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Abstract

Generalized Turán problems ask for the maximum number of copies of a graph
H in an n-vertex, F -free graph, denoted by ex(n,H, F ). We show how to extend
the new, localized approach of Bradač, Malec, and Tompkins to generalized Turán
problems. We weight the copies of H (typically taking H = Kt), instead of the
edges, based on the size of the largest clique, path, or star containing the vertices of
the copy of H, and in each case prove a tight upper bound on the sum of the weights.
The generalized edge Turán number mex(m,H,F ) is the maximum number of copies
of a graph H in an m-edge, F -free graph. A consequence of our new localized
theorems is an asymptotic determination of ex(n,H,K1,r) for every H having at
least one dominating vertex and mex(m,H,K1,r) for every H having at least two
dominating vertices.

Mathematics Subject Classifications: 05C35

1 Introduction

Extremal graph theory is often considered the study of how easily measured global graph
parameters, such as the numbers of vertices and edges in a graph, influence its local
substructures [10]. An archetypical result due to Turán describes which size cliques a
graph is guaranteed to contain based on its order and size:

Theorem (Turán [25]). Let n, r ⩾ 1 be integers. If G is a Kr+1-free graph on n vertices
(that is, no subgraph of G is isomorphic to the complete graph Kr+1), then G contains at
most n2

2
(1 − 1

r
) edges. This is denoted

ex(n,Kr+1) ⩽
n2

2

(
1 − 1

r

)
.

Furthermore, the Kr+1-free graph on n vertices with the greatest number of edges is the
Turán graph, Tr(n), in which the vertices of the graph are partitioned into r parts of sizes
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as close to equal as possible, and vertices are adjacent if and only if they are in different
parts.

Turán’s theorem has been generalized by many authors. In 2015, Alon and Shikhel-
man [1], expanding on several sporadic results (e.g. [6, 17, 18]), introduced the generalized
Turán number ex(n,H, F ), which denotes the greatest number of subgraphs of an F -free
graph on n vertices that are isomorphic to H. When maximizing the number of copies
of H ̸= K2, it is possible to fix the number of edges instead of the number of vertices.
Radcliffe and Uzzell [24] introduced the generalized edge Turán number, mex(m,H,F ),
which denotes the greatest number of subgraphs that are isomorphic to H in an F -free
graph on m edges.

The quantities ex(n,H, F ) and mex(m,H,F ) have motivated many interesting results;
see [9, 8, 14, 15, 16, 23] for an (incomplete) sample. However, these problems often stretch
the notion of “easily measurable” properties on which extremal graph theory is based.
Though it is not known to be NP-complete, counting the number of subgraphs of G
that are isomorphic to H is considered a challenging computation problem. Therefore,
practically, it may be difficult to determine whether a specific G contains a forbidden F
even when the exact value of ex(n,H, F ) is known.

Recently, Bradač [7], based on a conjecture of Balogh and Lidický, gave a fundamen-
tally different generalization of Turán’s theorem:

Theorem (Bradač [7]). Let G be a graph on n vertices. For each edge e ∈ E(G), define
its weight w(e) as

w(e) =
k

2(k − 1)

where k is the size of the largest clique in G containing e. Then∑
e∈E(G)

w(e) ⩽ n2/4.

This theorem has since been applied to Ramsey-Turán problems in [3, 4].
Bradač’s result generalizes Turán’s theorem in the following sense: if it is known that

G is Kr+1-free, then, noting w(e) is decreasing in k, we see w(e) ⩾ r/(2(r − 1)) for every
edge e. Thus

|E(G)| · r

(2(r − 1))
⩽

∑
e∈E(G)

w(e) ⩽
n2

4
=⇒ |E(G)| ⩽ n2

2

(
1 − 1

r

)
.

The novelty of Bradač’s result is in the local nature of the weight function. Rather
than counting the total number of edges in the entire graph, a global property, the weight
we assign to each edge depends only on the neighborhoods of the vertices of that edge
which may be computed more efficiently.

Inspired by Bradač’s result, Malec and Tompkins [22] investigated other results which
could be “localized” in a similar fashion. In addition to giving a new proof of Bradač’s
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result, they proved a local version of another celebrated extremal graph theory result of
Erdős and Gallai, as well as the LYMB inequality (a generalization of Sperner’s theorem
on boolean lattices), a generalization of the Erdős-Ko-Rado theorem, and a theorem of
Erdős and Szekeres on sequences.

Both Turán’s theorem and the theorem of Erdős and Gallai considered by Malec and
Tompkins tell us something about the graph based on the number of edges it contains.
Keeping in mind that an edge is a clique containing two vertices, natural generalizations
of both results to cliques of larger size have been investigated. In this article, we show that
these results, too, admit localized generalizations. In fact, we prove several local results
by weighting the cliques or other subgraphs of G of a given size based on the maximum
size of various substructures that contain them. In some cases these “generalizations”
actually establish new extremal results.

Our results follow a general framework. Each theorem concerns a target subgraph
H, which in many cases is a clique of some fixed size, and a family F = {F1, F2, . . .} of
graphs in which Fi ⊆ Fi+1. We first establish a size function which, given a copy of H in
G, returns the largest Fi such that some subgraph of G isomorphic to Fi contains H in
some meaningful way. Then we define a weight function which depends only on the size
function of H and prove a bound on the sum of the weights of every copy of H in G. In
each case we show that the weight function is a decreasing function of the size function,
so a global upper bound on the size function implies a lower bound on the sum of the
weights, and we recover a “non-localized” theorem.

The rest of this paper is arranged as follows. We begin with some notational conven-
tions and preliminary results in Section 2. Then in Section 3, we weight t-cliques in G by
the size of the largest clique containing them to generalize Zykov’s theorem, itself a direct
extension of Turán’s theorem. We weight t-cliques by the longest path containing their
vertices in Section 4, considering graphs of fixed order in Section 4.1 and graphs of fixed
size in Section 4.2. We weight a broad class of graphs, including cliques, by the size of the
largest star containing their vertices in Section 5.1, in which we prove a family of novel
generalized Turán and edge Turán results. We also give a hypergraph version of one of
these localized results in Section 5.2. We conclude with some open questions in Section 6.

2 Preliminaries

2.1 Notation

In addition to standard graph theoretic notation (see [5], for example), we establish the
following conventions. We define the path graph Pn to have n vertices and n − 1 edges
and the star graph Sr to have r leaves (and thus r + 1 total vertices). Given graphs G
and H, we let N (H,G) denote the number of subgraphs of G that are isomorphic to H.
If N (H,G) = 0, we say G is H-free. As mentioned in the introduction, if H and F are
graphs, then

ex(n,H, F ) = max{N (H,G) : |V (G)| = n and G is F -free}
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and
mex(m,H,F ) = max{N (H,G) : |E(G)| = m and G is F -free}.

We also have need to refer to the copies of H in G. When we do so for cliques, we
refer to the sets of vertices that span a complete subgraph and write

Kt(G) = {S ⊆ V (G) : G[S] ∼= Kt}.

For a more general graph H, we write H(G) to refer to the set of (not necessarily induced)
subgraphs of G that are isomorphic to H.

The size function and weight function(s) in each section are denoted by the notation
shown below.

Cliques Paths Stars (graphs) Stars (hypergraphs)
Section 3 4 5.1 5.2
Size function αG βG θG x
Weight function(s) wG pG, p′G suG s

2.2 Generalized binomial coefficients

We use generalized binomial coefficients when working with paths in Section 4 and hyper-
graphs in Section 5. For a real number x ⩾ k− 1 and a natural number k, the generalized
binomial coefficient

(
x
k

)
is defined as (x)(x − 1) · · · (x − k + 1)/k!. When x < k − 1, we

set
(
x
k

)
= 0. The function

(
x
k

)
is weakly increasing for all real numbers x and strictly

increasing on x ⩾ k − 1.

Observation 1. For all x ∈ R and n ∈ N, we have

2n

(
x

n

)
⩽

(
2x

n

)
,

with strict inequality when 2x + 1 > n ⩾ 2.

