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Abstract

In this paper, we consider the q-analogue of the Hankel determinants of the Bell
numbers and give combinatorial proofs of these results. We show that the Hankel
determinants of the q-Stirling numbers can be simplified to a determinant that is
almost upper-triangular, and then construct sign-reversing involutions on certain
sets of RG-words that give rise to the determinants.
Keywords: Hankel determinant, q-analogues, q-Stirling numbers, restricted growth
words

Mathematics Subject Classifications: 05A19, 05A30

1 Introduction

The q-Stirling numbers of the second kind S[n, k] are defined by

Sq[n, k] = Sq[n− 1, k − 1] + [k]q · Sq[n− 1, k], for 1 󰃑 k 󰃑 n,

with boundary conditions Sq[n, 0] = Sq[0, n] = δn,0, the usual Kronecker delta function.
Here [k]q = 1+ q+ · · ·+ qk−1 denotes the q-analogue of k. Setting q = 1 gives the familiar
Stirling numbers of the second kind S(n, k) which enumerate the number of partitions of
an n-element set into k nonempty disjoint blocks. See [4, pages 128–129] and [5, Section 3].

Define the Bell polynomial

Bn(z) =
n󰁛

k=0

S(n, k) · zk.

These polynomials are also known as exponential polynomials. Note that Bn(1) is the
n-th Bell number. Aigner [1] showed that the Hankel determinant of the Bell numbers is
det(Bi+j(1))0󰃑i,j󰃑n =

󰁔n
k=0 k!. Radoux [16] showed that det(Bi+j(z))0󰃑i,j󰃑n =

󰁔n
k=0 k! ·
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z(
n+1
2 ). For further study of the Hankel determinant of the Bell numbers, and more

generally, of the exponential polynomials, see [5, 8, 16, 17, 19].
In [6], Cigler considered the q-analogue of the Bell polynomials:

en(z) =
n󰁛

k=0

Sq[n, k] · zk

and its Hankel determinant

det

󰀳

󰁅󰁅󰁅󰁃

es(z) es+1(z) · · · es+n(z)
es+1(z) es+2(z) · · · es+n+1(z)

...
...

. . .
...

es+n(z) es+n+1(z) · · · es+2n(z)

󰀴

󰁆󰁆󰁆󰁄
= det(es+i+j(z))0󰃑i,j󰃑n. (1.1)

He computed this determinant for s = 0, 1, 2. The results are

det(ei+j(z))0󰃑i,j󰃑n = q(
n+1
3 ) · z(

n+1
2 ) ·

n󰁜

i=0

[i]q!, (1.2)

det(ei+j+1(z))0󰃑i,j󰃑n = q(
n+2
3 ) · z(

n+2
2 )

n󰁜

i=0

[i]q!, (1.3)

det(ei+j+2(z))0󰃑i,j󰃑n = q(
n+2
3 ) · z(

n+2
2 )

n󰁜

i=0

[i]q! ·
n+1󰁛

k=0

q(
k
2) · zk · [n+ 1]q!

[k]q!
. (1.4)

The original work considered the derivatives of orthogonal polynomials and the prop-
erties of the coefficients thereafter. On the other hand, due to various nice combinatorial
interpretations of q-Stirling numbers of the second kind, a natural question is can we find
combinatorial proofs for these results?

For Eq. (1.2), Ehrenborg had a proof in [9] using the juggling interpretation of the
q-Stirling numbers. In [2], the authors gave a combinatorial proof of this result via RG-
words. For the other two determinants, no combinatorial proofs are known so far.

The goal for this paper is to give combinatorial proofs of the above identities. Our
tool is the RG-word interpretation of q-Stirling numbers.

This paper is organized as follows: In Section 2, we give preliminaries on q-Stirling
numbers and RG-words. In Section 3, we show that the determinantal formula can
be simplified to a form that is almost upper-triangular. In Sections 4 and 5, we give
combinatorial proofs to Eqs. (1.3) and (1.4).

