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Abstract

We verify an explicit inequality conjectured in [8], thus proving that for any
nonempty union-closed family F ⊆ 2[n], some i ∈ [n] is contained in at least a
3−

√
5

2 ≈ 0.38 fraction of the sets in F . One case, an explicit one-variable inequality, is
checked by computer calculation. Mathematics Subject Classifications: 05D05

Mathematics Subject Classifications: 05D05

1 Introduction

Let Mφ be the set of probability measures µ ∈ P([0, 1]) with expectation φ. Define

F (µ) = E
(x,y)∼µ×µ

H(xy)− E
x∼µ

H(x) (1)

where H(x) = −x log x − (1 − x) log(1 − x) is the entropy function and log denotes the
natural logarithm. Note that F is continuous in the weak topology and Mφ is compact,
so F has a minimizer over Mφ. In this note, we will show the following results.

Theorem 1. For all φ ∈ [0, 1], the minimum of F (µ) over Mφ is attained at some µ
supported on at most two points. Furthermore, if a minimizer is supported on exactly two
points, then one of the points is 0.

The case of µ supported on {0, x} leads to the following definition:

S =

φ ∈ [0, 1] : φH(x2)  xH(x) ∀x ∈ [φ, 1]


, φ∗ = min(S).

Note that the condition defining S is monotone in φ and S is clearly closed, so min(S)
is well defined. As in the recent breakthrough [8] by Gilmer, a bound on Frankl’s union-
closed conjecture follows from the above.
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Theorem 2. The union-closed conjecture holds with constant 1 − φ∗, i.e. for any non-
empty union-closed family F ⊆ 2[n], some i ∈ [n] is contained in at least 1 − φ∗ fraction
of the sets in F .

Throughout this paper we set ϕ =
√
5−1
2

. In the Appendix, we give a numerical
verification of the following claim. We require certain computer calculations (detailed in
an attached Python file) to be accurate to within margin of error 10−3, which can be
made completely rigorous using interval arithmetic.

Claim 3. If x ∈ [ϕ, 1], then ϕH(x2)  xH(x), with equality if and only if x ∈ {ϕ, 1}.

Assuming Claim 3, the following claim identifies the value of φ∗. Then, Theorem 2
implies that the union-closed conjecture holds with constant 1 − ϕ = 3−

√
5

2
. This is a

natural barrier for the method of [8] as explained therein. Interestingly, Claim 3 has been
mentioned previously in a different context by [3].

Claim 4. We have that φ∗ = ϕ.

Related Work. The union-closed conjecture has been the subject of much study, see
[1, 10, 14, 2, 9] or the survey [4]. The recent breakthrough [8] by Gilmer showed that this
conjecture holds with constant 0.01.

Concurrently with and independently of this work, Chase and Lovett [6], Sawin [12],

and Pebody [11] also proved the union-closed conjecture with constant 3−
√
5

2
. [12] also

outlined an argument to improve this bound by an additional small constant, which was
subsequently made explicit in [15] (using Lemma 5 below) and [5]. Moreover, [12] and
Ellis [7] found counterexamples to [8, Conjecture 1], which would have implied the full
union-closed conjecture with constant 1

2
.

Acknowledgements. We thank Zachary Chase and Shachar Lovett for sharing their
writeup [6] with us. We thank Mehtaab Sawhney and the anonymous referee for helpful
comments. RA was supported by an NSF Mathematical Sciences Postdoctoral Research
Fellowship. BH was supported by an NSF Graduate Research Fellowship, a Siebel scholar-
ship, NSF awards CCF-1940205 and DMS-1940092, and NSF-Simons collaboration grant
DMS-2031883.

2 Reduction to Two Point Masses

Lemma 5. F is concave on Mφ for any φ ∈ [0, 1], i.e.

pF (µ1) + (1− p)F (µ2)  F (pµ1 + (1− p)µ2) ∀ µ1, µ2 ∈ Mφ, p ∈ [0, 1] . (2)

Proof. Let γ(x) = µ([0, x]) be the cumulative distribution function of µ. Thus γ(1) = 1
and

φ =

 1

0

xµ(dx) = 1−
 1

0

γ(x) dx ,
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so  1

0

γ(x) dx = 1− φ . (3)

Using integration by parts,

 1

0

H(x)µ(dx) = H(x)γ(x)


1

0

−
 1

0

H ′(x)γ(x) dx =

 1

0


log

x

1− x


γ(x) dx .

