 − y1 if u ∈ {c, d}. Finally, h(a, b) = −h(d, e) = (c(ab)− c(de)) · (eF1(Va, Vb)−
eF1(Vd, Ve)). Using these equations, we get

c(F1)− c(F2) =


uv∈E(Kr)

h(u, v) =

(c(ab)− c(de)) · (eF1(Va, Vb)− eF1(Vd, Ve)) + (y1 − y2)


v∈X

(c(av) + c(bv)− c(dv)− c(ev))

(10)

Observe that


v∈X

(c(av) + c(bv)− c(dv)− c(ev))

= c(a,Kr) + c(b,Kr)− 2c(ab)− c(d,Kr)− c(e,Kr) + 2c(de).

Plugging this into (10) and rearranging, we get

c(F1)− c(F2) = (c(ab)− c(de)) · (eF1(Va, Vb)− eF1(Vd, Ve) + 2y2 − 2y1)

+ (y1 − y2) · (c(a,Kr) + c(b,Kr)− c(d,Kr)− c(e,Kr)).

(11)

Suppose first that r = 4. Then y1 = y2 = 0. Also, c(ab) ∕= c(de), because otherwise we
would have c(a,Kr) + c(b,Kr) = c(Kr) = c(d,Kr) + c(e,Kr), contradicting (9). Now,
using (11), we have

c(F1)− c(F2) = (c(ab)− c(de)) · (eF1(Va, Vb)− eF1(Vd, Ve)) ∕= 0,

as required.
As r ∕= 5, we may assume from now on that r  6. Since H satisfies the r-wise

C4-condition, so do F1, F2 (as F1, F2 are H-factors). Fix arbitrary u, v ∈ X. By the
C4-condition, we have

eF1(Va, Vb) + eF1(Vu, Vv)− eF1(Va, Vu)− eF1(Vb, Vv) = 0

and
−eF1(Vd, Ve)− eF1(Vu, Vv) + eF1(Vd, Vu) + eF1(Ve, Vv) = 0.
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Recall that eF1(Va, Vu) = eF1(Vb, Vv) = y1 and eF1(Vd, Vu) = eF1(Ve, Vv) = y2. Adding the
two above equations, we get

0 = eF1(Va, Vb) + eF1(Vu, Vv)− 2y1 − eF1(Vd, Ve)− eF1(Vu, Vv) + 2y2

= eF1(Va, Vb)− 2y1 − eF1(Vd, Ve) + 2y2.

As eF1(Va, Vb) ∕= eF1(Vd, Ve), we have y1 ∕= y2. Finally, plugging this into (11), we get

c(F1)− c(F2) = (y1 − y2) · (c(a,Kr) + c(b,Kr)− c(d,Kr)− c(e,Kr)) ∕= 0,

using (9). Therefore, (Kr, c) is a template for H.

We end this section with the following lemma, showing that if all H-factors are
balanced-uniform, then no coloring of Kr is a template for H.

Lemma 42. If every H-factor is balanced-uniform, then for every 2-edge-coloring c of
Kr it holds that c ∈ K(H).

Proof. Assume towards a contradiction that there exists a 2-edge-coloring c of Kr such
that (Kr, c) is a template for H. Then, by definition, there exists a blowup B of (Kr, c)
and two perfect H-factors F1, F2 of B such that c(F1) ∕= c(F2). Let v1, v2, . . . , vr be the
vertices of Kr and let Bi be the part of B corresponding to vi. Take a balanced blowup
B′ of (Kr, c) with parts B′

1, . . . , B
′
r of size |B| = |B1|+ · · ·+ |Br| each. For 0  j  r− 1,

let Jj be a copy of B in B′ in which Bi is mapped to B′
i+j (mod r) for each i = 1, . . . , r.

Choose J1, . . . , Jr to be vertex-disjoint and to partition V (B′); this is possible as each
part of B′ has size |B|.

For each 1  j  r, let F j
1 , F

j
2 be the H-factors playing the roles of F1, F2, respectively,

in the copy Jj of B. Note that in J1, Bi is mapped to B′
i for every 1  i  r. This means

that J ⊆ B′ is colored the same way as B (i.e., J is a blowup of (Kr, c)). Therefore,
c(F 1

i ) = c(Fi) for i = 1, 2 (with a slight abuse of notation, we denote by c both the
coloring of B and that of B′). Let F ′

1 :=
r

j=1 F
j
1 , and let F ′

2 be obtained from F ′
1 by

replacing F 1
1 with F 1

2 , i.e. F ′
2 := F 1

2 ∪
r

j=2 F
j
1 . Both F ′

1, F
′
2 are perfect H-factors of B′.

Also,
c(F ′

1)− c(F ′
2) = c(F1)− c(F2) ∕= 0.

Note, however, that F ′
1, F

′
2 are both H-factors with a balanced r-coloring B′

1, . . . , B
′
r. As

F ′
1, F

′
2 are balanced-uniform by assumption, it follows that eF ′

1
(B′

i, B
′
j) = eF ′

2
(B′

i, B
′
j) =

e(F ′
1)/


r
2


for all 1  i < j  r. However, this implies that

c(F ′
1) = c(F ′

2) = c(Kr) ·
e(F ′

1)
r
2

 ,

a contradiction.

Remark 43. Given H, it is possible to computationally check whether there exists a non-
balanced-uniform H-factor. Like in the proof of Proposition 15, for every r-coloring f of
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H, one defines ai(f) to be the number of vertices colored i by f . Then, one introduces
variables xf ∈ [0, 1], where xf is the fractional number of times that the coloring f is used

when constructing an r-coloring of an H-factor F . The constraint


f xfai(f) = |V (H)|
r

(for each 1  i  r) corresponds to the r-coloring of F being balanced. Observe that
there exists a non-balanced-uniform H-factor if and only if there is an assignment to the
variables xf and there are 1  i < j  r such that


f xfeH(Ai, Aj) ∕= e(H)

(r2)
. This can be

checked using linear programming.

7.8 (s, t)-structured graphs

The templates considered in this section consist of two r-cliques L1, L2 sharing r − 2
vertices. We will describe the structure of graphs H for which a particular coloring of
L1 ∪L2 is not a template. This structure is more involved than in previous sections. The
precise definition is as follows.

Definition 44. For s, t, ρ ∈ R, we say that H is (s, t)-structured with parameter ρ if for
every r-vertex-coloring of H with parts A1, . . . , Ar and for all 1  i < j  r, it holds that

ρ(|Ai|+ |Aj|) = s · eH(Ai ∪ Aj, V (H) \ (Ai ∪ Aj)) + t · eH(Ai, Aj). (12)

We say that (s, t)-structured to mean that it is (s, t)-structured with some parameter
ρ. Note that if H is (s, t)-structured then it is also (α · s,α · t)-structured for every α ∈ R.
Another important fact is that if H is (s, t)-structured with parameter ρ, then so is every
H-factor.

The following lemma is the main result of this subsection.

Lemma 45. Let L1, L2 be two copies of Kr sharing r − 2 vertices, and let e1 = x1y1 =
L1 \ L2 and e2 = x2y2 = L2 \ L1. Let c be a 2-edge-coloring of L1 ∪ L2. Then, either

(L1 ∪ L2, c) is a template for H or H is (s, t)-structued for s = c(L1)−c(e1)−c(L2)+c(e2)
2(r−2)

and

t = c(e1)− c(e2).

Let us give an overview of the proof of Lemma 45. We shall take a blowup of (L1∪L2, c)
with |Vx1 | = |Vy1 | = |Vx2 | = |Vy2 | and consider a (carefully chosen) perfect H-factor F of
B such that each copy of H in F1 is either on the clusters of L1 or the clusters of L2.
Since we have chosen the clusters of x1, y1, x2, y2 to have the same size, we can then find a
second H-factor F2 by swapping the vertices in Vx1 ∪ Vy1 with the vertices in Vx2 ∪ Vy2 in
each of the copies of H in F1. We will show that the only case in which the discrepancy
does not change under this operation is that H is (s, t)-structured (with s, t as in the
statement of the lemma). We now proceed with the detailed proof.

Proof of Lemma 45. For convenience, set

q := c(L1)− c(e1)− c(L2) + c(e2) =
r

i=3

[c(x1vi) + c(y1vi)− c(x2vi)− c(y2vi)].
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Let A1, . . . , Ar be an r-coloring of H. To ease the notation, put fH(A1, A2) := eH(A1 ∪
A2, V (H) \ (A1 ∪ A2)) and

g(A1, . . . , Ar) :=

q
2(r−2)

· fH(A1, A2) + (c(e1)− c(e2)) · eH(A1, A2)

|A1|+ |A2|
.

Our goal is to show that if (L1 ∪ L2, c) is not a template for H, then g(A1, . . . , Ar) is the
same for every r-coloring A1, . . . , Ar of H; we then take this common value to be ρ (see
Definition 44). So let A1, A2, . . . , Ar and B1, B2, . . . , Br be two arbitrary r-vertex-colorings
ofH. We will show that g(A1, . . . , Ar) = g(B1, . . . , Br). Write V := L1∩L2 = {v3, . . . , vr}.
Consider the following blowup B of (L1 ∪ L2, c):

• |Vx1 |, |Vy1 |, |Vx2 |, |Vy2 | = (r − 2)!(|A1|+ |A2|)(|B1|+ |B2|),

• for 3  i  r, |Vvi | = 2(r − 3)!


3ir[(|B1|+ |B2|)|Ai|+ (|A1|+ |A2|)|Bi|].

To calculate c(F1)− c(F2), first observe that for every pair 3  i < j  r,

eF1(Vvi , Vvj) = eF2(Vvi , Vvj)

= 4(r − 4)! ·

(|B1|+ |B2|)



3i<jr

eH(Ai, Aj) + (|A1|+ |A2|)


3i<jr

eH(Bi, Bj)


.

Therefore, eF1(Vvi , Vvj) − eF2(Vvi , Vvj) = 0. Next, we claim that for each 3  i  r, it
holds that

eF1(Vx1 , Vvi) = eF1(Vy1 , Vvi) = eF2(Vx2 , Vvi) = eF2(Vy2 , Vvi) (13)

= (r − 3)! · (|B1|+ |B2|) · fH(A1, A2)

and

eF1(Vx2 , Vvi) = eF1(Vy2 , Vvi) = eF2(Vx1 , Vvi) = eF2(Vy1 , Vvi) (14)

= (r − 3)! · (|A1|+ |A2|) · fH(B1, B2).

Let us prove this for eF1(Vx1 , Vvi); all other cases are similar. For every 3  j  r, there
are (r − 3)! permutations that embed Aj into Vvi and A1 (resp. A2) into Vx1 , and each
such permutation contributes eH(A1, Aj) (resp. eH(A2, Aj)) to eF1(Vx1 , Vvi). Also, each
such permutation gives rise to (|B1|+ |B2|) copies of H in F1. Summing over all 3  j  r
and all permutations, we get

eF1(Vx1 , Vvi) = (r−3)!·(|B1|+|B2|)·
2

k=1

r

j=3

eH(Ak, Aj) = (r−3)!·(|B1|+|B2|)·fH(A1, A2),

as required.
Lastly, from the definition of F1, F2 it follows that

eF1(Vx1 , Vy1)−eF2(Vx1 , Vy1) = −(eF1(Vx2 , Vy2)− eF2(Vx2 , Vy2))

= 2(r − 2)! · [(|B1|+ |B2|) · eH(A1, A2)− (|A1|+ |A2|) · eH(B1, B2)].
(15)
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We now combine all of the above to calculate c(F1)− c(F2). First, we can write

c(F1)− c(F2) =
r

i=3



z∈{x1,y1,x2,y2}

c(zvi) · (eF1(Vz, Vvi)− eF2(Vz, Vvi)) (16)

+
2

i=1

c(xiyi) · (eF1(Vxi
, Vyi)− eF2(Vxi

, Vyi))

By (15), the second term in (16) equals

2(r − 2)! · (c(e1)− c(e2)) · [|B1|+ |B2|) · eH(A1, A2)− (|A1|+ |A2|) · eH(B1, B2)]. (17)

By (13) and (14), the first term in (16) equals

r

i=3

[c(x1vi) + c(y1vi)− c(x2vi)− c(y2vi)] · (r − 3)!

· [(|B1|+ |B2|) · fH(A1, A2)− (|A1|+ |A2|) · fH(B1, B2)]

= (r − 3)! · q · [(|B1|+ |B2|) · fH(A1, A2)− (|A1|+ |A2|) · fH(B1, B2)]. (18)

If c(F1) − c(F2) ∕= 0 then (L1 ∪ L2, c) is a template for H and we are done. so suppose
that c(F1) − c(F2) = 0. Then, by plugging (17) and (18) into (16), dividing by (r − 3)!
and rearranging, we get g(A1, . . . , Ar) = g(B1, . . . , Br), as required. This completes the
proof.

We end this subsection with several properties of (s, t)-structured graphs. The follow-
ing simple lemma expresses e(H) in terms of s, t, ρ, |H|.

Lemma 46. If H is (s, t)-structured with parameter ρ, then

e(H) = ρ
r − 1

(2r − 4)s+ t
|H|.

Proof. Fix an arbitrary r-coloring A1, . . . , Ar of H. By summing (12) over all pairs
1  i < j  r, we get

((2r − 4)s+ t) · e(H) =


1i<jr


s · eH(Ai ∪ Aj, V (H)\(Ai ∪ Aj)) + t · eH(Ai, Aj)



= ρ


1i<jr

(|Ai|+ |Aj|) = ρ(r − 1)
r

i=1

|Ai| = ρ(r − 1)|H|.

In what follows, we will need the following trivial claim.

Claim 47. Let r  3 and let a1, . . . , ar ∈ R. If there is c such that ai + aj = c for all
1  i < j  r, then a1 = · · · = ar.
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In the next lemma, we show that if H is (s, t)-structured for two different choices of
(s, t), in the sense that the ratio s/t is different, then every r-vertex-coloring A1, . . . , Ar

of H is balanced, i.e. satisfies |A1| = |A2| = · · · = |Ar|. By normalizing, we may and will
assume that one of the t’s equals 1.

Lemma 48. Let r  3 and s, s′, t ∈ R with s′ − t · s ∕= 0. If H is (s, 1)- and (s′, t)-
structured, then every r-coloring of H is balanced.

Proof. Fix any r-coloring of H with parts A1, . . . , Ar. By definition (see Definition 44),
there exist ρ, ρ′ such that

ρ(|A1|+ |A2|) = s · eH(A1 ∪ A2, V (H)\(A1 ∪ A2)) + eH(A1, A2),

and
ρ′(|A1|+ |A2|) = s′ · eH(A1 ∪ A2, V (H)\(A1 ∪ A2)) + t · eH(A1, A2).

Combining these two equations, we get

(s′ · ρ− s · ρ′)(|A1|+ |A2|) = (s′ − t · s) · eH(A1, A2),

and
(ρ′ − t · ρ)(|A1|+ |A2|) = (s′ − t · s) · eH(A1 ∪ A2, V (H)\(A1 ∪ A2)).

Note that s′ − ts ∕= 0 by assumption. Setting c = (s′ρ − sρ′)/(s′ − ts) and c′ = (ρ′ −
tρ)/(s′ − ts), we have

c(|A1|+ |A2|) = eH(A1, A2),

c′(|A1|+ |A2|) = eH(A1 ∪ A2, V (H)\(A1 ∪ A2)). (19)

Note that c ∕= 0 because eH(A1, A2) ∕= 0, as χ(H) = r. By permuting the parts A1, . . . , Ar,
we obtain the analogous equations for every pair of parts Ai, Aj. In particular, for all
1  i < j  r,

c(|Ai|+ |Aj|) = eH(Ai, Aj).

We now get

eH(A1 ∪ A2, V (H)\(A1 ∪ A2)) =


3ir

(eH(A1, Ai) + eH(A2, Ai))

= c


3ir

(|A1|+ |A2|+ 2|Ai|)

= c(r − 4)(|A1|+ |A2|) + 2c|H|.

Combining this with (19), we get

(c′ − c(r − 4))(|A1|+ |A2|) = 2c|H| ∕= 0.

