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Abstract

Let Fs be the friendship graph obtained from s triangles by sharing a common
vertex. For every s  2 and n  50s2, the Turán number of Fs was investigated by
Erdős, Füredi, Gould and Gunderson (1995). For sufficiently large n, the Fs-free
graphs of order n which attain the maximum spectral radius were firstly charac-
terized by Cioabă, Feng, Tait and Zhang (2020), and later uniquely determined by
Zhai, Liu and Xue (2022). Recently, the spectral extremal problems were studied for
graphs that do not contain a certain graph H as a minor. For instance, Tait (2019),
Zhai and Lin (2022), Chen, Liu and Zhang (2024) solved the case of cliques, bi-
cliques, cliques with some paths removed, respectively. Motivated by these results,
we consider the spectral extremal problem for friendship graphs. Let Ks ∨ In−s be
the complete split graph, which is the join of a clique of size s with an independent
set of size n−s. For sufficiently large n, we prove that Ks∨In−s is the unique graph
that attains the maximal spectral radius over all n-vertex Fs-minor-free graphs.

Mathematics Subject Classifications: 05C50, 05C35

1 Introduction

Let G be a graph with vertex set V (G) = {v1, . . . , vn} and edge set
E(G) = {e1, e2, . . . , em}. We write G − v for the graph obtained from G by deleting
vertex v ∈ V (G) and its incident edges, and G − uv for the graph by deleting the edge
uv ∈ E(G). This notation is naturally extended if more than one vertex or edge is deleted.
Similarly, G+ uv is obtained from G by adding an edge uv /∈ E(G). As usual, a complete
graph on n vertices is denoted by Kn, and an independent set on n vertices is denoted by
In. We write Pt for a path on t vertices. Commonly, we refer to a path by the nature
sequence of its vertices, say Pt = x1x2 . . . xt, and call Pt a path starting from x1 to xt. In
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addition, we write Ct for a cycle on t vertices, and write Ks,t for the complete bipartite
graph with two parts of sizes s and t. We denote by G[X, Y ] the bipartite subgraph with
bipartition (X, Y ) whose edges are that of G between X and Y .

The adjacency matrix A(G) = (aij) of G is an n×n matrix with aij = 1 if vi is adjacent
to vj, and 0 otherwise. The spectral radius of G is the largest eigenvalue of A(G), which
is denoted by ρ(G). For each vertex v in G, let NG(v) := {u ∈ V (G) : uv ∈ E(G)} and
NG[v] := NG(v) ∪ {v}. The degree of v is denoted by dG(v) = |NG(v)|. Similarly, for
each subgraph H of G, let NG(H) be the set of vertices in V (G) \V (H) that are adjacent
to a vertex of H. A clique of G is a subset S of V (G) such that the induced subgraph
G[S] is a complete subgraph. Let G1 and G2 be two vertex-disjoint graphs, and denote
by G1 ∪ G2 the union of G1 and G2. For simplicity, we write sG for the vertex-disjoint
union of s copies of G. The join G1 ∨G2 is obtained from G1 ∪G2 by joining each vertex
of G1 to each vertex of G2. For graph notation and terminology undefined here, readers
are referred to [4].

1.1 Spectral extremal graphs for friendship graphs

A graph G is called H-free if H is not a subgraph of G. In 2010, Nikiforov [35] proposed
a spectral extremal problem, which is now known as the Brualdi–Solheid–Turán type
problem. More precisely, what is the maximum spectral radius among all n-vertex H-free
graphs? In the past few decades, this problem has been investigated by many researchers
for various graphs H, such as, the complete graphs [33, 45, 26], the complete bipartite
graphs [3, 34], the books and theta graphs [49], the friendship graphs [7, 48, 52, 27],
the intersecting odd cycles [25, 13], the intersecting cliques [15, 32], the paths and linear
forests [35, 12], the odd wheels [8], the quadrilaterals [33, 46], the hexagons [47] and even
cycle [9], the short odd cycles [21, 23, 28, 30], the square of paths [53] and cycles [18], the
fan graphs [43]. We refer the readers to [37, 24] for related surveys.

Let Fs be the graph obtained from s triangles by intersecting in exactly one common
vertex. In other words, we have Fs = K1 ∨ sK2. The graph Fs is also known as the
friendship graph because it is the only extremal graph in the famous Friendship Theorem
[1, Chapter 43], which asserts that if G is a graph on n vertices such that any two distinct
vertices have exactly one common neighbor, then n is odd and G consists of n−1

2
triangles

intersecting in a common vertex. The extremal problem involving Fs was widely studied
in the literature. Tracing back to 1995, Erdős, Füredi, Gould and Gunderson [17] proved
the following result.

Theorem 1 (Erdős–Füredi–Gould–Gunderson [17], 1995). Let s  1 and n  50s2 be
positive integers. If G is an Fs-free graph on n vertices, then

e(G) 

n2

4


+


s2 − s if s is odd;
s2 − 3

2
s if s is even.

