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Abstract

If your socks come out of the laundry all mixed up, how should you sort them?
We introduce and study a novel foot-sorting algorithm that uses feet to attempt
to sort a sock ordering; one can view this algorithm as an analogue of Knuth’s
stack-sorting algorithm for set partitions. The sock orderings that can be sorted
using a fixed number of feet are characterized by Klazar’s notion of set partition
pattern containment. We give an enumeration involving Fibonacci numbers for the
1-foot-sortable sock orderings within a naturally-arising class. We also prove that
if you have socks of n different colors, then you can always sort them using at most
dlog2(n)e feet, and we use a Ramsey-theoretic argument to show that this bound is
tight.

Mathematics Subject Classifications: 05A05, 05A15, 05A18

1 Introduction
1.1 How to sort your socks while standing on one foot

You have a lot of socks, and they are all arranged in a line. We call this a sock ordering .
Unfortunately, the colors of the socks are all mixed up. You would like to fix this by
sorting the socks into a line so that all socks of the same color are next to each other.
Even more unfortunately, the only thing you know how to do with a sock is put it onto or
take it off of your foot. For the moment, let us assume that you can put socks onto only
one foot. Thus, you must use the following (non-deterministic) foot-sorting algorithm to
try sorting your socks.

You begin by positioning yourself so that your unsorted line of socks is to your right.
At each point in time, you can do one of the following operations:

• Take the leftmost sock that lies to your right, and put it onto your foot, putting it
over all other socks that are already on your foot.
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Figure 1: Seven socks begin in the (unsorted) sock ordering

BLACK YELLOW PEPPERMINT YELLOW BLACK PEPPERMINT.

A real person uses the foot-sorting algorithm to sort these socks into

YELLOW YELLOW PEPPERMINT PEPPERMINT BLACK BLACK.

The pictures should be read row by row.

• Remove the outermost sock from your foot, and place it to your left, placing it to
the right of all other socks to your left.

Figure 3 shows a real-life person using this algorithm to sort 7 socks. Let us say a sock
ordering is sorted if all of the socks of each color appear consecutively.

A sock ordering is foot-sortable if it can be sorted (i.e., transformed into a sorted sock
ordering) using this foot-sorting algorithm. We will consider two sock orderings to be the
same if one is obtained from the other by renaming the colors. For example,

and

represent the same sock ordering.

1.2 Multiple feet

Most people have more than one foot; we can naturally generalize the foot-sorting algo-
rithm to take advantage of this fact. Suppose you have t feet arranged in a line (you
might need to borrow some friends’ feet if t > 2). As before, position the feet so that the
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socks are to their right. Let us number the feet f1, . . . , ft from right to left. At each point
in time, you can do one of the following operations:

• Take the leftmost sock that lies to the right of the feet, and put it onto the foot f1.

• For some 1 6 i 6 t− 1, remove the outermost sock from the foot fi, and put it on
fi+1.

• Remove the outermost sock from the foot ft, and place it to the left of the feet,
placing it to the right of all other socks that are to the left of the feet.

Figure 2: Three socks begin in the (unsorted) sock ordering

YELLOW BLACK YELLOW.

A real person uses the 2-foot-sorting algorithm to sort these socks. The pictures should
be read row by row.

Let us say a sock ordering is t-foot-sortable if it can be sorted using this t-foot-sorting
algorithm (see Figure 2). It is straightforward to verify that applying the t-foot-sorting
algorithm is equivalent to applying the (ordinary) foot-sorting algorithm t times since one
can use the spaces between adjacent feet as queues.

1.3 Set partitions

A set partition of a set X is a collection {B1, . . . , Bn} of nonempty pairwise-disjoint
subsets of X such that

⋃n
i=1Bi = X. The sets B1, . . . , Bn are called the blocks of the

partition. Throughout this article, we will always assume that X is a finite set of positive
integers.