Similarly,

 1

0

H(xy)µ(dy) = H(xy)γ(y)


1

0

−
 1

0

xH ′(xy)γ(y) dy

= H(x) +

 1

0


x log

xy

1− xy


γ(y) dy ;

 1

0


x log

xy

1− xy


µ(dx) =


x log

xy

1− xy


γ(x)


1

0

−
 1

0

d

dx


x log

xy

1− xy


γ(x) dx ,

= log
y

1− y
−

 1

0


1

1− xy
+ log

xy

1− xy


γ(x) dx ;



[0,1]2
H(xy)µ(dx)µ(dy) =

 1

0

H(x)µ(dx) +

 1

0

γ(y)

 1

0

x log
xy

1− xy
µ(dx) dy ,

= 2

 1

0


log

x

1− x


γ(x) dx

−


[0,1]2


1

1− xy
+ log

xy

1− xy


γ(x)γ(y)dxdy.

So, letting F (γ) = F (µ) by slight abuse of notation, we have

F (γ) =

 1

0


log

x

1− x


γ(x) dx

−


[0,1]2


log x+ log y +

1

1− xy
+ log

1

1− xy


γ(x)γ(y) dx dy .

We will show this is concave in γ. The first integral is manifestly linear in γ, and the
contributions of log x and log y are linear because, in light of (3),



[0,1]2
(log x)γ(x)γ(y) dx dy = (1− φ)

 1

0

(log x)γ(x) dx .

After removing these terms, we are reduced to showing convexity of



[0,1]2


1

1− xy
+ log

1

1− xy


γ(x)γ(y)dxdy .
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Note that both 1
1−xy

and log 1
1−xy

are of the form


k0 akx
kyk for constants ak  0. Hence

it suffices to prove convexity of



[0,1]2
xkykγ(x)γ(y)dxdy =

 1

0

xkγ(x)dx

2

for any k  0. This is the square of a linear function of γ, and hence is convex. (Note
that all integrands are in L1 and so there are no convergence issues.)

Lemma 6. argminµ∈Mφ
F (µ) contains some µ supported on at most two points.

Proof. This follows immediately from Lemma 5 and the Krein-Milman theorem since Mφ

is compact in the weak-* topology and convex, and all extreme measures in Mφ are
supported on 1 or 2 points (see e.g. [13] for more on the latter point).

For self-containedness, we also include an explicit and elementary version of this ar-
gument. First let µ ∈ Mφ be any minimizer of F and note that µ can be approximated
arbitrarily well in the weak topology by µ̂ with finite support. In particular for any ε > 0,
there exists µ̂ ∈ Mφ with F (µ̂)  F (µ) + ε of the form

µ̂(ai) = bi − bi−1, 1  i  k

for constants 0  a1 < · · · < ak  1 and 0 = b0 < b1 < · · · < bk = 1. We claim that for
any ε > 0, the minimal k such that such a µ̂ exists is at most two. Indeed given such a µ̂
with k  3, we may consider µ̂η defined by

µ̂η(a1) = b1 − b0 + η(a3 − a2),

µ̂η(a2) = b2 − b1 − η(a3 − a1),

µ̂η(a3) = b3 − b2 + η(a2 − a1),

µ̂η(ai) = µ̂(ai) = bi − bi−1, ∀ i ∈ {4, 5, . . . , k}.

Then there exist c1, c2 > 0 such that µ̂η ∈ Mφ if and only if −c1  η  c2; moreover
the map η → F (µ̂η) is concave by Lemma 5. It is easy to see that both µ̂−c1 , µ̂c2 have
support size at most k − 1, and at least one of F (µ̂−c1), F (µ̂c2) is at most F (µ̂) by
concavity. Iterating this argument, we find a µ̃ ∈ Mφ with support size at most 2 and
with F (µ̃)  F (µ̂)  F (µ) + ε. Taking a subsequential weak limit of the resulting µ̃ as
ε → 0 completes the proof.

3 Optimization over Two Point Masses

Lemma 7. If µ is supported on exactly two points, neither of which is 0, then µ is not a
minimizer of F over Mφ.

