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Abstract

The Steiner distance of a set of vertices in a graph is the fewest number of edges
in any connected subgraph containing those vertices. The order-k Steiner distance
hypermatrix of a graph is the n-dimensional array indexed by vertices, whose entries
are the Steiner distances of their corresponding indices. In the case of k = 2, this
reduces to the classical distance matrix of a graph. Graham and Pollak showed
in 1971 that the determinant of the distance matrix of a tree only depends on its
number n of vertices. Here, we show that the hyperdeterminant of the Steiner
distance hypermatrix of a tree vanishes if and only if (a) n > 3 and k is odd, (b)
n = 1, or (c) n = 2 and k ≡ 1 (mod 6). Two proofs are presented of the n = 2 case
– the other situations were handled previously – and we use the argument further to
show that the distance spectral radius for n = 2 is equal to 2k−1 − 1. Some related
open questions are also discussed.

Mathematics Subject Classifications: 05C50, 05C12

1 Introduction

Distance matrices are a natural object of study in graph theory. An influential paper of
Graham and Pollak ([7]) showed, among other things, the surprising result that determi-
nants of distance matrices of trees only depend on the number n of vertices: (1−n)(−2)n−2.
This led to a tremendous amount of scholarship concerning these matrices’ spectral prop-
erties. Interested readers are directed to [1] for a thorough history.

Steiner distance, a generalization of pairwise distance to any set of vertices, was in-
troduced by [2]; an extensive survey can be found in [10]. Let V (G) be the vertex set of
G. The Steiner distance d(S) of a set S ⊆ V (G) of vertices in a graph G is the fewest
number of edges in any connected subgraph of G containing S. A straightforward gen-
eralization of distance matrices is then the order-k “Steiner distance hypermatrix” of a
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graph G on n vertices, the order-k dimension-n array Dk(G) whose (v1, . . . , vk) ∈ V (G)k

entry is d({v1, . . . , vk}).
Since Qi ([12]) defined the symmetric hyperdeterminants of a symmetric tensor and

provided tools for studying spectra, it is natural to ask for multilinear generalizations of
the Graham-Pollak Tree Theorem. In general, hyperdeterminants are computationally
intensive to compute and conceptually difficult to study. However, [5] showed that, for
trees T on n > 3 vertices, det(Dk(T )) is zero when k is odd; and [4] showed that it is
nonzero for k even. It is trivial that det(Dk(T )) is 0 when n = 1, so – as far as the
vanishing of this quantity is concerned – the only remaining case to resolve is n = 2,
which is the main result of this note.

Theorem 1. The Steiner distance hyperdeterminant det(Dk(T )) of a tree T on n vertices
vanishes iff one of the following three conditions holds (1) n = 1, (2) n = 2 and k ≡
1 (mod 6), (3) n > 2 and k is odd.

We present two short proofs: one of which is an application of Qi’s version of Sylvester’s
formula, and another of which uses a description of the characteristic polynomial of the all-
ones hypermatrix. An interesting aspect of our formula for the hyperdeterminant is that,
up to sign, it equals “Wendt’s determinant” (see [8]) (see also [11, OEIS A048954]) with
well-known connections to Fermat’s Last Theorem ([9]). We also use our computations
to describe exactly the spectral radius of Dk(T ), and present a few open questions in this
area.

2 Proofs

An order-k hypermatrix M with index set S is “symmetric” if, for each permutation σ
of [k], the (i1, . . . , ik) ∈ Sk entry of M equals the (iσ(1), . . . , iσ(k)) entry. Of course, if
S = {0, 1}, then the entries of a symmetric hypermatrix depend only on the number of
their indices which equal 0 or 1. In this special case, Qi gives the following version of
Sylvester’s formula in [12] for the hyperdeterminant:

Proposition 2. Let M be an order-k, dimension-2 symmetric hypermatrix with the
(i1, . . . , ik) entry equal to at, 0 6 t 6 k, where t is the number of coordinates in (i1, . . . , ik)
that are equal to 1. Then det(M) is given by the following determinant of order 2(k− 1):∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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Let D := Dk(K2) throughout this note, where K2 is the single-edge graph. For the
hypermatrix D, we have a0 = 0, ak = 0, at = 1 for all 0 < t < k. Therefore,

det(D) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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As usual, we use Ik and Ok to represent an identity matrix and a zero matrix of order k,
respectively.

It is easy to see that A + B + Ik−1 is a circulant matrix, generated by the row
(
(
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0

)
,
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)
, . . . ,
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)
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where i is the imaginary unit, j = 0, . . . , k − 2.
Next, we would like to obtain all the eigenvalues of the matrix[

A B + Ik−1
A+ Ik−1 B

]
,

whose determinant equals to det(D) by virtue of Proposition 2. From[
Ik−1 Ok−1
Ik−1 Ik−1

]−1 [
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]
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=

[
A+B + Ik−1 B + Ik−1

Ok−1 −Ik−1

]
,

we may conclude that the eigenvalues of[
A B + Ik−1

A+ Ik−1 B

]
are the eigenvalues of A+B + Ik−1, and −1 of multiplicity k − 1. Thus,
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It is worth mentioning that
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)
is Wendt’s determinant Wk−1 ([11, A048954]); see [8] for example. Lehmer showed ([9])
that Wm is 0 iff 6|m, from which Theorem 1 follows.