We write EX(n, Fs) for the set of n-vertex Fs-free graphs which attain the equality
of Theorem 1. Furthermore, the extremal graphs in EX(n, Fs) were also characterized
by Erdős, Füredi, Gould and Gunderson [17]. More precisely, for odd s, the graphs
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G ∈ EX(n, Fs) are obtained from K⌊n
2
⌋,⌈n

2
⌉ by embedding two vertex-disjoint copies of

Ks in any one side. For even s, the extremal graphs are constructed from K⌊n
2
⌋,⌈n

2
⌉ by

embedding a graph with 2s− 1 vertices, s2 − 3
2
s edges and maximum degree s− 1 in any

one side. Here, we remark that for even s, the embedded graph is a nearly (s− 1)-regular
graph on 2s− 1 vertices with degree sequence (s− 1, . . . , s− 1, s− 2). It is known [4] that
such a graph does exist and it is not unique for every even s  2.

In 2020, the spectral version of Theorem 1 was firstly studied by Cioabă, Feng, Tait
and Zhang [7]. They characterized the spectral extremal Fs-free graphs. More precisely,
they proved that for fixed s  2 and sufficiently large n, if G is an Fs-free graph of order
n with maximal spectral radius, then G attains the maximum number of edges over all
n-vertex Fs-free graphs.

Theorem 2 (Cioabă–Feng–Tait–Zhang [7], 2020). Let s  2 and G be an Fs-free graph
on n vertices. For sufficiently large n, if G has the maximal spectral radius, then

G ∈ EX(n, Fs).

In 2022, Zhai, Liu and Xue [48] provided a further characterization of G and deter-
mined the unique spectral extremal graph of Fs for sufficiently large n. In other words,
they determined the unique embedded subgraph in the extremal graph of EX(n, Fs). Let
H∗ be the graph of order 2s−1 with vertex set V (H∗) = {w0}∪A∪B such that N(w0) = A
and |B| = |A| + 2 = s. Then we partition A into A1 ∪ A2, and B into {u0} ∪ B1 ∪ B2

such that |A1| = |A2| = |B2| = s−2
2

and |B1| = s
2
. Finally, we join s− 1 edges from u0 to

A1 ∪B1,
s−2
2

independent edges between B2 and A2, and some additional edges such that
both A and B1 ∪B2 are cliques.

Theorem 3 (Zhai–Liu–Xue [48], 2022). Let s  2 and G be an Fs-free graph with the
maximal spectral radius. Then for sufficiently large n, the graph G is obtained from
K⌊n

2
⌋,⌈n

2
⌉ by embedding a graph H in the part of size ⌊n

2
⌋, where H = Ks ∪Ks if s is odd;

and H = H∗ if s is even.

We refer the readers to [48] for more details and [44] for a generalization of Theorem
2. Furthermore, Li, Lu and Peng [27] got rid of the condition that n is sufficiently large
if s = 2. They proved that for every n  7, the unique n-vertex F2-free spectral extremal
graph is the balanced complete bipartite graph by adding an edge in the vertex part with
smaller size. Moreover, it was also proved in [27] that the unique m-edge F2-free spectral
extremal graph is the join of K2 with an independent set of m−1

2
vertices if m  8. The

conditions n  7 and m  8 are the best possible. For a general s  3, Li, Feng and Peng
[29] recently provided a new short proof, which avoids the use of triangle removal lemma
and shows that the result for Fs holds for every n  Cs4 with a constant C > 0.

1.2 Spectral extremal graphs for minors

A graph H is a minor of G if H can be obtained from G by means of a sequence of vertex
deletions, edge deletions and edge contractions. A graph G is H-minor-free if it does
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not contain H as a minor. A natural question at the intersection of graph minor theory
and Brualdi-Solheid-Turán type problem asks, for a given graph H, what is the maximal
spectral radius over all n-vertex graphs which do not contain H as a minor? Indeed, such
a problem was recently becoming popular and some elegant results have been published
in the following two aspects.

There are two famous conjectures in the study of spectral extremal problems on planar
and outerplanar graphs. It is known that a graph is planar if and only if it is {K5, K3,3}-
minor-free. Moreover, a graph is outerplanar if and only if it is {K4, K2,3}-minor-free;
see, e.g., [4]. In 1990, Cvetković and Rowlinson [10] conjectured that the join graph
K1 ∨ Pn−1 is the unique graph attaining the maximal spectral radius over all outerplanar
graphs of order n. In 1991, Boots and Royle [5], and independently Cao and Vince [11],
proposed a spectral problem for planar graphs, which conjectured that K2 ∨ Pn−2 is the
unique graph attaining the maximal spectral radius over all planar graphs of order n.
Many scholars contributed to these two conjectures. In particular, Tait and Tobin [39]
confirmed these conjectures for sufficiently large n. In 2021, Lin and Ning [22] confirmed
Cvetković-Rowlinson conjecture for all n  2 except for n = 6.

Apart from the planar and outerplanar graphs, it is natural to consider the maximal
spectral radius for H-minor-free graphs with a specific graph H. In particular, setting
H as the complete graph Kr and the complete bipartite graph Ks,t. In 2004, Hong [20]
determined the extremal graph with maximal spectral radius for K5-minor-free graphs.
In 2017, Nikiforov [36] obtained a sharp upper bound on the spectral radius of K2,t-minor-
free graphs. In 2019, Tait [40] characterized the spectral extremal graphs with no Kr as a
minor. In 2022, Zhai and Lin [50] completely determined the spectral extremal graphs for
Ks,t-minor. Recently, Chen, Liu and Zhang [14] presented the spectral extremal graphs
for F -minor, where F is obtained from Kr by deleting some disjoint paths.