Applying this argument for Ai, Aj in place of A1, A2, we see that |Ai| + |Aj| = 2c|H|
c′−c(r−4)

for every 1  i < j  r. Using that r  3, we get |A1| = · · · = |Ar| by Claim 47.
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Next, we show that if H is (s, t)-structured with parameter ρ, then for every r-coloring
A1, . . . , Ar of H, one can express eH(A1, A2) as a function of |A1| + |A2|. For s = 0 this
is trivial (recall Definition 44), so we assume s ∕= 0. As it turns out, the cases s/t ∕= 1

2

and s/t = 1
2
need to be handled separately, and in the latter case we need to additionally

assume that H satisfies the r-wise C4-condition. To avoid repetitions, we handle both
cases together. For convenience, we assume that s = 1.

Lemma 49. Let t, ρ ∈ R and suppose that H is (1, t)-structured with parameter ρ. Assume
that t ∕= 2, or t = 2 and H satisfies the r-wise C4-condition. Then for every r-coloring
A1, . . . , Ar of H it holds that

(r − 4 + t)(2r − 4 + t) · eH(A1, A2) = ρ(2r − 4 + t) · (|A1|+ |A2|)− 2ρ|H|.

Proof. Let A1, A2, . . . Ar be the parts of a r-coloring of H. By definition, for all 1  i <
j  r,

ρ(|Ai|+ |Aj|) = eH(Ai ∪ Aj, V (H)\(Ai ∪ Aj)) + t · eH(Ai, Aj). (20)

Summing over all pairs 1  i < j  r, we get

(r − 1)ρ|H| =


1i<jr

ρ(|Ai|+ |Aj|)

=


1i<jr

eH(Ai ∪ Aj, V (H)\(Ai ∪ Aj)) + t · eH(Ai, Aj)

= (2r − 4 + t)e(H). (21)

Let A =


3ir Ai. Summing (20) over 3  i < j  r, we get

ρ(r − 3)(|H|− |A1|−|A2|) =


3i<jr

ρ(|Ai|+ |Aj|)

=


3i<jr

eH(Ai ∪ Aj, V (H)\(Ai ∪ Aj)) + t · eH(Ai, Aj)

= (2r − 8 + t) · eH(A) + (r − 3) · eH(A1 ∪ A2, V (H)\(A1 ∪ A2)).
(22)

Now multiply (20) (for i = 1, j = 2) by r − 5 + t and add to (22), obtaining:

ρ(r − 3)|H|+ ρ(t− 2)(|A1|+ |A2|)
= (2r − 8 + t) · eH(A) + (2r − 8 + t) · eH(A1 ∪ A2, V (H)\(A1 ∪ A2))

+ t(r − 5 + t) · eH(A1, A2)

= (2r − 8 + t) · e(H) + [t(r − 5 + t)− (2r − 8 + t)] · eH(A1, A2)

= (2r − 8 + t) · e(H) + (t− 2)(r − 4 + t) · eH(A1, A2), (23)
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where the second equality uses e(H) = eH(A1, A2)+eH(A)+eH(A1∪A2, V (H)\(A1∪A2)).
Next, we cancel the term e(H) in (23). To this end, multiply (21) by 2r−8+t and subtract
this from (23) multiplied by 2r − 4 + t, to get:

ρ((r − 3)(2r − 4 + t)− (r − 1)(2r − 8 + t)) · |H|+ ρ(t− 2)(2r − 4 + t)(|A1|+ |A2|)
= (t− 2)(r − 4 + t)(2r − 4 + t) · eH(A1, A2).

Note that (r − 3)(2r − 4 + t) − (r − 1)(2r − 8 + t) = −2(t − 2). If t ∕= 2, then dividing
through by t − 2 ∕= 0 completes the proof. Suppose from now on that t = 2. We then
need another relation coming from the C4-condition. For every pair 3  i ∕= j  r,
eH(A1, A2) + eH(Ai, Aj)− eH(A1, Ai)− eH(A2, Aj) = 0. Summing this over all (ordered)
pairs i, j, we get

0 =


3i ∕=jr

eH(A1, A2) + eH(Ai, Aj)− eH(A1, Ai)− eH(A2, Aj)

= (r − 2)(r − 3) · eH(A1, A2) + 2eH(A)− (r − 3) · eH(A1 ∪ A2, V (H)\(A1 ∪ A2)).

Adding the above equation to (22), we get

ρ(r − 3)(|H|− |A1|− |A2|) = (r − 2)(r − 3) · eH(A1, A2) + (2r − 4) · eH(A). (24)

We now continue as before: multiply (20) by 2r − 4 and add this to (24) to get

ρ(r − 3)|H|+ ρ(r − 1)(|A1|+ |A2|) =
= (2r − 4) · eH(A) + (2r − 4) · eH(A1 ∪ A2, V (H)\(A1 ∪ A2))

+ ((r − 2)(r − 3) + 2(2r − 4)) · eH(A1, A2)

= (2r − 4) · e(H) + (r − 1)(r − 2) · eH(A1, A2). (25)

In the second equality we used e(H) = eH(A1, A2)+eH(A)+eH(A1∪A2, V (H)\(A1∪A2)).
Finally, multiply (21) by 2r − 4 and subtract this from (25) multiplied by 2r − 2, to get

−2ρ(r − 1)|H|+ ρ(r − 1)(2r − 2) · (|A1|+ |A2|) = (2r − 2)(r − 1)(r − 2) · eH(A1, A2).

Dividing through by r − 1 completes the proof.

8 Lower bounds

In this section, we describe some constructions that are used to prove the lower bounds
in Theorems 4, 7 and 11. We start with an observation about regular graphs.

Lemma 50. If H is regular then δ∗(H)  3/4.

Proof. Let c be a 2-edge-coloring of K4 such that K+
4 is isomorphic to K1,3. Let v0 be the

vertex whose incident edges all have color +1. Let m ∈ N be divisible by 4 and |H|. Let B
be an m/4-blowup of (K4, c). If B has no perfect H-factor then δ∗(H)  δ(B)/|B| = 3/4.
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Let us assume that this is not the case and let F be a perfect H-factor of B. Let d ∈ N
be such that H is d-regular and note that every H-factor is also d-regular. Therefore,
F has d

2
m edges. Also, the number of edges of color 1 is exactly d|Vv0 | = dm/4. Thus,

exactly half of the edges have color 1, meaning that F has zero discrepancy. Hence,
δ∗(H)  δ(B)

|B| = 3/4.

Lemma 51. If there exists ρ such that for every connected component U of H it holds
that

eH(U) = ρ|U |,

then δ∗(H)  1/2.

Proof. If χ∗(H)  2, then this holds trivially, because δ∗(H)  1−1/χ∗(H), as 1−1/χ∗(H)
is the threshold for the existence of a perfect H-factor by Theorem 2. So let us assume
that χ∗(H) < 2. Let m ∈ N be divisible by 2 and |H|, and let J be an m-vertex graph
which is the disjoint union of two-cliques A,B of sizem/2 each (there are no edges between
A and B). Note that δ(J) = m/2 − 1. Let c be a 2-edge-coloring of J with c(e) = 1 for
e ∈ J [A] and c(e) = −1 for e ∈ J [B]. Let F be a perfect H-factor of J ; if no such F
exists then δ∗(H)  1/2 immediately holds. For each copy H0 ∈ F of H and for each
connected component U of H0, we have by assumption

eF (U) = ρ|U |.

Also, U ⊆ A or U ⊆ B, because there are no edges between A and B. So c(F [U ]) = ρ|U |
if U ⊆ A and c(F [U ]) = −ρ|U | if U ⊆ B. Summing over all H0 ∈ F and all components
U of H, we get c(F ) = ρ(|A|− |B|) = 0. As this holds for any perfect H-factor of J , we
get δ∗(H)  1/2.

Recall the definition of butterfly graphs in the paragraph above Theorem 7. In the next
Lemma we use the symmetry of butterflies with respect to the coloring to show that
if a certain butterfly is not a template for a given graph H, then all H-factors of an
appropriate blowup of this butterfly have discrepancy 0, giving a lower bound on δ∗(H).
The construction is depicted on Figure 2.

Lemma 52. If there exists a butterfly which is not a template for H, then δ∗(H)  4/7.

Proof. Let (L, c) be a butterfly with triangles {u, v1, w1} and {u, v2, w2}, and suppose
that (L, c) is not a template for H. By definition, we have

c(uv1) = −c(uv2), c(uw1) = −c(uw2) c(v1w1) = −c(v2w2). (26)

Let B be a blowup of (L, c) of size m, divisible by 7 and |H|, with

• |Vu| = 3m/7 and

• |Vv| = m/7 for v ∈ {v1, w1, v2, w2}.
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Vu

Vv1
Vw1

Vv2 Vw2

m/7 m/7

m/7 m/7

3
7m

Figure 2: A blowup of a butterfly showing that δ∗(H)  4/7 if the butterfly is not a
template for H.

We claim that every perfect H-factor of B satisfies c(F ) = 0. Indeed, consider the
automorphism of L which swaps between v1, v2 and between w1, w2, and let F ′ be the
image of F under this automorphism. Then by (26), we have c(F ′) = −c(F ). On the
other hand, as (L, c) is not a template for H, we must have c(F ) = c(F ′). It follows that
c(F ) = 0. This proves that δ∗(H)  δ(B)/|B| = 4/7.

Next, we prove the lower bound on δ∗(H) in the first two cases of Theorem 11. The
constructions use Lemma 13 and are depicted in Figure 3.

Lemma 53. If H fulfills the k-wise C4-condition for some k ≡4 1, then δ∗(H)  k−1
k
.

Additionally, if k = χ(H) then δ0(H) = k−1
k
.

Proof. Let c be a 2-edge-coloring of Kk such that K+
k is (k−1)/2-regular; such a coloring

exists because k ≡4 1. Since H satisfies the k-wise C4-condition, so does every H-factor.
Hence, Lemma 13 with d = (k − 1)/2 implies that for every blowup B of (Kk, c) and for
every perfect H-factor J of B, it holds that

c(J) =
2 · (k − 1)/2− k + 1

k − 1
· e(J) = 0.

This implies that c ∈ K(H). Also, taking B to be the m/k-blowup of (Kk, c), we get
that δ∗(H)  δ(B)/|B| = k−1

k
. Finally, if k = χ(H) and we take m to be divisible by

(k − 1)!|H|, then B has a perfect H-factor by Lemma 16, and we get that δ0(H) = k−1
k

by the definition of δ0(H).

Lemma 54. If H is regular and fulfills the k-wise C4-condition for some k ∕≡4 1, then
δ∗(H)  k−1

k
.

Proof. We give three different constructions depending on the residue of k modulo 4,
but the general idea is the same for all three. Let U ⊆ V (Kk) with |U | = k − 1 and
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m/7

3m/28 m/28

k = 7

m/12

k = 6

m/4

k = 4

m/5

k = 5m/4

m/4

m/4

m/5

m/5

m/5m/5

m/12

m/6

m/6

m/6

m/6

m/6

m/7

m/7 m/7

m/7

m/7

Figure 3: The constructions given in Lemmas 53 and 54 for 4  k  7.

{v} = V (Kk)\U . Let c be any 2-edge-coloring of Kk such that Kk[U ]+ is ℓ-regular, where
ℓ is an even integer to be determined later; such a coloring exists because ℓ is even. Let
B be an m/k-blowup of (Kk, c) for some m with m divisible by 4k. Let d ∈ N be such
that H is d-regular and let F be an arbitrary perfect H-factor of B. Note that F is
also d-regular and satisfies the k-wise C4-condition. So e(F ) = dm/2 and Vv is incident
to d|Vv| = dm

k
edges in F . Hence, eF (VU) = k−2

2k
dm. Additionally, F [VU ] satisfies the

(k − 1)-wise C4-condition. To see this, observe that every (k − 1)-coloring of F [VU ] can
be extended to a k-coloring of F by adding V (F )∩ Vv as an additional color-class. Thus,
by applying Lemma 13 with J = F [VU ] (and with k − 1 in place of k), we get

c(F [VU ]) =
2ℓ− k + 2

k − 2
· eF (VU) =

2ℓ− k + 2

k − 2
· k − 2

2k
dm =

2ℓ− k + 2

2k
dm.

We now define a 2-edge-coloring c′ of B as follows. First, if e is contained in VU , then set
c′(e) = c(e). Second, to color the edges incident to Vv, split Vv into two sets V+ and V−
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(whose sizes will be determined later), and set c′(e) = 1 for all edges incident to V+ and
c′(e) = −1 for all edges incident to V−. Then,

c′(F ) = c(F [VU ]) + eF (V+, VU)− eF (V−, VU) =
2ℓ− k + 2

2k
dm+ d(|V+|− |V−|), (27)

where the last equality uses that F is d-regular. We now consider the different cases of k
modulo 4 and choose ℓ, |V+| and |V−| so that c′(F ) = 0.

• If k ≡4 0, take ℓ = k/2, |V+| = 0 and |V−| = m/k.

• If k ≡4 2, take ℓ = (k − 2)/2 and |V+| = |V−| = m
2k
.

• If k ≡4 3, take ℓ = (k − 3)/2, |V+| = 3m
4k

and |V−| = m
4k
.

It is easy to check that ℓ is even and we have c′(F ) = 0 by (27) in all three cases.

The final two lemmas of this section provides us with a lower bound on max{δ0(H), 1−
1/χ∗(H)} (and therefore also on δ∗(H)) for (s, t)-structured graphs (recall Definition 44).

Lemma 55. Suppose that r = 3 and H is (1, 2)-structured. Then max{δ0(H), 1 −
1/χ∗(H)}  5/8.

Proof. By the definition of structuredness (see Definition 44), there is ρ ∈ R such that

ρ(|Ai|+ |Aj|) = eH(Ai ∪ Aj, V (H)\(Ai ∪ Aj)) + 2eH(Ai, Aj) = e(H) + eH(Ai, Aj). (28)

for every 3-coloring A1, A2, A3 of H and all 1  i < j  3. By summing the above
equation over all 1  i < j  3, we get

2ρ|H| =


1i<jr

ρ(|Ai|+ |Aj|) = 3e(H) +


1i<jr

eH(Ai, Aj) = 4e(H).

So ρ|H| = 2e(H). Subtracting from this the equation ρ(|A2|+ |A3|) = e(H)+ eH(A2, A3),
we get

ρ|A1| = eH(A1, A2) + eH(A1, A3). (29)

Now consider a triangle T with vertices u1, u2, u3 and let c be the 2-edge-coloring of T
where c(u1u2) = c(u1u3) = 1, c(u2u3) = −1. We first show that c ∈ K(H). So let B be an
arbitrary blowup of (T, c), and let U1, U2, U3 be the clusters of B (where Ui corresponds
to ui). We need to show that all perfect H-factors of B have the same discrepancy. So
let F be a perfect H-factor of B. First note that

e(F ) = e(H) · |B|/|H| = ρ|B|/2.

For each H-copy H0 ∈ F , consider the 3-coloring A1, A2, A3 of H0 given by Ai = V (H0)∩
Ui. The number of edges of color 1 in H0 is precisely eH0(A1, A2) + eH0(A1, A3). By (29),
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this number is ρ|A1|. Summing over all H-copies H0 ∈ F , we see that the number of
edges of color 1 in F is precisely ρ|U1|. Therefore,

c(F ) = 2e(F+)− e(F ) = ρ(2|U1|− |B|/2),

which is independent of F . This shows that indeed c ∈ K(H).
Let us now consider the specific case where |U1| = 2m and |U2| = |U3| = 3m, for an

arbitrary integer m. Then |B| = 8m and δ(B)/|B| = (|U1|+ |U2|)/|B| = 5/8. If B has no
perfect H-factor for any choice of m, then 1−1/χ∗(H)  δ(B)/|B| = 5/8. And otherwise,
fix an m for which B has perfect H-factors. Every perfect H-factor F of B satisfies

c(F ) = ρ(2|U1|− |B|/2) = 0.

By the definition of δ0(H), this implies that δ0(H)  δ(B)/|B| = 5/8, as required.

Lemma 56. Suppose that r  6 and r ≡4 2, 3. Assume that H is (0, 1)-structured, or that
H is (1, t)-structured for some t ∈ {−2,−1, 0, 1, 2} and satisfies the r-wise C4-condition.
Then

max{δ0(H), 1− 1/χ∗(H)}  3r − 5

3r − 2
.

The bound of 3r−5
3r−2

in Lemma 56 is particularly interesting because a blowup on m

vertices of two copies of Kr sharing r−2 vertices has minimum degree at most 3r−5
3r−2

m. The

lower bound given by Lemma 56 will allow us to assume later on that δ(R)/|R| > 3r−5
3r−2

(when proving upper bounds on δ∗(H)). We will then (implicitly) use the fact that R is
not a blowup of two r-cliques sharing r − 2 vertices. See Lemma 68.