Suppose we have N socks, and let n be the total number of different sock colors. We
consider socks of the same color to be identical, so we can view a sock ordering as a set
partition of the set [N ] := {1, . . . , N} with n blocks: Two numbers i and j lie in the same
block of the partition if and only if the socks in positions i and j have the same color.
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For example, the sock ordering

corresponds to the set partition {{1, 3, 4}, {2, 6}, {5}}. By changing the names of the
colors, we can also represent this set partition by abaacb (using the color set {a, b, c}) or
121132 or 131123 (using the color set {1, 2, 3}). In what follows, we will tacitly think of
set partitions of [N ] and sock orderings of length N as the same objects, so it makes sense
to discuss foot-sortable and, more generally, t-foot-sortable set partitions.

1.4 Sock patterns

Much research in combinatorics over the last few decades has focused on the notions
of patterns and pattern avoidance for combinatorial objects. There is a natural notion
of pattern containment and avoidance for sock orderings. We say the sock ordering ρ
contains the sock ordering ρ′ if ρ′ can be obtained from ρ by deleting some socks. We say
ρ avoids ρ′ if ρ does not contain ρ′. For example,

contains ,

while

avoids .

Let us stress again that sock orderings are considered the same if they correspond to the
same set partition. For instance, in the first example, we equally could have said that the
sock ordering

contains .

Under the correspondence between sock orderings and set partitions, our notions of
containment and avoidance for sock patterns correspond precisely to a notion of con-
tainment and avoidance of set partitions that was introduced by Klazar [22, 23] and
investigated further in [2, 6, 9, 21].

A sock ordering is sorted (equivalently, 0-foot-sortable) if and only if it avoids the
pattern aba. More generally, for every fixed nonnegative integer t, the set of t-foot-sortable
sock orderings is closed under containment. Indeed, suppose ρ is a t-foot-sortable sock
ordering that contains the sock ordering ρ′. When we apply the t-foot-sorting algorithm
to sort ρ, we perform a sequence of moves that put socks onto feet or remove socks from
feet. The moves that involve the socks in ρ′ will sort ρ′ in the t-foot-sorting algorithm.

1.5 Words and permutations

A word is a finite sequence of positive integers, possibly with repetitions. The standard-
ization of a word w is the word obtained from w by replacing the i-th smallest number in
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w with i for all i. A word is standardized if it equals its standardization. For example, the
standardization of 425446 is 213224, and the word 213224 is standardized. The numbers
appearing in a word are called letters . A permutation is a word whose letters are all
distinct. We write Sn for the set of permutations that use the letters 1, 2, . . . , n.

Let v be a standardized word. We call v a pattern, and we say a word w contains
v if there is a (not necessarily consecutive) subsequence of w whose standardization is
v. For example, the word 356516 contains the pattern 231 because the standardization
of the subsequence 351 is 231. We say w avoids v if it does not contain v. Note that
this discussion also defines pattern containment and avoidance for permutations. For
example, the permutation 534621 contains the pattern 231 because the standardization
of the subsequence 341 is 231; on the other hand, 534621 avoids the pattern 132.

Given a word w of length N , there is a set partition ρ of [N ] in which each block is
the set of positions at which a specific letter occurs in w; we say w represents the set
partition (equivalently, sock ordering) ρ. However, different words can represent the same
sock ordering; an example is given by the words 1312 and 2123, which both represent

.

1.6 Stack-sorting

There is long and rich line of research devoted to sorting procedures that use restricted
data structures. One of the first instances of this topic appears in Knuth’s book The Art
of Computer Programming [24]. Knuth discussed how to use a data structure called a
stack to sort a permutation. One can push objects into the stack and pop objects out of
the stack subject to the constraint that the object being popped out must be the object
that was most recently pushed in (see Figure 3). This is exactly the same as how we can
put socks onto a foot and remove socks from a foot subject to the constraint that the sock
being removed from the foot must be the sock that was most recently put onto the foot.1

 

Figure 3: Using a stack to sort the word 1614.

There are now several well-studied variants of Knuth’s original stack-sorting algorithm,
including pop-stack-sorting [4, 5, 29], deterministic (or West) stack-sorting [10, 15, 18, 31],
deterministic pop-stack-sorting [13,14,27], (deterministic) left-greedy stack-sorting [3,28],
sorting with pattern-avoiding stacks [7, 11, 12, 20], deterministic stack-sorting for words

1We could have named the present article “Stack-Sorting for Set Partitions,” but we preferred phrasing
our sorting procedure in terms of socks and feet because we originally encountered this topic in a
real-life attempt to sort socks using a stack (and also because it made the presentation cleaner). Only
afterward did it occur to us that the stack should very naturally be replaced by a foot. (What you are
reading is a literal footnote.)
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[19], generalizations to Coxeter groups [16,17], and so on. As far as we aware, no one has
yet studied stack-sorting for set partitions (or socks, for that matter).