Proof. The right side is always non-negative and is positive for 2x > n − 1. When
x ⩽ n− 1, the left side is zero. When x > n− 1, the inequality is equivalent to

(2x)(2x− 2) · · · (2x− 2n + 2) ⩽ (2x)(2x− 1) · · · (2x− n + 1),

so is strict when n ⩾ 2.

In Section 4 we also use the following observation and theorem.

Observation 2. Let G be a graph having at least one edge. Write |E(G)| in the form(
x
2

)
, where x ⩾ 2 is real. Then |V (G)| ⩾ x.

Proof. If |V (G)| < x then |V (G)| ⩽ ⌈x⌉ − 1, so |E(G)| ⩽
(⌈x⌉−1

2

)
<

(
x
2

)
. Here we used

that the generalized binomial coefficient
(
y
2

)
is strictly increasing for all y ⩾ 1.
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Theorem 3 (Lovász [20]). Let t ⩾ 2. Let G be a graph. Write the number of edges of G
in the form

(
x
2

)
, where x ⩾ 1 is real. Then N (Kt, G) ⩽

(
x
t

)
.

We also use generalized binomial coefficients in Section 5.2, where we introduce hy-
pergraph definitions and notation before stating Theorem 17, a bound on the number of
t-cliques in a q-uniform hypergraph based on the number of edges, which is a version of
Lovász’s approximate form of the Kruskal-Katona theorem. Theorem 3 is the special case
of Theorem 17 corresponding to graphs.

3 Weighting by Maximum Clique Size

In this section we prove the following theorem which extends the localized version of
Turán’s theorem in [22] by assigning weights to cliques of any size, rather than just edges.
Then we show that it simultaneously extends a different extension of Turán’s theorem
due to Zykov.

Theorem 4. Let t ⩾ 2. For each T ∈ Kt(G), define

αG(T ) = max{k : T ⊆ V (S) for some S ⊆ G s.t.S ∼= Kk} and wG(T ) =
αG(T )t(
αG(T )

t

) .
Then wG(T ) is well-defined and decreasing in αG(T ), and

w(G) =
∑

T∈Kt(G)

wG(T ) ⩽ nt,

with equality if and only if G is a balanced multipartite graph with at least t parts.

Note that by setting t = 2, we recover the result which is Theorem 1 of both [7] and
[22]. ∑

T∈K2(G)

αG(e)2(
αG(e)

2

) =
∑

e∈E(G)

2αG(e)

αG(e) − 1
⩽ n2 =⇒

∑
e∈E(G)

αG(e)

αG(e) − 1
⩽

n2

2
.

Proof. First, αG(T ) ⩾ t because G[T ] ∼= Kt, and therefore wG(T ) is well-defined. We
observe wG(T ) is decreasing in αG(T ) as we can write

wG(T ) = t! · αG(T )t∏t−1
i=0(αG(T ) − i)

= t! ·
t−1∏
i=1

(
1 +

i

αG(T ) − i

)
,

which is a non-empty product of functions decreasing in αG(T ).
Let G be a graph on n ⩾ 3 vertices. Note that if G contains an edge e that is not

contained in any t-clique, then e also is not contained in any larger clique, so Kt(G− e) =
Kt(G), wG−e(T ) = wG(T ) for every T ∈ Kt(G), and w(G) = w(G− e). Therefore we may
assume that every edge in G is contained in a t-clique. First assume there is r ⩾ t such
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that G is complete r-partite with (non-empty) parts A1, . . . , Ar. Then for each T ∈ Kt(G)
we have αG(T ) = r and wG(T ) = rt/

(
r
t

)
. This gives

w(G) =
rt(
r
t

)N (Kt, G)

=
rt(
r
t

) ∑
S∈([r]

t )

∏
s∈S

|As|

To bound this sum, we relax the condition that the parts have integral sizes. By symmetry,
the real-valued polynomial function

f(x1, . . . , xr) =
∑

S∈([r]
t )

∏
i∈S

xi

has a unique maximum when each xi = n/r, in which case each of the
(
r
t

)
terms is (n/r)t,

and thus

w(G) ⩽
rt(
r
t

) ·
(
r

t

)
·
(n
r

)t

= nt

with equality if and only if |Ai| = n/r.
Thus we may assume G is not complete multipartite. We use a technique introduced

by Zykov [27] sometimes called Zykov symmetrization. Suppose there are x, y, z ∈ V (G)
such that x ∼ z but x ̸∼ y ̸∼ z. We show that as long as such vertices exist, we can find
G′ on n vertices such that w(G′) > w(G). If no such vertices exist, then x ̸∼ y and y ̸∼ z
implies x ̸∼ z, which is to say nonadjacent vertices can be partitioned into equivalence
classes and therefore G is complete multipartite. Thus producing such a G′ reduces this
case to the complete multipartite case, and furthermore proves any graph that meets the
bound in the theorem must be complete multipartite.

For convenience, for v ∈ V (G), define

wG(v) =
∑

T∈Kt(G)
s.t. v∈T

wG(T ).

Assume without loss of generality that wG(x) ⩾ wG(z) and consider two cases.

Case 4.1. wG(x) > wG(y).

Introduce a new vertex x′, add edges so that N(x′) = N(x), and let G′ = G− y + x′.
Consider a clique K ′ (of any size) that is present in G′ but not in G. Such a clique
must contain x′ and so must be contained in NG′ [x′] ∼= NG[x]. Therefore any T ∈ Kt(G)
contained in K ′ is also contained in some clique K ⊆ V (G) of the same size. Thus every
T ∈ Kt(G) ∩ Kt(G′) has αG(T ) ⩾ αG′(T ). As wG(T ) is decreasing in αG(T ), we have
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wG(T ) ⩽ wG′(T ). Then∑
T∈Kt(G′)

wG′(T ) =
∑

T∈Kt(G′)\Kt(G)

wG′(T ) +
∑

T∈Kt(G′)∩Kt(G)

wG′(T )

⩾
∑

T∈Kt(G′)\Kt(G)

wG′(T ) +
∑

T∈Kt(G−y)

wG(T )

= wG′(x′) +
( ∑
T∈Kt(G)

wG(T ) − wG(y)
)

= wG(x) +
∑

T∈Kt(G)

wG(T ) − wG(y)

>
∑

T∈Kt(G)

wG(T ).

Case 4.2. wG(x) ⩽ wG(y).

In this case we introduce two new vertices, y′ and y′′, add edges such that N(y′′) =
N(y′) = N(y), and define G′′ = G − x − z + y′ + y′′. As before, every clique K ′ that is
in G′′ but not in G must contain y′ or y′′ (but not both as y′ ̸∼ y′′). Thus once again K ′

must be contained in NG′′ [y′] ∼= NG[y] or NG′′ [y′′] ∼= NG[y], so every T ∈ Kt(G) ∩ Kt(G′′)
has αG(T ) ⩾ αG′′(T ) and wG(T ) ⩽ wG′′(T ). Therefore∑
T∈Kt(G′′)

wG′′(T ) =
∑

T∈Kt(G′′)\Kt(G)

wG′′(T ) +
∑

T∈Kt(G′′)∩Kt(G)

wG′′(T )

⩾
∑

T∈Kt(G′′)\Kt(G)

wG′′(T ) +
∑

T∈Kt(G−x−z)

wG(T )

= wG′′(y′) + wG′′(y′′) +
( ∑
T∈Kt(G)

wG(T ) − wG(x) − wG(z) +
∑

T∈Kt(G)
s.t. x,z∈T

wG(T )
)

= 2wG(y) +
∑

T∈Kt(G)

wG(T ) − wG(x) − wG(z) +
∑

T∈Kt(G)
s.t. x,z∈T

wG(T )

⩾
∑

T∈Kt(G)

wG(T ) +
∑

T∈Kt(G)
s.t. x,z∈T

wG(T )

>
∑

T∈Kt(G)

wG(T ),

where the last step holds because x ∼ z, and our initial assumption guarantees every edge
is contained in a t-clique.