Proof of Lemma 56. We assume that H is (s, t)-structured, where (s, t) = (0, 1) or s = 1
and t ∈ {−2,−1, 0, 1, 2}. In particular, s ∈ {0, 1} and (s, t) ∕= (0, 0). First we show that
there exist τ, C such that for every r-coloring A1, . . . Ar of H,

eH(Ai, Aj) = τ(|Ai|+ |Aj|) + τ · C|H|. (30)

It is enough to show this for i, j = 1, 2. Let ρ be such that H is (s, t)-structured with
parameter ρ (recall Definition 44). If (s, t) = (0, 1) then (30) is trivially satisfied for τ = ρ
and C = 0. Otherwise, we have that s = 1. Then, by Lemma 49, we get that

(r − 4 + t)(2r − 4 + t) · eH(A1, A2) = ρ(2r − 4 + t) · (|A1|+ |A2|)− 2ρ|H|. (31)

Observe that in all possible choices of (s, t), we have r+ t  4, and equality holds only if
r = 6, s = 1 and t = −2. We consider this case first. Then (31) becomes

2ρ|H| = 6ρ(|A1|+ |A2|). (32)
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We claim that ρ ∕= 0. To see this, we use that H is (1,−2)-structured, summing (12) over
all pairs 1  i < j  r. This gives:

(r − 1)ρ|H| =


1i<jr

ρ(|Ai|+ |Aj|)

=


1i<jr

[eH(Ai ∪ Aj, V (H) \ (Ai ∪ Aj))− 2eH(Ai, Aj)]

= (2r − 6) · e(H) = 6e(H) > 0,

Now divide both sides of (32) by ρ to get |H|/3 = |A1| + |A2|. Since this holds for every
r-coloring of H, we get that every r-coloring of H must be balanced by Claim 47. This
implies that χ∗(H) = r by the definition of χ∗. Now, 1− 1/χ∗(H) = r−1

r
 3r−5

3r−2
.

Suppose from now on that r+ t > 4. Then (r− 4+ t)(2r− 4+ t) ∕= 0. Thus, dividing
both sides of (31) by (r − 4 + t)(2r − 4 + t), we get that (30) is satisfied for τ = ρ

r−4+t

and C = −2
2r−4+t

. This proves (30). Note also that either s = 0 and C = 0, or s = 1 and

C = −2
2r−4+t

. Since t  −2, we get in either case that

−1

r − 3
 C  0. (33)

Next, we use (30) to complete the proof of the lemma. First, we claim that for every
2-coloring c of Kr it holds that c ∈ K(H). Indeed, let B be an arbitrary blowup of (Kr, c),
and let F be any perfect H-factor of B. Let B1, . . . , Br be the parts of B. By summing
(30) over all copies of H in F , we get that

eF (Bi, Bj) = τ(|Bi|+ |Bj|) +
|F |
|H| · τC|H| = τ(|Bi|+ |Bj|) + τC|F |.

for all 1  i  j  r. This implies that

c(F ) =


1i<jr

c(ij) · eF (Bi, Bj) = τ


1i<jr

c(ij) · (|Bi|+ |Bj|+ C|F |), (34)

which is independent of F , since |F | = |B|. This means that all perfect H-factors of B
have the same discrepancy. It now follows, by the definition of K(H), that c ∈ K(H).

Next, we define a certain 2-edge-coloring c of Kr, as follows. Set V (Kr) = {v1, . . . , vr}.
We claim that there exists a coloring c such that c(e) = 1 for every e ∈ E(Kr) incident
to v1, and c(Kr) = 1. Indeed, there are r − 1 edges incident to v, and r − 1 <


r
2


/2 for

r  6. Hence, there is a coloring c such that c(v1vj) = 1 for all 2  j  r, and c colors
exactly ⌈


r
2


/2⌉ = (


r
2


+ 1)/2 edges with color 1. Here we use that


r
2


is odd because

r ≡4 2, 3. So the number of edges of color −1 is (

r
2


− 1)/2, and hence c(Kr) = 1, as

required. We fix such a coloring c from now on.
Fix C ′ ∈ N such that C · C ′ ∈ Z, where C is the constant from (30). Fix an integer

m divisible by (r − 2)(r − 1)(r + 1)C ′|H|, and let B be the blowup of (Kr, c) with
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|B| = m and with parts B1, . . . , Br (where Bi corresponds to vi), such that |B1| = x and
|Bi| = m−x

r−1
=: y for all 2  i  r, where

x =
(r − 3)− (r − 1)C

(r − 2)(r + 1)
m.

By our choice of m, both x and y are integers. Next, we show that

m

3r − 2
 x  m

r
. (35)

As C  0, to prove the lower bound in (35) it suffices to check that (r − 2)(r + 1) 
(3r − 2)(r − 3), which holds for r  4. For the upper bound, we use that C  −1

r−3
and

therefore x  (r−3)2+(r−1)
(r−2)(r+1)(r−3)

m. Hence, it suffices to verify that r((r − 3)2 + (r − 1)) 
(r − 2)(r + 1)(r − 3), which holds for r  6.

The bounds in (35) imply that

m

r
 y  3m

3r − 2
. (36)

In particular, B1 is the smallest part in the blowup B, by (35) and (36). Therefore,
δ(B) = m − y  3r−5

3r−2
m. If for all m, the blowup B has no perfect H-factor, then, using

Theorem 2, we see that 1 − 1/χ∗(H)  3r−5
3r−2

, as needed. Else, fix m such that B has
perfect H-factors, and let F be an arbitrary H-factor of B. For convenience, we use the
notation c(vi, Kr) :=


j ∕=i c(vivj). By (34), we have

c(F ) = τ


1i<jr

c(vivj) · (|Bi|+ |Bj|+ C|F |) = τ ·

c(Kr) · Cm+

r

i=1

c(vi, Kr) · |Bi|

,

using that |F | = |B| = m. Recall that c(Kr) = 1 and c(v1, Kr) = r − 1. Hence,r
i=1 c(vi, Kr) = 2c(Kr) = 2 and

r
i=2(vi, Kr) = 3− r. It follows that

c(F ) = τ


(r − 1)x− (r − 3) · m− x

r − 1
+mC


= 0,

by our choice of x. As c ∈ K(H), this implies δ0(H)  δ(B)/m  3r−5
3r−2

, as needed.

9 When all r-cliques have the same discrepancy

In this section we consider the situation when all r-cliques in the reduced graph R have the
same discrepancy sign (i.e. all have positive discrepancy or all have negative discrepancy).
By symmetry, we may assume that all have positive discrepancy (else swap the colors). As
usual, we work under the setup described in Section 6.2. The main result of this section
is the following:
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Lemma 57. Assume the setup of Section 6.2. If H is non-regular and all copies of
Kr in R have positive discrepancy, then there exists a perfect H-factor in G′ with high
discrepancy.

The proof of Lemma 57 is broken into two cases depending on whether or not H is
uniform (recall Definition 33). These two cases are handled in the following two subsec-
tions. Recall the definition of the r-partite graph H∗ (see Definition 19). Namely, recall
that if r = 2 then H∗ = H, and otherwise H∗ is a complete r-partite graph satisfying
the properties in Lemma 18. Recall also that V0 is the exceptional class in the regular
partition of G′, and that for a vertex u ∈ V (G′) \ V0, we use Vu ∈ V (R) to denote the
part of the partition containing u (so Vu is a vertex of the reduced graph R).

9.1 Proof of Lemma 57: H is non-uniform

Here we prove Lemma 57 in the case that H is non-uniform.
By Lemma 25, G′ has a perfect H∗-factor F ∗. Suppose first that there exists a copy

J ∈ F ∗ of H∗ disjoint from V0 with parts B1, B2, . . . Br ⊆ V (J), and vertices b1, b
′
1 ∈ B1,

b2 ∈ B2, such that f(b1b2) ∕= f(b′1b2). Fix arbitrary bi ∈ Bi for 3  i  r. Since H is non-
uniform, there exists an r-coloring A1, A2, . . . , Ar ofH such that eH(A1, A2) ∕= eH(A1, A3),
by Claim 35. This implies that there exists a vertex a ∈ A1 with dH(a,A2) ∕= dH(a,A3).
Consider the r-cliques L1 = {V R

b1
, V R

b2
, . . . V R

br
} and L2 = {V R

b′1
, V R

b2
, . . . V R

br
} in R. If L1, L2

have different discrepancies (with respect to fR), then (L1∪L2, fR) is a template for H by
Lemma 29 (as H is non-regular), and then G′ has a perfect H-factor with high discrepancy
by Lemma 27, completing the proof. We may therefore assume that fR(L1) = fR(L2).
Then we can apply Lemma 31 with x = V R

b1
, y = V R

b′1
, z = V R

b2
, to conclude that (L1∪L2, fR)

is a template for H. Now we are again done by Lemma 27.
So from now on, let us assume that J ∈ F ∗ as above does not exists. This means that

for every copy J ∈ F ∗ of H∗ disjoint from V0, if B1, . . . , Br denote the parts of J , then
all bipartite graphs (Bi, Bj) are monochromatic with respect to f . In other words, J is a
blowup of (Kr, c) for some 2-edge-coloring c ofKr. Fix arbitrary b1 ∈ B1, b2 ∈ B2, . . . , br ∈
Br, and consider the r-clique L = {V R

b1
, V R

b2
, . . . V R

br
} in R. By (6), L is colored by fR in

the same way as Kr by c. Hence, c(Kr) = fR(L) > 0, using our assumption that every
r-clique in R has positive discrepancy. If (L, fR) is a template for H then we are done by
Lemma 27 as before, and else we have c ∈ K(H) by definition. Now, by Lemma 20, we
see that every perfect H-factor of J has positive discrepancy.

For each J ∈ F ∗, let FJ be a perfect H-factor in J . Then F :=


J∈F ∗ FJ is a perfect
H-factor of G′. We saw that if J ∩ V0 = ∅ then f(FJ) > 0, and so f(FJ)  1. Using that
|V0|  εn ≪ n

|H∗|e(H∗) , we obtain

f(F )  n

|H∗| − |V0|− |V0| · e(H∗)  γn.

This completes the proof in the case that H is non-uniform.
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9.2 Proof of Lemma 57: H is uniform

Here we prove Lemma 57 in the case that H is uniform. First, by Lemma 25, G′ has a
perfect H∗-factor F ∗. The key part of the proof is the following lemma:

Lemma 58. Let J ∈ F ∗ be a copy of H∗ disjoint from V0. Then every perfect H-factor
FJ of J satisfies

f(FJ)  1,

or there exists a template for H in (R, fR) of size r + 1.

Proof. For r = 2, the statement follows trivially as each edge in R has positive discrepancy
and therefore, R (and hence also J) are monochromatic. Therefore, let us assume that
r  3. By Lemma 29, we may assume that there do not exist two copies of Kr in R
sharing r − 1 vertices with different discrepancies, as otherwise there is a template for H
(since H is non-regular). Let J ∈ F ∗ be a copy of H∗ disjoint from V0. Let A1, A2, . . . , Ar

be the clusters of J and fix arbitrary vertices a1 ∈ A1, a2 ∈ A2, . . . , ar ∈ Ar. Let FJ be an
arbitrary H-factor in J .

Claim 59. For each 1  i < j  r, it holds that either for all vertices u ∈ Ai and
v, v′ ∈ Aj, f(uv) = f(uv′), or for all vertices u, u′ ∈ Ai and v ∈ Aj, f(uv) = f(u′v).

Proof. Without loss of generality, i = 1, j = 2. Observe that if the assertion of the claim
does not hold, then there exist u, u′ ∈ A1 and v, v′ ∈ A2 such that f(uv) ∕= f(uv′), f(u′v).
Without loss of generality, f(uv) = 1 and f(uv′) = f(u′v) = −1. Since J is disjoint from
V0, we get that L1 := {V R

u , V R
v , V R

a3
, V R

a4
, . . . , V R

ar} and L2 = {V R
u , V R

v′ , V
R
a3
, V R

a4
, . . . , V R

ar} are
r-cliques in R. We have fR(L1) = fR(L2) because, by assumption, every two r-cliques in
R sharing r − 1 vertices have the same discrepancy. It follows that

f(uv) +


3ir

f(vai) = f(uv′) +


3ir

f(v′ai).

Note that u′v′ ∈ J , as J is a complete r-partite graph. By the same argument with u′ in
place of u, we get

f(u′v) +


3ir

f(vai) = f(u′v′) +


3ir

f(v′ai).

By subtracting the second from the first equation, we get

f(uv)− f(u′v) = f(uv′)− f(u′v′).

But this is a contradiction since f(uv)− f(u′v) = 2 and f(uv′)− f(u′v′)  0.

We continue with the proof of Lemma 58. Let us say that (Ai, Aj) is split for Ai if there
exist vertices u, u′ ∈ Ai and a vertex v ∈ Aj such that f(uv) ∕= f(u′v). Note that if for
some i and j, (Ai, Aj) is split for Ai, then all the vertices in Ai have only monochromatic
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edges to Aj by the above claim. Therefore, each pair (Ai, Aj) can be split at most for one
of the two. Recall that by assumption, all r-cliques in R have positive discrepancy. Let

x =


1i<jr

fR(V
R
ai
V R
aj
) > 0.

First, let us assume that J does not have a split pair. It follows that for all 1  i <
j  r, G′[Ai, Aj] is monochromatic with color f(aiaj) = fR(V

R
ai
V R
aj
). As H is uniform, we

get that for every H-copy HJ ∈ FJ

f(HJ) =


1i<jr

e(H)
r
2

 f(aiaj) = x
e(H)

r
2

 .

This implies that

f(FJ) =


HJ∈FJ

f(HJ) =
|H∗|
|H| · xe(H)

r
2

 > 0.

Next, let us assume without loss of generality that A1A2 is split for A1. Then, there
exist u, u′ ∈ A1 and v ∈ A2 such that f(u, v) = 1 and f(u′, v) = −1. As the r-cliques
L1 := {Vu, Vv, Va3 , . . . , Var} and L2 := {Vu′ , Vv, Va3 , . . . , Var} have the same discrepancy
and fR(VuVv) ∕= fR(Vu′Vv), we may assume by Lemma 31 that for every r-vertex-coloring
of H with parts B1, B2, . . . , Br it holds for all b ∈ B1 that

dH(b, B2) = dH(b, B3), (37)

as otherwise (L1 ∪ L2, fR) is a template for H and we are done. For every 1  i  r, let
Si ⊆ {1, 2, . . . , r} be the set of indices j such that AiAj is split for Ai.

Claim 60. For every 1  i  r and u, v ∈ Ai it holds that


j∈Si

f(uaj) =


j∈Si

f(vaj),

or there exists a template for H in (R, fR) of size r + 1.

Proof. Without loss of generality, suppose that there are u, v ∈ A1 such that


j∈S1

f(uaj) ∕=


j∈S1

f(vaj).

Consider the r-cliques L1 = {Vu, Va2 , Va3 , . . . , Var} and L2 = {Vv, Va2 , Va3 , . . . , Var} in R.
Observe that

fR(L1)− fR(L2) =
r

j=2

(f(uaj)− f(vaj)) =
r

j∈S1

(f(uaj)− f(vaj)) ∕= 0.

Here we used that f(uaj) = f(vaj) for all j /∈ S1. By Lemma 29, (L1 ∪ L2, fR) is a
template for H.
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We now conclude the proof of Lemma 58. Fix an H-copy HJ ∈ FJ , and let Bi =
Ai∩V (HJ), i = 1, . . . , r. By (37), each vertex a ∈ Bi has the same number of neighbours

in Bj for each j ∈ [r] \ {i}. So this number is
dHJ

(a)

r−1
. Furthermore, if j ∈ Si then for each

a ∈ Bi, a
′ ∈ Bj we have f(aa′) = f(aaj), as all edges between a and Aj have the same

color. Hence, for each 1  i  r,

f


HJ ∩ (Bi ×



j∈Si

Bj)


=



a∈Bi

dHJ
(a)

r − 1



j∈Si

f(aaj) =


a∈Bi

dHJ
(a)

r − 1



j∈Si

f(aiaj)

=
e(H)

r
2




j∈Si

f(aiaj),

where the second equality uses Claim 60 with u = a, v = ai, and the last equality uses
a∈Bi

dHJ
(a) = (r − 1)e(H)/


r
2


, which holds by the assumption that eHJ

(Bi, Bj) =

e(H)/

r
2


for all i < j (H is uniform). Now, we get

f(HJ) =
e(H)

r
2








1i<jr,
i/∈Sj ,j /∈Si

f(aiaj) +


1ir



j∈Si

f(aiaj)



 .