1.7 Main results

A word is sorted if its letters appear in nondecreasing order. Note that there are non-sorted
words (such as 2211) that represent sorted sock orderings. The only sorted permutation
in Sn is the identity permutation 123 · · ·n. Knuth [24] characterized the permutations
that can be sorted using a single stack via permutation patterns; they are precisely the
permutations that avoid that pattern 231. In fact, this characterization was the original
impetus for the now-enormous field of permutation patterns research. In general, the set of
permutations that can be sorted by t stacks in series is closed under pattern containment,
but when t > 2, it is very difficult to characterize or enumerate such permutations. Indeed,
only recently was it proven that one can decide in polynomial time whether or not a given
permutation is 2-stack-sortable [26]. As shown in Figure 3, one can also use a stack to
sort words. As in the case of permutations, a word is stack-sortable if and only if it avoids
231 (the proof is identical to Knuth’s proof in the permutation setting). The following
theorem relates this fact to sock orderings.

Theorem 1. A sock ordering ρ is foot-sortable if and only if there is a 231-avoiding word
that represents ρ.

In this theorem, it is somewhat unsatisfactory that we have to look at all of the words
representing a sock ordering in order to determine whether or not the sock ordering is
foot-sortable; it would be more desirable to obtain a characterization purely in terms of
set partition patterns. The latter problem appears to be quite difficult, in analogy with
the problem of characterizing (or even enumerating) the 2-stack-sortable permutations.
Although we cannot provide a complete pattern-avoidance characterization of the foot-
sortable sock orderings, we can give a very precise description and enumeration when we
restrict our attention to sock orderings of a special form.

Let us say a sock ordering is r-uniform if there are exactly r socks of each color.
The 2-uniform sock orderings are especially natural examples of sock orderings because
socks are often sold and worn in pairs. A set partition corresponding to a 2-uniform sock
ordering is often called a matching . We say a 2-uniform sock ordering with 2n socks is
alignment-free if the first n socks all have distinct colors. One can easily check that a
2-uniform sock ordering is alignment-free if and only if it avoids the pattern2

.

If ρ is an alignment-free 2-uniform sock ordering with 2n socks, then it can be represented
by a unique word of the form

12 · · ·nσρ(1)σρ(2) · · ·σρ(n),

2Our terminology comes from the fact that this pattern corresponds to the set partition {{1, 2}, {3, 4}},
which is often called an alignment .
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where σρ = σρ(1)σρ(2) · · ·σρ(n) is a permutation in Sn. The map ρ 7→ σρ is a bijection
from the set of alignment-free 2-uniform sock orderings with 2n socks to Sn. For example,
the alignment-free 2-uniform sock ordering

corresponds to the permutation 2431.
Our next theorem involves the sequence (Fk)k>1 of Fibonacci numbers; our convention

for indexing this sequence is that F1 = F2 = 1 and Fk = Fk−1 + Fk−2 for all k > 3.

Theorem 2. Let ρ be an alignment-free 2-uniform sock ordering of length 2n, and let
σρ = σρ(1) · · ·σρ(n) be the corresponding permutation in Sn. Then ρ is foot-sortable if
and only if one of the following holds:

• σρ(1) < n, and the permutation σρ(2)σρ(3) · · ·σρ(n) avoids the patterns 123, 132,
and 213;

• σρ(1) = n, and the permutation σρ(3)σρ(4) · · ·σρ(n) avoids the patterns 123, 132,
and 213.

Moreover, there are exactly (n − 1)Fn+1 foot-sortable alignment-free 2-uniform sock or-
derings of length 2n.

We remark that the permutations avoiding the patterns 123, 132, and 213 are precisely
the reverses of the layered permutations in which each layer has size 1 or 2 (see Section 3).

Our last main result states that a person with n different colors of socks can always
sort their socks using dlog2(n)e feet and that this bound is tight.