Comparing with the rich development of the traditional spectral extremal problem (see
Subsection 1.1), there are few results on the spectral radius for minor-free graphs, although
the spectral problem of minors has risen in popularity in the past few years. Recall that Fs

is the friendship graph which consists of s triangles intersecting in a common vertex. As
stated in previous subsection, the traditional extremal problem for the friendship graph
Fs has recently received extensive attention and investigation; see, e.g., Theorems 1, 2 and
3. Inspired by the results on Kr-minor-free and Ks,t-minor-free graphs, we shall present
one more result on spectral radius for H-minor-free graphs by taking H = Fs.

Recall that Ks ∨ In−s is the join graph consisting of a clique on s vertices and an
independent set on n − s vertices in which each vertex of the clique is adjacent to each
vertex of the independent set. For sufficiently large n, we determine the largest spectral
radius of a graph over all Fs-minor-free graphs of order n, and we show that Ks ∨ In−s is
the unique spectral extremal graph.

Theorem 4. Let s  1 be an integer and G be an Fs-minor-free graph of order n. Then
for sufficiently large n, we have

ρ(G)  ρ(Ks ∨ In−s),

with equality if and only if G = Ks ∨ In−s.
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Corollary 5. Let G be a graph of order n that dose not contain s intersecting cycles as
a minor. Then for sufficiently large n, we have

ρ(G)  ρ(Ks ∨ In−s),

with equality if and only if G = Ks ∨ In−s.

Proof of Corollary 5. The proof is straightforward. Note that Ks ∨ In−s dose not
contain s intersecting cycles as a minor. Since G dose not contain s intersecting cycles
as a minor, G is also Fs-minor-free. By Theorem 4, for sufficiently large n, we have
ρ(G)  ρ(Ks ∨ In−s) with equality if and only if G = Ks ∨ In−s.

Organization. The rest of this paper is organized as follows. In Section 2, some prelimi-
naries are presented for our purpose. In Section 3, we will give some structural properties
of Fs-minor-free graphs. In Section 4, we shall give the details of the proof of Theorem 4.
The techniques used in our proof are mainly inspired by Tait [40]. In Section 5, we will
propose some spectral problems for interested readers.

2 Preliminary

Mader [31] proved an elegant result on the number of edges in H-minor-free graphs.

Lemma 6 (Mader [31], 1967). Let G be an n-vertex graph. For every graph H, if G is
H-minor-free, then there exists a constant C > 0 such that

e(G)  Cn.

We remark that a clear bound on C could be found in [38]. The following lemma has
been proved many times in the literature; see, e.g., [41, 42].

Lemma 7. Let G be a bipartite graph on n vertices with no Ks,t-minor and vertex partition
A and B. Let |A| = a and |B| = n − a. Then there is a constant C > 0 depending only
on s and t such that

e(G)  Ca+ (s− 1)n.

The following lemma was an implicative result, which can be seen from the proof of
[39, Lemma 10] and [40, Claim 3.4] as well.

Lemma 8. Let H be a graph with no pendant edge and G be a graph with maximum
spectral radius among all n-vertex connected H-minor-free graphs. If x = (xu)u∈V (G) is a
positive eigenvector with the maximum entry 1 which corresponds to ρ(G), then xu  1

ρ(G)

for all u ∈ V (G).

the electronic journal of combinatorics 31(3) (2024), #P3.7 5



3 Structure of graphs without Fs-minor

In this subsection, we will present some lemmas for Fs-minor-free graphs.

Lemma 9. Let G be an n-vertex Fs-minor-free bipartite graph with vertex partition A
and B. If |A| = a and |B| = n− a, then there exists a constant C > 0 depending only on
s such that

e(G)  Ca+ sn.

Proof. Suppose that G is Fs-minor-free. Note that the complete bipartite graph Ks+1,2s

contains s copies of C4 intersecting in a common vertex. By contracting an edge in each
copy of C4, we can obtain a copy of Fs. So any Ks+1,2s-minor contains an Fs-minor. This
yields that G is Ks+1,2s-minor-free. Hence, the assertion follows from Lemma 7.

Lemma 10. Let G be an n-vertex graph with the maximum spectral radius ρ(G) among
all Fs-minor-free graphs. Then ρ(G) 


s(n− s).

Proof. Observe that Ks,n−s is Fs-minor-free and ρ(Ks,n−s) =


s(n− s), as desired.

Before showing our results, we fix some notions firstly. A subset S of V (G) is called
a fragment if the induced subgraph G[S] is connected. Distinct fragments S ′ and S ′′ are
said to be adjacent if there exist two vertices u′ ∈ S ′ and u′′ ∈ S ′′ such that u′u′′ ∈ E(G).

Lemma 11. Let G be an n-vertex Fs-minor-free graph. If G contains a complete bipartite
subgraph Ks,(1−δ)n = [A,B] with |A| = s and |B| = (1− δ)n  2s, then

(i) G[B] is P2-free, and |NG(v) ∩B|  1 for any v ∈ V (G)\(A ∪B);

(ii) There are at least (1−2δ)n vertices in B which have no neighbors in V (G)\(A∪B).