One can also view Theorem 4 as a generalization of a theorem of Zykov [27] (and
independently Erdős [11]). In what is now considered the first generalized Turán result,
Zykov proved that, among Kr+1-free graphs, the Turán graph Tr(n) maximizes not only
the number of edges but the number of cliques of any size.
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Theorem 5 (Zykov [27]). Let G be a Kr+1-free graph on n vertices. Then for any t ⩾ 1,

N (Kt, G) ⩽

(
r

t

)(n
r

)t

.

In fact, Zykov actually proved the stronger result that ex(n,Kt, Kr+1) = N (Kt, Tr(n)),
though these results agree when r

∣∣ n.
We can prove Theorem 5 as a consequence of Theorem 4:

Proof of Theorem 5. Let G be a an n-vertex, Kr+1-free graph. Then for each T ∈ Kt(G)
we have αG(T ) ⩽ r and, as wG(T ) is decreasing in αG(T ), wG(T ) ⩾ rt/

(
r
t

)
. Thus by

Theorem 4,

N (Kt, G) · rt(
r
t

) =
∑

T∈Kt(G)

rt(
r
t

) ⩽
∑

T∈Kt(G)

wG(T ) ⩽ nt

and so

N (Kt, G) ⩽

(
r
t

)
rt

· nt =

(
r

t

)(n
r

)t

.

4 Weighting by Maximum Path Length

In 1959, Erdős and Gallai [12] proved that every graph with n vertices and m edges

contains a path of length at least 2m/n, and as a consequence ex(n,K2, Pr+1) ⩽ (r−1)n
2

,
which, when r

∣∣ n, is achieved by a disjoint union of copies of Kr. Luo [21] deter-
mined ex(n,Kt, Pr+1) asymptotically, and Chakraborti and Chen [9] then determined
mex(m,Kt, Pr+1). Malec and Tompkins [22] gave a local version of the Erdős-Gallai re-
sult. To extend their result to the t-clique versions, considering both graphs of fixed order
and graphs of fixed size, we define a more general size function for paths.

Definition 6. Let G be a graph on n vertices and t ⩾ 2. For each T ∈ Kt(G), define

βG(T ) = max{k : T ⊆ V (S) for some S ⊆ G s.t.S ∼= Pk+1}.

4.1 Paths in graphs of fixed order

In this section we extend a result of Malec and Tompkins [22, Theorem 2] to cliques,
which we will demonstrate also generalizes a result of Luo [21].

Theorem 7. Let G be a graph on n vertices and t ⩾ 2. Define

pG(T ) =
1(

βG(T )
t−1

) .
Then pG(T ) is well-defined and decreasing in βG(T ), and∑

T∈Kt(G)

pG(T ) ⩽
n

t
,

with equality if and only if G is a disjoint union of complete graphs of order at least t.
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We note that setting t = 2 does not quite recover [22, Theorem 2] as our weight
function is not equivalent at t = 2. Malec and Tompkins define βMT (e) to be the longest
path containing the edge e as a subgraph. This definition does not extend to larger cliques
as paths do not contain them as subgraphs. Instead, we merely require that all vertices
of the clique appear in the path. Thus when t = 2, unlike for Malec and Tompkins, the
vertices of our edge may occur in the path without the edge being part of the path.

Proof. First, we note any ordering of the vertices in any T ∈ Kt(G) is a path of length
t − 1, so βG(T ) ⩾ t − 1 and

(
βG(T )
t−1

)
> 0. Therefore pG(T ) is well-defined and decreasing

in βG(T ).
We proceed by induction on n. When 1 ⩽ n ⩽ t− 1 we have∑

T∈Kt(G)

pG(T ) = 0 <
n

t
.

If G is not connected, let C1, . . . , Cq be the components of G. Applying the inductive
hypothesis to each component, we have

∑
T∈Kt(G)

pG(T ) =

q∑
i=1

∑
T∈Kt(Ci)

pG(T )

=

q∑
i=1

∑
T∈Kt(Ci)

pCi
(T )

⩽
q∑

i=1

|V (Ci)|
t

by induction

=
n

t
.

Therefore we may assume G is connected and n ⩾ t. Let r be the length of a longest path
P ∼= Pr+1 in G.

Case 7.1. There exists a cycle C containing the vertices of P .

Suppose for the sake of contradiction that there is a vertex u that is not on the cycle
C. Since G is connected, there is a path from u to C and then around C, which is longer
than P , contradicting that P is a longest path. Therefore every vertex of G is on C. Each
T ∈ Kt(G) is contained in a path of length n− 1 and has pG(T ) = 1/

(
n−1
t−1

)
.

Hence, ∑
T∈Kt(G)

pG(T ) =
∑

T∈Kt(G)

1(
n−1
t−1

) =
N (Kt, G)(

n−1
t−1

) ⩽

(
n
t

)(
n−1
t−1

) =
n

t
,

and equality implies G ∼= Kn, with n ⩾ t.

Case 7.2. There does not exist a cycle C containing the vertices of P .
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Let v and w be the endpoints of P . Then {v, w} /∈ E(G). Label the vertices of P in
order as (v = u1, u2, . . . , ur+1 = w). Let V = {i : v ∼ ui} and W = {i : w ∼ ui−1}. If
i ∈ V ∩W then (ui, u1, u2, . . . , ui−1, ur+1, ur, . . . , ui) is a cycle containing the vertices of P ,
so V ∩W = ∅. Since V,W ⊆ {2, . . . , r+1}, we have d(v)+d(w) = |V |+|W | = |V ∪W | ⩽ r.
Assume, without loss of generality, that d(v) ⩽ r/2.

Let R(v) be the set of t-cliques of G that contain v. Then |R(v)| ⩽
(
d(v)
t−1

)
. The fact

that P is a longest path implies both that βG(T ) ⩽ r and that every t-clique T in R(v)
is contained in V (P ) (so βG(T ) ⩾ r), and therefore pG(T ) = 1/

(
r

t−1

)
for every T ∈ R(v).

For any T ∈ Kt(G − v), we see βG−v(T ) ⩽ βG(T ) and therefore, as pG is decreasing in
βG(T ), pG−v(T ) ⩾ pG(T ).

Applying the inductive hypothesis to G− v, we get

∑
T∈Kt(G)

pG(T ) =
∑

T∈Kt(G−v)

pG(T ) +
∑

T∈R(v)

pG(T )

⩽
∑

T∈Kt(G−v)

pG−v(T ) +
∑

T∈R(v)

pG(T )

⩽
n− 1

t
+

|R(v)|(
r

t−1

)
⩽

n− 1

t
+

(
d(v)
t−1

)(
r

t−1

)
⩽

n− 1

t
+

(
r/2
t−1

)(
r

t−1

)
⩽

n− 1

t
+

(1/2)t−1
(

r
t−1

)(
r

t−1

) by Observation 1

=
n− 1

t
+

1

2t−1

⩽
n− 1

t
+

1

t

=
n

t

as 2t−1 ⩾ t when t ⩾ 2. When t ⩾ 3, we see 2t−1 > t and thus if equality holds, no
component is in Case 7.2, so every component is in Case 7.1, and every component is a
clique.

When t = 2, the claim that equality holds only for cliques follows from [22, Theorem
2]. Though, as noted, our definition of βG(T ) does not quite match their βMT (e), we have
βMT (e) ⩽ βG(e) as any path containing an edge also contains the vertices of that edge.
Because

pG(T ) =
1(

βG(T )
2−1

) =
1

βG(T )
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is decreasing and matches Malec and Tompkins’ weight, we see∑
T∈K2(G)

pG(T ) =
∑

e∈E(G)

1

βG(e)
⩽

∑
e∈E(G)

1

βMT (e)
.

Therefore if equality holds in our result, it also holds in Malec and Tompkins’ result, and
by Theorem 2 in [22], G is a disjoint union of complete graphs.