Theorem 3. Every sock ordering with n colors is dlog2(n)e-foot-sortable. Moreover, there
exist sock orderings with n colors that are not (dlog2(n)e − 1)-foot-sortable.

Our proof of the first statement in the preceding theorem uses a simple inductive
approach; it is completely analogous to an argument that Tarjan [30] gave to prove that
every permutation of size n is dlog2(n)e-stack-sortable. On the other hand, our proof of
the second statement is more delicate and requires a Ramsey-theoretic argument.

1.8 Outline

We prove Theorems 1 to 3 in Sections 2 to 4, respectively. In Section 5, we provide a
laundry list of natural and intriguing open questions about foot-sorting.

2 Foot-Sorting and Stack-Sorting

This brief section is devoted to proving Theorem 1, which says that a sock ordering is
foot-sortable if and only if there is a 231-avoiding permutation representing it.
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Proof of Theorem 1. Let ρ be a sock ordering with n colors. Suppose first that there is a
231-avoiding word w over the alphabet [n] that represents ρ. Then w is stack-sortable, so
there is a sequence of moves that sends w through a stack to transform it into a sorted
(i.e., nondecreasing) word. Each of these moves corresponds to a move in the foot-sorting
algorithm. If we apply these moves to ρ, we will succeed in sorting ρ.

To prove the converse, suppose ρ is foot-sortable. Then there is a sorted sock ordering
κ that can be obtained by applying the foot-sorting algorithm to ρ. Let v be the unique
sorted word over the alphabet [n] that represents κ. Imagine “reversing time” and running
the foot-sorting algorithm in reverse to transform κ into ρ. Each move in this “reversed
foot-sorting algorithm” corresponds to a move in a “reversed stack-sorting algorithm,”
and applying these moves to v will result in a word w that represents ρ. Suppose there
exist letters α < β < γ in v such that in the reversed stack-sorting algorithm, α leaves
the stack before both β and γ. Then there is a point in time when α sits above β and
β sits above γ in the stack, so β must leave the stack before γ. This means that these
letters appear in the order γ, β, α in w. In particular, they can never appear in the order
β, γ, α in w. This proves that w avoids 231.

3 Alignment-Free 2-Uniform Sock Orderings

In this section, we prove Theorem 2, which characterizes and enumerates the foot-sortable
alignment-free 2-uniform sock orderings. Say that an alignment-free 2-uniform sock or-
dering is spread-out if it satisfies one of the bullet-pointed conditions in the statement of
Theorem 2.

The skew sum of two permutations σ ∈ Sm and σ′ ∈ Sm′ is the permutation σ 	 σ′ ∈
Sm+m′ defined by

(σ 	 σ′)(i) =

{
σ(i) +m′ if 1 6 i 6 m;

σ′(i−m) if m+ 1 6 i 6 m+m′.

Note that the skew sum is an associative operation. It is well known that a permutation
avoids the patterns 123, 132, and 213 if and only if it is of the form ε1 	 ε2 	 · · · 	 εk,
where each εi is either 1 or 12 [8, 25]. (Said differently, a permutation avoids 123, 132,
and 213 if and only if it is the reverse of a layered permutation whose layers all have size
1 or 2.) It will be convenient to substitute this characterization into the bullet-pointed
descriptions in the statement of Theorem 2.

We will first show that foot-sortable alignment-free 2-uniform sock orderings are
spread-out. Let ρ be a foot-sortable alignment-free 2-uniform sock ordering, and let
σρ ∈ Sn denote the corresponding permutation. There is nothing to show if n 6 2, so
assume that n > 3. For τ ∈ Sn, write τσρ for the product of τ and σρ in the symmetric
group Sn. Theorem 1 tells us that there exists τ ∈ Sn such that the word w obtained by
concatenating τ with τσρ represents ρ and avoids the pattern 231. Note that the numbers
2, . . . , n appear in decreasing order in τ since otherwise we would find a 231 pattern in
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w. Hence, there is some 1 6 i 6 n such that τ has the one-line notation

(n)(n− 1) · · · (n− i+ 2)(1)(n− i+ 1) · · · (2)

and τ−1 has the one-line notation

(i)(n)(n− 1) · · · (i+ 1)(i− 1)(i− 2) · · · (1).