Indeed, using that (Ai, Aj) can not be split for both i and j, we see that each pair
1  i < j  r appears exactly once in the above two sums. Hence,

f(HJ) =
e(H)

r
2




1i<jr

f(aiaj) = x
e(H)

r
2

 .

As this holds for every H-copy HJ in FJ , we get that

f(FJ) =
|H∗|
|H| · xe(H)|H∗|

r
2


|H|

> 0.

So f(FJ)  1, as required. This proves Lemma 58.

Using Lemma 58, we can now conclude the proof of Lemma 57 (for uniform H). If R
has a template for H of size r + 1 then we are done by Lemma 27. Else, by Lemma 58,
for every H∗-copy J ∈ F ∗ with J ∩ V0 = ∅, every H-factor of J has (strictly) positive
discrepancy. Let F be a perfect H-factor in G′, obtained by taking a perfect H-factor of
each J ∈ F ∗. Note that at most |V0| many H∗-copies J contain a vertex of V0, and each
H-factor in H∗ contains at most e(H∗) edges. Hence,

f(F )  n

|H∗| − |V0|− |V0| · e(H∗)  γn,

as required.
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10 Violating the C4-condition

In this section we handle graphs H that violate the k-wise C4-condition for a certain k.
This forms an important part in the proofs of our main results. As always, r denotes the
chromatic number of H. The main result is as follows.

Lemma 61. Suppose that H violates the k-wise C4-condition, where k  max{r, 5} or
k = r = 4. Then

δ∗(H)  max{δ0(H), 1− 1/χ∗(H), 1− 1/(k − 1)}.

Before proving Lemma 61, let us prove the following important corollary.

Corollary 62. Let H be an r-chromatic graph. If r  3 then δ∗(H)  1− 1/(r+1), and
if r = 2 then δ∗(H)  3/4.

Proof. The key is to observe that an r-chromatic graph H fails the (r + 2)-wise C4-
condition. Indeed, take any r-coloring A1, . . . , Ar of H. Then, considering the (r +
2)-coloring A1, . . . , Ar, Ar+1, Ar+2 with Ar+1 = Ar+2 = ∅, we see that eH(A1, A2) +
eH(Ar+1, Ar+2) − eH(A1, Ar+1) − eH(A2, Ar+2) = eH(A1, A2) > 0 (as H is r-chromatic).
So indeed H violates the (r+2)-wise C4-condition. For r  3 (resp. r = 2), the corollary
now follows by Lemma 61 applied with k = r + 2  5 (resp. k = 5).

We now proceed with the proof of Lemma 61. As always, we work under the setup
introduced in Section 6.2. In particular, we always assume that

δ(R)/|R|  max{δ0(H), 1− 1/χ∗(H), 1− 1/(k − 1)}+ η/2. (38)

Recall the definition of a (Kk,+)- and (Kk,−)-star, and the head of such a star (see
Definition 36). Evidently, every 2-edge-colored triangle is either monochromatic or a star.
The proof of Lemma 61 is split into two cases: k = r = 4 and k  5. The difference
between these cases stems from the fact that the (K4,+)-star has zero discrepancy (while
the (Kk,+)-star has non-zero discrepancy for k  5).

10.1 Proof of Lemma 61: k  5

Here we prove Lemma 61 in the case k  5. If there exists a copy of Kk in R which
is neither monochromatic nor a star with respect to fR, then, by Lemma 37, this copy
of Kk is a template for H, and then by Lemma 27, there exists a perfect H-factor in
G′ with high discrepancy. Therefore, let us assume that all the copies of Kk in R are
either monochromatic or a star. In the following argument, we make repeated use of the
following three facts:

F.11 Every four vertices in R have at least one common neighbor.

F.21 For all k′ < k, each copy of Kk′ ⊆ R is contained in some copy of Kk ⊆ R.
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F.31 For all 3  k′  k, every copy of Kk′ which contains a non-monochromatic triangle
must be a star with the head of the triangle being the head of the star.

F.11 and F.21 follow from δ(R) > 1− 1/(k − 1)  3/4, by (38). And F.31 follows from
F.21, since otherwise there is a copy ofKk in R which is neither a star nor monochromatic.
The following claim is an important step in this proof.

Claim 63. If v ∈ V (R) is the head of some non-monochromatic triangle T ⊆ R. Then,
for every triangle T ′ ⊆ R with v ∈ V (T ′), it holds that fR(T

′) = fR(T ) (i.e. T
′ is colored

the same way as T ) and v is the head of T ′.

Proof. Let T = {u, v, w} ⊆ R be as in the statement and let us assume without loss
of generality that fR(T ) = 1, meaning that fR(vu) = fR(vw) = 1 and fR(uw) = −1.
Let T ′ ⊆ R be an arbitrary triangle with v ∈ T ′, and write T ′ = {u′, v, w′}. By F.11,
the vertices u, v, w, u′ have a common neighbor x ∈ R. Note that R[{u, v, w, x}] is a
copy of K4 in R containing T and thus, by F.31, we have fR(vx) = −fR(wx) = 1.
Therefore, R[{v, w, x}] is a non-monochromatic triangle with v as its head. By F.11,
there exists y ∈ R such that y is a common neighbor of v, w, x, u′. By applying F.31 to
the 4-clique {v, w, x, y} we get that fR(vy) = −fR(xy) = 1, and by applying F.31 to the
4-clique {v, u′, x, y} we get that fR(vu

′) = −fR(u
′y) = 1. Finally, let z ∈ R be a common

neighbor of v, y, u′, w′. Using F.31 as before, we find that fR(vz) = −fR(u
′z) = 1 by

considering the 4-clique {v, u′, y, z}, and that f(vw′) = 1 = −f(u′w′) = 1 by considering
the 4-clique {v, u′, w′, z}. So T ′ is indeed a non-monochromatic triangle with v as its head
and fR(T

′) = 1.

Claim 63 implies that if v is the head of a non-monochromatic triangle, then v is not con-
tained in any monochromatic triangle and must be the head of any (non-monochromatic)
triangle containing it. Also, all edges inside NR(v) (the neighborhood of v in R) have the
same color.

Now, we can make a further statement about the coloring of the copies of Kk in R.
Recall that Kk,+ (resp. Kk,−) denotes the monochromatic k-clique where all edges have
color 1 (resp. −1).

Claim 64. Either every copy of Kk in R is a copy of Kk,+ or the (Kk,−)-star, or every
copy of Kk in R is a copy of Kk,− or the (Kk,+)-star.

Proof. Observe that Kk,+ and a (Kk,−)-star both contain a monochromatic triangle in
color 1, and similarly, Kk,− and a (Kk,+)-star both contain a monochromatic triangle in
color −1. Therefore, if the claim does not hold, then R contains monochromatic triangles
L+ in color 1 and L− in color −1. By Claim 63, none of the vertices in L+ and L− are
the heads of any stars of size 3, because they belong to a monochromatic triangle. Let
v1, v2 ∈ L+ and v3, v4 ∈ L− and by F.11, let u be a common neighbor of v1, v2, v3, v4.
Note that u cannot be the head of any non-monochromatic triangle, since this would imply
(by Claim 63) that all edges in NR(u) have the same color, while fR(v1v2) ∕= fR(v3v4).
It follows that the triangles {u, v1, v2},{u, v3, v4} are monochromatic, because none of
the vertices u, v1, . . . , v4 can be the head of a non-monochromatic triangle. So we have
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fR(uv1) = fR(uv2) = −fR(uv3) = −fR(uv4) = 1. Let w be a common neighbor of
u, v1, v3 (using F.11). Without loss of generality, suppose that fR(uw) = 1. Then the
triangle w, u, v3 is not monochromatic, and its head must be w. Now, by Claim 63,
the triangle w, u, v1 must also be non-monochromatic with head w. This implies that
fR(uv1) = fR(uv3), a contradiction.

By Claim 64 and without loss of generality, let us assume that every copy of Kk in R
is either a copy of Kk,+ or a (Kk,−)-star. Note that both Kk,+ and a (Kk,−)-star have
positive discrepancy, because k  5. We now consider two sub-cases based on whether H
is regular.

Case 1: H is non-regular. If k = r, then every copy of Kr in r has positive discrepancy.
We then get a perfect H-factor in G′ with high discrepancy by Lemma 57. So let us
assume that k  r + 1. Suppose first that there is a (Kk,−)-star K in R. Clearly, K
contains a (Kr+1,−)-star K ′ ⊆ K. By Corollary 30, (K ′, fR) is a template for H (as
H is non-regular). Now, by Lemma 27, G has a perfect H-factor with high discrepancy,
completing the proof in this case. Therefore, we may assume that every copy of Kk in R
is monochromatic in color 1. Then, by F.21 with k′ = 2, all edges in R have color 1. By
Lemma 57 again, G′ has a perfect H-factor with high discrepancy.

Case 2: H is d-regular for some d ∈ N. Let U ⊆ V (R) be the set of vertices which are
the heads of a (K3,−)-star in R. Observe that if uv ∈ E(R) has color −1 then u ∈ U or
v ∈ U . Indeed, by F.21, uv is contained in some triangle in R, and this triangle must
be a (K3,−)-star (as every triangle in R is either a K3,+ or a (K3,−)-star). The head
of this star must be u or v, so one of them is in U . We see that R[V (R)\U ] only has
edges colored 1. Additionally, U is an independent set in R. To see this, let u, v ∈ U
and assume towards a contradiction that uv ∈ E(R). By F.21, uv is contained in some
triangle in R. By Claim 63 and the definition of U , both u and v must be the head of
this triangle, a contradiction.

By (38) and as k  5, we have δ(R)  (3/4 + η/2)|R|. Since U is an independent set
in R, we must have |U |  (1/4− η/2)|R|. Therefore, VU :=


u∈U Vu satisfies

|VU |  (1/4− η/2)n.

Note that all the edges of color −1 in G′ are incident to either VU or V0, because all edges in
R outside U have color 1. By Lemma 25, G′ has a perfectH-factor F . SinceH is d-regular,
so is F . Hence, the number of edges of color −1 in F is at most (|VU |+ |V0|) · d  nd/4.
It follows that

f(F )  d

2
n− nd/4  γn.

This concludes the proof.

10.2 Proof of Lemma 61: k = r = 4

Here we prove Lemma 61 in the case k = r = 4. If R contains a template for H of size
4, then by Lemma 27, there exists a perfect H-factor in G′ with high discrepancy, as
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required. So let us assume that R contains no such template.
We consider two cases. Suppose first that the (K4,+)-star is not a template for H.

We claim that in this case, δ∗(H) = δ0(H) = 3/4. For the upper bound, recall that if
H violates the k-wise C4-condition, then it also violates the (k + 1)-wise C4-condition.
Hence, H violates the 5-wise C4-condition, and by the case k  5 of Lemma 61, we have
δ∗(H)  3/4. For the lower bound, let c be the 2-edge-coloring of K4 corresponding to the
(K4,+)-star. Note that c(K4) = 0. Let B be the 3!|H|-blowup of (K4, c). By Lemma 16,
there is a perfect H-factor of B with discrepancy 0, as c(K4) = 0. As we assumed that
the (K4,+)-star is not a template for H, we get that c ∈ K(H), and hence

δ0(H)  δ(B)/|B| = 3/4,

as required.
From now on, let us assume that the (K4,+)-star is a template forH, and by symmetry

so is the (K4,−)-star. As we assumed thatR has no template forH, we get thatR contains
no (K4,+)-star and no (K4,−)-star. It now follows, by Lemma 37, that all copies of K4

in R are monochromatic. By (38), we have δ(R)/|R| > 2/3. This implies that each
triangle in R is contained in a K4, and hence all triangles in R are monochromatic. We
claim that all edges of R have the same color. Suppose not. Then, as R is connected
(by δ(R)/|R| > 2/3), there exist vertices u, v, w ∈ V (R) such that fR(uv) = 1 and
fR(vw) = −1. Again using δ(R)/|R| > 2/3, there exists a common neighbor x of u, v, w.
It follows that either x, u, v or x, v, w form a non-monochromatic triangle in R, depending
on the color of xv with respect to fR. This gives a contradiction. So we see that R is
monochromatic, which means that all edges of G′ not touching V0 have the same color.
By Lemma 25, G′ has an H-factor F . Now we get

|f(F )| 


n

|H| − 2|V0|

e(H)  γn.

11 Non-regular H

In this section we deal with the case that H is non-regular. This comprises the main part
of the proofs of Theorems 7 and 11. We shall prove three key lemmas (Lemmas 65, 67
and 68) that are used in the proofs of these theorems. The basic idea in the proof of these
lemmas is as follows. First, in all cases, the minimum degree assumption implies that
the reduced graph R contains r-cliques. Then, by Lemma 57, we may assume that there
exists an r-clique L1 with positive discrepancy, as well as an r-clique L2 with negative
discrepancy. Using Lemma 12, we can then connect L1, L2 with a sequence of r-cliques
L1 = L′

1, . . . , L
′
ℓ = L2 with each pair of consecutive cliques L′

i, L
′
i+1 intersecting in at least

r − 1 or at least r − 2 vertices, depending on the assumed minimum degree of R. We
therefore have two r-cliques sharing r−1 or r−2 vertices, one having positive discrepancy
and the other negative. With a slight abuse of notation, we assume that L1, L2 are such r-
cliques. Then, either L1∪L2 is a template for H (in which case we are done by Lemma 27),
or the coloring of L1, L2 has some specific structure, by the lemmas from Section 7. In

the electronic journal of combinatorics 31(3) (2024), #P3.33 58



more involved cases (mainly Lemma 68), we determine properties of the coloring on a
large portion of R, under the assumption that R has no small template for H.

In each of the three lemmas we shall make certain assumptions on the residue of r
modulo 4, which correspond to different cases in the proof of Theorem 11. We also often
assume that H satisfies the r-wise C4-condition. (If H violates the r-wise C4-condition,
then Lemma 61 immediately gives the required bounds for Theorem 11, as we shall see
in Section 12.3.) The first lemma is as follows.

Lemma 65. If r ∕≡4 0 and H is non-regular, then δ∗(H)  1− 1/r.

In the proof of Lemma 65, we may assume that δ(R)/|R| > 1− 1/r. This assumption
has two important consequences: First, it guarantees that |L1 ∩ L2| = r − 1, and second,
it implies that every r-clique is contained in an (r + 1)-clique. This allows us to use
Lemma 29 and Corollary 30 to conclude the proof. The details follow.

Proof of Lemma 65. As always, we work under the setup described in Section 6.2. In
particular, as we are aiming for the bound δ∗(H)  1− 1/r, we assume that

δ(G′)/n, δ(R)/|R|  (1− 1/r + η/2).

Our goal is to show that G′ contains a perfect H-factor with high discrepancy. If R has a
template for H of size r + 1, then we are done by Lemma 27. We therefore assume that
R has no such template. This implies that for every (r+1)-clique M in R, M+ is regular
(with respect to fR), because otherwise (M, fR) is a template for H by Corollary 30 (as
H is non-regular). Next, we need the following very simple claim.

Claim 66. Let M be an (r + 1)-clique with an edge-coloring c, let d be such that M+ is
d-regular, and let L ⊆ M , |L| = r. Then c(L) = (r − 1)(d− r/2).

Proof. e(L+) = e(M+)− d = d(r + 1)/2− d = d(r − 1)/2. Hence,

c(L) = 2e(L+)−

r

2


= 2 · d(r − 1)/2−


r

2


= d(r − 1)−


r

2


= (r − 1)(d− r/2).

We now continue with the proof of the lemma. Suppose first that there exist two
copies M1,M2 ⊆ R of Kr+1 such that M+

1 is d-regular and M+
2 is d′-regular for some

d ∕= d′. Let L1 ⊆ M1 and L2 ⊆ M2 of size r each. Since d ∕= d′, it follows by Claim 66
that fR(L1) ∕= fR(L2). By Lemma 12 there exists a sequence L′

1, L
′
2, . . . , L

′
ℓ ⊆ R of copies

of Kr with L′
1 = L1 and L′

ℓ = L2 and such that L′
i and L′

i+1 share r − 1 vertices for each
1  i  ℓ−1. But then, there must exist some 1  i  ℓ−1 such that fR(L

′
i) ∕= fR(L

′
i+1).