2 Preliminaries

Given a set partition of the n elements {1, 2, . . . , n} into k mutually disjoint nonempty
blocks, denote it by π = B1/B2/ · · · /Bk, where the blocks are ordered so that min(B1) <
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min(B2) < · · · < min(Bk). We encode it using a restricted growth word, or RG-word,
w(π) = w1w2 · · ·wn, where wi = j if the element i occurs in block Bj of π. Restricted
growth words are also known as restricted growth functions. Let [i, j] denote the interval of
integers [i, j] = {k ∈ P : i 󰃑 k 󰃑 j}. Recall a restricted growth function f : [1, n] −→ [1, k]
is a surjective map which satisfies f(1) = 1 and f(i) 󰃑 max(f(1), f(2), . . . , f(i − 1)) + 1
for i = 2, 3, . . . , n. Denote by RG(n, k) the set of all RG-words of length n and maximal
entry k. Denote by ε the empty word such that RG(0, 0) = {ε}.

One way to obtain the q-Stirling numbers of the second kind is to introduce a weight
on RG-words. For w ∈ RG(n, k), let mi = max(w1, w2, . . . , wi) and form the weight
wt(w) =

󰁔n
i=1 wti(w), where wt1(w) = 1 and for 2 󰃑 i 󰃑 n, let

wti(w) =

󰀝
qwi−1 if mi−1 󰃍 wi,
1 if mi−1 < wi.

(2.1)

Proposition 1. For w = w1 · · ·wn ∈ RG(n, k) the weight is given by

wt(w) = q

n󰁓
i=1

(wi−1)−(k2)
.

Lemma 2. The q-Stirling numbers of the second kind are given by

Sq[n, k] =
󰁛

w∈RG(n,k)

wt(w) for 1 󰃑 k 󰃑 n.

There is a long history of studying restricted growth functions [13, 14, 15] and q-
Stirling numbers of the second kind [2, 4, 10, 12, 15, 20]. See [3, Sections 2 and 3] for
details.

For a word w = w1w2 · · ·wn define the length of w to be |w| = n. Similarly, define its

ls-weight to be ls(w) = q

n󰁓
i=1

(wi−1)
. This is a q-generalization of the ls-weight of RG-words

defined by Wachs and White [20, Section 2]. Denote by max(w) the maximal entry in w.
The concatenation of two words u and v is denoted by u · v. The word v is a factor

of the word w if one can write w = v1 · v · v2. A word v = v1v2 · · · vk is a subword of w
if there is a subsequence 1 󰃑 i1 < i2 < · · · < ik 󰃑 n such that wij = vj for all 1 󰃑 j 󰃑 k.
In other words, a factor of w is a subword consisting of consecutive entries.

For a word w = w1w2 · · ·wn ∈ RG(n, k), let NLRM(w) be the set of all entries wr

that are not left-to-right maxima of the word w, that is, wr 󰃑 max(w1, w2, . . . , wr−1).
Furthermore, for wr ∈ NLRM(w) define the bound b(wr) to be max(w1, w2, . . . , wr−1).

3 A Simplified Determinantal Formula

In this section, we show that the determinantal formula (1.1) can be simplified to a form
that is almost upper-triangular, and we will use this simplified identity to prove Cigler’s
results.
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Theorem 3. For any integer s 󰃍 0 and en(z) =
n󰁓

k=0

Sq[n, k] · zk, we have

det(ei+j+s(z))0󰃑i,j󰃑n = det

󰀣
q(

i
2) · [i]q! ·

j+s󰁛

k=i

󰀗
k

i

󰀘

q

· Sq[j + s, k] · zk
󰀤n

i,j=0

.

Proof. Let T be the set of all (n + 2)-tuples (σ,w(0),w(1), . . . ,w(n)), where σ is a
permutation on n + s elements for any fixed non-negative integer s and w(i) ∈ RG(i +

σ(i)+s, k). For any t ∈ T , define its weight wt(t) = (−1)σ ·
n󰁜

i=0

wt(w(i)) ·zmax(w(i)), where

(−1)σ is the sign of the permutation σ. Define the weight of the set T as wt(T ) =
󰁓
t∈T

wt(t).

The determinant expands as the sum

det (ei+j+s(z))
n
i,j=0 =

󰁛

t∈T

wt(t) =
󰁛

t∈T

(−1)σ ·
n󰁜

i=0

wt(w(i)) · zmax(w(i)).