Proof. We first prove that G[B] is P2-free. In fact, if there exists a path P2 in G[B], then
G[A∪B] contains a subgraph consisting of one triangle and s− 1 copies of C4 by sharing
a common vertex. By contracting an edge in each copy of C4, we observe that Fs is a
minor of G, which is a contradiction. Hence, G[B] is P2-free. Furthermore, we have the
following claim.

Claim. If H is a component of G− (A ∪B), then |NG(H) ∩B|  1.

Proof of Claim. Suppose that there are two vertices u, v ∈ NG(H)∩B. Let G′ be obtained
from G by contracting G[{v}∪V (H)] to a single vertex v′. Then Ks,(1−δ)n = [A, (B\{v})∪
{v′}] and P2 = uv′ are subgraphs of G′. Note that the intersecting subgraph consisting of
one triangle and s− 1 copies of C4 is contained in the union of Ks,(1−δ)n = [A, (B\{v}) ∪
{v′}] and P2 = uv′. Hence, Fs is a minor of G, which is a contradiction. So the claim
holds.
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By Claim, we know that Part (i) holds immediately.
Now let R = V (G)\(A ∪ B) and D = {v ∈ B : NG(v) ∩ R = ∅}. By the definition of

R,
|R| = n− |A|− |B| = n− s− (1− δ)n < δn,

which implies that R has at most δn components. By Claim, B\D has at most δn vertices.
Hence,

|D| = |B|− |B\D|  (1− δ)n− δn = (1− 2δ)n.

This completes the proof of Part (ii).

Lemma 12. Let G be an n-vertex Fs-minor-free graph. Suppose G contains a complete
bipartite subgraph Ks,(1−δ)n = [A,B] with |A| = s, |B| = (1− δ)n and (1− 2δ)n  2s+ 1.
Let G∗ be obtained from G by adding edges to A to make it a clique. Then G∗ is also
Fs-minor-free.

Proof. Denote by R = V (G)\(A∪B) and D = {v ∈ B : NG(v)∩R = ∅}. By Lemma 11,
|D|  (1− 2δ)n. Suppose that G∗ contains an Fs-minor. Then there exist 2s+ 1 disjoint
fragments S0, S1, . . . , S2s ⊆ V (G∗) = V (G) with the following properties:

(a) There is at least one edge between S0 and Si for all i = 1, . . . , 2s.

(b) There is at least one edge between S2i−1 and S2i for i = 1, . . . , s.

(c) There is an integer j such that Sj ∩D ∕= ∅, j ∈ {0, 1, . . . , 2s}.

In fact, if S0, S1, . . . , S2s ⊆ (B \D) ∪ R, then S0, S1, . . . , S2s in G form an Fs-minor,
which is a contradiction. Hence, there exists a set Sj such that Sj ∩ (A ∪ D) ∕= ∅ for
j = 0, 1, . . . , 2s. If Sj ∩ D ∕= ∅, then we are done. Otherwise, we have Sj ∩ A ∕= ∅.
Furthermore, we can suppose that Si ∩D = ∅ for all 0  i  2s. Then choose one vertex
u ∈ D and let S ′

j = Sj ∪ {u}. Then S0, . . . , S
′
j, . . . , S2s satisfying (a), (b) and (c).

Let
f(S0, S1, . . . , S2s) = |{Si : Si ∩D ∕= ∅ for i = 0, 1, . . . , 2s}| .

Hence, we can choose 2s + 1 disjoint fragments S0, S1, . . . , S2s satisfying (a), (b) and (c)
such that f(S0, S1, . . . , S2s) is as large as possible.

For i = 0, 1, . . . , 2s, if |Si ∩ D|  2, choose a vertex ui ∈ Si ∩ D and let Ui =
(Si\D) ∪ {ui}. If |Si ∩D|  1, let Ui = Si.

Claim 1. For i = 0, 1, . . . , 2s, the induced subgraph G∗[Ui] is connected.

Proof. For any two vertices u, v in Ui, there exists a path P from u to v in G∗[Si] since
G∗[Si] is connected. If P contains a vertex w ∈ (Si ∩ D) \ {ui}, then there exist two
vertices w1, w2 in P such that {ww1, ww2} ⊆ E(P ). Since G[B] is P2-free, w1, w2 ∈ A. So
w1 is adjacent to w2. So there is a path in G∗[Si] from u to v containing no w. Hence,
G∗[Ui] is connected.
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Claim 2. If Si and Sj are adjacent in G∗ such that |Ui ∩D| = 1 and |Uj ∩D|  1, then
Ui and Uj are adjacent in G∗.

Proof. Suppose on the contrary that there are no edges between Ui and Uj in G∗. Then
Sj∩A = ∅ and all the edges between Si and Sj in G∗ have one endpoint in (Si∩D)\{ui} or
(Sj∩D)\{uj}. Hence, Sj∩B ∕= ∅. We claim that Si∩A = ∅. Otherwise, since there are no
edges between Ui and Uj in G∗, we have Sj ∩B = Sj ∩D. Then |Uj ∩D| = 1. Thus, there
is at least one edge between Ui ∩A = Si ∩A and Uj ∩D in G∗, a contradiction. Suppose
uv is an edge with u ∈ (Si ∩D)\{ui} and v ∈ Sj, then we have v ∈ Sj ∩A, contradicting
to Sj ∩ A = ∅. On the other hand, suppose uv is an edge with u ∈ (Sj ∩ D)\{uj} and
v ∈ Si, then we have v ∈ Si ∩A, contradicting to Si ∩A = ∅. Hence, there is at least one
edge between Ui and Uj in G∗.