Now (L′
i∪L′

i+1, fR) is a template for H by Lemma 29, in contradiction to our assumption.
So from now on, we assume that there exists d ∈ N such that for every (r + 1)-clique

M ⊆ R, M+ is d-regular. Trivially, 2 | d(r + 1). Note that d ∕= r/2, because if r + 1 is
even then r is odd and so d ∕= r/2, and if r+1 is odd then d must be even, so d ∕= r/2 as
r ∕≡4 0. Without loss of generality, let us assume that d > r/2 (otherwise consider M− in
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place of M+, replacing d with r− d). We claim that every copy L of Kr in R has positive
discrepancy. Indeed, as δ(R)/|R| > 1 − 1/r, there exists an (r + 1)-clique M containing
L. Now, Claim 66, fR(L) = (r− 1)(d− r/2) > 0. Finally, by Lemma 57, G′ has a perfect
H-factor with high discrepancy, as required.

The following is the second of the three lemmas.

Lemma 67. Suppose that r ≡4 0. Assume that H is non-regular, fulfills the r-wise
C4-condition, and violates the (r + 1)-wise C4-condition. Then

δ∗(H)  max{δ0(H), 1− 1/χ∗(H)}.

The proof of Lemma 67 proceeds by distinguishing between two cases. The first case
is that there exists an H-factor which is not balanced-uniform (recall Definition 39). In
this case we will show that δ0(H) = 1 − 1/r and hence δ∗(H)  1 − 1/r, and this will
match the upper bound on δ∗(H) we get from Lemma 61. Here the assumption r ≡4 0 will
play a crucial role. The second case is that there exists a non-balanced-uniform H-factor.
Here we will proceed by finding two r-cliques L1, L2 with |L1 ∩L2|  r− 2 and such that
L1 has positive discrepancy and L2 has negative discrepancy, as explained above. We will
eventually conclude that L1 ∪ L2 is a template for H by Lemma 32, finishing the proof.
The details follow.

Proof of Lemma 67. As always, we work under the setup of Section 6.2. In particular, we
assume that

δ(G′)/n, δ(R)/|R|  max{δ0(H), 1− 1/χ∗(H)}+ η/2.

As χ∗(H)  r − 1 for every r-chromatic graph, we have

δ(R)/|R| > r − 2

r − 1
. (39)

Our goal is to show that G′ contains a perfect H-factor with high discrepancy. Since H
violates the (r + 1)-wise C4-condition, we may apply Lemma 61 with k = r + 1 to get

δ∗(H)  1− 1/r.

Hence, if max{δ0(H), 1 − 1/χ∗(H)} = 1 − 1/r then we are done. So from now on we
assume that

max{δ0(H), 1− 1/χ∗(H)} < 1− 1/r. (40)

In particular, χ∗(H) < r, which implies that H has an unbalanced r-coloring. We now
consider two cases. For what follows, recall Definition 39.
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Case 1: Every H-factor is balanced-uniform. We will show that then δ0(H) = 1− 1/r,
which would contradict our assumption (40) and hence conclude the proof in this case.
Fix a 2-edge-coloring c of Kr such that c(Kr) = 0; such a coloring exists because Kr has
an even number of edges, as r ≡4 0. By Lemma 42, we have c ∈ K(H). Let B be an
m-blowup of (Kr, c), where m is divisible by (r − 1)!|H|. By Lemma 16, B has a perfect
H-factor. We claim that for every perfect H-factor FB of B it holds that c(FB) = 0.
Indeed, let B1, . . . , Br be the parts of B. By assumption, FB is balanced-uniform. Hence,
eFB

(Bi, Bj) = e(FB)/

r
2


for all 1  i < j  r. Therefore, c(FB) = c(Kr) · e(FB)/


r
2


= 0,

as required. It follows that δ0(H)  δ(B)/|B| = 1− 1/r, as claimed.

Case 2: There exists a non-balanced-uniform union F of disjoint copies of H.1 By
Claim 41, there exists a balanced r-coloring A1, . . . , Ar of F such that eF (A1, A2) ∕=
eF (A3, A4). We may assume that R contains no template for H on at most r+2 vertices,
as otherwise, by Lemma 27, G′ contains a perfect H-factor of high discrepancy and we
are done.

If R contains an r-clique L such that L+ is non-regular (with respect to fR), then by
Lemma 40, (L, fR) is a template for H, contradicting our assumption. So suppose from
now on that every r-clique L in R is such that L+ is regular.

Assume first that there exist two r-cliques L1, L2 ⊆ R such that L+
1 is d-regular and

L+
2 is d′-regular for some d ∕= d′. Using (39) and Item 2 of Lemma 12, we obtain a

sequence of r-cliques L′
1, L

′
2, . . . , L

′
ℓ ⊆ R with L′

1 = L1 and L′
ℓ = L2, such that each pair

of subsequent r-cliques share at least r − 2 vertices. So there exist two r-cliques L,L′ in
R sharing at least r − 2 vertices, such that L+ is d-regular and L′+ is d′-regular for some
d ∕= d′. Without loss of generality, let us assume that L1, L2 were such r-cliques to begin
with. If |L1 ∩ L2| = r − 1 then (L1 ∪ L2, fR) is a template for H by Lemma 29, and if
|L1 ∩L2| = r− 2 then (L1 ∪L2, fR) is a template for H by Lemma 32. In either case, we
get a contradiction to our assumption.

Now assume that r-cliques L in R are d-regular with the same d (in the sense that L+

is d-regular). Without loss of generality, let us assume that d  (r − 1)/2, as otherwise
we may swap the colors, replacing d with r − 1 − d. Note that d ∕= r−1

2
because r ∕≡4 1.

As d > r−1
2
, all copies of Kr in R have positive discrepancy. Now, by Lemma 57, G′ has

a perfect H-factor with high discrepancy, completing the proof.

Finally, we arrive at the last of the three main lemmas, Lemma 68. This lemma deals
with the case r ≡4 2, 3. Its proof is by far the most involved part of this section. Recall
the definition of a butterfly from the introduction.

Lemma 68. Suppose that r  3 and r ≡4 2, 3. Assume that H satisfies the r-wise
C4-condition and is non-regular. Then

δ∗(H) 






max{δ0(H), 1− 1/χ∗(H), 4/7} r = 3 and some butterfly is not a template

for H,

max{δ0(H), 1− 1/χ∗(H)} otherwise.
1It is worth noting that the argument in Case 2 only requires that r ∕≡4 1 (instead of the stronger
assumption r ≡4 0).
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Let us comment on the proof of Lemma 68. Similarly to previous proofs, the proof of
Lemma 68 begins by finding two r-cliques L1, L2 with |L1 ∩ L2| = r− 2 such that L1 has
positive discrepancy and L2 has negative discrepancy. As always, we may assume that R
contains no small template for H, as otherwise we are done by Lemma 27. In particular,
L1 ∪L2 is not a template for H. Then, by Lemma 45, H is (s, t)-structured (for s, t given
by that lemma). In the case r ∕= 3 (namely r  6), we can use Lemma 56 to deduce
that max{δ0(H), 1− 1/χ∗(H)}  3r−5

3r−2
, which allows us to assume that δ(R)/|R| > 3r−5

3r−2
.

This minimum degree assumption is crucial for the proof, allowing us to establish various
structural properties of R and fR. Eventually we show that R is strongly tilted towards
one of the colors, which allows us to find a perfect H-factor of high disrepancy.

The case r = 3 is somewhat different. Note that 3r−5
3r−2

= 4
7
for r = 3. Big parts of

the proof for r ∕= 3 carry over to the case r = 3, provided we assume that δ(R)/|R| > 4
7
.

However, we may not make this assumption in all cases, because for some 3-chromatic
graphs H, the value of δ∗(H) is smaller than 4

7
. It turns out that making the assump-

tion δ(R)/|R| > 4
7
is justified exactly when some butterfly is not a template for H (cf.

Lemma 52). The proof of Lemma 68 is given in the next subsection.

11.1 Proof of Lemma 68

By Lemma 65, we have
δ∗(H)  1− 1/r. (41)

Therefore, if max{δ0(H), 1− 1/χ∗(H)} = 1− 1/r then the assertion of Lemma 68 holds.
So from now on, we assume that max{δ0(H), 1 − 1/χ∗(H)} < 1 − 1/r. In particular,
χ∗(H) < r. By the definition of χ∗, this implies that

H has an unbalanced r-coloring. (42)

As always, we work under the setup of Section 6.2, therefore assuming that

δ(R)/|R|  max{δ0(H), 1− 1/χ∗(H)}+ η/2, (43)

and

δ(R)/|R|  4/7 + η/2 if r = 3 and some butterfly is not a template for H. (44)

Since χ∗(H) > r − 1 for every r-chromatic H, (43) implies that

δ(R)/|R| > r − 2

r − 1
. (45)

We shall show thatG′ has a perfectH-factor with high discrepancy. Throughout the proof,
we assume that R contains no template for H on at most r + 2 vertices, as otherwise we
are done by Lemma 27. The following claim is used multiple times throughout the proof.

Claim 69. There is no sequence L′
1, L

′
2, . . . , L

′
ℓ ⊆ R of copies of Kr, such that |L′

i∩L′
i+1| 

r − 1 for every 1  i  ℓ− 1 and fR(L
′
1) ∕= fR(L

′
ℓ).

the electronic journal of combinatorics 31(3) (2024), #P3.33 62



Proof. As fR(L
′
1) ∕= fR(L

′
ℓ), there exists 1  i  ℓ − 1 such that fR(L

′
i) ∕= fR(L

′
i+1).

Using that H is non-regular, we get that (L′
i∪L′

i+1, fR) is a template for H by Lemma 29.
However, we assumed that R has no such template for H, a contradiction.

By (45), R contains a copy of Kr. Since r ≡4 2, 3, Kr has an odd number of edges
and thus, without loss of generality, let us assume that R contains a copy L1 of Kr with
fR(L1) > 0. If all copies of Kr in R have positive discrepancy, then we are done by
Lemma 57. Suppose therefore that R also contains a copy L2 of Kr with fR(L2) < 0.
By Lemma 12 and (45), there exists a sequence L′

1, L
′
2, . . . , L

′
ℓ ⊆ R of copies of Kr with

L′
1 = L1 and L′

ℓ = L2 such that every pair of subsequent copies share at least r−2 vertices.
Therefore, there exist two copies of Kr sharing at least r − 2 vertices with discrepancies
of different signs. Without loss of generality, let us assume that L1 and L2 are such
copies. If |L1 ∩ L2| = r − 1 then this is a contradiction to Claim 69. Suppose then that
|L1 ∩ L2| = r − 2. Put V = L1 ∩ L2, L1 \ L2 = {x1, y1} and L2 \ L1 = {x2, y2}.

We proceed with the proof of Lemma 68. By assumption, (L1 ∪ L2, fR) is not a
template for H. Hence, by Lemma 45, H is (s, t)-structured with

s :=
fR(L1)− fR(x1y1)− fR(L2) + fR(x2y2)

2(r − 2)
(46)

and
t := fR(x1y1)− fR(x2y2). (47)

Crucially, note that (s, t) ∕= (0, 0). Indeed, if t = 0 then s = fR(L1)−fR(L2)
2(r−2)

∕= 0 because

fR(L1) ∕= fR(L2).
By the definition of being (s, t)-structured (see Definition 44), there exists ρ ∈ R such

that for every r-coloring A1, . . . , Ar of H and for all 1  i < j  r, it holds that

ρ(|Ai|+ |Aj|) = s · eH(Ai ∪ Aj, V (H)\(Ai ∪ Aj)) + t · eH(Ai, Aj). (48)

First we handle the case thatH is uniform (recall Definition 33). Then for every r-coloring
A1, . . . , Ar of H and for all 1  i < j  r, it holds that

ρ(|Ai|+ |Aj|) = s · eH(Ai ∪ Aj, V (H)\(Ai ∪ Aj)) + t · eH(Ai, Aj)

= (2(r − 2)s+ t) · e(H)
r
2

 =
fR(L1)− fR(L2)

r
2

 · e(H),

where the second equality uses the uniformity of H. It follows that ρ ∕= 0 because
fR(L1) ∕= fR(L2). We get that |Ai|+ |Aj| is the same for all 1  i < j  r. By Claim 47,
|A1| = · · · = |Ar|. This means that H only has balanced r-colorings, contradicting (42).

For the rest of the proof, we assume that H is non-uniform. By Lemma 34 and as
(L1 ∪ L2, fR) is not a template for H (by assumption), we have that

fR(L1)−fR(x1y1)−fR(L2)+fR(x2y2) ∈ {−4(r−2),−2(r−2), 0, 2(r−2), 4(r−2)}. (49)

In the next claim, for the case r = 3, we classify the possible colorings of the triangles
L1, L2. Also, for each case, we specify the corresponding values of s, t.
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x1 y1

x2 y2
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x1 y1
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1. 2. 3.a)

u

x1 y1

x2 y2

u

x1 y1

x2 y2

4.3.b)

Figure 4: The possible configurations of L1, L2 corresponding to different cases in
Claim 70.
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Claim 70. Suppose that r = 3. Then one of the following holds:

1. L1, L2 are monochromatic. In this case (s, t) = (2, 2).

2. fR(x1y1) = fR(x2y2). In this case t = 0.

3. (L1 ∪ L2, fR) is a butterfly and L1, L2 are not monochromatic. In this case (s, t) ∈
{(2,−2), (0, 2)}.

4. Exactly one of L1 and L2 is monochromatic and fR(x1y1) ∕= fR(x2y2). In this case
(s, t) = (1, 2).

Proof. Clearly, if L1 is monochromatic then it has color 1 (as fR(L1) > 0), and similarly,
if L2 is monochromatic then it has color −1. If fR(x1y1) = fR(x2y2) then we are in Case
2, and t = 0 by (47). So let us assume that fR(x1y1) ∕= fR(x2y2). If L1 is monochromatic
then fR(x2y2) = −fR(x1y1) = −1, so this is covered by Case 1 or Case 4. In both cases,
it is immediate to compute s, t from (46) and (47).

Suppose then that L1 is not monochromatic. By symmetry (with respect to switching
the colors), we can also assume that L2 is not monochromatic.

Write L1 ∩ L2 = {u}. Suppose first that fR(x1y1) = −1. Then fR(x2y2) = 1, and we
also must have fR(ux1) = fR(uy1) = 1, fR(ux2) = fR(uy2) = −1 (because fR(L1) > 0,
fR(L2) < 0). So (L1∪L2, fR) is a butterfly (Case 3), and (s, t) = (2,−2) by (46) and (47).
Suppose now that that fR(x1y1) = 1. Then, fR(x2y2) = −1, and without loss of generality
(up to switching x1, y1 or x2, y2), we have fR(ux1) = 1, fR(uy1) = −1, fR(ux2) = −1,
fR(uy2) = 1. So again (L1 ∪ L2, fR) is a butterfly, and (s, t) = (0, 2).

Next, we address some subcases of the case r = 3, namely, Cases 1-2 in Claim 70.
These cases need to be handled separately.

11.1.1 Cases 1-2 of Claim 70

Throughout this section we assume that r = 3. Our goal is to complete the proof of
Lemma 68 in Cases 1-2 of Claim 70. Case 1 is simple, while Case 2 requires considerable
work.

Case 1: By (42), H has an unbalanced 3-coloring. Fix such a coloring A1, A2, A3, and
suppose without loss of generality that |A1| < |A3|. By Claim 70, (s, t) = (2, 2). By (48),
we have

ρ(|Ai|+ |Aj|) = 2eH(Ai ∪ Aj, V (H)\(Ai ∪ Aj)) + 2eH(Ai, Aj) = 2e(H)

for every pair 1  i < j  3. In particular, ρ ∕= 0. So |Ai| + |Aj| = 2e(H)/ρ for all
1  i < j  3. But this implies that |A1| + |A2| = |A2| + |A3|, in contradiction to
|A1| < |A3|. This completes Case 1.
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Case 2: fR(x1y1) = fR(x2y2). By Claim 70, we have t = 0. Then s ∕= 0, because
(s, t) ∕= (0, 0). By normalizing, we get that H is (1, 0)-structured (recall that if H is (s, t)
structured then it is also (α · s,α · t)-structured). With a slight abuse of notation, we will
set (s, t) = (1, 0) for the rest of Case 2. By (48),

ρ(|Ai|+ |Aj|) = eH(Ai ∪ Aj, V (H)\(Ai ∪ Aj)) = e(H)− eH(Ai, Aj) (50)

holds for every 3-coloring A1, A2, A3 of H and for all 1  i < j  3. Summing this over
all i, j, we get

2ρ|H| = ρ


1i<j3

(|Ai|+ |Aj|) = 3e(H)−


1i<j3

eH(A1, A2) = 2e(H).