In 2018, Luo [21] extended Erdős and Gallai’s theorem by showing disjoint unions of
cliques maximize the number of cliques of any size.

Theorem 8 (Luo [21]). Let G be a Pr+1-free graph on n vertices. Then for any t ⩽ r,

N (Kt, G) ⩽
n

r

(
r

t

)
.

Furthermore, equality holds if and only if r
∣∣ n and G is a disjoint union of copies of Kr.

We note that Theorem 7 generalizes Theorem 8:

Proof. Let G be a Pr+1-free graph on n vertices. In such a graph G, every T ∈ Kt(G) has
βG(T ) ⩽ r − 1, so pG(T ) ⩾ 1

(r−1
t−1)

. By Theorem 7,

N (Kt, G)(
r−1
t−1

) =
∑

T∈Kt(G)

1(
r−1
t−1

) ⩽
∑

T∈Kt(G)

pG(T ) ⩽
n

t
,

so

N (Kt, G) ⩽
n

t

(
r − 1

t− 1

)
=

n

r

(
r

t

)
.

By Theorem 7, equality implies that every component is a Pr+1-free clique, and that every
t-clique is contained in a Pr, so G is a disjoint union of copies of Kr.

4.2 Paths in graphs of fixed size

Chakraborti and Chen [9] asked and answered the edge variant of this question by deter-
mining mex(m,Kt, Pr+1) exactly for all values of the parameters m, t, and r. We prove
a localized form of their result, then show that it implies an asymptotic determination of
mex(m,Kt, Pr+1). The proof of Theorem 9 will be very similar in structure to the proof
of Theorem 7 on paths in graphs of fixed order.

Theorem 9. Let t ⩾ 3. Let G be a graph having m edges. For each T ∈ Kt(G), define

p′G(T ) =
1(

βG(T )−1
t−2

) .
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Then p′G(T ) is well-defined and decreasing in βG(T ), and∑
T∈Kt(G)

p′G(T ) ⩽
m(
t
2

) ,
with equality if and only if G is a disjoint union of complete graphs of order at least t and
any number of isolated vertices.

Proof. As before, any ordering of the vertices in any T ∈ Kt(G) is a path of length t− 1,
so βG(T ) ⩾ t − 1 and

(
βG(T )−1

t−2

)
> 0. Therefore p′G(T ) is well-defined and decreasing in

βG(T ).
We proceed by induction on m. When 1 ⩽ m ⩽

(
t
2

)
− 1 we have∑

T∈Kt(G)

p′G(T ) = 0 <
m(
t
2

) .
If G is not connected, let C1, . . . , Cq be the components of G. Applying the inductive

hypothesis to each component, we have∑
T∈Kt(G)

p′G(T ) =

q∑
i=1

∑
T∈Kt(Ci)

p′G(T )

=

q∑
i=1

∑
T∈Kt(Ci)

p′Ci
(T )

⩽
q∑

i=1

|E(Ci)|(
t
2

) by induction

=
m(
t
2

) .
Therefore we may assume G is connected and m ⩾

(
t
2

)
. Let r be the length of a

longest path P ∼= Pr+1 in G.

Case 9.1. There exists a cycle C containing the vertices of P .

Suppose for the sake of contradiction that there is a vertex u that is not on the cycle
C. Since G is connected, there is a path from u to C and then around C, which is longer
than P , contradicting that P is a longest path. Therefore every vertex of G is on C. Each
T ∈ Kt(G) is contained in a path of length |V (G)| − 1, and has p′G(T ) = 1/

(|V (G)|−2
t−2

)
. Let

x ⩾ t be a real number satisfying m =
(
x
2

)
. Then we have |V (G)| ⩾ x by Observation 2

and, by Theorem 3, N (Kt, G) ⩽
(
x
t

)
. Hence,∑

T∈Kt(G)

p′G(T ) =
∑

T∈Kt(G)

1(|V (G)|−2
t−2

) =
N (Kt, G)(|V (G)|−2

t−2

) ⩽

(
x
t

)(
x−2
t−2

) =

(
x
2

)(
t
2

) =
m(
t
2

) ,
and equality implies

(|V (G)|−2
t−2

)
=

(
x−2
t−2

)
with x − 2 ⩾ (t − 2) − 1, so x = |V (G)|. Then

N (Kt, G) =
(|V (G)|

t

)
, so G ∼= Kx (and x ⩾ t).
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Case 9.2. There does not exist a cycle C containing the vertices of P .

Let v and w be the endpoints of P . Then {v, w} /∈ E(G). Label the vertices of P in
order as (v = u1, u2, . . . , ur+1 = w). Let V = {i : v ∼ ui} and W = {i : w ∼ ui−1}. If
i ∈ V ∩W then (ui, u1, u2, . . . , ui−1, ur+1, ur, . . . , ui) is a cycle containing the vertices of
P . Because V,W ⊆ {2, . . . , r + 1}, we have d(v) + d(w) = |V | + |W | = |V ∪ W | ⩽ r.
Assume, without loss of generality, that d(v) ⩽ r/2.

Let R(v) be the set of t-cliques of G that contain v. Then |R(v)| ⩽
(
d(v)
t−1

)
. Since P

is a longest path, v and w have no neighbors outside of P , and so every t-clique in R(v)
is contained in V (P ). Every T ∈ R(v) has p′G(T ) = 1/

(
r−1
t−2

)
because it is contained in

P (and there are no longer paths). As noted above, we have βG−v(T ) ⩽ βG(T ) for any
T ∈ Kt(G − v) and as p′G is also decreasing in βG(T ), p′G−v(T ) ⩾ p′G(T ). Applying the
inductive hypothesis to G− v, we get

∑
T∈Kt(G)

p′G(T ) =
∑

T∈Kt(G−v)

p′G(T ) +
∑

T∈R(v)

p′G(T )

⩽
∑

T∈Kt(G−v)

p′G−v(T ) +
∑

T∈R(v)

p′G(T )

⩽
m− d(v)(

t
2

) +
|R(v)|(

r−1
t−2

)
⩽

m− d(v)(
t
2

) +

(
d(v)
t−1

)(
r−1
t−2

)
=

m− d(v)(
t
2

) +

(
d(v)−1
t−2

)(
r−1
t−2

) · d(v)

t− 1

⩽
m− d(v)(

t
2

) +

(
r/2−1
t−2

)(
r−1
t−2

) · d(v)

t− 1

⩽
m− d(v)(

t
2

) +
(1/2)t−2

(
r−2
t−2

)(
r−1
t−2

) · d(v)

t− 1
by Observation 1

=
m− d(v)(

t
2

) +
r − t + 1

r − 1
· 1

2t−1
· d(v)

t−1
2

<
m− d(v)(

t
2

) +
d(v)(

t
2

)
=

m(
t
2

)
as 2t−1 > t and r−t+1

r−1
< 1 when t ⩾ 3. Thus, if equality holds, no component is in Case

9.2, so every component is in Case 9.1, and every component is a clique.

As mentioned, Chakraborti and Chen [9] determined mex(m,Kt, Pr+1) exactly, from
which one can derive the following weaker result:
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Theorem 10 (Chakraborti and Chen [9]). For any 3 ⩽ t ⩽ r, if G is a Pr+1-free graph
with m edges, then

N (Kt, G) ⩽
m(
r
2

) ·
(
r

t

)
.

Furthermore, equality holds if and only if
(
r
2

)
divides m, and G is a disjoint union of

copies of Kr.

We use Theorem 9 to prove Theorem 10:

Proof. Let G be a Pr+1-free graph. Then for each T ∈ Kt(G), we have βG(T ) ⩽ r− 1 and
as p′G(T ) is decreasing in βG,

N (Kt, G) · 1(
r−2
t−2

) ⩽
∑

T∈Kt(G)

p′G(T ) ⩽
m(
t
2

)
and therefore

N (Kt, G) ⩽
m(
t
2

) ·
(
r − 2

t− 2

)
=

m(
r
2

) ·
(
r

t

)
.