Factor w(i) = u(i) · v(i) where |u(i)| = σ(i) + s and |v(i)| = i.
Let S1 ⊆ T be the set of all tuples t where there is a position r ∈ [1, i] of v(i) =

v(i)1v(i)2 · · · v(i)i such that v(i)r < r, that is, r is an anti-exceedance of v(i).
Let S2 ⊆ T − S1 be the set of all tuples t where maxv(i) > maxu(i) for some index

i ∈ [0, n].
Let T1 = T −S1−S2 be the set of all remaining tuples. By construction, all entries in

v(i) are non-left-to-right maxima of w(i) and v(i)r 󰃍 r. In this case, the maximal entry
of w(i), say k, must appear in u(i), that is, u(i) ∈ RG(σ(i) + s, k). Furthermore each
entry in v(i) contributes a factor of q to wt(w(i)): since v(i)r 󰃍 r, this entry can take
values in [r, k], contributing a total of qr−1 + qr + · · ·+ qk−1 = qr−1[k − r + 1]q.

Thus the total weight on set T1 is

󰁛

t∈T1

(−1)σ
n󰁜

i=0

wt(u(i)) · ls(v(i)) · zmax(w(i))

=
󰁛

t∈T1

(−1)σ
σ(i)+s󰁜

k=i

Sq[σ(i) + s, k] · [k]q · q[k − 1]q · · · qi−1[k − i+ 1]q · zk

= det

󰀣
q(

i
2)[i]q!

󰀗
k

i

󰀘

q

j+s󰁛

k=i

Sq[j + s, k]zk

󰀤n

i,j=0

.

(3.1)

It remains to show that the weights on sets S1 and S2 add up to 0. We do this by
constructing a sign-reversing involution on the sets respectively.

First we consider the set S1.
Let D(k, ℓ) ⊆ S1 be the set of all tuples t = (σ,w(0),w(1), . . . ,w(n)) where k 󰃍 1 is

the largest index such that v(k)ℓ < ℓ and v(i)j 󰃍 j for all i ∈ [1, n] and j < ℓ− 1. Then
S1 =

󰁖
1󰃑ℓ󰃑k󰃑n

D(k, ℓ).
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Now we construct a sign-reversing involution ϕ1 on D(k, ℓ) for each 1 󰃑 ℓ 󰃑 k 󰃑 n.
For t ∈ D(k, ℓ), factor v(k) = α(k) · y · β(k) where |α(k)| = ℓ− 1, y < ℓ and β(k) is

the remaining subword.
Let v(k− 1) = α(k− 1) ·β(k− 1) where |α(k − 1)| = ℓ− 1. Then define t′ = ϕ1(t) =

(σ′,w(0)′,w(1)′, . . . ,w(n)′) such that σ′ = σ ◦ (k − 1, k), w(i)′ = w(i) for i ∕= k − 1, k,
and

v(k − 1)′ = α(k) · β(k),v(k)′ = α(k − 1) · y · β(k − 1).

Moreover, let

w(k − 1)′ = u(k) · v(k − 1)′,w(k)′ = u(k − 1) · v(k)′.

It is straightforward to check that t′ = ϕ1(t) ∈ D(k, ℓ). Moreover, all non-left-to-right
maxima in v(k − 1)′ and v(k)′ are still non-left-to-right maxima of w(k − 1)′ and w(k)′

respectively, and max(w(k)) = max(w(k − 1)′), max(w(k − 1)) = max(w(k)′). Since
(−1)σ

′
= −1 · (−1)σ, the map ϕ1 is indeed a sign-reversing involution on D(k, ℓ), and

hence S1.
Next we consider the set S2.
Let A(k, i) ⊆ S2 be the set of all tuples t = (σ,w(0),w(1), . . . ,w(n)) ∈ S2 where k 󰃍 1

is the smallest index such that w(k) = u(k) ·v(k) has a left-to-right maxima in v(k). And
the first left-to-right maxima of v(k) is at position i ∈ [1, k]. Thus S2 =

󰁖
1󰃑i󰃑k󰃑n

A(k, i).

Note that for any w(i) = u(i) · v(i), we have v(i)r 󰃍 r.
We construct a sign-reversing involution ϕ2 on S2 as follows.
For t ∈ A(k, i), write v(k) = α(k) · x · β(k) where |α(k)| = i − 1, x > maxu(k),

and β(k) is the remaining subword. Assume there are r non-left-to-right maxima of w(k)
in v(k), record these entries as v(k)s1 , v(k)s2 , . . . , v(k)sr . Then there are k − r many
left-to-right maxima of w(k) in v(k).