Hence,
e(H) = ρ|H|. (51)

This implies that ρ > 0. Combining (51) with (50), we get

eH(Ai, Aj) = ρ(|H|− |Ai|− |Aj|). (52)

Next, we show that a pair of intersecting triangles in R cannot have opposite edges of
different color.

Claim 71. Let L′
1, L

′
2 be two distinct triangles in R with |L′

1∩L′
2|  1. Let e1, e2 be edges

with L′
1 \ L′

2 ⊆ e1 and L′
2 \ L′

1 ⊆ e2. Then fR(e1) = fR(e2).

Proof. Suppose first |L′
1 ∩L′

2| = 1, so that e1 ∩ e2 = ∅. Assume, for the sake of contradic-
tion, that fR(e1) ∕= fR(e2). By assumption, (L′

1 ∪ L′
2, fR) is not a template for H. Then,

by Lemma 45, H is (s′, t′)-structured with t′ = fR(e1)−fR(e2) ∕= 0 (the value of s′ will not
be important). By normalizing, H is (s′′, 1)-structured for some s′′. In addition, we saw
above that H is (1, 0)-structured. So by Lemma 48, every 3-coloring of H is balanced, a
contradiction.

Suppose now |L′
1 ∩ L′

2| = 2, and write e1 = vw1, e2 = vw2, L′
1 = {u, v, w1},

L′
2 = {u, v, w2}. Recall that δ(R)/|R|  1/2 + η/2 by (45). This implies that for

each i = 1, 2, there exists a common neighbour zi of u, wi, zi ∕= v. By the previous case
for the triangles {u, v, w2} and {u, w1, z1}, it holds that fR(w1z1) = fR(vw2) = fR(e2).
Similarly, fR(w2z2) = fR(vw1) = fR(e1). Finally, by considering the triangles {u, w1, z1}
and {u, w2, z2}, we get that fR(w1z1) = fR(w2z2), so fR(e1) = fR(e2).

Claim 71 means that for every vertex v ∈ V (R), all edges opposite v in triangles
containing v have the same color. Let W+ ⊆ V (R) be the vertices for which these edges
have color 1, and let W− = V (R)\W+ be the vertices for which these edges have color
−1. We now consider two cases according to the size of the sets W+,W−.
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Case 2(a): |W+|  (1/2 + η/2)|R| or |W−|  (1/2 + η/2)|R|. Without loss of gen-
erality, assume that |W+|  (1/2 + η/2)|R|. Recall the definition of the graph H∗ (see
Definition 19). In particular, H∗ is a complete 3-partite graph and has a perfect H-factor.
Recall the definition of V0 (i.e., V0 is the exceptional set in the regular partition of G′).
Finally, recall that for a vertex-set W ⊆ V (R), VW :=


w∈W Vw ⊆ V (G′) denotes the

union of clusters corresponding to the vertices of W . Put V+ = VW+ and V− = VW− . In
the following key claim, we show that if J is an H∗-copy in G′ disjoint from V0, then
for every perfect H-factor F of J , the discrepancy of F can be expressed in terms of the
intersection of V (J) with V+ and V−. We will then use this claim to conclude the proof
in Case 2(a).

Claim 72. Let J be an H∗-copy in G′ with V (J)∩V0 = ∅. Then for every perfect H-factor
F of J ,

f(F ) = ρ (|V (FJ) ∩ V+|− |V (FJ) ∩ V−|) . (53)

Proof. Recall that for a vertex v ∈ V (G′) \ V0, we use V R
v ∈ V (R) to denote the cluster

of the regular partition containing v. The assumption V (J) ∩ V0 = ∅ means that V R
v is

well-defined for every v ∈ V (J).
Let B1, B2, B3 be the parts of J . We claim that all bipartite graphs (Bi, Bj), 1 

i < j  3, are monochromatic. Indeed, assume by contradiction (and without loss of
generality) that there exist b1, b

′
1 ∈ B1 and b2 ∈ B2 with f(b1b2) ∕= f(b′1b2). Fix an

arbitrary b3 ∈ B3. Consider the clusters V R
b1
, V R

b′1
, V R

b2
, V R

b3
∈ V (R) corresponding to the

vertices b1, b
′
1, b2, b3, respectively. Then V R

b1
, V R

b2
, V R

b3
and V R

b′1
, V R

b2
, V R

b3
are triangles in R,

and the edges V R
b1
V R
b2

and V R
b′1
V R
b2

opposite V R
b3

in these triangles have different colors (as

f(b1b2) ∕= f(b′1b2)). This is a contradiction, proving our claim that all bipartite graphs
(Bi, Bj) are monochromatic. This means that (J, fR) is a blowup of (K3, c) for some
coloring c of K3.

Next, we claim that Bi ⊆ V+ or Bi ⊆ V− for each i = 1, 2, 3. Let us prove this for
i = 1. Fix arbitrary vertices b2 ∈ B2 and b3 ∈ B3. As J is a complete tripartite graph,
every vertex b1 ∈ B1 forms a triangle with b2, b3. Now, by definition, if fR(V

R
b2
V R
b3
) = 1

then V R
b1

∈ W+ and hence b1 ∈ V+ for all b1 ∈ B1, and if fR(V
R
b2
V R
b3
) = −1 then V R

b1
∈ W−

and hence b1 ∈ V− for all b1 ∈ B1. This proves our claim.
Let H ′ be a copy of H in F , and let Ai := V (H ′)∩Bi, so that A1, A2, A3 is a 3-coloring

of H ′. Observe that if A3 ⊆ V+ (resp. A3 ⊆ V−) then all edges between A1, A2 have color
1 (resp. −1). Moreover, eH′(A1, A2) = ρ|A3| by (52). By using this and the analogous
statement for the pairs A1, A3 and A2, A3, we get the following:

f(H ′) =


i∈[3]: Ai⊆V+

ρ|Ai|−


i∈[3]: Ai⊆V−

ρ|Ai| = ρ (|V (H ′) ∩ V+|− |V (H ′) ∩ V−|) .

Summing the above over all H-copies H ′ in F gives (53).

We now conclude Case 2(a). By Lemma 25, G′ has a perfect H∗-factor F ∗. Recall
that e(H) = ρ|H| (by (51)) and therefore, any perfect H-factor of H∗ has exactly e(H) ·
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|H∗|/|H| = ρ|H∗| edges. Let F be a perfect H-factor of G′, obtained by taking a perfect
H-factor FJ of each H∗-copy J in F ∗. Our assumption |W+|  (1/2+η/2)|R| means that
|V+|  (1/2 + η/2)(n − |V0|) and hence |V−|  (1/2 − η/2)(n − |V0|). There are at most
|V0| copies of H∗ in F ∗ which intersect V0, and for each such copy J , FJ has ρ|H∗| edges.
For all other H∗-copies J ∈ F ∗, we use (53) with F = FJ . Combining all of this, we get:

f(F ) =


J∈F ∗

f(FJ)  ρ


J∈F ∗:V (J)∩V0=∅

(|V (FJ) ∩ V+|− |V (FJ) ∩ V−|)− ρ|H∗||V0|

 ρ (|V+|− |H∗||V0|− |V−|)− ρ|H∗||V0|  ρη(n− |V0|)− 2ρ|H∗||V0|  ρηn/2  γn.

(54)

The quantity |V+|− |H∗||V0| in the second line of (54) is a lower bound in


J |V (J)∩V+|
over all J with V (J)∩V0 = ∅. The penultimate inequality in (54) holds because |V0|  εn,
ε ≪ 1

|H| , η, and H∗ depends only on H and η. Finally, the last inequality in (54) holds

because γ ≪ 1
|H| , η, and ρ > 0 depends only on H. By (54), F has high discrepancy. This

concludes Case 2(a).

Case 2(b) |W+|, |W−| < (1/2 + η/2)|R|. We will show that this case is impossible.
First, we prove some structural properties of R and fR.

Claim 73. R[W+] and R[W−] are triangle-free.

Proof. We only prove the assertion for R[W+]; the proof for R[W−] is analogous. Let
S ⊆ W+ be the largest clique in W+. We need to show that |S|  2. Suppose by
contradiction that |S|  3. Then, all the edges in R[S] must have color 1, because each
such edge is contained in a triangle in R[S], hence it is the edge opposite to a vertex from
W+ in a triangle. By (45),



s∈S

|NR(s)|  (1/2 + η/2)|R||S|. (55)

Note that no two vertices in S share a neighbor in W−, because else we get a triangle
containing a vertex from W− whose opposite edge has color 1, contradicting the definition
of W−. Also, each vertex in W+ can only be connected to at most |S| − 1 vertices in
S, as otherwise we add this vertex to S and get a larger complete graph inside W+,
contradicting the maximality of S. It follows that



s∈S

|NR(s)|  |W−|+ (|S|− 1)|W+| < (1/2 + η/2)|R||S|,

using |W+|, |W−| < (1/2 + η/2)|R|. This contradicts (55).

Claim 74. Every vertex in W+ has an edge of color 1 to some vertex in W−, and every
vertex in W− has an edge of color −1 to some vertex of W+.
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Proof. We only prove the assertion for vertices W+; the other case is symmetrical. So let
v ∈ W+. Since δ(R)  (1/2 + η/2)|R| > |W+|, |W−| by (45), v must have a neighbour
u in W+. Since δ(R) > |R|/2, there is a common neighbour w of u, v. Then w ∈ W−
because R[W+] is triangle-free by Claim 73. The edge vw has color 1 because it is the edge
opposite u ∈ W+ in the triangle u, v, w. So v indeed has an edge of color 1 to W−.

Claim 74 implies that there exists a cycle C in the bipartite graph R[W+,W−] with
edges of alternating color. To see this, consider an orientation of the edges of R[W+,W−]
where all edges of color 1 are oriented from W+ to W− and all edges of color −1 are
oriented from W− to W+. In this orientation, every vertex has outdegree at least 1 (by
Claim 74), and therefore there exists a directed cycle, which corresponds to a cycle whose
edges alternate in color.

By averaging, there is a vertex v ∈ V (R) which is connected to at least |C|·δ(R)/|R| >
|C|/2 vertices of C. Note that the edges of C of color 1 as well as the edges of color −1
form a perfect matching of C. Therefore, there exists an edge of color 1 in C such that v
is connected to both of its endpoints and similarly, an edge of color −1 in C such that v
is connected to both of its endpoints. But then v is contained in a triangle with opposite
edge of color 1 and in a triangle with opposite edge of color −1, a contradiction. This
completes Case 2(b) and hence Case 2 altogether.

11.1.2 Minimum degree at least 3r−5
3r−2

and the structure of R

We continue with the proof of Lemma 68. From now on, we will assume that if r = 3
then Cases 1-2 of Claim 70 do not hold. The following key claim provides a lower bound
on δ(R)/|R|.

Claim 75. It holds that

δ(R)/|R|  3r − 5

3r − 2
+ η/2. (56)

Proof. By (46) and (49), we have s ∈ {−2,−1, 0, 1, 2}. Note also that t ∈ {−2, 0, 2} by
(47), and recall that (s, t) ∕= (0, 0). We now normalize the parameters s, t in order to
apply Lemma 56. Recall that if H is (s, t)-structured then it is also (α · s,α · t)-structured
for every α ∈ R. If s = 0 then by normalizing, we may assume that t = 1. And if s ∕= 0,
then by dividing (s, t) by s, we may assume that s = 1 and t ∈ {−2,−1, 0, 1, 2}. In any
case, the normalized parameters fit the assumption of Lemma 56. Hence, if r  6, then
Lemma 56 gives

max{δ0(H), 1− 1/χ∗(H)}  3r − 5

3r − 2
.

So (56) follows from (43).
It remains to prove (56) when r = 3. Note that 3r−5

3r−2
= 4

7
for r = 3. By assumption,

we are in Case 3 or 4 of Claim 70. Suppose first that we are in Case 3, so (L1 ∪ L2, fR)
is a butterfly. By assumption, (L1 ∪ L2, fR) is not a template for H. Hence, there exists
a butterfly which is not a template for H. Now (56) holds by (44). Finally, suppose
that we are in Case 4 of Claim 70. Then H is (1, 2)-structured. Now, by Lemma 55,
max{δ0(H), 1− 1/χ∗(H)}  5

8
> 4

7
, so again (56) holds by (43).
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The proof proceeds with a sequence of claims that slowly uncovers the structure of R,
deducing the color of various edges from the assumption that R does not have templates
for H. For example, in the case r ∕= 3, we will eventually show that R is strongly
tilted towards one of the colors, which will allow us to find a perfect H-factor with high
discrepancy. The bound (56) will be crucial.

Recall that V (L1) = V ∪ {x1, y1} and V (L2) = V ∪ {x2, y2}. Let X1 ⊆ V (R) be the
common neighborhood of y1 and V , Y1 ⊆ V (R) the common neighborhood of x1 and
V , X2 ⊆ V (R) the common neighborhood of y2 and V , and Y2 ⊆ V (R) the common
neighborhood of x2 and V . Note that xi ∈ Xi, yi ∈ Yi for i = 1, 2. Using (56), we get

|X1|, |Y1|, |X2|, |Y2|  (r − 1)δ(R)− (r − 2)|R| 


1

3r − 2
+ η


|R|. (57)

We now establish some properties of the sets X1, Y1, X2, Y2.

Claim 76. For every edge e ∈ R[X1 ∪ Y1] it holds that fR(e) = fR(x1y1), and for every
edge e ∈ R[X2 ∪ Y2] it holds that fR(e) = fR(x2y2).

Proof. We only prove the claim for X1 ∪ Y1; the proof for X2 ∪ Y2 is analogous. Let us
assume by contradiction that there exist vertices u, v ∈ X1 ∪ Y1 such that uv ∈ E(R)
and fR(uv) = −fR(x1y1). By definition, u, v are adjacent to all vertices in V , hence
M1 := V ∪ {u, v} is an r-clique in R. Without loss of generality, let us assume that
u ∈ X1. Then u is adjacent to y1, so M2 := V ∪ {u, y1} is also an r-clique. Now,
M1,M2, L1 is a sequence of r-cliques with |M1∩M2| = |M2∩L1| = r− 1, so by Claim 69,

fR(M1) = fR(L1).

Now, consider the two r-cliques M1, L2. We have V ⊆ M1∩L2, so |M1∩L2|  r−2. Also,
fR(M1) ∕= fR(L2) because fR(L1) ∕= fR(L2). By Claim 69 we know that |M1∩L2| ∕= r−1,
so |M1 ∩ L2| = r − 2. As (M1 ∪ L2, fR) is not a template for H, we have by Lemma 45
that H is (s′, t′)-structured with

s′ =
fR(M1)− fR(uv)− fR(L2) + fR(x2y2)

2(r − 2)

and
t′ = fR(uv)− fR(x2y2).

As before, (s′, t′) ∕= (0, 0) because fR(M1) ∕= fR(L2). As fR(uv) = −fR(x1y1), exactly
one of t, t′ is zero. Also, for the pair among (s, t), (s′, t′) where the second coordinate
is not zero, we can normalize this coordinate to be 1. Now H satisfies the conditions
of Lemma 48. Hence, by Lemma 48, all r-colorings of H are balanced, contradicting
(42).

Claim 77. The sets X1∪Y1 and X2∪Y2 are disjoint, and R has no edges between X1∪Y1

and X2 ∪ Y2.
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Proof. We first prove the second part of the claim. So assume that there exist u ∈ X1∪Y1

and v ∈ X2 ∪ Y2 such that uv ∈ R. Without loss of generality, let us assume that u ∈ X1

and v ∈ X2 (the other three cases are similar). Then, by definition, u, v are adjacent to all
vertices of V , u is adjacent to y1, and v is adjacent to y2. So L1, V ∪{u, y1}, V ∪{u, v}, V ∪
{v, y2}, L2 is a sequence of copies of Kr with every two consecutive copies sharing at least
r − 1 vertices. This contradicts Claim 69 as fR(L1) ∕= fR(L2).