Equality implies G is a disjoint union of Pr+1-free complete graphs, and every t-clique is
contained in a Pr, so G is a disjoint union of copies of Kr.

5 Weighting by Maximum Star Size

5.1 Graphs

In this section we consider generalized extremal problems of the form ex(n,H, Sr), forbid-
ding the star with r leaves, or equivalently requiring that the maximum degree is at most
r− 1. Unlike in previous sections where H was a clique, here we consider a broader range
of graphs H. We use H(G) to denote the set of (not necessarily induced) subgraphs of G
isomorphic to H.

Given a graph G and a non-empty set of vertices U ⊆ V (G), the common neighborhood
of U in G is the set of vertices of G adjacent to each vertex in U , or equivalently the
intersection of the neighbor sets of each vertex of U . The common degree of U , which we
denote by cdG(U), is the size of the common neighborhood. Note that U is disjoint from
its common neighborhood.

Denote the collection of dominating vertices of a graph G by Dom(G), and let
dom(G) = |Dom(G)|. Note that for any U ⊆ Dom(G), U is a clique, and the com-
mon neighborhood of U is V (G) \ U . Additionally, if U,U ′ ⊆ Dom(G) and |U | = |U ′|,
then G − U ∼= G − U ′. For u ⩽ dom(G), we write G↓u to denote the graph that results
from removing u dominating vertices from G.

The main result of this section, Theorem 11, provides a template for localized bounds
on the number of copies of H in a graph based on the number of sets of dominating
vertices of a given size contained in H. We will focus on the cases where these sets have
size one or two, but we provide the theorem in full generality.
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Theorem 11. Let H be a graph on t vertices with dom(H) ⩾ 1. For every graph G and
each T ∈ H(G), define

θG(T ) = max{k : ∃v ∈ V (T ) ⊆ V (S) s.t.V (S) ⊆ N [v] and Sk
∼= S ⊆ G},

or, equivalently, θG(T ) = max{dG(v) : v ∈ Dom(T )}, and for each 1 ⩽ u ⩽ dom(H),
define

suG(T ) =
1(

θG(T )−u+1
t−u

) .
Then for any 1 ⩽ u ⩽ dom(H), suG(T ) is well-defined and decreasing in θG(T ), and

∑
T∈H(G)

suG(T ) ⩽
N (H↓u, Kt−u)(

dom(H)
u

) · N (Ku, G).

Furthermore, equality holds

• if and only if G has minimum degree at least t− 1, if H = St−1 for some t ⩾ 3,

• if and only if G contains no isolated vertices and every component of G is regular,
if u = 1 and H = S1, and

• if and only if every component of G that contains a u-clique is a complete graph on
at least t vertices, if u ⩾ 2 or H is not a star.

Proof. First, in any T ∈ H(G), there is a dominating vertex v of T which is the center of
a star with (at least) t− 1 leaves, so θG(T ) ⩾ t− 1 and

(
θG(T )−u+1

t−u

)
> 0. Therefore suG(T )

is well-defined and decreasing on θG(T ).
Let T ∈ H(G) and U ⊆ Dom(T ) such that |U | = u. Recall U is a clique. Thus for any

v ∈ U , the vertices in the common neighborhood of U in G, together with the vertices
U \ {v}, are each adjacent to v, forming a copy of ScdG(U)+u−1 whose center is v ∈ V (T )
and which contains all vertices of T (because v ∈ U ⊆ Dom(T )). Therefore we have
θG(T ) ⩾ cdG(U) + u− 1, or θG(T ) − u + 1 ⩾ cdG(U).

For each T ∈ H(G), there are
(
dom(H)

u

)
sets U ∈ Ku(G) such that each vertex of U

is dominating in T . For each U ∈ Ku(G), the number of copies T of H in G for which
U ⊆ Dom(T ) is at most

(
cdG(U)
t−u

)
N (H↓u, Kt−u): we choose t−u vertices from the common

neighborhood of U in G to fill out T and then choose how to embed the vertices of H↓u,
which can be done in at most as many ways as embedding them into a clique of the same
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size. Therefore (
dom(H)

u

) ∑
T∈H(G)

suG(T ) =
∑

U∈Ku(G)

∑
T∈H(G)

U⊆Dom(T )

suG(T )

=
∑

U∈Ku(G)

∑
T∈H(G)

U⊆Dom(T )

1(
θG(T )−u+1

t−u

)
⩽

∑
U∈Ku(G)

∑
T∈H(G)

U⊆Dom(T )

1(
cdG(U)
t−u

) (1)

⩽
∑

U∈Ku(G)

N (H↓u, Kt−u)

(
cdG(U)
t−u

)(
cdG(U)
t−u

) (2)

= N (H↓u, Kt−u)N (Ku, G).

which establishes the inequality for all graphs G.
We now consider when equality holds in the bound. For ease of discussion, if U is

contained in a copy T of H such that U ⊆ Dom(T ), we say that T is an extension of U .
Equality in the bound requires equality in equations (1) and (2). In order for equality
to hold in (1), every pair (U, T ) where T is an extension of U must satisfy cdG(U) =
θG(T ) − u + 1. Equality in (2) requires two conditions: first, for every U ∈ Ku(G), G
must contain an extension of U as otherwise this choice of U contributes∑

T∈H(G)
U⊆Dom(T )

1(
cdG(U)
t−u

) = 0

instead of ∑
T∈H(G)

U⊆Dom(T )

1(
cdG(U)
t−u

) = N (H↓u, Kt−u) > 0.

In particular, if equality holds in (2), cdG(U) ⩾ t− u for every U ∈ Ku(G). Additionally,
every (t− u)-set in the common neighborhood of U must contain N (H↓u, Kt−u) copies of
H↓u, or equivalently, the common neighborhood of U must contain the same number of
copies of H↓u as a clique of the same size.

For each of the three cases delineated in the theorem, we consider the conditions under
which equality holds.

Case 11.1. Suppose H = St−1 for some t ⩾ 3.

In this case we have dom(H) = 1 and thus u = 1. This means that for any U ∈ Ku(G),
there is v ∈ V (G) such that U = {v}, and we have cdG(U) = dG(v). For any copy
T of H in G, there is a unique U ⊆ Dom(T ) of size u = 1, and if U = {v}, then
θG(T ) = dG(v) = cdG(U). We conclude that equality holds in (1) for every graph G. If w
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is the center of H = St−1, then H−w = H↓1 is an independent set, so N (H↓1, Kt−1) = 1.
For any graph G and any v ∈ V (G), if dG(v) ⩾ t − 1, then the number of copies T of
H with v at the center is exactly

(
dG(v)
t−1

)
=

(
cdG(U)
t−1

)
and equality holds in (2). If G has

minimum degree at least t−1 then equality holds for every vertex, so equality holds in the
bound. On the other hand, if dG(v) < t−1 for any v ∈ V (G), then there are no extensions
of {v} and equality does not hold in (2). As equality in the bound requires equality for
each U ∈ Ku(G), we conclude equality holds in this case if and only if dG(v) ⩾ t − 1 for
every v ∈ V (G), which is to say G has minimum degree at least t− 1.

Case 11.2. Suppose u = 1 and H = S1.

This case is similar to Case 11.1: we have u = 1, so the set of u-cliques of G corresponds
to the vertices of G, H↓1 is an independent set so N (H↓1, Kt−1) = 1, and equality holds
in (2) if and only if each vertex has degree at least t − 1 = 2 − 1, i.e. G contains no
isolated vertices. The difference between the cases is that dom(H) = 2 when H = S1,
and therefore rather than being determined by the degree of a single vertex,

θG(T = {v, v′}) = max{dG(v), dG(v′)}.

This introduces a circumstance in which equality may not hold in (1): if T = {v, v′} and
dG(v) > dG(v′), then for U = {v′},

1(
θG(T )
t−u

) =
1

dG(v)
<

1

dG(v′)
=

1(
cdG(U)
t−u

) .
Thus equality in (1) holds if and only if dG(v) = dG(v′) for every T = {v, v′}, which is to
say each component of G is regular. We conclude that a graph G meets the bound if and
only if G contains no isolated vertices and each component of G is regular.