Since w avoids 231, we also see that τσρ is a layered permutation whose layers all have size
1 or 2. Now we use the formula σρ = τ−1(τσρ) to show that σρ has the desired form. We
condition on the size of the first run in τσρ. First, suppose that the first run in τσρ has size
1. Then τσρ(1) = 1, and σρ(1) = i. In this case, one easily verifies that the standardization
of σρ(2) · · ·σρ(n) is the skew sum of some number of increasing permutations of sizes 1
and 2; thus, regardless of whether or not σρ(1) = 1, we conclude that w satisfies one
of the bullet-pointed conditions in the statement of Theorem 2 and hence is spread-out.
Next, suppose that the first run in τσρ has size 2. Then we have σρ(1) = τ−1(2) = n and
σρ(2) = τ−1(1) = i, and (as in the previous case) the standardization of σρ(3) · · ·σρ(n) is
the skew sum of some number of increasing permutations of sizes 1 and 2. So w satisfies
the second bullet-pointed condition in the statement of Theorem 2 and hence is spread-
out. This completes the proof that foot-sortable alignment-free 2-uniform sock orderings
are spread-out.

We will now show that spread-out sock orderings are foot-sortable. Let ρ be a spread-
out sock ordering, and let σρ ∈ Sn denote the corresponding permutation. First, suppose
that σρ satisfies the first bullet-pointed condition in Theorem 2. Let i = σρ(1), and let
τ ∈ Sn be the permutation with the one-line notation

(n)(n− 1) · · · (n− i+ 2)(1)(n− i+ 1) · · · (2).

The word obtained by concatenating τ with τσρ represents ρ and avoids the pattern 231,
so ρ is foot-sortable by Theorem 1. Next, suppose that σρ satisfies the second bullet-
pointed condition in Theorem 2. Let i = σρ(2), and again let τ ∈ Sn be the permutation
with the one-line notation

(n)(n− 1) · · · (n− i+ 2)(1)(n− i+ 1) · · · (2).

The word obtained by concatenating τ with τσρ represents ρ and avoids the pattern 231,
so ρ is foot-sortable by Theorem 1. This completes the proof of the first statement of
Theorem 2; to prove the second statement, it remains to count the spread-out alignment-
free 2-uniform sock orderings.

Let Avm(123, 132, 213) denote the set of permutations in Sm that avoid the patterns
123, 132, 213. It is well known that |Avm(123, 132, 213)| is the Fibonacci number Fm+1.
The permutations σ corresponding to the spread-out alignment-free 2-uniform sock or-
derings with n colors can be described as follows, according to the two bullet points in
the statement of Theorem 2:

• We can choose any element of [n−1] to be σ(1), and then we can choose any element
of Avn−1(123, 132, 213) to be the standardization of σ(2) · · · σ(n).
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• We can put σ(1) = n, choose any element of [n − 1] to be σ(2), and choose any
element of Avn−2(123, 132, 213) to be the standardization of σ(3) · · ·σ(n).

Summing the contributions of these two possibilities, we find that the total number of
spread-out alignment-free 2-uniform sock orderings with n colors is

(n− 1)|Avn−1(123, 132, 213)|+ (n− 1)|Avn−2(123, 132, 213)| = (n− 1)Fn + (n− 1)Fn−1

= (n− 1)Fn+1,

as desired.

Remark 4. One can show that an alignment-free 2-uniform sock ordering is spread-out if
and only if it avoids all of the following sock orderings as patterns:

, ,

, ,

, ,

, , ,

, , ,

, , .

(These patterns are the alignment-free 2-uniform sock orderings that correspond to the
permutations 54123, 45123, 54132, 45132, 54213, 45213, 1234, 2314, 1243, 3124, 1324,
3142, 2134, 3214, 2143.) Using a computer (or some socks and a sufficient amount of
patience), one can check that none of the sock orderings in this list are foot-sortable; note
that this gives an alternative approach to the first half of the above proof of Theorem 2.

4 Logarithmically Many Feet

The goal of this section is to answer the following question: For a natural number n,
what is the minimum value of t (depending on n) such that every sock ordering with n
colors is t-foot-sortable? We will prove Theorem 3, which states that the answer is exactly
dlog2(n)e.