Claim 3. If Ui ∩ A ∕= ∅, then Ui ∩D ∕= ∅ for 0  i  2s.

Proof. By Claims 1 and 2, disjoint fragments U0, U1, . . . , U2s satisfy (a), (b) and (c). Now
suppose that there exists 0  j  2s such that Uj ∩A ∕= ∅ and Uj ∩D = ∅. Then choose
a vertex w ∈ D\ ∪2s

i=0 Ui and let Vj = Uj ∪ {w} and Vi = Ui for 0  i ∕= j  2s. It is easy
to see that the 2s+ 1 disjoint fragments V0, V1, . . . , V2s satisfy (a), (b) and (c). Moreover,

f(V0, V1, . . . , V2s) = f(U0, U1, . . . , U2s) + 1 = f(S0, S1, . . . , S2s) + 1,

which contradicts to the choice of S0, . . . , S2s.

Claim 4. G[Ui] is connected for 0  i  2s.

Proof. Since G∗[Ui] is connected, there exists a path P from u to v in G∗[Ui] for any two
vertices u, v ∈ Ui. If P contains an edge a1a2 with a1, a2 ∈ A, then by Claim 3, there
exists a vertex w ∈ Ui ∩ D. If w /∈ V (P ), then the edge a1a2 of P may be replaced by
edges a1w and a2w. If w ∈ V (P ), then the subpath of P containing a1a2 and w may be
replaced by an edge a1w or wa2. The above transformations yield a path P ′ from u to v
which contains no edges in G∗[A]. So there exists a path from u to v in G[Ui] and thus
G[Ui] is connected.

Claim 5. If Si and Sj are adjacent in G∗, then Ui and Uj are adjacent in G.

Proof. Suppose that there are no edges between Ui and Uj in G. There must exist
two vertices u, v such that u ∈ Ui ∩ A and v ∈ Uj ∩ A. By Claim 3, there exists a
vertex w ∈ Uj ∩ D. Hence, there is one edge uw between Ui and Uj in G. This is a
contradiction.

By Claims 4 and 5, we can see that U0, U1, . . . , U2s form an Fs-minor of G, which is a
contradiction. This completes the proof.
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4 Proof of Theorem 4

Let G be an n-vertex Fs-minor-free graph with the maximal spectral radius. Without
loss of generality, we may assume that G is connected. Indeed, if G is not connected,
then we choose G1 as a component such that ρ(G1) = ρ(G). (Note that adding an
edge between different components of G may lead to an Fs-minor. For example, taking
G = Fs−1 ∪ C4.) Since G is Fs-minor-free, we know that the component G1 is Fs-
minor-free. Denote |G1| = n1. If n1 is finite, then ρ(G1)  ρ(Kn1) = n1 − 1 and so
ρ(G1) <


s(n− s) < ρ(Ks ∨ In−s) for sufficiently large n; if n1 is infinite, that is,

n1 = ω(n), then the case for connected graphs yields ρ(G1)  ρ(Ks∨In1−s)  ρ(Ks∨In−s)
for sufficiently large n.

Since G is connected, by a result of Perron and Frobenius, we can choose x =
(xu)u∈V (G) as a positive eigenvector of G corresponding to the spectral radius ρ(G). We
may assume by scaling that the maximum entry of x is xw = 1 for some w ∈ V (G). We
will use throughout the section that e(G) = O(n) by Lemma 6. For 0 <  < 1, we denote

L = {v ∈ V (G) : xv > }

and
S = {v ∈ V (G) : xv  },

where  is a small constant which will be chosen later. Clearly, we have V (G) = L ∪ S.
The outline of our proof is as follows:

♥ Firstly, we show ρ(G) = Θ(
√
n). Then we will show that |L|  O(

√
n) by Lemma 6.

Thus, we get |S| = n− |L| = (1− o(1))n. Consequently, we obtain e(L) = O(|L|) 
O(

√
n) and e(S)  O(n). Moreover, we can show that e(L, S)  (s+ o(1))n.

♥ Secondly, we shall prove that if a vertex has eigenvector entry close to 1, then it has
degree close to n; see Claim 2. Furthermore, we will show by induction that there
are s vertices in L with eigenvector entry close to 1, and hence its degree close to
n; see Claim 3.

♥ Moreover, we shall show that these s vertices induce a clique Ks; see Claim 4.

♥ Finally, we show that each of the s vertices in the clique actually has degree n− 1.

Proof of Theorem 4. By Lemma 6, there is a constant C1 := 2C > 0 such that

2e(S)  2e(G)  C1n. (1)

In addition, by Lemma 10, we obtain

ρ(G) 


s(n− s). (2)

Claim 1. e(L, S)  (s+ )n and 2e(L)  n.
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Proof. It is easy to see that

ρ(G)|L| <


v∈L

ρ(G)xv =


v∈L



z∈NG(v)

xz 


v∈L

dG(v)  2e(G).