Proof. Suppose µ = pδx + (1 − p)δy is a minimizer for F over Mφ for 0 < y < x < 1
distinct and 0 < p < 1. Then any z ∈ [0, 1] can be written as z = qx+ (1− q)y for some
q ∈ R (which may be negative). We have

µ+ tδz − tqδx − t(1− q)δy ∈ Mφ
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for sufficiently small t  0 and so

lim
t→0+

F

µ+ tδz − tqδx − t(1− q)δy


− F (µ)

t
 0.

It is not difficult to see from the definition (1) of F that the left-hand limit equals

f(z)− qf(x)− (1− q)f(y)  0 , (4)

for
f(w) := 2[pH(xw) + (1− p)H(yw)]−H(w).

Equation (4) implies that f lies above the line passing through (x, f(x)) and (y, f(y)).
Since f is a smooth function and x, y are in the interior of [0, 1], we deduce that

(a) f ′(x) = f ′(y) = f(x)−f(y)
x−y

, and

(b) f ′′(x), f ′′(y)  0.

Moreover, (a) implies

(c) f ′′(z)  0 for some z ∈ [y, x].

However we compute using H ′(w) = log 1−w
w

that:

f ′(z) = 2


px log

1− xz

xz
+ (1− p)y log

1− yz

yz


− log

1− z

z
,

f ′′(z) = −2


px

z(1− xz)
+

(1− p)y

z(1− yz)


+

1

z(1− z)
.

Note that g(z) := z(1 − z)(1 − xz)(1 − yz)f ′′(z) has the same sign as f ′′(z) and is a
quadratic function in z with leading coefficient

−2pxy − 2(1− p)xy + xy = −xy < 0 .

Hence the inequalities g(x), g(y)  0 and g(z)  0 can hold only if g and hence f ′′ vanishes
on the entire interval [x, y]. This is impossible since we just saw g has non-zero leading
coefficient.

The case x = 1, y > 0 is very similar. While we have f ′′(y)  0 as above, since 1
is not in the interior of [0, 1], we cannot immediately deduce that f ′′(1)  0. However
in this case g(z) is a multiple of 1 − z, and so g(1) = 0  0. Then the same argument
applies: g(z) is a quadratic polynomial with negative leading coefficient −y < 0. Because
g takes non-negative values at y and 1, it takes positive values in between. However since
f is continuous on [0, 1] and smooth on (0, 1), and stays above the line segment through
(y, f(y)) and (1, f(1)), it must have non-positive second derivative at some z ∈ (y, 1).
Since g and f ′′ have the same sign on (0, 1), this is a contradiction. (Note that f ′′(1) does
not actually exist if x = 1 and is not used in this argument.)
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4 Conclusion

Proof of Theorem 1. Follows from Lemmas 6 and 7.

Lemma 8. We have that φ∗  ϕ.

Proof. Note that H(ϕ2) = H(ϕ). If φ < ϕ, then φH(ϕ2) < ϕH(ϕ), and so φ ∕∈ S.

Corollary 9. If φ  φ∗, then F (µ)  0 for all µ ∈ Mφ.

Proof. By Theorem 1, it suffices to check F (µ)  0 for µ = pδx + (1− p)δ0 with p = φ/x
and x ∈ [φ, 1] (this includes the case µ = δφ, corresponding to x = φ). By monotonicity
of the condition defining S, φ ∈ S. So,

F (µ) =
φ2

x2
H(x2)− φ

x
H(x) =

φ

x2
(φH(x2)− xH(x))  0 .

From Theorem 1, we deduce the following tight version of Gilmer’s [8, Lemma 1].
Theorem 2 follows from Corollary 10 by the same argument as in [8, Proof of Theorem 1].
We recall Gilmer’s ingenious insight was that given a union-closed family F ⊆ 2[n], if A,A′

are independent uniformly random samples from F , then A ∪ A′ ∈ F is not uniformly
random and thus has strictly smaller entropy. On the other hand, Corollary 10 can be
applied element-by-element to show that A ∪ A′ actually has equal or larger entropy.

Corollary 10. Suppose {pc}c∈S ⊂ [0, 1] is a finite sequence of real numbers and c is a
random variable supported on S such that Ec[pc]  1−φ∗. If c′ is an independent copy of
c, then

E
c,c′

[H(pc + pc′ − pcpc′)]  E
c
[H(pc)] .