Although the motivation for defining the t-foot-sorting algorithm is to sort a sock
ordering, one can use it to permute the socks in other ways as well. For example, one
could use the foot-sorting algorithm to transform

into .
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Given a sock ordering ρ, let foot(ρ) denote the set of sock orderings that can be obtained
from ρ by applying the foot-sorting algorithm with a single foot, and let foot−1(ρ) denote
the set of sock orderings κ such that ρ ∈ foot(κ). We define foot0(ρ) = {ρ}. For t > 1,
we inductively define foott(ρ) = foot(foott−1(ρ)) and foot−t(ρ) = foot−1(foot−t+1(ρ)); it is
a simple exercise to verify that foott(ρ) is the set of sock orderings that can be obtained
from ρ by applying the t-foot-sorting algorithm.

We can quickly prove the first statement in Theorem 3, which states that dlog2(n)e
feet always suffice to sort a sock ordering with n colors. This argument is very similar to
one used by Tarjan in [30].

Lemma 5. Every sock ordering with n colors is dlog2(n)e-foot-sortable.

Proof. It suffices to prove the theorem when n is a power of 2; say n = 2k. We proceed
by induction on k. The base case k = 0 is trivial since any sock ordering with a single
color is already sorted.

Now suppose k > 1, and assume that all sock orderings with 2k−1 colors are (k − 1)-
foot-sortable. Let ρ be a sock ordering with 2k colors. Partition the set of colors into
two sets A,B, each of size 2k−1. Apply the foot-sorting algorithm once to ρ so that
in the resulting sock ordering ρ′ ∈ foot(ρ), all of the socks with colors from A appear
to the left of all of the socks with colors from B. (For instance, sort according to the
rules that every sock with color from A is removed from the foot immediately after being
put on the foot and that no sock with color from B is removed from the foot until all
socks with colors from A have been removed.) Write ρ′ as a concatenation ρ′ = κAκB,
where κA and κB contain only socks with colors from A and from B, respectively. By the
induction hypothesis, each of κA and κB can be sorted using k− 1 further applications of
foot-sorting. Since these further applications can be run in parallel, we conclude that ρ
is k-foot-sortable.

It is much more difficult to show that some sock orderings with n colors require
dlog2(n)e feet to get sorted. To do so, we will study a particular class of sock orderings and
show that they obey a Ramsey-theoretic property. Say that an r-uniform sock ordering
with n colors is stratified if it is the concatenation of r chunks of size n, where each color
appears once in each chunk. For example, the 2-uniform stratified sock orderings with 3
colors are

, , ,

, , .

The following lemma says that if you apply the foot-sorting algorithm to a stratified sock
ordering with n colors that has huge uniformity, then you are always guaranteed to find
(as a pattern) a stratified sock ordering with dn/2e colors that has pretty big uniformity.

Lemma 6. Let n > 2 and r be positive integers, and set r′ = r2
(

n
dn/2e

)
. If ρ is an r′-

uniform stratified sock ordering with n colors, then every sock ordering in foot(ρ) contains
an r-uniform stratified sock ordering with dn/2e colors as a pattern.
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Proof. Set m = r′/r = r
(

n
dn/2e

)
, and write ρ as a concatenation

ρ = γ1γ2 · · · γm,

where each γk has nr socks. (So each γk is an r-uniform stratified sock ordering with
n colors.) Imagine applying the foot-sorting algorithm to transform ρ into some sock
ordering κ ∈ foot(ρ). For each k ∈ [m], let Xk be the set of socks in γk that are removed
from the foot before the last sock in γk is put onto the foot. Let Yk be the set of distinct
colors appearing in Xk. We consider two cases.

Case 1. Suppose there exists k ∈ [m] such that |Yk| 6 bn/2c. Let Q be a subset of [n]\Yk
of size dn/2e. At the moment when the last sock in γk is put on the foot, the socks of γk
with colors in Q are all on the foot, and they appear in the same order (read from inside
to outside) in which they appeared in ρ; note that these socks in ρ form a pattern that
is an r-uniform stratified sock ordering with dn/2e colors. After the entire foot-sorting
algorithm is complete, these same socks appear in κ in the opposite order from how they
appeared in ρ. Since the reversal of a stratified sock ordering is still stratified, we have
succeeded in finding the desired pattern in κ.