Then by (1) and (2), it implies that

|L|  2e(G)

ρ(G)
 C1n




s(n− s)
 2C1

√
n


√
s

, (3)

where the last inequality holds for sufficiently large n.
By Lemma 9, there is a constant C2 > 0 only depending on s such that

e(L, S)  C2|L|+ sn  2C1C2

√
n


√
s

+ sn  (s+ )n (4)

as long as n is large enough so that n  4(C1C2)
2/(s4).

In addition, by (3) and Lemma 6, we have

2e(L)  C1|L| 
2C2

1

√
n


√
s

 n (5)

as long as n is sufficiently large. So Claim 1 holds.

Claim 2. If u ∈ L is a vertex with xu = 1−α for some constant α  0, then there exists
a constant C3 > 1 independent of α and  such that

dG(u)  [1− C3(α + )]n.

Proof. Clearly, we have

ρ(G)


v∈V (G)

xv =


v∈V (G)



z∈NG(v)

xz =


v∈V (G)

dG(v)xv 


v∈L

dG(v) + 


v∈S

dG(v)

= 2e(L) +  · 2e(S) + (1 + )e(L, S),

which implies


v∈V (G)

xv 
2e(L) + 2e(S) + (1 + )e(L, S)

ρ(G)
. (6)

Let N c
G(u) := V (G)\NG(u). By Lemma 8 and (6),

|N c
G(u)| ·

1

ρ(G)




v∈Nc
G(u)

xv =


v∈V (G)

xv −


v∈NG(u)

xv =


v∈V (G)

xv − ρ(G)xu

 2e(L) + 2e(S) + (1 + )e(L, S)

ρ(G)
− ρ(G)xu.
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Furthermore, using (1), (2), (4) and (5), we have

|N c
G(u)|  2e(L) + 2e(S) + (1 + )e(L, S)− ρ(G)2xu

 n+ C1n+ (1 + )(s+ )n− s(n− s)(1− α)

=

(1 + C1) + (1 + )(s+ )− s(1− α)


n+ s2(1− α)

 (C1 + s+ 4)(α + )n,

where the last inequality holds as long as n  s2/. Hence,

dG(u) = n− |N c
G(u)|  n− (C1 + s+ 4)(α + )n = [1− (C1 + s+ 4)(α + )]n.

Denote C3 := C1 + s+ 4 > 1, which is independent of α and . So Claim 2 holds.

Claim 3. There exist s distinct vertices v1, . . . , vs ∈ L satisfying xvi  1 − C4 and
dG(vi)  (1 − C4)n for every i = 1, . . . , s, where C4 > 0 is a constant independent of 
and n.

Proof. We shall prove this claim by induction. First of all, setting v1 = w, which is a
vertex with the largest entry of the eigenvector x, then xv1 = 1. Furthermore, by Claim 2,
there exists a constant c1 = C3 > 1 independent of  and n such that dG(v1)  (1− c1)n.

Now assume that we have chosen v1, . . . , vk ∈ L satisfying xvi  1− ck and dG(vi) 
(1− ck)n for 1  i  k  s− 1, where ck is a constant independent of  and n. Our goal
is to show that there exist an absolute constant ck+1 and a vertex vk+1 ∈ L\{v1, . . . , vk}
such that the degree dG(vk+1)  (1− ck+1)n and the eigen-entry xvk+1

 1− ck+1.
Let U = {v1, . . . , vk}. By (1), (2) and Claim 1, we have

s(n− s)  ρ(G)2xw =


v∈N(w)



z∈N(v)

xz 


vz∈E(G)

(xv + xz)

=


vz∈E(S)

(xv + xz) +


vz∈E(L,S)

(xv + xz) +


vz∈E(L)

(xv + xz)

 2e(S) + 2e(L) + e(L, S) +


uv∈E(U,S)
u∈U

xu +


uv∈E(L\U,S)
u∈L\U

xu.

 C1n+ n+ (s+ )n+ kn+


uv∈E(L\U,S)
u∈L\U

xu,

which implies that


uv∈E(L\U,S)
u∈L\U

xu  [s− k − (C1 + s+ 2 + )]n (7)

as long as n  s2/. On the other hand, recall that U ⊆ L and V (G) = L ∪ S, then

e(U, S) + e(U,L\U) + 2e(U) =


v∈U

dG(v)  k(1− ck)n.
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We have

e(U, S)  k(1− ck)n− e(U,L\U)− 2e(U)

 k(1− ck)n− k(|L|− k)− k(k − 1)

 k(1− ck)n− k(n− k)− k(k − 1)

= k(1− ck− )n+ k,

where the last inequality holds by (3) for sufficiently large n.
By Claim 1, we have

e(L\U, S) = e(L, S)− e(U, S)  (s+ )n− k(1− ck− )n− k

< [s+ − k(1− ck− )]n.
(8)

Let

h(x) =
s− x− (C1 + s+ 2 + )

s+ − x(1− ck− )
.