Case 11.3. Suppose u ⩾ 2 or that H is not a star.

First we prove the given conditions are sufficient to achieve the bound. When G is a
disjoint union of complete graphs on at least t vertices and any number of components
without u-cliques, let Kr, r ⩾ t ⩾ u, be a component of G that contains a u-clique. Then
θG(T ) = r − 1 for every T ∈ H(Kr), and suG(T ) = 1/

(
r−u
t−u

)
. The number of copies of H

in this component is
(
r
u

)(
r−u
t−u

)
N (H↓u, Kt−u)/

(
domH

u

)
, which can be seen by first choosing

a u-clique of the Kr to act as a selected set of u dominating vertices of H, then choosing
t − u of the r − u other vertices in the same component, then choosing an embedding
of H↓u into those vertices. Each copy of H is counted this way once for each choice of
selected set of u dominating vertices of H. Therefore∑

T∈H(Kr)

suG(T ) =
1(

r−u
t−u

)(r

u

)(
r − u

t− u

)
N (H↓u, Kt−u)/

(
dom(H)

u

)

=
N (H↓u, Kt−u)(

dom(H)
u

) N (Ku, Kr).
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Note that if a component C of G contains no u-cliques, it also contains no copies of T , so
we have ∑

T∈H(C)

suC(T ) = 0 = N (Ku, C),

and thus C does not contribute to either side of the bound. If C1, . . . , Ck are the compo-
nents of G containing u-cliques, then

∑
T∈H(G)

suG(T ) =
k∑

i=1

∑
T∈H(Ci)

suCi
(T )

=
N (H↓u, Kt−u)(

dom(H)
u

) k∑
i=1

N (Ku, Ci)

=
N (H↓u, Kt−u)(

dom(H)
u

) N (Ku, G).

We conclude that any graph G in which every component that contains a u-clique is a
complete graph on at least t vertices meets the bound.

Now if G is a graph meeting the bound, we prove every component of G containing a
u-clique must be a clique containing at least t vertices. We begin with three claims.

Claim 1: If G is a graph meeting the bound and U ∈ Ku(G), then each vertex in V (G)\U
that is adjacent to some v ∈ U must be in the common neighborhood of U .

Suppose otherwise: there is v ∈ U and x not in the common neighborhood of U such
that x ∼ v. As G meets the bound, equality holds in (2), so we may assume there exists
an extension T of U . Note that T ⊆ N [v]. As v is adjacent the common neighborhood of
U , each other vertex of U , and x, we see

θG(T ) = max{dG(w) : w ∈ Dom(T )} ⩾ dG(v) ⩾ cdG(U) + u− 1 + 1 > cdG(U) + u− 1

and equality does not hold in (1), contradicting that G met the bound.

Claim 2: If u ⩾ 2, G is a graph meeting the bound, and U ∈ Ku(G), then U and its
common neighborhood form a clique in G.

Suppose v, w ∈ U and that x and y are vertices in the common neighborhood of U
such that x ̸∼ y. Define U ′ = U − v + x. If there are no extensions T of U ′, then equality
will not hold in (2), so assume such a T exists. Then y is not in the common neighborhood
of U ′, as y ̸∼ x, but y ∼ w ∈ U ∩ U ′, so by the contrapositive of Claim 1, equality does
not hold.

Claim 3: If H↓u contains at least one edge, G is a graph meeting the bound, and
U ∈ Ku(G), then U and its common neighborhood form a clique in G.

We prove the contrapositive. Assume that some U ∈ Ku(G) and its common neigh-
borhood do not form a clique in G. Let a and b be non-adjacent vertices in the common
neighborhood of U and let {x, y} be an edge in H↓u. If G contains no extensions T of
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U , then equality does not hold in (2), so we may assume such an extension does exist,
and therefore cdG(U) ⩾ t − u = |V (H↓u)| as the common neighborhood of U contains
at least V (T ) \ U . Therefore there exists an injective function f from V (H↓u) to the
common neighborhood of U such that f(x) = a and f(y) = b. Note that f is not a ho-
momorphism, demonstrating that not every injective function from H↓u to the common
neighborhood of U is an injective homomorphism. By contrast, every injective function
from H↓u to a clique is an injective homomorphism. This means there are fewer injective
homomorphisms from H↓u into the common neighborhood of U than into a clique of the
same size. For any graphs P and Q, the number of injective homomorphisms from P to
Q is equal to the number of automorphisms of P times the number of copies of P in Q.
Therefore there are also fewer copies of H↓u in the common neighborhood of U than there
are in a clique of the same size, so as mentioned when discussing the conditions under
which equality holds in (2), G does not meet the bound.

We are now prepared to show that G meets the bound only if every component of G
containing a u-clique is a complete graph containing at least t vertices. If G is discon-
nected, we consider each component separately, and if a component C does not contain
a u-clique, we have seen C does not contribute to either side of the bound and need not
be considered. Therefore we may assume G is connected and contains a u-clique. Either
u ⩾ 2, in which case Claim 2 applies, or u = 1 and H is not a star. In this case, the
graph that remains after removing any one dominating vertex contains an edge, so Claim
3 applies. In either case, any u-clique forms a clique with its common neighborhood. Ap-
plying Claim 1 to each u-set of this clique, no vertex outside of this clique can be adjacent
to any vertex contained in the clique, so G is a complete graph. In order for equality to
hold in (2), there must be at least one extension T of U , which requires this complete
graph to have at least t vertices.

5.1.1 Weighting t-cliques by maximum star size

By taking H = Kt and u ∈ {1, 2} in Theorem 11 we obtain the following corollaries. We
note that Proposition 1 in [22] is the case t = 2 of Corollary 12.

Corollary 12. For every n-vertex graph G and every clique size t ⩾ 1,∑
T∈Kt(G)

s1G(T ) =
∑

T∈Kt(G)

1(
θG(T )
t−1

) ⩽
n

t
.

When t = 2, equality holds if and only if G contains no isolated vertices and each com-
ponent of G is regular. When t ⩾ 3, equality holds if and only if G is a disjoint union of
complete graphs of order at least t.

Proof. Let G be a graph on n vertices. We set H = Kt and u = 1 in Theorem 11, so
s1G(T ) = 1

(θG(T )
t−1 )

. Any vertex v of Kt is a dominating vertex of Kt, so by Theorem 11 we

have ∑
T∈Kt(G)

1(
θG(T )
t−1

) ⩽
N (K↓1

t , Kt−1)(
dom(Kt)

1

) · N (K1, G) =
n

t
.
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When t = 2, H = K2 = S1, so the equality condition matches the u = 1 and H = S1

case in Theorem 11. When t ⩾ 3, the equality condition holds as cliques on t ⩾ 3 vertices
are not stars and any non-empty component contains a 1-clique, i.e. a vertex.

Note that taking t = 1 in Corollary 12 gives the true, if trivial, statement that an
n-vertex graph G has at most n vertices, so equality holds for all graphs.

Corollary 13. For every m-edge graph G and every clique size t ⩾ 2,∑
T∈Kt(G)

s2G(T ) =
∑

T∈Kt(G)

1(
θG(T )−1

t−2

) ⩽
m(
t
2

) .
When t ⩾ 3, equality holds if and only if G is a disjoint union of complete graphs of order
at least t and any number of isolated vertices.

Proof. Let G be a graph on m edges. We set H = Kt and u = 2 in Theorem 11, so
s2G(T ) = 1

(θG(T )−1
t−2 )

. Any two vertices of Kt are dominating vertices of Kt, so by Theorem 11

we have ∑
T∈Kt(G)

1(
θG(T )−1

t−2

) ⩽
N (K↓2

t , Kt−2)(
dom(Kt)

2

) · N (K2, G) =
m(
t
2

) .
As above, the equality condition holds as cliques on t ⩾ 3 vertices are not stars. As

edges are 2-cliques, all other components must be isolated vertices.