Case 2. Suppose |Yk| > dn/2e for every k ∈ [m]. Since m = r
(

n
dn/2e

)
, we can use the

Pigeonhole Principle to find a subset Q of [n] of size dn/2e such that there are at least
r indices k ∈ [m] with Q ⊆ Yk; let k1 < · · · < kr denote r such indices. For each ki,
choose a subset Ai ⊆ Xki of size dn/2e such that Ai has one sock of each color in Q. The
definition of Xk1 ensures that all of the socks in A1 are removed from the foot before the
last sock of γk1 is put on the foot. After this, but before the last sock of γk2 is put on the
foot, all of the socks in A2 are removed from the foot. Continuing in this fashion, we find
a sock pattern in κ consisting of some permutation of the socks in A1, followed by some
permutation of the socks in A2, and so on, up to some permutation of the socks in Ar.
But this is precisely an occurrence of an r-uniform stratified sock ordering with dn/2e
colors, as desired.

We are now ready to prove Theorem 3, which says that every sock ordering with n
colors is dlog2(n)e-foot-sortable and that sometimes dlog2(n)e feet are required.

Proof of Theorem 3. The first statement in Theorem 3 is Lemma 5. To prove the second
statement, let r(2) = 2, and let

r(n) = r(dn/2e)2
(

n

dn/2e

)
for all n > 3. We will prove that for every n > 2, no r(n)-uniform stratified sock ordering
with n colors is (dlog2(n)e − 1)-foot-sortable. This is easy when n = 2 because the two
different 2-uniform stratified sock orderings with 2 colors are abab and abba, neither of
which is sorted. We now assume n > 3 and proceed by induction on n.

Let ρ be an r(n)-uniform stratified sock ordering with n colors. Our goal is to show
that no sock ordering in foot(ρ) is (dlog2(n)e − 2)-foot-sortable. Choose any κ ∈ foot(ρ).
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According to Lemma 6, the sock ordering κ contains an r(dn/2e)-uniform stratified sock
ordering η with dn/2e colors as a pattern. By induction, η is not (dlog2(dn/2e)e − 1)-
foot-sortable. This implies that κ is also not (dlog2(dn/2e)e − 1)-foot-sortable, and the
theorem now follows from the simple fact that dlog2(dn/2e)e = dlog2(n)e − 1.

One can show that the function r(n) defined in the preceding proof satisfies r(n) =
n(1+o(1))n. We conclude this section by showing the existence of sock orderings with less
enormous uniformity that still require many feet to get sorted. Let CN = 1

N+1

(
2N
N

)
denote

the N -th Catalan number. We will make use of the well-known estimate

CN 6 4N . (1)

Lemma 7. If ρ is a sock ordering of length N , then |foot−1(ρ)| 6 CN .

Proof. Choose κ ∈ foot−1(ρ). Consider some way of running the foot-sorting algorithm to
obtain ρ from κ. Record the letter U each time you put a sock onto the foot, and record
the letter D each time you take a sock off of the foot. This yields a sequence Dyckρ(κ)
containing N U’s and N D’s with the property that each initial subsequence contains
at least at many U’s as D’s. Such a sequence is called a Dyck word . For example, the
Dyck word corresponding to the application of the foot-sorting algorithm in Figure 1 is
UUDUUDUDDUUDDD. The resulting map κ 7→ Dyckρ(κ) is an injection from foot−1(ρ)
to the set of Dyck words of length 2N . It is well known that the number of Dyck words
of length 2N is CN , so this completes the proof.

Proposition 8. Let n, r > 2 be integers. There exists an r-uniform sock ordering with n
colors that is not (

⌊
r−1
r

log4(n)
⌋
− 1)-foot-sortable.

Proof. Let Un,r denote the set of r-uniform sock orderings with n colors, and let κ0 be the
unique sorted sock ordering in Un,r. Induction on k and iterative applications of Lemma 7
yield the inequality

|foot−k(κ0)| 6 Ck
nr

for all positive integers k. Note that foot−k(κ0) is precisely the set of k-foot-sortable
elements of Un,r. If |foot−k(κ0)| < |Un,r|, then we can conclude that there exists a sock
ordering in Un,r that is not k-foot sortable.