Proof. Let µ be the distribution of x = 1−pc. Let φ = Ex∼µ[x], so φ > φ∗. By Corollary 9,

E
c,c′

[H(pc + pc′ − pcpc′)]− E
c
[H(pc)] = E

(x,y)∼µ×µ
H(xy)− E

x∼µ
H(x) = F (µ)  0 .

Finally, we verify Claim 4 assuming Claim 3.

Proof of Claim 4. Claim 3 implies ϕ ∈ S, so φ∗  ϕ by definition of φ∗. On the other
hand, Lemma 8 gives φ∗  ϕ.
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A Proof of Claim 3

In this appendix, we prove Claim 3. Throughout this appendix, we use Claims to indicate
results requiring the correctness of computer outputs within margin of error 10−3 or
greater. The only computations which rely on a computer are the entries in Tables 1 and
2. Figure 1 plots the function

G(x) = ϕH(x2)− xH(x),

from which Claim 3 can be checked visually. We show below that, assuming correctness
of certain computer calculations to within margin of error 10−3,

G(x)  0, ∀x ∈ [ϕ, 1].

We verify this separately on the intervals I1 = [ϕ, 0.77], I2 = [0.76, 0.98], I3 = [0.98, 1].
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Figure 1: Plot of G(x) for x ∈ [0.6, 1]. Claim 3 states the minimum value of 0 on x ∈ [ϕ, 1]
is achieved precisely at the endpoints x ∈ {ϕ, 1}.

A.1 Verification on I1

We first compute the derivative of G:

G′(x) =2xϕ log
1− x2

x2
−H(x)− x log

1− x

x

= 2xϕ log
1− x2

x2
+ x log x+ (1− x) log(1− x) + x log x− x log(1− x)

= 2xϕ log
1− x2

x2
+ 2x log x+ (1− 2x) log(1− x)

Note that G(ϕ) = G′(ϕ) = 0, the latter since

G′(ϕ) = 2ϕ2 log(1/ϕ) + 2ϕ log(ϕ) + (1− 2ϕ) log(ϕ2)

= (−2ϕ2 + 2ϕ+ 2(1− 2ϕ)) logϕ

= 2(1− ϕ− ϕ2) log(ϕ) = 0.

Claim 11. Claim 3 holds on I1 = [ϕ, 0.77].

Proof. As G(ϕ) = G′(ϕ) = 0, it suffices to verify that G is convex on I1. It is not hard to
check that its second derivative equals G′′(x) = L(x)/(1− x2), where

L(x) := 2ϕ(1− x2) log(x−2 − 1)− 4ϕ− 2x2 log x+ 2(x2 − 1) log(1− x) + x+ 2 log(x) + 1 .

We now estimate the Lipschitz constant of each non-constant term of L on x ∈ I1. For
the first term,


d

dx


2ϕ(1− x2) log(x−2 − 1)

  2ϕ sup
x∈I1


|2x3|+ 2|x log(x−2 − 1)|



 2ϕ(1.1 + 1.6 · log(2))
 2ϕ · 2.3  3

(5)
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since log(2)  0.75 and ϕ  5/8. Next,

d

dx


2x2 log(x)

  sup
x∈I1

|4x log(x) + 2x|

 1.6 sup
x∈I1

|2 log(x) + 1|

 1.6

since log(x) ∈ [−1, 0] for all x ∈ I1. Continuing, using log(5)  2,

d

dx


2(x2 − 1) log(1− x)

  2 sup
x∈I1

|2x log(1− x)− x2 − 1

1− x
|

 2 sup
x∈I1

|2x log(1− x) + x+ 1|

 2 ·max(1.6 log(5), 1.8)

 2 · 1.6 · 2 = 6.4.

Finally d
dx
(x) = 1 and d

dx
(2 log x) = 2/x  3.5. Combining, we find that L(x) restricted

to I1 has Lipschitz constant at most

1.6 + 6.4 + 1 + 3 + 3.5  15.5.