It is easy to see that h(x) is decreasing with respect to 1  x  s− 1. Then (7) and (8)
imply


uv∈E(L\U,S)

u∈L\U

xu

e(L\U, S)  h(k)  h(s− 1) =
1− (C1 + s+ 2 + )

1 + + (s− 1)(ck+ )

 1− (C1 + 2s+ 2)(ck+ ).

Hence, by averaging, there exists a vertex vk+1 ∈ L\U such that

xvk+1
 1− (C1 + 2s+ 2)(ck+ ).

Therefore, setting α  (C1 + 2s+ 2)(ck+ ) in Claim 2, we get

dG(vk+1)  [1− C3((C1 + 2s+ 2)(ck+ ) + )]n

 [1− C3(C1 + 2s+ 3)(ck+ )]n

= [1− C3(C1 + 2s+ 3)(ck + 1)]n.

Let ck+1 := C3(C1 + 2s+ 3)(ck + 1). Then ck+1 is independent of  and n. Clearly, we
have ck < ck+1 since C3 > 1 obtained from Claim 2. Consequently, we get xvi  1− ck+1
and dG(vi)  (1− ck+1)n for every i = 1, . . . , k + 1. Hence Claim 3 holds.

Let v1, v2, . . . , vs ∈ L be defined in Claim 3. Denote by

A := {v1, v2, . . . , vs}.

The set of common neighbors of vertices of A is denoted by

B :=
s

i=1

NG(vi).
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Finally, the set of remaining vertices of G is denoted by

R := V (G)\(A ∪B).

Then by dG(vi)  (1− C4)n for every i = 1, . . . , s, we have

|B| 
s

i=1

|NG(vi)|− (s− 1)



s

i=1

NG(vi)




s

i=1

(1− C4)n− (s− 1)n

= (1− C4s)n

and
|R| = n− |A|− |B|  C4sn. (9)

Claim 4. A = {v1, v2, . . . , vs} is a clique in G.

Proof. Clearly, G[A,B] is a complete bipartite graph with |A| = s and |B| = (1 − δ)n,
where δ  C4s. Moreover, (1 − 3δ)n  2s + 1 for sufficiently large n. Since adding
edges to a connected graph strictly increases its spectral radius, by Lemma 12 and the
maximality of G, we know that A must induce a clique in G. This proves Claim 4.

Claim 5. For every v ∈ V (G)\A, we have xv  1
C1+3

.

Proof. On one hand, for any u ∈ R, that is, u is not the common neighbor of vertices of
A, we have |NG(u) ∩A|  s− 1. By Lemma 11 (i), we have |NG(u) ∩B|  1. Therefore,

|NG(u) ∩ (A ∪B)| = |NG(u) ∩ A|+ |NG(u) ∩B|  s− 1 + 1 = s. (10)

Hence, it follows that

ρ(G)


u∈R

xu =


u∈R



w∈NG(u)

xw 


u∈R

dG(u)  2e(R) + e(R,A ∪B)  2e(R) + s|R|.

Note that G[R] is Fs-minor-free. By Lemma 6, we have



u∈R

xu  2e(R) + s|R|
ρ(G)

 C1|R|+ s|R|
ρ(G)

=
(C1 + s)|R|

ρ(G)
. (11)

On the other hand, for any vertex u ∈ B, by Lemma 11 (i), we have

|NG(u) ∩ (A ∪B)| = |NG(u) ∩ A| = s. (12)

Let v ∈ V (G)\A = R∪B be a fixed vertex. Next, we show that xv  1
C1+3

. By (10), (11)
and (12), we have |NG(v) ∩ (A ∪B)|  s and

ρ(G)xv =


u∈NG(v)

xu =


u∈NG(v)
u∈A∪B

xu +


u∈NG(v)
u∈R

xu  s+


u∈R

xu  s+
(C1 + s)|R|

ρ(G)
,
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which together with (9) implies

xv  s

ρ(G)
+

(C1 + s)|R|
ρ(G)2

 s
s(n− s)

+
(C1 + s)C4n

n− s

 1

2(C1 + 3)
+

1

2(C1 + 3)
=

1

C1 + 3
,

where the last inequality holds as long as  > 0 is a small constant with (C1+ s)C4(C1+
3) < 1

4
, and n is sufficiently large satisfying n  4s(C1 + 3)2 + s. So Claim 5 holds.

Claim 6. The induced subgraph G[B] consists of some isolated vertices.

Proof. By Lemma 11 (i), we know that G[B] does not contain a copy of P2, and so B is
an independent set, that is, G[B] consists of some isolated vertices.

Claim 7. R is empty, and so dG(v) = n− 1 for any v ∈ A.

Proof. Assume that R is not empty. Since G[R] is Fs-minor-free, by Lemma 6, there is
a constant C1 such that 2e(R)  C1|R|. Then the minimum degree of G[R] is at most
C1, and there exists a vertex v ∈ R such that dR(v) = |NG(v) ∩ R|  C1. Now, we can
order the vertices of G[R] as follows: z1, z2, . . . , z|R| such that dG[R](z1)  C1 and for every
i = 2, 3, . . . , |R|,

|NG(zi) ∩ {zi+1, . . . , z|R|}|  C1. (13)

In other words, each vertex zi ∈ R has at most C1 neighbors in {zi+1, . . . , z|R|}. Recall
that B = ∩s

i=1NG(vi) and R = V (G) \ (A ∪ B). Any vertex zi ∈ R has at least one
non-neighbor in A. Moreover, by Lemma 11 (i), each vertex zi ∈ R has at most one
neighbor in B. We define a new graph G∗ as below:

G∗ := G− {zizj ∈ E(G) : zi, zj ∈ R}− {ziu ∈ E(G) : zi ∈ R, u ∈ B}
+ {zivj /∈ E(G) : zi ∈ R, vj ∈ A}.