Similar to Corollary 12, taking t = 2 in Corollary 13 gives a true but trivial statement,
namely than an m-edge graph has at most m edges, so equality holds for all graphs.

Corollary 12 and Corollary 13 in turn imply the following two known theorems on the
maximum number of t-cliques in bounded-degree graphs having a given number of vertices
or a given number of edges, respectively. These theorems have also been proved using
essentially the same argument as the one used in [26] to give an upper bound on the total
number of cliques of all sizes. The first theorem determines ex(n,Kt, Sr) asymptotically.

Corollary 14 (Wood [26]). Let t ⩾ 1 and G be a graph on n vertices having ∆(G) ⩽ r−1.
Then

N (Kt, G) ⩽
n

r

(
r

t

)
.

For t ⩾ 3, equality holds if and only if r
∣∣ n and G is a disjoint union of copies of Kr.

Proof. Let G be a graph on n vertices with maximum degree at most r − 1. Then
θG(T ) ⩽ r − 1 for every T ∈ Kt(G). By Corollary 12 we have

N (Kt, G)(
r−1
t−1

) =
∑

T∈Kt(G)

1(
r−1
t−1

) ⩽
∑

T∈Kt(G)

1(
θG(T )
t−1

) ⩽
n

t
,

so N (Kt, G) ⩽ n
t

(
r−1
t−1

)
= n

r

(
r
t

)
. If t ⩾ 3 and equality holds, then every component is a

clique. As G has maximum degree at most r − 1, these cliques have at most r vertices.
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If some G meeting the bound had a component C with a < r vertices, then G−C would
be a graph on n− a vertices with n

r

(
r
t

)
−

(
a
t

)
copies of Kt. As t ⩾ 3, we have

a

(
r

t

)
=

ar

t

(
r − 1

t− 1

)
>

ar

t

(
a− 1

t− 1

)
= r

(
a

t

)
and thus a

r

(
r
t

)
>

(
a
t

)
, so

n

r

(
r

t

)
−

(
a

t

)
>

n

r

(
r

t

)
− a

r

(
r

t

)
=

n− a

r

(
r

t

)
which contradicts the bound.

If we instead fix the number of edges, we determine mex(m,Kt, Sr) asymptotically.

Corollary 15 (Wood [26]). Let t ⩾ 2 and G be a graph on m edges with ∆(G) ⩽ r − 1.
Then

N (Kt, G) ⩽
m(
r
2

)(r
t

)
.

For t ⩾ 3, equality holds if and only if
(
r
2

) ∣∣ m and G is a disjoint union of copies of Kr

with any number of isolated vertices.

Proof. Let G be a graph on m edges with maximum degree at most r−1. Again θG(T ) ⩽
r − 1 for every T ∈ Kt(G). By Corollary 13 we have

N (Kt, G)(
r−2
t−2

) =
∑

T∈Kt(G)

1(
r−2
t−2

) ⩽
∑

T∈Kt(G)

1(
θG(T )−1

t−2

) ⩽
m(
t
2

) ,
so N (Kt, G) ⩽ m

(t
2)

(
r−2
t−2

)
= m

(r
2)

(
r
t

)
. If t ⩾ 3 and equality holds, then every component is a

clique. As G has maximum degree at most r − 1, these cliques have at most r vertices.
Suppose some G meeting the bound has a component C with a <

(
r
2

)
edges. Then a =

(
x
2

)
for some real number x < r, and G−C is a graph on m−a edges with at least m

(r
2)

(
r
t

)
−
(
x
t

)
copies of Kt by Theorem 3. As t ⩾ 3, we have

a

(
r

t

)
=

(
x

2

)(
r

t

)
=

x(x− 1)r(r − 1)

2t(t− 1)

(
r − 2

t− 2

)
>

x(x− 1)r(r − 1)

2t(t− 1)

(
x− 2

t− 2

)
=

(
r

2

)(
x

t

)
and thus a

(r
2)

(
r
t

)
>

(
x
t

)
, so

m(
r
2

)(r
t

)
−

(
x

t

)
>

m(
r
2

)(r
t

)
− a(

r
2

)(r
t

)
=

m− a(
r
2

) (
r

t

)
which contradicts the bound.
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5.1.2 Weighting copies of H by maximum star size

As mentioned, we can apply Theorem 11 to a broader class of graphs H than just cliques.
This allows us to prove novel asymptotic results on ex(n,H, Sr) for any H with at least
one dominating vertex and on mex(n,H, Sr) for H with at least two dominating vertices:

Theorem 16. Let H be a graph on t vertices.

(i) If H has at least one dominating vertex, then

ex(n,H, Sr) = (1 − o(1))N (H, ⌊n
r
⌋Kr),

and

(ii) if H has at least two dominating vertices, then

mex(m,H, Sr) = (1 − o(1))N (H,
⌊

m

(r
2)

⌋
Kr).

Proof. Let G be an Sr-free graph on n vertices and m edges. Then for each T ∈ H(G),
we have θG(T ) ⩽ r − 1 and thus s1G(T ) ⩾ 1/

(
r−1
t−1

)
and s2G(T ) ⩾ 1/

(
r−2
t−2

)
. Therefore, as

long as dom(H) ⩾ 1, let v be a dominating vertex and apply Theorem 11 with u = 1 to
get

N (H,G) · 1(
r−1
t−1

) ⩽
∑

T∈H(G)

s1G(T ) ⩽
N (H↓1, Kt−1)

dom(H)
· n

so that

N (H,G) ⩽ n

(
r − 1

t− 1

)
N (H↓1, Kt−1)

dom(H)
= (1 − o(1))N (H, ⌊n

r
⌋Kr),

as, when r | n, we can count copies of H in ⌊n
r
⌋Kr by first choosing a vertex v of G to

act as a selected dominating vertex in H, then choosing t− 1 of the r − 1 other vertices
in the same component, then choosing an embedding of H↓1 into those vertices (which is
independent of the choice of v). Each copy of H is counted this way once for each choice
of selected dominating vertex in H. The asymptotic factor allows for n not divisible by r.
Furthermore, as long as dom(H) ⩾ 2, let v and w both be dominating vertices and apply
Theorem 11 with u = 2 to get

N (H,G) · 1(
r−2
t−2

) ⩽
∑

T∈H(G)

s2G(T ) ⩽
N (H↓2, Kt−1)

dom(H)
·m

so that

N (H,G) ⩽ m

(
r − 2

t− 2

)
N (H↓2, Kt−1)

dom(H)
= (1 − o(1))N (H,

⌊
m

(r
2)

⌋
Kr),

where similarly the asymptotic factor allows for m not divisible by
(
r
2

)
.

In both cases we achieve a matching lower bound by taking as many disjoint copies of
Kr as possible and making the remaining vertices independent or making the remaining
edges a matching. (For the values of n and m when we have some remaining vertices or
edges, a better lower bound is given by forming a clique with the remaining vertices or a
colex graph with the remaining edges.)
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Notice that cliques, stars, and all connected threshold graphs have at least one domi-
nating vertex so are included as possible graphs H in part (i) of Theorem 16.

5.2 Hypergraphs

We now consider localized bounds for hypergraphs of bounded degree. Recall that a
hypergraph is q-uniform if every edge is a set of q vertices. The degree of a set of
vertices I, denoted by d(I), is the number of edges E that contain I. Letting i = |I|,
the neighborhood of I is the (q − i)-uniform hypergraph {E \ I : I ⊂ E ∈ E(H)}. For
a q-uniform hypergraph H and 1 ⩽ i < q, we write ∆i(H) for the maximum degree d(I)
over all sets I of i vertices.

For t ⩾ q, we denote by K
(q)
t the complete q-uniform hypergraph on t vertices. We

write Kt(H) for the set of t-cliques in H, i.e., Kt(H) = {S ⊆ V (H) : H[S] ∼= K
(q)
t }. We

use the following upper bound on N (K
(q)
t ,H), which is proved in [19, Theorem 32] as an

immediate consequence of Lovász’ approximate version of the Kruskal-Katona theorem.