Therefore to show G is convex and hence non-negative on I1 = [ϕ, 0.77] it suffices to
exhibit a 1

400
-dense subset of I1 on which L(x) = (1− x2)G′′(x)  0.04  15.5

400
. In Table 1

below we compute the values of L on each multiple of 1
200

from 0.6 to 0.77 inclusive. We
find that L(x)  0.09 holds at all of these points, completing the numerical verification
on I1.

x L(x) x L(x) x L(x) x L(x) x L(x) x L(x)

0.600 0.1020 0.630 0.1117 0.660 0.1173 0.690 0.1182 0.720 0.1137 0.750 0.1032
0.605 0.1039 0.635 0.1130 0.665 0.1178 0.695 0.1178 0.725 0.1124 0.755 0.1009
0.610 0.1057 0.640 0.1141 0.670 0.1182 0.700 0.1173 0.730 0.1109 0.760 0.0983
0.615 0.1074 0.645 0.1151 0.675 0.1184 0.705 0.1167 0.735 0.1093 0.765 0.0955
0.620 0.1089 0.650 0.1159 0.680 0.1185 0.710 0.1159 0.740 0.1075 0.770 0.0925
0.625 0.1104 0.655 0.1167 0.685 0.1184 0.715 0.1149 0.745 0.1054

Table 1: Evaluations of L to precision 10−4. All values appear to be at least 0.09, and it
suffices for all values to be at least 0.04.

A.2 Verification on I2

Our verification for x ∈ I2 is based on evaluating G. We write G(x) = g1(x)− g2(x) for

g1(x) = ϕH(x2),

g2(x) = xH(x).

Note that g1 is clearly decreasing on I2. The next lemma shows the same for g2.
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Lemma 12. g2 is decreasing on [5/7, 1] ⊇ I2.

Proof. First we claim that it suffices to show g′2(5/7)  0. This is because

g′2(x) = H(x) + x log
1− x

x
= 2x log

1

x
− (2x− 1) log

1

1− x

so g′2(x)  0 if and only if


1− 1

2x


log

1

1− x
 log

1

x
. (6)

Indeed both terms on the left-hand side are increasing while the right-hand side is de-
creasing.

It remains to show that g′2(5/7)  0 which in light of (6) is equivalent to showing

3

10
log(7/2)  log(7/5),

i.e. (7/5)10/3  7/2. This holds since (7/5)3  2(7/5) = 14/5 and 7/5 

5
4

3
=

7/2
14/5

3

.

Claim 13. Claim 3 holds for x ∈ I2.

Proof. We computer-evaluate g1, g2 at a finite set of values x1 < x2 < · · · < x97 with
5/7 < x1 < 0.76 and x97 = 0.98 and verify that g1(xi+1)  g2(xi) for each i. The values
are shown in Table 2; note that in all cases g1(xi+1)−g2(xi)  2

1000
holds, modulo rounding

to four decimal places. The intervals [xi, xi+1] cover I2, and for all x ∈ [xi, xi+1] we have

g2(x)  g2(xi)  g1(xi+1)  g1(x) .

A.3 Verification on I3

Proposition 14. Claim 3 holds for x ∈ I3.

Proof. Taylor expansion of log(1− ε) gives that for all ε ∈ (0, 1),

ε


log

1

ε
+ 1− ε


 H(ε)  ε


log

1

ε
+ 1


.

Let x = 1− ε for ε ∈ [0, 0.02]. Then

g1(x) = ϕH(2ε− ε2)  ϕε(2− ε)

log

1

ε
− log(2− ε) + (1− ε)2


,

g2(x) = (1− ε)H(ε)  ε(1− ε)

log

1

ε
+ 1


.
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x g1(x) g2(x) x g1(x) g2(x) x g1(x) g2(x) x g1(x) g2(x)