Using the well-known inequalities mme−m+1 < m! < mm+1e−m+1, we find that

|Un,r| =
(nr)!

n!(r!)n
>

(nr)nre−nr+1

nn+1e−n+1(rr+1e−r+1)n
= nnr−n−1r−n.

We know by (1) that Ck
nr < 4knr. It is a simple exercise to check that 4knr < nnr−n−1r−n

when k =
⌊
r−1
r

log4(n)
⌋
− 1.

When r = 2, Theorem 3 and Proposition 8 tell us that the minimum number of feet
needed to sort every sock ordering with n colors is between

⌊
1
2

log4(n)
⌋

and dlog2(n)e;
when n is large, these bounds differ by a constant factor of around 4. When r is much
larger than 2, the fraction r−1

r
is close to 1, so the bounds

⌊
r−1
r

log4(n)
⌋

and dlog2(n)e
differ by a constant factor of around 2.
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5 Further Directions

The purpose of this final section is to raise several questions and directions that seem
promising for future inquiry into foot-sorting; we have barely scratched the surface in this
paper.

Recall that we have defined notions of pattern containment and avoidance for sock
orderings that correspond precisely to Klazar’s notions of pattern containment and avoid-
ance for set partitions. If Ω is a set of sock orderings that is closed under pattern con-
tainment, then the basis of Ω is the set B of minimal (under the pattern containment
partial order) sock orderings that are not in Ω. One can characterize Ω as the set of sock
orderings that avoid all of the patterns in B. Recall that the set of foot-sortable sock
orderings is closed under pattern containment.

Question 9. Is the basis of the set of foot-sortable sock orderings finite? How about the
basis of the set of foot-sortable sock orderings in which each color is used at most twice?

Remark 10. In the time since the original preprint of this article was released, Yu has
resolved Question 9 by showing that both of the bases considered in that question are
infinite [33]. Yu has also provided a polynomial-time algorithm for deciding whether a
given sock ordering is foot-sortable.

It would also be interesting to enumerate the 2-uniform foot-sortable sock orderings
with n colors.

Another line of investigation concerns bounds for “worst-case sorting,” as studied in
Section 4.

Question 11. What is the smallest integer t2(n) such that every 2-uniform sock ordering
with n colors is t2(n)-foot-sortable?

Recall that, as discussed after the proof of Proposition 8, we have⌊
1
2

log4(n)
⌋
6 t2(n) 6 dlog2(n)e .

Define r(n) to be the smallest integer such that there exists an r(n)-uniform sock
ordering with n colors that is not (dlog2(n)e − 1)-foot-sortable. Theorem 3 states that
r(n) is finite, and it follows from our proof of this theorem that r(n) 6 n(1+o(1))n. This
function remains mysterious, and it is not even obvious whether or not r(n) tends to
infinity with n.

Question 12. What is r(n)? Is it true that lim
n→∞

r(n) =∞?

Avis and Newborn [5] introduced a variant of Knuth’s stack data structure called a
pop-stack (see also [4, 29]). A pop-stack is just like a stack, except it has the additional
property that whenever an object is removed from the pop-stack, all objects must be
removed. One could analogously consider sorting socks using pop-feet , which are just like
feet except that whenever a sock is removed from a pop-foot, all socks must be removed
from the pop-foot. It would be interesting to study t-pop-foot sortable sock orderings.
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In the stack-sorting and pop-stack sorting literature, one can consider sorting permu-
tations using stacks or pop-stacks that are arranged in series or in parallel (see [1,4,29]).
Our t-foot-sorting algorithm uses t feet in series, but one could also consider what hap-
pens when the feet are arranged in parallel. In this setting, we imagine t feet arranged
in a line as before. At each point in time, the leftmost sock lying to the right of the feet
can be placed directly onto one of the feet (and any of the feet can be chosen), or a sock
can be removed from one of the feet and put into the output sock ordering. It could be
interesting to study which sock orderings can be sorted using t feet in parallel. One could
also consider mixtures of feet and pop-feet in series and in parallel, as in [29].

Finally, we mention that Xia [32] has introduced deterministic versions of foot-sorting
(in which stacks are used in place of feet).
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