Theorem 17 (Lovász [20]). Let q, t ∈ N with t ⩾ q. Let H be a q-uniform hyper-
graph. Write the number of edges of H in the form

(
x
q

)
, where x ⩾ q − 1 is real. Then

N (K
(q)
t ,H) ⩽

(
x
t

)
.

The following theorem generalizes Corollary 12 to q-uniform hypergraphs. Note that
when q = 2, we have i = 1 and x(I) = d(I)+ i = d(v)+1 for I = {v}, and so the function
s(T ) in the following theorem can be thought of as an extension of the function s1G(T ) of
Theorem 11 to hypergraphs.

Theorem 18. Let t ⩾ q > i ⩾ 1 and suppose H is a q-uniform hypergraph on n vertices.
For each I ∈

(
V (H)

i

)
, define x(I) ⩾ q− i− 1 by the equation d(I) =

(
x(I)−i
q−i

)
, and, for each

T ∈ Kt(H), define

x(T ) = max
{
x(I) : I ∈

(
T

i

)}
and s(T ) =

1(
x(T )−i
t−i

) .
Then s(T ) is well-defined and decreasing as a function of x(T ),

∑
T∈Kt(H)

s(T ) ⩽

(
n
i

)(
t
i

) ,
and there is an infinite family of hypergraphs that achieve the bound.

Proof. Let I ∈
(
V (H)

i

)
. For every T ∈ Kt(I), we have x(T ) ⩾ x(I) by definition. If Kt(I)

is nonempty, then d(I) ⩾
(
t−i
q−i

)
and x(I) ⩾ t. Therefore every T ∈ Kt(H) has x(T ) ⩾ t,

so s(T ) is a decreasing function of x(T ). Hence T ∈ Kt(I) implies s(T ) ⩽ 1/
(
x(I)−i
t−i

)
.
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Therefore (
t

i

) ∑
T∈Kt(H)

s(T ) =
∑

I∈(V (H)
i )

∑
T∈Kt(I)

s(T )

⩽
∑

I∈(V (H)
i )

∑
T∈Kt(I)

1(
x(I)−i
t−i

)
⩽

∑
I∈(V (H)

i )

(
x(I)−i
t−i

)(
x(I)−i
t−i

)
=

(
n

i

)
,

where the second inequality follows from applying Theorem 17 to the neighborhood of I.
Design theory provides an infinite family of graphs that meet this bound; we direct

the reader to [19] for more information on such hypergraphs. If H is a q-shadow of a
Steiner system S(i, r, n) for some r then by [19, Lemma 38(b)] we have x(I) = r for
every I and x(T ) = r for every T , so s(T ) = 1

(r−i
t−i)

. By [19, Lemma 38(a)] we have

N (K
(q)
t ,H) =

(
r
t

)(n
i)

(r
i)

. Therefore

∑
T∈Kt(H)

s(T ) =

(
r
t

)(
n
i

)(
r
i

)(
r−i
t−i

) =

(
n
i

)(
t
i

) .
It seems interesting and challenging to characterize all of the extremal q-graphs in

Theorem 18. See [19, Theorem 43] for a related characterization of the extremal q-graphs
in the non-localized theorem.

As a corollary of Theorem 18 we obtain the following theorem of Radcliffe and the
first author on maximizing the number of t-cliques among bounded-degree q-uniform
hypergraphs.

Theorem 19 (Kirsch and Radcliffe [19]). Let 1 ⩽ i < q ⩽ t and suppose H is an q-
uniform hypergraph on n vertices such that ∆i(H) ⩽

(
x−i
q−i

)
for some real number x ⩾ q.

Then

N (K
(q)
t ,H) ⩽

(
n
i

)(
x
i

)(x
t

)
.

Proof using Theorem 18. The condition ∆i(H) ⩽
(
x−i
q−i

)
implies that x(I) ⩽ x for every

I ∈
(
V (H)

i

)
, so x(T ) = max{x(I) : I ∈

(
T
i

)
} ⩽ x for every T ∈ Kt(H). Theorem 18 gives

N (K
(q)
t ,H)(

x−i
t−i

) =
∑

T∈Kt(H)

1(
x−i
t−i

) ⩽
∑

T∈Kt(H)

s(T ) ⩽

(
n
i

)(
t
i

) ,
so N (K

(q)
t ,H) ⩽

(n
i)

(t
i)

(
x−i
t−i

)
=

(n
i)

(x
i)

(
x
t

)
.
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6 Open Problems

We briefly mention a few additional instances of problems that we believe are amenable
to localized extensions.

The following conjecture is a localized form of a theorem of Frohmader [13], as phrased
in [19, Theorem 8], on maximizing the number of t-cliques among m-edge, Kr+1-free
graphs.

Conjecture 20. Let t ⩾ 2. For each T ∈ Kt(G), define

αG(T ) = max{k : T ⊆ V (S) for some S ⊆ G s.t.S ∼= Kk} and w′
G(T ) =

(
αG(T )

2

)t/2(
αG(T )

t

) .

For every m-edge graph G, ∑
T∈Kt(G)

w′
G(T ) ⩽ mt/2.

After a preprint of this paper was made available, Aragão and Souza [2] announced a
proof of a generalization of Conjecture 20.

Many extremal results on paths, beginning with the results of Erdős and Gallai [12],
are consequences of extremal theorems regarding cycles. While the family of cycle graphs
{C3, C4, . . .} does not have the subgraph inclusion property shared by cliques, paths,
and stars, these results consider graphs of bounded circumference (that is, maximum
cycle length). The techniques in this paper often bounded a weight function by arguing
a maximal structure could not be extended; cycles do not allow such arguments, which
could make proving localized results more difficult. Nevertheless, we provide the following
weight function and conjectures based on results of Luo [21] and Chakraborti and Chen [8],
respectively.

Definition 21. Let t ⩾ 2. For each T ∈ Kt(G), define

γG(T ) = max{k : T ⊆ V (S) for some S ⊆ G s.t.S ∼= Ck}.

Conjecture 22. Let t ⩾ 2. For each T ∈ Kt(G), define

cG(T ) =
γG(T ) − 1(

γG(T )
t

) .

Then cG(T ) is well-defined and decreasing in γG(T ), and∑
T∈Kt(G)

cG(T ) ⩽ n− 1,

with equality if and only if each 2-connected component of G is a complete graph of order
at least t.
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Conjecture 23. Let t ⩾ 2. For each T ∈ Kt(G), define

c′G(T ) =

(
γG(T )

2

)(
γG(T )

t

) .
Then c′G(T ) is well-defined and decreasing in γG(T ), and∑

T∈Kt(G)

c′G(T ) ⩽ m,

with equality if and only if each 2-connected component of G is a complete graph of order
at least t and any number of isolated vertices.

It may be possible to generalize Corollary 13 to hypergraphs. We make the following
conjecture as a localized version of Theorem 51 in [19], analogously to Theorem 18.

Conjecture 24. Let t ⩾ q > i ⩾ 1 and suppose H is a q-uniform hypergraph on m edges.
For each I ∈

(
V (H)

i

)
, define x(I) ⩾ q− i− 1 by the equation d(I) =

(
x(I)−i
q−i

)
, and, for each

T ∈ Kt(H), define

x(T ) = max
{
x(I) : I ∈

(
T

i

)}
and s′(T ) =

1(
x(T )−q
t−q

) .
Then ∑

T∈Kt(H)

s′(T ) ⩽
m(
t
q

) .
Finally, we used Theorem 18 to obtain new asymptotically tight bounds on ex(n,H, Sr)

when H has at least one dominating vertex and on mex(m,H, Sr) when H has at least
two dominating vertices. It may be possible to prove similar results for hypergraphs.

Question 25. Can Theorem 16 (or Theorem 11) be generalized to the setting of q-uniform
hypergraphs with bounded maximum i-degree, perhaps with i = 1 or i = q− 1, in such a
way as to obtain new generalized Turán-type results for hypergraphs?
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