First we claim that r 󰃑 maxu(k). To see this, note that the biggest entry in w(k)
must be maxu(k)+k−r, thus for the last entry of w(k), i.e. β(k)k, we have k 󰃑 β(k)k 󰃑
maxu(k) + k − r, hence we obtain the claim.

Now define t′ = ϕ2(t) = (σ′,w(0)′,w(1)′, . . . ,w(n)′) such that σ′ = σ ◦ (r, k) where
(r, k) is the transposition, w(j)′ = w(j) for j ∕= r, k. And w(r)′ = u(k) · v(r)′, w(k)′ =
u(r) · v(k)′, where v(r)′ and v(k)′ are constructed in three cases.

(1) If maxu(r) = maxu(k), then v(r)′ = v(r), and v(k)′ = v(k). It is straightforward
to check that t′ = ϕ2(t) ∈ A(k, i) and wt(t′) = −wt(t).

(2) If maxu(r) > maxu(k), let d = maxu(r)−maxu(k), then let

v(r)′j =

󰀫
v(r)j, if v(r)j 󰃑 maxu(k),

maxu(k), if v(r)j > maxu(k),

and

v(k)′s =

󰀻
󰁁󰀿

󰁁󰀽

v(k)sj , if s = sj and v(r)j 󰃑 maxu(k),

v(k)sj + v(r)j −maxu(k), if s = sj and v(r)j > maxu(k),

v(k)s + d, if v(k)s ∕∈ NLRM(w(k)).
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Since maxu(k) 󰃍 r 󰃍 j for any 1 󰃑 j 󰃑 r, we have v(r)′j 󰃍 j for all 1 󰃑 j 󰃑 r.
On the other hand, if v(r)j > maxu(k), we have v(k)sj + v(r)j −maxu(k) > v(k)sj 󰃍

sj, and v(k)s + d > v(k)s 󰃍 s, so v(k)′s 󰃍 s for all 1 󰃑 s 󰃑 k.
Moreover, suppose there are ℓ many left-to-right maxima in v(k) of w(k) before the

position sj, then

v(k)sj + v(r)j −maxu(k) 󰃑 v(k)sj +maxu(r)−maxu(k)

󰃑 maxu(k) + ℓ+maxu(r)−maxu(k)

= maxu(r) + ℓ,

that is, v(k)′sj ∈ NLRM(w(k)′), thus v(k)′s is a non-left-to-right maxima of w(k)′ if and
only if v(k)s is a non-left-to-right maxima of w(k).

Thus it is straightforward to check that wt(t) = −wt(ϕ2(t)).
(3) If maxu(r) < maxu(k), let d = maxu(k)−maxu(r), then

v(k)′s =

󰀻
󰁁󰀿

󰁁󰀽

v(k)sj , if s = sj and v(k)sj 󰃑 b(v(k)sj)− d,

b(v(k)sj)− d, if s = sj and v(k)sj > b(v(k)sj)− d,

v(k)s − d, if v(k)s ∕∈ NLRM(w(k)),

and

v(r)′j =

󰀫
v(r)j, if v(k)sj 󰃑 b(v(k)sj)− d,

v(r)j + v(k)sj − b(v(k)sj) + d, if v(k)sj > b(v(k)sj)− d.

If v(k)s ∕∈ NLRM(w(k)), then there are v(k)s−maxu(k) many left-to-right maxima in
v(k)′ of w(k)′ before position s, thus there are s−v(k)s+maxu(k) many non-left-to-right
maxima, so

maxu(r) 󰃍 r 󰃍 s− v(k)s +maxu(k),

thus v(k)′s = v(k)s − d 󰃍 s.
Similarly, if v(k)sj > b(v(k)sj)− d, there are sj − b(v(k)sj) +maxu(k) many non-left-

to-right maxima before position sj, and

maxu(r) 󰃍 sj − b(v(k)sj) + maxu(k),

thus v(k)′sj = b(v(k)sj)− d 󰃍 sj. And v(k)′ has no anti-exceedance
Next we check the wordw(r)′. If v(k)sj > b(v(k)sj)−d, then v(r)j+v(k)sj−b(v(k)sj)+

d > v(r)j 󰃍 j is an exceedance. On the other hand, v(r)j 󰃑 maxu(r) < maxu(k). If
v(k)sj > b(v(k)sj) − d, suppose there are ℓ many left-to-right maxima of w(k) in v(k)
before the position sj, then

v(r)j + v(k)sj − b(v(k)sj) + d = v(r)j + v(k)sj −maxu(k)− ℓ

+maxu(k)−maxu(r)