0.7598 0.4210 0.4189 0.7797 0.4139 0.4111 0.8472 0.3678 0.3622 0.9350 0.2338 0.2249
0.7600 0.4209 0.4188 0.7814 0.4131 0.4103 0.8507 0.3643 0.3586 0.9380 0.2270 0.2180
0.7603 0.4208 0.4187 0.7832 0.4124 0.4095 0.8543 0.3606 0.3547 0.9409 0.2202 0.2112
0.7606 0.4207 0.4186 0.7851 0.4115 0.4085 0.8579 0.3567 0.3507 0.9437 0.2134 0.2045
0.7609 0.4206 0.4185 0.7871 0.4106 0.4075 0.8615 0.3528 0.3465 0.9465 0.2065 0.1975
0.7613 0.4205 0.4184 0.7892 0.4095 0.4064 0.8651 0.3486 0.3422 0.9492 0.1996 0.1907
0.7617 0.4204 0.4183 0.7913 0.4085 0.4053 0.8688 0.3442 0.3377 0.9518 0.1927 0.1839
0.7621 0.4203 0.4181 0.7935 0.4074 0.4041 0.8725 0.3397 0.3330 0.9543 0.1860 0.1772
0.7626 0.4201 0.4180 0.7958 0.4062 0.4028 0.8762 0.3350 0.3281 0.9567 0.1793 0.1706
0.7631 0.4200 0.4178 0.7982 0.4048 0.4014 0.8799 0.3301 0.3230 0.9590 0.1728 0.1641
0.7637 0.4198 0.4176 0.8007 0.4034 0.3999 0.8836 0.3251 0.3178 0.9612 0.1663 0.1577
0.7643 0.4196 0.4174 0.8033 0.4019 0.3983 0.8873 0.3198 0.3124 0.9633 0.1600 0.1515
0.7650 0.4194 0.4171 0.8060 0.4003 0.3965 0.8909 0.3146 0.3070 0.9654 0.1535 0.1452
0.7657 0.4191 0.4169 0.8088 0.3985 0.3947 0.8945 0.3092 0.3014 0.9674 0.1472 0.1390
0.7665 0.4189 0.4166 0.8116 0.3967 0.3927 0.8981 0.3035 0.2957 0.9693 0.1411 0.1330
0.7673 0.4186 0.4163 0.8145 0.3948 0.3907 0.9017 0.2977 0.2897 0.9711 0.1351 0.1271
0.7682 0.4183 0.4159 0.8175 0.3927 0.3884 0.9052 0.2919 0.2838 0.9728 0.1293 0.1215
0.7692 0.4179 0.4156 0.8206 0.3904 0.3861 0.9087 0.2859 0.2776 0.9744 0.1237 0.1160
0.7702 0.4176 0.4152 0.8237 0.3881 0.3836 0.9122 0.2797 0.2713 0.9759 0.1183 0.1109
0.7713 0.4172 0.4147 0.8269 0.3857 0.3810 0.9156 0.2734 0.2650 0.9773 0.1132 0.1059
0.7725 0.4167 0.4142 0.8301 0.3831 0.3783 0.9190 0.2670 0.2584 0.9787 0.1080 0.1009
0.7738 0.4163 0.4137 0.8334 0.3803 0.3754 0.9223 0.2606 0.2519 0.9800 0.1030 0.0961
0.7752 0.4157 0.4131 0.8368 0.3774 0.3723 0.9256 0.2539 0.2452
0.7766 0.4152 0.4125 0.8402 0.3744 0.3691 0.9288 0.2473 0.2385
0.7781 0.4145 0.4119 0.8437 0.3711 0.3657 0.9319 0.2406 0.2318

Table 2: Evaluations of g1 and g2 to precision 10−4. We require that for consecutive
inputs xi < xi+1 in the table, g1(xi+1) − g2(xi)  0. The values shown in fact satisfy
g1(xi+1)− g2(xi)  2

1000
modulo rounding.

Dividing by ε, it suffices to prove


(2ϕ− 1) + (1− ϕ)ε


log

1

ε
 (1− ε) (1− ϕ(1− ε)(2− ε)) + ϕ(2− ε) log(2− ε).

Noting ϕ(1− ε)(2− ε)  1 in the first line below, we next find

(1− ε) (1− ϕ(1− ε)(2− ε)) + ϕ(2− ε) log(2− ε)  2ϕ log 2 = (
√
5− 1) log 2,

((2ϕ− 1) + (1− ϕ)ε) log
1

ε
 (2ϕ− 1) log

1

ε
 (

√
5− 2) log 50.

Finally (
√
5− 2) log 50  (

√
5− 1) log 2 because

log2(50)  log2(2
5 · 1.5)  5.5

 3 +
√
5 = (

√
5− 1)/(

√
5− 2).

Hence the proof is complete. Equality holds if and only if ε = 0, i.e. x = 1.

Proof of Claim 3. Follows by combining Claims 11, 13 and Proposition 14.

the electronic journal of combinatorics 31(3) (2024), #P3.35 11