Clearly, we have G∗ = Ks ∨ In−s. Since Ks ∨ In−s is Fs-minor-free, we know that G∗ is
also Fs-minor-free. Using Rayleigh’s formula, together with Claims 3 and 5, we obtain

ρ(G∗)− ρ(G)  xTA(G∗)x

xTx
− xTAx

xTx

 2

xTx






zivj /∈E(G)
zi∈R,vj∈A

xvjxzi −


zizj∈E(G)
zi,zj∈R

xzixzj −


ziu∈E(G)
zi∈R,u∈B

xzixu





 2

xTx



(1− C4)

|R|

i=1

xzi −
C1

C1 + 3

|R|

i=1

xzi −
1

C1 + 3

|R|

i=1

xzi





=
2

xTx


1− C4−

C1 + 1

C1 + 3

 |R|

i=1

xzi > 0,

the electronic journal of combinatorics 31(3) (2024), #P3.7 14



where the last inequality holds as long as  is a small positive constant so that  < 2
C4(C1+3)

.
Consequently, we get a new graph G∗, which is an Fs-minor-free graph and has larger
spectral radius than G, a contradiction. Hence, R is empty. This proves Claim 7.

It follows from Claims 4, 6 and 7 that G = Ks ∨ In−s, as needed.

5 Concluding remarks

As we stated in the introduction, the traditional Turán problem and spectral extremal
problem for Fs-free graphs were completely studied in Theorems 1, 2 and 3, respectively.
In this paper, we have investigated the spectral extremal problem for Fs-minor-free graphs.
As we all know, it is challenging and difficult to treat the extremal problem when we forbid
bipartite graphs as substructures. We denote by Qt the graph obtained from t copies of
C4 by intersecting in one vertex. Clearly, Qt is a bipartite graph. Observe that Qt

contains a vertex class in which each vertex has degree 2. For such a sparse bipartite
graph, we know from a result of Füredi [19], or Alon, Krivelevich and Sudakov [2] that
ex(n,Qt) = O(n3/2). It is extremely difficult to determine the exact Turán number of
Qt. In the original version of our manuscript (arXiv:2301.06008v1), we have proved the
following theorem, which determined the spectral extremal graph among all Qt-minor-free
graphs. To begin with, let Mn−t be the graph obtained from an independent set on n− t
vertices by embedding a maximal matching. In other words, we have Mn−t =

n−t
2
K2 if

n− t is even; and Mn−t = K1 ∪ n−t−1
2

K2 if n− t is odd.

Theorem 13. Let t  1 be an integer and G be a Qt-minor-free graph of order n. Then
for sufficiently large n, we have

ρ(G)  ρ(Kt ∨Mn−t),

with equality if and only if G = Kt ∨Mn−t.

The proof of Theorem 13 can be provided by a similar method as in Theorem 4.
Recently, there are several spectral results involving the intersecting odd cycles [25, 13,
43]. Inspired by these results, we proposed the following spectral problem, which is a
generalization of Theorem 13 since a Qt-minor-free graph must be Qt-free.

Problem 14. Let t  1 and n be sufficiently large. If G is a Qt-free graph on n vertices,
then

ρ(G)  ρ(Kt ∨Mn−t),

where the equality holds if and only if G = Kt ∨Mn−t.

We remark here that the case t = 1 reduces to the problem for C4-free graphs, it was
early proved by Nikiforov [33] for odd n, and by Zhai and Wang [46] for even n.

After the submission of this paper, we have learned that Desai [16] confirmed Problem
14. More generally, Desai considered a more general problem. Let C2k1,2k2,...,2kt be the
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graph that consists of t even cycles C2k1 , C2k2 , . . . , C2kt sharing a common vertex. For
fixed k1, . . . , kt  2 and sufficiently large n, Desai [16] determined the spectral extremal
graph among all n-vertex C2k1,2k2,...,2kt-free graphs. We refer the interested readers to [16].

The spectral extremal graphs among Fs-free and/or Fs-minor-free graphs are quite
different, while the spectral extremal graphs among Qt-free and/or Qt-minor-free graphs
are the same. Hence, a natural question one may ask is that for which type of graphs H,
the spectral extremal graph over all H-free graphs is the same as that over all H-minor-free
graphs. To our knowledge, the spectral extremal problems that forbid a particular minor
as subgraph are investigated until now for complete graphs [40], complete bipartite graphs
[50], the complete graph removing some disjoint paths [14], the intersecting 3-cycles and
4-cycles in the present paper. It is also important for us to consider the spectral problem
for H-minor-free graphs when H is other specific graph, such as books, wheels, fans,
cycles, intersecting cycles, intersecting cliques or disjoint cliques, etc. For related results,
we recommend two newly updated papers [6, 51].
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