= v(r)j + v(k)sj − ℓ−maxu(r)

󰃑 v(k)sj − ℓ 󰃑 maxu(k).
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In other words, v(r)′j is a non-left-to-right maxima in any cases. Thus ϕ2(t) ∈ A(k, i).
By a similar argument as in case (2), wt(t) = −wt(t′), hence ϕ2 is a sign-reversing

involution on A(k, i).
Thus the Hankel determinant is computed by Eq. (3.1).

Pulling out the factors [i]q! yields the next result:

Lemma 4.

det(ei+j+s(z))0󰃑i,j󰃑n =
n󰁜

i=0

[i]q! · det
󰀣

j+s󰁛

k=i

q(
i
2)
󰀗
k

i

󰀘

q

· Sq[j + s, k] · zk
󰀤n

i,j=0

.

When s = 0 observe that the matrix we are taking the determinant of is triangular
and has the entries zi on the diagonal, proving Eq. (1.2).

When s = 1, the matrix is no longer triangular. It is almost triangular, but with one
more sub-diagonal. Eq. (1.3) becomes the following result:

Theorem 5.

q(
n+2
3 ) · z(

n+2
2 ) = det

󰀣
j+1󰁛

k=i

q(
i
2)
󰀗
k

i

󰀘

q

· Sq[j + 1, k] · zk
󰀤n

i,j=0

. (3.2)

Similarly, for the s = 2 case, Eq. (1.4) becomes

Theorem 6.

q(
n+2
3 ) · z(

n+2
2 ) ·

n+1󰁛

k=0

q(
k
2) · zk · [n+ 1]q!

[k]q!
= det

󰀣
j+2󰁛

k=i

q(
i
2)
󰀗
k

i

󰀘

q

· Sq[j + 2, k] · zk
󰀤n

i,j=0

. (3.3)

In the next two sections, we give combinatorial proofs for these two identities.

4 Proof of Theorem 5

Definition 7. For two words u = u1u2 · · · ui and v = v1v2 · · · vj, define the order relation
u 󰃑w v if i 󰃑 j and uk 󰃑 vk for all k = 1, 2, . . . , i.

Let Inc(n, k) ⊆ Nn denote the set of sequences of positive integers of length n that are
strictly increasing with maximal entry at most k, that is,

Inc(n, k) = {w = w1w2 · · ·wn : w1 < w2 < · · · < wn 󰃑 k and wi ∈ Z+}.

Definition 8. Let W (n, i) =
󰁖

i󰃑k󰃑n

RG(n, k) × Inc(i, k) ⊆ RG(n + i, k) be the set of all

words of the form w = u · v where u ∈ RG(n, k) and v ∈ Inc(i, k).

As a remark, wt(w) = wt(u) · ls(v).
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Proof of Theorem 5. Let T be the set of all (n+2)-tuples of the form t = (σ,w(0),w(1),
. . . ,w(n)) where σ is a permutation on the n + 1 elements {0, 1, 2, . . . , n}, and w(i) ∈
W (σ(i) + 1, i) that factors as w(i) = u(i) · v(i) where u(i) ∈ RG(σ(i) + 1, k) and v(i) ∈
Inc(i, k) for all 0 󰃑 i 󰃑 n and i 󰃑 k 󰃑 σ(i) + 1. Then the determinant expands as the
sum

det

󰀣
j+1󰁛

k=i

q(
i
2)
󰀗
k

i

󰀘

q

· Sq[j + 1, k] · zk
󰀤n

i,j=0

=
󰁛

t∈T

(−1)σ ·
n󰁜

i=0

wt(w(i)) · zmax(w(i)).

Denote by ki = maxu(i) and pi = maxv(i). Note that since v(i) is strictly increasing,
pi is indeed v(i)i, the last entry of v(i). Thus i 󰃑 pi 󰃑 ki.

Let A1 ⊆ T be the subset where there is a least index j in lexicographic order such
that v(j) ∕󰃑w v(j+1). Then factor v(j) = α(j) ·β(j) and v(j+1) = α(j+1) ·y ·β(j+1)
where α(j) 󰃑w α(j + 1) and y < β(j)1.