Now assume by contradiction that there is u ∈ (X1 ∪ Y1) ∩ (X2 ∪ Y2). Without loss
of generality, suppose that u ∈ X1 ∩ X2. In particular, u is adjacent to y2. As y2 ∈ Y2,
the edge uy2 goes between X1 and Y2. This is a contradiction, as we already showed that
there are no edges between X1 ∪ Y1 and X2 ∪ Y2.

Claim 78. Either both X1 and Y1 are not independent sets, or both X2 and Y2 are not
independent sets.

Proof. Let us assume that one of X2, Y2 is independent, and show that then X1, Y1 are
not independent. So suppose without loss of generality that X2 is independent. Then X2

and Y2 are disjoint, because x2 ∈ X2 is connected to all of Y2. By Claim 77, there are
no edges between X1 ∪ Y1 and X2 ∪ Y2. Hence, if X1 were also independent, then every
vertex in X1 would have degree at most

|R|− |X1|− |X2|− |Y2| 
3r − 5

3r − 2
|R|,

using (57). This contradicts (56). By the same argument, Y1 is also not independent.

Without loss of generality, let us assume that neither X1 nor Y1 is an independent set in
R. For the rest of the proof, fix an edge u1v1 ∈ R[X1]. By definition, u1, v1 are adjacent
to y1 and all vertices of V . Hence, M := V ∪ {u1, v1, y1} is a clique of size r+1 in R. We
now show that M is monochromatic.

Claim 79. R[M ] is monochromatic with respect to fR.

Proof. For convenience, put c = fR(x1y1). By Claim 76 and as x1, u1, v1 ∈ X1, y1 ∈ Y1,
we have

fR(u1v1) = fR(u1y1) = fR(v1y1) = fR(x1y1) = c. (58)

By assumption, (M, fR) is not a template for H. By Corollary 30, this means that R[M ]c

is d-regular for some d. If d = r then R[M ] is monochromatic, so let us assume, by
contradiction, that d < r.

Suppose first that r = 3. By (58), u1, v1, y1 is a monochromatic triangle of color c. A
regular graph on 4 vertices containing a triangle must be a complete graph, so R[M ] is
monochromatic, as required.

From now on, assume that r  4. Since d < r, u1 has an edge of color−c to some vertex
z ∈ M . By (58), z ∈ V . Now consider the two r-cliques M1 := (V \{z})∪{y1, u1, v1} and
M2 := V ∪ {u1, v1}. Then |M1 ∩M2| = r− 1, so fR(M1) = fR(M2) by Claim 69. We will
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now apply Lemma 34 to M1,M2 with e1 = u1y1 and e2 = u1z (and with (V \ {z}) ∪ {v1}
in the role of V ). Note that

fR(M1)− fR(e1)− fR(M2) + fR(e2) = fR(e1)− fR(e2) ∈ {−2, 2},

using that fR(e2) = −c = −fR(e1). As r  4, it follows that

fR(M1)− fR(e1)− fR(M2) + fR(e2) /∈ {−4(r − 2),−2(r − 2), 0, 2(r − 2), 4(r − 2)}.

Now Lemma 34 implies that (M1∪M2, fR) is a template for H, contradicting our assump-
tion that R has no such template.

By Claim 79, M is monochromatic. As L1 intersects the r-clique V ∪ {u1, y1} ⊆ M in
r − 1 vertices, we must have fR(L1) = fR(V ∪ {u1, y1}) by Claim 69. Since fR(L1) > 0,
it follows that L1 is monochromatic2 in color 1, and in particular fR(x1y1) = 1.

Recall that H is (s, t)-structured. Using that L1 is monochromatic in color 1, we now
show that only few options for s and t are possible.

Claim 80. The following holds:

1. Suppose that r ∕= 3. Then H is (1, 0)-structured or (1, 1)-structured.

2. Suppose that r = 3. Then fR(L2) = −1 and H is (1, 2)-structured.

Proof. We begin with the case r ∕= 3, namely r  6. If fR(x2y2) = 1 then t = 0
by definition, recall (47). As (s, t) ∕= (0, 0), we can normalize to get that H is (1, 0)-
structured.

Suppose now that fR(x2y2) = −1. Then t = 2. Also, using that fR(L1) =

r
2


and

fR(L2) < 0, we get

fR(L1)− fR(x1y1)− fR(L2) + fR(x2y2) =


r

2


− fR(L2)− 2 


r

2


− 1 > 2(r− 2), (59)

where the last inequality holds for r > 3. Contrasting this with (49), we see that the LHS
of (59) equals 4(r − 2), which implies that s = 2 by (46). So H is (2, 2)-structured and
hence (1, 1)-structured.

Now suppose that r = 3. By assumption, we are in Case 3 or 4 of Claim 70. Case 3 is
impossible because L1 is monochromatic, hence we are in Case 4. So H is (1, 2)-structured
and fR(L2) = −1 (as L2 is not monochromatic and fR(L2) < 0).

Claim 81. X2 ∩ Y2 = ∅.
2It is worth noting that from this point on, we must have r  7; namely, the proof is already complete
for all r  8. Indeed, since all edges in V have color 1, and L2 has exactly 2r − 3 edges not contained
in V , we have 0 > fR(L2) 


r−2
2


− (2r − 3), which only holds if r  7. So the remaining cases are

r ∈ {3, 6, 7}.
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Proof. We will show that X2 is an independent set (the same is true for Y2). This will
imply the claim because x2 ∈ X2 is adjacent to all vertices in Y2 (by the definition of Y2),
so if there existed u ∈ X2 ∩ Y2, then x2u would be an edge inside X2, a contradiction.

So let us assume, by contradiction, that R has an edge u2v2 with u2, v2 ∈ X2. By the
definition of X2, u2, v2 are adjacent to V ∪ {y2}.

Suppose first that r = 3. By Claim 76, the triangle M1 := {u2, v2, y2} is monochro-
matic (with color fR(x2y2)). Write V = {v} (recall that |V | = r− 2). So M2 = {v, v2, y2}
is a triangle. Now, M1,M2, L2 = {v, x2, y2} is a sequence of triangles with |M1 ∩M2| =
|M2 ∩ L2| = 2. Also, M1 is monochromatic, while L2 is not monochromatic because
fR(L2) = −1 by Claim 80. This contradicts Claim 69.

Suppose now that r ∕= 3, namely r  6. Note that M0 := V ∪ {y2, u, v} is a copy of
Kr+1 in R. By assumption, (M0, fR) is not a template for H. Hence, by Corollary 30,
there is d′ ∈ N such that M−

0 is d′-regular. All edges inside V have color 1, so all edges
of M0 of color −1 must touch {y2, u, v}. Considering the edges of color −1 touching V ,
we get (r − 2)d′ = |V |d′  3d′. As r  6, we get that d′ = 0, i.e. M0 is monochromatic
in color 1. In particular, uv and all edges between y2 and V have color 1. By Claim 76,
fR(x2y2) = fR(uv) = 1. Hence, the only edges of L2 that can have color −1 are edges
between x2 and V . The number of these edges is the same as the number of edges between
y2 and V , which all have color 1. So fR(L2) > 0, a contradiction. This completes the
proof of the claim

We can now complete the proof in the case r = 3. By Claim 80, H is (1, 2)-structured.
By Lemma 55, we have max{δ0(H), 1− 1/χ∗(H)}  5/8. Thus, by (56),

δ(R)/|R|  5/8. (60)

This allows us to improve on (57) as follows:

|X2|, |Y2|  2δ(R)− |R|  |R|/4.

By Claim 81, X2 and Y2 are disjoint and therefore, |X2 ∪ Y2|  |R|/2. Now recall that
x1 ∈ X1 and by Claim 77, x1 is not adjacent to any vertex in X2 ∪ Y2. This contradicts
with (60), completing the proof of Lemma 68 for r = 3. For the rest of the proof, we
assume that r ∕= 3, namely r  6. This case is handled in the following subsection.

11.1.3 Concluding the proof: The case r  6

Recall that u1v1 is an edge of R with u1, v1 ∈ X1, so that u1, v1 are adjacent to all vertices
in V ∪ {y1}. Let N ⊆ V (R) be the common neighborhood of u1 and v1, and note that
V ⊆ N . By Claim 77, u1 and v1 are not adjacent to any vertex in X2 ∪ Y2. Using that
X2 and Y2 are disjoint (by Claim 81),

|N |  2δ(R)− (|R|− |X2|− |Y2|) 

3r − 6

3r − 2
+ η


|R|, (61)
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where the last inequality uses (56) and (57). As δ(R) > 3r−5
3r−2

|R|, each vertex in R is

adjacent to all but at most 3
3r−2

|R| of the vertices, and hence

δ(R[N ])  |N |− 3

3r − 2
|R| > r − 3

r − 2
|N |. (62)

The minimum degree of R[N ] implies the following:

For each k < r − 1, every copy of Kk in R[N ] is contained in a copy of Kr−1 in R[N ].

(63)

Claim 82. Every edge inside N ∪ {u1, v1} has color 1.

Proof. Assume by contradiction that there is an edge e of color −1 inside N ∪ {u1, v1}.
By (63), there is an (r − 2)-clique L ⊆ N which contains e \ {u1, v1}. Using that u1, v1
are adjacent to all vertices in N , we see that L ∪ {u1, v1} is an r-clique containing e and
u1, v1. As fR(e) = −1, we have fR(L ∪ {u1, v1}) <


r
2


.

Now consider L and V , which are both cliques of size r−2 contained in N . By Item 1
of Lemma 12 with k = r−2 and J = R[N ], using (62), there is a sequence M1,M2, . . . ,Mℓ

of (r − 2)-cliques inside R[N ], such that M1 = L, Mℓ = V , and Mi−1,Mi share at least
r − 3 vertices for all 1  i < ℓ. Let M ′

i := Mi ∪ {u1, v1}. Then M ′
i is an r-clique in

R, and M ′
i−1,M

′
i share at least r − 1 vertices for all 1  i < ℓ. Also, as V ∪ {u1, v1} is

monochromatic in color 1, we have

fR(M
′
1) = fR(L ∪ {u1, v1}) ∕=


r

2


= fR(V ∪ {u1, v1}) = fR(M

′
ℓ).

This contradicts Claim 69.

Let W = V (R)\N ∪ {u1, v1}. By Claim 82, all edges of color −1 in R are incident to
W . Also, by (61), we have

|W | 


4

3r − 2
− η


|R| 


1

4
− η


|R|, (64)

using r  6. In the following claim we derive some properties of r-cliques which intersect
W in only one or two vertices.

Claim 83. The following holds:

1. Let L be a copy of Kr in R which has exactly one vertex in W . Then L is monochro-
matic in color 1.

2. Suppose that H is (1, 0)-structured. Let L be a copy of Kr in R which has exactly
two vertices w1, w2 in W . Then fR(w1w2) = 1.
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Proof. We begin with the first item. Let w be the unique vertex in L ∩ W . We claim
that there is an r-clique L′ in R with L′ ⊆ N ∪ {u1, v1} and |L ∩ L′| = r − 1. If u1 /∈ L
then L′ = (L \ {w}) ∪ {u1} is such an r-clique (here we use the fact that u1 is adjacent
to all vertices in V (R) \ (W ∪ {u1}), and hence to all vertices of L \ {w}). So assume
that u1 ∈ L. By the same argument, we may assume that v1 ∈ L. Then L \ {u1, v1, w}
is a clique of size r − 3 contained in N . By (63), there is a clique M ′ of size r − 2 with
M ′ ⊆ N and L \ {u1, v1, w} ⊆ M ′. Now L′ = M ′ ∪ {u1, v1} satisfies our requirements. As
|L∩L′| = r− 1, we have fR(L) = fR(L

′) by Claim 69. By Claim 82, L′ is monochromatic
in color 1, as L′ ⊆ N ∪ {u1, v1}. So L is also monochromatic in color 1.

We now prove the second item. Put M ′ := L \ {w1, w2}; so M ′ is a clique of size r− 2
andM ′ ⊆ N∪{u1, v1}. By (63), there is an (r−2)-cliqueM ′′ ⊆ N withM ′\{u1, v1} ⊆ M ′′.
Now, L′ := M ′′ ∪ {u1, v1} is an r-clique with |L ∩ L′| = r − 2, L \ L′ = {w1, w2} and
L′ ⊆ N∪{u1, v1}. In particular, the edge e := L′\L has color 1. Suppose by contradiction
that fR(w1w2) = −1. By assumption, (L′∪L, fR) is not a template for H. By Lemma 45,
H is (s′, t′)-structured with t′ = fR(e) − fR(w1w2) = 2 (the value of s′ will not be
important). By normalizing, H is ( s

′

2
, 1)-structured. Additionally, H is (1, 0)-structured

by assumption. Now, by Lemma 48, H has only balanced r-colorings, a contradiction to
(42).

Recall the definition of the graphH∗ (see Definition 19). In particular,H∗ is a complete
r-partite graph and has a perfect H-factor. Recall the definition of V0 in Section 6.2
(namely, V0 is the exceptional set given by the regularity lemma). The following key
claim shows that if an H∗-copy J in G′ does not intersect V0, then every perfect H-factor
of J has only few edges of color −1. Using this claim, we then easily complete the proof
of the lemma. Recall that H is (1, 0)- or (1, 1)-structured by Item 1 of Claim 80. Let ρ′

be the corresponding parameter (as in Definition 44), and note that ρ′ > 0. Recall that
VW =


w∈W Vw ⊆ V (G′) denotes the union of clusters which correspond to the vertices

in W ⊆ V (R).

Claim 84. Let J be an H∗-copy in G′ with V (J) ∩ V0 = ∅, and let A1, . . . , Ar be the
parts of J . Let I be the set of indices i ∈ [r] such that Ai ⊆ VW . Then for every perfect
H-factor F of J ,

e(F−)  ρ′


i∈I

|Ai|  ρ′|V (J) ∩ VW |. (65)

Proof. The right inequality in (65) is immediate from the definitions. We prove the left
inequality. For each i ∈ [r], choose ai ∈ Ai such that ai ∈ Ai \ VW if i /∈ I, and else ai
is arbitrary. Set L = {a1, . . . , ar}, so L ⊆ J is an r-clique in G′. Let LR ⊆ R be the
corresponding r-clique in R, namely LR = {V R

a1
, . . . , V R

ar}. The assumption V (J)∩V0 = ∅
means that the cluster Va ∈ V (R) is well-defined for every a ∈ V (J).

First, suppose that there exist 1  i ∕= j  r and u, v ∈ Ai and w ∈ Aj so that
f(uw) ∕= f(vw). Without loss of generality, let us assume that i = 1, j = 2. Recall
that we assume that H is non-uniform. Hence, by Claim 35, there exists an r-coloring
B1, B2, . . . , Br of H such that eH(B1, B2) ∕= eH(B1, B3) and thus, there exists b ∈ B1 such
that dH(b, B2) ∕= dH(b, B3). Now consider the two r-cliques M1 := {V R

u , V R
w , V R

a3
, . . . , V R

ar}
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and M2 := {V R
v , V R

w , V R
a3
, . . . , V R

ar} in R. We have |M1∩M2| = r−1, so fR(M1) = fR(M2)
by Claim 69. Also, fR(V

R
u V R

w ) ∕= fR(V
R
v V R

w ). Hence, by Lemma 31, (M1 ∪ M2, fR) is a
template for H, contradicting our assumption that R contains no such template.

So from now on, we assume that for all 1  i ∕= j  r and u, v ∈ Ai, w ∈ Aj, it holds
that f(uw) ∕= f(vw). This means that all bipartite graphs (Ai, Aj) are monochromatic.
In other words, (J, f) is a blowup of (LR, fR). As all the edges in R of color −1 are
incident to W , all the edges of color −1 in J must be incident to


i∈I Ai. Indeed, if

i, j /∈ I then Ai, Aj ∕⊆ VW , so there must be an edge of color 1 between Ai, Aj. But as
(Ai, Aj) is monochromatic, all edges between Ai, Aj have color 1.