Now, we reprove this identity using characteristic polynomial of D. The following
theorem appears in [3]. Denote by Jkn the all-ones, dimension-n, order-k hypermatrix,
and I the dimension-n, order-k identity hypermatrix.
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n.

Theorem 3. Let φn(λ) denote the characteristic polynomial of Jkn , n > 2. Then
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If we take the n = 2 case of this expression, the result is
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Note that D = Jk2 − I, so the characteristic polynomial φD(λ) of D is given by

φD(λ) = φn(λ+ 1) = (λ+ 1)k−1
k−1∏

j1,j2=1

(
λ−

(
e

2πj1
k−1

i + e
2πj2
k−1

i
)k−1

+ 1

) 1
k−1

.

the electronic journal of combinatorics 31(3) (2024), #P3.4 4



We claim that
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As a consequence, the constant term of φD(λ) is
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It is left to confirm (1). First, for any 1 6 j1, j2 6 k − 1, based on(
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ordered pairs (j1, j2) such that 1 6 |j1 − j2| 6 k − 2, we have

k−1∏
j1,j2=1

(
λ−

(
e

2πj1
k−1

i + e
2πj2
k−1

i
)k−1

+ 1

) 1
k−1

=
k−1∏

j1,j2=1

(
λ−

(
e

2π|j1−j2|
k−1

i + 1
)k−1

+ 1

) 1
k−1

=
k−2∏
j=0

(
λ−

(
1 + e

2πj
k−1

i
)k−1

+ 1

) k−2∏
j=1

(
λ−

(
1 + e

2πj
k−1

i
)k−1

+ 1

) k−1−2j
k−1

. (2)

Further, we can get

k−2∏
j=1

(
λ−

(
1 + e

2πj
k−1

i
)k−1

+ 1

) 2j
k−1

=
k−2∏
j=1

(
λ−

(
1 + e

2πj
k−1

i
)k−1

+ 1

) j
k−1

k−2∏
j=1

(
λ−

(
1 + e

2πj
k−1

i
)k−1

+ 1

) j
k−1

=
k−2∏
j=1

(
λ−

(
1 + e

2πj
k−1

i
)k−1

+ 1

) j
k−1

k−2∏
j=1

(
λ−

(
1 + e

2π(k−1−j)
k−1

i
)k−1

+ 1

) k−1−j
k−1

=
k−2∏
j=1

(
λ−

(
1 + e

2πj
k−1

i
)k−1

+ 1

) j
k−1

k−2∏
j=1

(
λ−

(
1 + e

−2πj
k−1

i
)k−1

+ 1

) k−1−j
k−1

=
k−2∏
j=1

(
λ−

(
1 + e

2πj
k−1

i
)k−1

+ 1

) j
k−1

k−2∏
j=1

(
λ−

(
1 + e

2πj
k−1

i
)k−1

+ 1

) k−1−j
k−1

the electronic journal of combinatorics 31(3) (2024), #P3.4 5



=
k−2∏
j=1

(
λ−

(
1 + e

2πj
k−1

i
)k−1

+ 1

)
,

or equivalently,

k−2∏
j=1

(
λ−

(
1 + e

2πj
k−1

i
)k−1

+ 1

) k−1−2j
k−1

= 1. (3)

Finally, (1) follows by combining (2) and (3).
We may now take advantage of the above analysis to compute the spectral radius of

D.

Corollary 4. The Steiner distance hypermatrix of order k with n = 2 has spectral radius
2k−1 − 1.

Proof. Recall from both proofs of Theorem 1 that the eigenvalues of D are −1 with

multiplicity k− 1, and
(

1 + e
2πj
k−1

i
)k−1

− 1 once for each 0 6 j 6 k− 2. Since the point on

the unit circle farthest from z = −1 is 1, the maximum eigenvalue is achieved by taking
j = 0, i.e., 2k−1 − 1.

3 Conclusion

We present a few open questions that arose in the present context. First, we conjecture
that the Graham-Pollak Tree Theorem has a full generalization to Steiner distance:

Conjecture 5. The quantity det(Dk(T )) is a function only of n and k for trees T on n
vertices.

The above is trivially true for n 6 3 or k odd, and [4] checked it computationally
for (k, n) = (4, 4), (4, 5), and (6, 4) (even if there are two trees of order n = 4, 5). We
also venture the following conjecture, supported by all available evidences (as well as the
Graham-Pollak results).

Conjecture 6. Whenever it is nonzero, the sign of the quantity det(Dk(T )) for trees T
on n vertices is (−1)n−1.

Next, since [6] showed that the Perron-Frobenius Theorem generalizes to hypermatri-
ces like Dk(G), and distance spectral radii have been studied extensively, we ask,

Question 7. Provide bounds for the spectral radii of Steiner distance hypermatrices for
trees and general connected graphs, in terms of their degree sequence and other statistics.

Although the spectral radius of ordinary distance matrices is a rather active topic in
spectral graph theory, until now, to the best of our knowledge, nothing is known about
the spectral radius of Steiner distance hypermatrices (a preliminary result can refer to
Corollary 4). Along this line, we wonder whether the extremal spectral radius is achieved
by the path, as [13] showed holds for ordinary distance matrices:

Question 8. Is the largest spectral radius of the order-k Steiner distance hypermatrix
among all n-vertex connected graphs achieved by the path Pn?
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