Define a sign-reversing involution ψ1 on A1 where σ′ = σ ◦ (j, j + 1), w(i)′ = w(i) for
i ∕= j, j+1. And w(j)′ = u(j+1) ·α(j) ·β(j+1), w(j+1)′ = u(j) ·α(j+1) · y ·β(j). It
is straightforward to check that w(j)′ ∈ W (σ(j+1)+1, j), w(j+1)′ ∈ W (σ(j)+1, j+1)
and t′ = ψ1(t) = (σ′,w(0)′,w(1)′, . . . ,w(n)′) ∈ A1. Moreover, since k′

j = kj+1, k
′
j+1 = kj

and wt(w(j)) · wt(w(j + 1)) = wt(w(j)′) · wt(w(j + 1)′), we have wt(t) = −wt(t′).
Let A2 ⊆ T − A1 be the set where there exists a least index j in lexicographic order

such that kj 󰃍 pj+1. Note that in this case, since v(i) 󰃑w v(i + 1) for all i, we have
kj+1 󰃍 pj+1 > pj. Define a sign-reversing involution ψ2 on A2 where σ

′,w(i)′ for i ∕= j, j+1
are the same as in the case of A1, and

w(j)′ = u(j + 1) · v(j),w(j + 1)′ = u(j) · v(j + 1).

It is straightforward to that wt(t) = −wt(t′).
Now let B∗ = T − A1 − A2 be the set of all remaining words. By the constructions

above, for t ∈ B∗, we have ki < pi+1 and v(i) 󰃑w v(i+ 1) for all i. In particular,

1 = k0 < p1 󰃑 k1 < p2 󰃑 k2 < p3 󰃑 k3 < · · · < pn 󰃑 kn 󰃑 n+ 1.

So ki = pi = i + 1, and i + 1 = ki 󰃑 σ(i) + 1 for all i. Thus σ(i) = i and σ = id is the
identity permutation.

In this case we have u(i) = 123 · · · (i+ 1), v(i) = 23 · · · (i+ 1).
Thus

B∗ = {(id, 1, 12 · 2, 123 · 23, . . . , 123 · · · (n+ 1) · 23 · · · (n+ 1))}

consists of only one tuple, and

wt(B∗) = q0z · q1z2 · q3z3 · · · q(
n+1
2 )zn+1

= q(
n+2
3 )z(

n+2
2 ). (4.1)

Hence the theorem follows.
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5 Proof of Theorem 6

In this section we consider the case s = 2.

Definition 9. For an RG-word u ∈ RG(n, k), let ui be a non-left-to-right maxima. If
ui < b(ui), call it an inversion, and if ui = b(ui), call it a repeat.

First we state a lemma.

Lemma 10. Let σ ∈ Sn be a permutation on {0, 1, 2, . . . , n− 1} and σ(i) 󰃍 i− 1 for all
i = 0, 1, . . . , n− 1. If σ(j) = k 󰃍 j, then σ(ℓ) = ℓ− 1 for all j < ℓ 󰃑 k.

Proof. If j = k, the statement is vacuously true.
If k > j, since σ(k + 1) 󰃍 k, but σ(j) = k, we must have σ(k + 1) 󰃍 k + 1, and

σ(k+2) 󰃍 k+1, σ(k+3) 󰃍 k+2 󰃍 k+1, . . . , σ(n− 1) 󰃍 k+1. Thus these entries form
a permutation on {k + 1, k + 2, . . . , n− 1} and σ(s) 󰃑 k for s 󰃑 k.

Thus k > σ(k) 󰃍 k−1, and σ(k) = k−1. Similarly, σ(ℓ) = ℓ−1 for all j < ℓ 󰃑 k.

To prove Theorem 6, we first describe a set K, and then show that the weight on set
K gives the formula.

Definition 11. Let K = {t = (id,u(0),u(1) · v(1), . . . ,u(n) · v(n))} with the following
properties.

(1) There exist an index i such that u(i) ∈ RG(i + 2, i + 2), v(i) ∈ Inc(i, pi), where
pi = i+ 1 or pi = i+ 2.