By Claim 83, if |I|  1 then e(F−) = 0 and the claim holds trivially. Hence, we assume
that |I|  2. Let us now distinguish two cases. Suppose first that H is (1, 1)-structured
(with parameter ρ′). Then F is also (1, 1)-structured (with parameter ρ′), as F is an
H-factor. Hence (recall Definition 44), we have

ρ′(|Ai|+ |Aj|) = eF (Ai, Aj) + eF (Ai ∪ Aj, V (F )\(Ai ∪ Aj)) (66)

for all 1  i < j  r. Now, summing (66) over all pairs i, j with i, j ∈ I, we get

ρ′(|I|− 1)


i∈I

|Ai| =


i,j∈I

ρ′(|Ai|+ |Aj|)

=


i,j∈I

[eF (Ai, Aj) + eF (Ai ∪ Aj, V (J)\(Ai ∪ AJ))]

= (|I|− 1)


k∈I,ℓ∈[r]\I

eF (Ak, Aℓ) + (2|I|− 3)


k,ℓ∈I

eF (Ak, Aℓ)

 (|I|− 1)


k,ℓ:{k,ℓ}∩I ∕=∅

eF (Ak, Aℓ)

 (|I|− 1) · e(F−),

where the last inequality holds because every edge of color −1 in F is incident to


i∈I Ai.
Dividing through by |I|− 1  1, we get the left inequality in (65), as required.

Now suppose that H, and hence also F , are (1, 0)-structured. This means that

ρ′(|Ai|+ |Aj|) = eF (Ai ∪ Aj, V (J)\(Ai ∪ AJ)) (67)

for all 1  i < j  r. Summing (67) over all pairs (i, j) with i, j ∈ I, we get

ρ′(|I|− 1)


i∈I

|Ai| =


i,j∈I

ρ′(|Ai|+ |Aj|) =


i,j∈I

eF (Ai ∪ Aj, V (J)\(Ai ∪ AJ))

= (|I|− 1)


k∈I,ℓ∈[r]\I

eF (Ak, Aℓ) + 2(|I|− 2)


k,ℓ∈I

eF (Ak, Aℓ). (68)

If |I|  3 then 2(|I|−2)  |I|−1, so (68) counts eF (Ak, Aℓ) at least |I|−1 times for every
1  k < ℓ  r with {k, ℓ} ∩ I ∕= ∅. Hence, (68) is an upper bound for (|I| − 1) · e(F−),
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and the assertion of the claim follows by dividing (68) through by |I| − 1. Now suppose
that |I| = 2, say I = {1, 2} without loss of generality. Then, by Item 2 of Claim 83, all
edges between A1 and A2 have color 1. Therefore,

e(F−) 


k∈I,ℓ∈[r]\I

eF (Ak, Aℓ)  ρ′


i∈I

|Ai|,

using (68). So again the left inequality in (65) holds.

We now complete the proof of Lemma 68. By Lemma 25, G′ has a perfect H∗-factor
F ∗. For each H∗-copy J ∈ F ∗, let FJ be a perfect H-factor of J . Let F =


J∈F ∗ FJ be

the resulting perfect H-factor of G′. We now use Lemma 46 to estimate the number of
edges of H, using that H is (s′, t′)-structured for s′ = 1 and t′ ∈ {0, 1}. By Lemma 46,
e(H) = ρ′ r−1

(2r−4)s′+t′ |H|, so

ρ′|H|/2  ρ′
r − 1

2r − 3
|H|  e(H)  ρ′

r − 1

2r − 4
|H|  ρ′|H|.

It follows that e(F ) = n
|H| · e(H)  ρ′n/2. There are at most |V0| copies of H∗ in

F ∗ intersecting V0, and the H-factors of these copies of H∗ contain therefore at most
|V0| · |H∗|

|H| · e(H)  ρ′|V0||H∗| edges. Also, if an H∗-copy J ∈ F ∗ does not intersect V0,

then FJ contains at most ρ′|V (J) ∩ VW | edges of color −1, by Claim 84. It follows that

e(F−)  ρ′|V0||H∗|+ ρ′


J∈F ∗

|V (J) ∩ VW | = ρ′|V0||H∗|+ ρ′|VW |

(a)

 ρ′

εn|H∗|+


1

4
− η


n


(b)

 ρ′

1

4
− η

2


n  e(F )

2
− ρ′η

2
n

(c)

 e(F )

2
− γn.

(69)

Here, inequality (a) uses that |V0|  εn and that |VW | 

1
4
− η


n by (64). Inequality (b)

uses that H∗ depends only on H, η and ε ≪ 1
|H| , η. And inequality (c) uses that ρ′ > 0

depends only on H and γ ≪ 1
|H| , η. So we got that f(F ) = e(F )− 2e(F−)  γn, namely

F has high discrepancy. This completes the proof.

12 Proof of the main results

12.1 Proof of Theorem 4

Proof. Let H be a bipartite graph. By Corollary 62, we have δ∗(H)  3/4. By Lemma 50,
this is tight if H is regular. Therefore, let us assume from now on that H is non-regular.

First, suppose that there exists ρ such that for every connected component U of H
it holds that eH(U) = ρ|U |, which corresponds to the second case of Theorem 4. By
Lemma 51, we get that

δ∗(H)  1/2.
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Now, let us show that δ∗(H)  1/2. We work in the setup described in Section 6.2. In
particular, we assume that δ(R)/|R|  1/2+ η/2. We need to show that G′ has a perfect
H-factor with high discrepancy.

If R is monochromatic, then there exists a perfect H-factor in G′ with high discrepancy
by Lemma 57. Therefore, let us assume that R is not monochromatic. This implies that
there exist vertices u, v, w ∈ V (R) such that fR(uv) = −fR(vw) = 1. Indeed, R is not
monochromatic so there are edges xy, st of different colors. By Lemma 12 applied with
k = 2, there is a path in R whose first and last edges are xy and st. On this path, there
must be two consecutive edges of different colors, giving the vertices u, v, w as above.

Note that uv, vw are two copies of K2 with different discrepancies and H is non-
regular. By Lemma 29, ({u, v, w}, fR) is a template for H, and then by Lemma 27 (with
r = 2), G′ has a perfect H-factor with high discrepancy, as required.

Now suppose that we are in the last case of Theorem 4, meaning that there are two
connected components U,W of H and ρ ∕= ρ′ such that eH(U) = ρ|U | and eH(W ) = ρ′|W |.
In other words, eH(U)/|U | ∕= eH(W )/|W |. Recall that δ∗(H)  1−1/χ∗(H) trivially holds
for every H, so we only need to show that δ∗(H)  1 − 1/χ∗(H). Again, we show that
G′ has a perfect H-factor of high discrepancy under the setting of Section 6.2. As in the
previous case, we may assume that R is non-monochromatic as otherwise we are done by
Lemma 57. Thus, there exist edges e1, e2 with fR(e1) ∕= fR(e2). If e1, e2 are not disjoint
then (e1 ∪ e2, fR) is a template for H by Lemma 29, and if they are disjoint then it is a
template by Lemma 28. Either way, we can apply Lemma 27 to conclude that G′ has a
perfect H-factor with high discrepancy. Thus, we get δ∗(H) = 1− 1/χ∗(H).

12.2 Proof of Theorem 7

Let H be a graph with χ(H) = 3. By Corollary 62, δ∗(H)  3/4. If H is regular, then
δ∗(H) = 3/4 by Lemma 50. So suppose from now on that H is non-regular. Recall
that every graph H satisfies δ∗(H)  max{δ0(H), 1 − 1/χ∗(H)}. If some butterfly is
not a template for H, then δ∗(H)  4/7 by Lemma 52 and δ∗(H)  max{δ0(H), 1 −
1/χ∗(H), 4/7} by Lemma 68. And if every butterfly is a template for H, then δ∗(H) 
max{δ0(H), 1− 1/χ∗(H)} by Lemma 68. This concludes the proof.

12.3 Proof of Theorem 11

Let H be an r-chromatic graph, r  4. Throughout the proof, we use the fact that

1− 1/(r − 1)  max{δ0(H), 1− 1/χ∗(H)}  1− 1/r, (70)

where the first inequality holds because χ∗(H)  r − 1. We begin with the first case of
Theorem 11, where we assume that H satisfies Condition 9. By Corollary 62, δ∗(H) 
1 − 1/(r + 1). We now use Condition 9 to show that δ∗(H)  1 − 1/(r + 1). Indeed, if
r ≡4 0 then this follows from Lemma 53 with k = r + 1 ≡4 1, and if r ∕≡4 0 then this
follows from Lemma 54 with k = r + 1 ∕≡4 1 (using that H is regular).

We now move on to the second case of Theorem 11. First, we show that if H violates
Condition 9 then δ∗(H)  1 − 1/r. Indeed, if H violates the (r + 1)-wise C4-condition,
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then δ∗(H)  1− 1/r by Lemma 61 with k = r + 1. And if H is non-regular and r ∕≡4 0,
then δ∗(H)  1− 1/r by Lemma 65. Next, observe that if H satisfies Condition 10, then
δ∗(H)  1− 1/r by Lemmas 53-54.

Finally, we handle the last case of Theorem 11. Here we show that if H violates
Conditions 9 and 10, then δ∗(H)  max{δ0(H), 1 − 1/χ∗(H)} =: α(H). This is tight
because δ∗(H)  α(H) for every graph H. If H violates the r-wise C4-condition, then
δ∗(H)  α(H) by Lemma 61 with k = r, using that 1 − 1/(r − 1)  α(H) by (70). So
suppose that H satisfies the r-wise C4-condition. Then, as H violates Condition 10, it
must be that H is non-regular. Now, if r ≡4 2, 3, then δ∗(H)  α(H) by Lemma 68. If
r ≡4 1 then α(H)  δ0(H) = 1− 1/r by Lemma 53 and δ∗(H)  1− 1/r by Lemma 65,
so δ∗(H)  α(H) holds. Suppose now that r ≡4 0. Then, as H violates Condition 9, H
must violate the (r+1)-wise C4-condition. Now δ∗(H)  α(H) holds by Lemma 67. This
completes the proof.

13 Examples

The purpose of this section is to demonstrate that the cases in our theorems are necessary.
For the bipartite case, Theorem 4, this is fairly easy to see so we only discuss Theorems 7
and 11. Towards this, we give graphs H as examples for what we consider to be the more
interesting cases. The task of finding examples of r-partite graphs becomes much simpler
when they have exactly one proper r-coloring (up to permutations of the color-labels).
To achieve this, we use the following construction in most of the examples:

C Let H be a graph on vertex-set V (H) with r-partition A1, A2, . . . Ar and vertices
a1 ∈ A1, a2 ∈ A2, . . . , ar ∈ Ar. For 1  i  r, ai is connected to every vertex in

j ∕=i Aj.

Then, given an r-coloring of a1, a2, . . . ar, we get that for every 1  i  r, all the vertices in
Ai must have the same color as ai and therefore, the coloring is unique up to permutation
of the labels. Note that for 1  i < j  r, we can add any edges to H[Ai, Aj] and
this property does not change. Additionally such a graph H, is never regular, unless
|A1| = |A2| = · · · = |Ar| and H is the complete r-partite graph. One constraint that such
graphs H have is that for 1  i < j  r, eH(Ai, Aj)  |Ai|+ |Aj|− 1, given by the edges
incident to ai and aj.

• First, we give a tripartite graph H for which

δ0(H) < δ∗(H) = 1− 1/χcr(H).

Towards this, consider H as described in C with |A1| = 10, |A2| = 11, |A3| = 100.
Note that hcf(H) = 1, as |A2|− |A1| = 1. Besides the edges given by a1, a2, a3, we
add arbitrary additional edges such that eH(A1, A2) = eH(A1, A3) = eH(A2, A3) =
110. Note that this means that H[A1, A2] is complete and H[A2, A3] has no extra
edges besides the ones touching a2 or a3. It is not hard to see that δ0(H) = 0 and
1 − 1/χcr(H) < 1 − 1/r. Additionally, H can use any butterfly as a template, as
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otherwise by Lemma 45 H is either (2, 2)-, (0, 2)- or (2,−2)-structured, which it is
clearly not.

• Next, we give an example for a tripartite graph H with

1− 1/χ∗(H) < δ∗(H) = δ0(H).

Let H be a tripartite graph as described in C with |A1| = 5, |A2| = 20, |A3| = 21 and
eH(A1, A2) = 28, eH(A1, A3) = 42 and eH(A2, A3) = 252. It is not hard to check that
such H is indeed (1, 2)-structured for ρ = 14. Additionally, since |A3| − |A2| = 1,
we have hcf(H) = 1 and thus

1− 1/χ∗(H) = 1− 1/χcr(H) = 1− 41

92
< 5/8.

By Lemma 55, it follows that δ0(H)  5/8. AsH is non-regular and since 5/8 > 4/7,
we get by Theorem 7 that indeed

1− 1/χ∗(H) < 5/8  δ∗(H) = δ0(H).

• Next, we give an example corresponding to the second case of Theorem 7 such that
δ∗(H) = 4/7 > max{1 − 1/χ∗(H), δ0(H)}. Towards this, some butterfly should
not be a template for H. Let |A1| = 5, |A2| = 20, |A3| = 21 and eH(A1, A2) =
67, eH(A1, A3) = 66 and eH(A2, A3) = 51. We get that H is non-regular and (1,−1)-
structured for ρ = 2. Consider the butterfly given by (L, c) (see the third graph in
Figure 1), where L consists of the two triangles L1 = {u, v1, w1} and L2 = {u, v2, w2}
with

c(uv1) = c(uw1) = −c(uv2) = −c(uw2) = −c(v1w1) = c(v2w2) = −1.

We will show that L is not a template for H. Note that by Lemma 45, it is necessary
that then, H is (−2, 2)-structured (or by normalizing (1,−1)-structured). Let B be
an arbitrary blowup of (L, c). Note that given some H constructed as described
in C, any copy of H in B is either included in VV (L1) or in VV (L2). To see this,
consider the placement of the three vertices a1, a2, a3. As they form a triangle, they
must be either on VV (L1) or VV (L2). Say they are on VV (L1). But each vertex of H
forms a triangle with two of a1, a2, a3 and must therefore also be on VV (L1). Then,
it is not hard to see that since H is (1,−1)-structured, L is not a template for
H. We have that δ0(H) = 0, as H is (1,−1)-structured with nonzero ρ and also
1 − 1/χ∗(H) = 1 − 41/92 < 4/7 as in the previous example. We then get by the
second case in Theorem 7 that δ∗(H) = 4/7.

• Let us now give an example of an r-partite, regular graph H for some r  4 which
fulfills the r-wise C4-condition for some r ∕≡4 0, 1 and has 1− 1/r > max{δ0(H), 1−
1/χ∗(H)}. Note that Theorem 11 shows that δ∗(H) = 1 − 1/r in that case. To
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find such a graph, the construction given in (C) is not very helpful, as the only
regular graph constructed in such a way is the complete, balanced r-partite graph.
Thus, let us consider a different construction. For some integer m, let H be the
graph obtained from the complete r-partite graph with parts A1, . . . , Ar with sizes
|A1| = (r−2)m+1 and |A2| = |A3| = · · · = |Ar = (r−2)m, by removing a matching
of size m between every pair Ai, Aj with 2  i < j  r such that for any vertex not
in A1, exactly one of its incident edges is removed.

Counting the edges per vertex, it is not hard to see that for v ∈ A1, we have that
dH(v) = (r− 1)(r− 2)m and for v ∈ Ai for 2  i  r we have that v is connected to
everything but the vertices in Ai and one other vertex. It follows that these vertices
are incident to (r− 2)2m− 1+ (r− 2)m+1 = (r− 1)(r− 2)m edges. Therefore, H
is regular. Additionally, we have for 2  i < j  r,

eH(Ai, Aj) = (r − 2)2m2 −m

and for all 2  i  r,

eH(A1, Ai) = (r − 2)m · ((r − 2)m+ 1).

Then, it is not hard to see that since r  4, H has only one r-coloring (up to
permutation of the labelling) and the r-wise C4-condition holds for this coloring,
but the (r + 1)-wise C4 condition does not. To see the latter, consider the natural
r-coloring of H and add an additional empty color class A0. Then the 4-cycle
A0, A1, A2, A3 shows that H violates the (r + 1)-wise C4-condition. The coloring
A1, . . . , Ar shows that χ∗(H) < r. Let us also prove that δ0(H) < 1 − 1/r. To see
this, consider a b-blowup B of (Kr, c) for some b ∈ N and 2-edge-coloring c of Kr.
As r ∕≡4 0, 1, c(Kr) ∕= 0. It is not hard to see that there is at most one way (up to
permutations of A2, A3, . . . , Ar) to find a perfect H-factor F in B. Note that this
H-factor uses the same amount of edges in every bipartite graph B[Vv, Vu], where
u, v ∈ V (Kr). Therefore, c(F ) has the same sign as c(Kr) and is non-zero. It follows
that δ0(H) < 1− 1/r.
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