(2) For j < i, u(j) ∈ RG(j + 2, j + 1) contains a repeat and v(j) ∈ Inc(j, j + 1).
(3) For j > i, u(j) = 12 · · · (j + 2) ∈ RG(j + 2, j + 2) and v(j) ∈ Inc(j, j + 2).
(4) v(j) 󰃑w v(j + 1) for all j ∈ [1, n]

Lemma 12.

det

󰀣
j+2󰁛

k=i

q(
i
2)
󰀗
k

i

󰀘

q

· Sq[j + 2, k] · zk
󰀤n

i,j=0

= wt(K).

Proof. Let T be the set of all (n + 2)-tuples t = (σ,w(0),w(1), . . . ,w(n)) where σ is a
permutation on the n + 1 elements {0, 1, 2, . . . , n}, and w(i) is a word which factors as
w(i) = u(i) · v(i) where u(i) ∈ RG(σ(i) + 2, k) and v(i) ∈ Inc(i, k) for all 0 󰃑 i 󰃑 n and
i 󰃑 k 󰃑 σ(i) + 2.

The determinant expands as the sum

det

󰀣
j+2󰁛

k=i

q(
i
2)
󰀗
k

i

󰀘

q

· Sq[j + 2, k] · zk
󰀤n

i,j=0

=
󰁛

t∈T

(−1)σ ·
n󰁜

i=0

wt(w(i)) · zmaxw(i).

Define ki, pi, A1, A2 in the same way as in Section 4. Then the sign-reversing involutions
ψ1,ψ2 still work on the corresponding sets.

Now consider B1 = T − A1 − A2. Similarly, we have

1 󰃑 k0 < p1 󰃑 k1 < p2 󰃑 k2 < · · · < pn 󰃑 kn 󰃑 n+ 2.
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This indicates that the ki are distinct and i+ 1 󰃑 ki 󰃑 i+ 2 for all i. In particular, since
ki 󰃑 σ(i) + 2, we have σ(i) 󰃍 i − 1 for all i. Thus by Lemma 10, if σ(s) = j > s for
some s, σ(ℓ) = ℓ − 1 for all s < ℓ 󰃑 j, which implies that u(ℓ) ∈ RG(ℓ + 1, ℓ + 1) for
s+ 1 󰃑 ℓ 󰃑 j, and kℓ = ℓ+ 1. Since all ki are distinct, ks = s+ 1.

Let A3 ⊆ B1 be the set where for t = (σ,w(0),w(1), . . . ,w(n)) ∈ A3, there is a
w(j) = u(j) ·v(j) for a least index j in lexicographic order such that there is an inversion
or at least two repeats in u(j).

First we claim that σ(j) 󰃍 j. In fact, if σ(j) = j − 1, by the argument above, there is
some s 󰃑 j−1 with σ(s) = m 󰃍 j and ks = s+1. Then u(s) ∈ RG(m+2, s+1) contains
m− s + 1 󰃍 2 many non-left-to-right maxima, contradiction to the fact that u(j) is the
first such word. So σ(j) 󰃍 j.

Define a sign-reversing involution η on A3 for the following two cases.
Case 1. If the first non-left-to-right maxima in u(j) is an inversion, then let u(j) =

α1 · x ·α2 ∈ RG(σ(j) + 2, j + 1), where |α1| = m, x is the first inversion in u(j) and α2

is the remaining word. In other words, α1 = 12 · · ·m is increasing and x < m.
Let u(j − 1) = β1 · β2, where |β1| = m and β2 is the remaining word.
Note that since kj = j + 1 󰃍 2, we have j 󰃍 1. Thus u(j − 1) is well-defined.
Since u(j−1) contains at most one non-left-to-right maxima, and this non-left-to-right

maxim must be a repeat, we have σ(j−1)+2−kj−1 󰃑 1. So σ(j−1)+1 󰃑 kj−1 < pj = j+1,
thus σ(j − 1) = j − 1 and u(j − 1) ∈ RG(j + 1, j) is weakly increasing.

Let t′ = η(t) = (σ′,w(0)′,w(1)′, . . . ,w(n)′) where σ′ = σ ◦ (j, j − 1), w(i)′ = w(i) for
i ∕= j, j − 1. And w(j − 1)′ = u(j − 1)′ · v(j − 1), w(j)′ = u(j)′ · v(j) where

u(j − 1)′ = β1 · x ·α2 and u(j)′ = α1 · β2.

Since β1 is weakly increasing with at most one repeat and |β1| = m, the last entry of β1

is m (if β1 is strictly increasing) or m− 1 (if β1 has a repeat). In either case, x will be an
inversion or repeat in u(j − 1)′, thus t′ ∈ A3, and one can check that wt(t) = −wt(t′).

Case 2. If the first non-left-to-right maxima in u(j) is a repeat, note that since there
are at least two left-to-right maxima in u(j) in this case, σ(j) > j. Hence σ(j + 1) = j
by Lemma 10.

Let u(j) = 12 · · ·m ·m · α ∈ RG(σ(j) + 2, j + 1) where α is the remaining word. In
other words, the second occurrence of m is the first repeat in u(j).

Consider u(j + 1) ∈ RG(j + 2, j + 2), that is, u(j + 1) = 12 · · · (j + 2). Factor
u(j + 1) = 12 · · · (m+ 1) · β, that is |β| = j + 1−m.

Let t′ = η(t) where σ′ = σ ◦ (j, j + 1), w(i)′ = w(i) for i ∕= j, j + 1. And w(j + 1)′ =
u(j + 1)′ · v(j + 1), w(j)′ = u(j)′ · v(j) where

u(j + 1)′ = 12 · · · (m+ 1) ·α′ and u(j)′ = 12 · · ·m ·m · β′.

Here

β′
i = βi − 1 and α′

i =

󰀫
αi, if αi ∈ NLRM(u(j)),

αi + 1, if αi ∕∈ NLRM(u(j)).
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It is straightforward to check that u(j)′ contains only one non-left-to-right maxima,
which is a repeat. And if αi ∈ NLRM(u(j)), α′

i must be an inversion in u(j + 1)′. Thus
t′ ∈ A3, and wt(t′) = −wt(t). Thus η is a sign-reversing involution on A3.

LetK = B1−A3 be the set of all remaining words. For t = (σ,w(0),w(1), . . . ,w(n)) ∈
K, we must have σ(j) 󰃍 j for all j ∈ [0, n], that is, σ = id is the identity permutation.
And one can check that K satisfy the properties in Definition 11, proving the lemma.

It remains to compute the weight on K.

Theorem 13.

wt(K) = q(
n+2
3 ) · z(

n+2
2 ) ·

n+1󰁛

k=0

q(
k
2) · zk · [n+ 1]q!

[k]q!
. (5.1)

Note that Eq. (5.1) differs from Eq. (3.2) only by a factor of
n+1󰁓
k=0

q(
k
2) · [n+ 1]!/[k]! · zk.

Thus we show that the words in K can be constructed from t∗ = (id, 1, 12 · 2, 123 ·
23, . . . , 123 · · · (n + 1) · 23 · · · (n + 1)) ∈ B∗ in the proof of Theorem 5 and only compute
the additional weight created from the construction.

Proof. For any word t = (id,u(1) · v(1), . . . ,u(n) · v(n)) ∈ K, by Definition 11, there
exists an i ∈ [0, n], such that for j < i, u(j) ∈ RG(j+2, j+1) contains a repeat. This can
be obtained from u∗

j = 12 · · · (j + 1) by inserting a repeat. This repeat can be anything
from 1 to j + 1, contributing a total weight of [j + 1]q, together this gives [i]q!.

For j 󰃍 i, each u(j) = u∗
j · (j+2) = 12 · · · (j+2) contributes an extra z to the weight,

which gives a total of zn−i+1.
On the other hand, for j > i, since v(j) ∈ Inc(j, j + 2), it is obtained from v∗(j) =

23 · · · (j + 1) by increasing some of its entries by 1. Note that v(j) 󰃑w v(j + 1) for all j,
the last element of v(i + 1) has to be i + 3. We must have that the last two elements of
v(i+2) are (i+3) · (i+4), the last three elements of v(i+3) are (i+3) · (i+4) · (i+5), . . .,
and v(n) ends with (i + 3) · (i + 4) · · · (n + 2). All of these elements contribute an extra

q1+2+···+n−i = q(
n−i+1

2 ) to the weight.
Next consider the first i elements of each v(j) where j 󰃍 i. Denote by v(j)i the first

i entries of v(j), then v(j)i ∈ Inc(i, p′j) where j + 1 󰃑 p′j 󰃑 j + 2.
Consider the construction as follows: Given the word v(j)i∗ = 23 · · · (i+1), construct

a non-decreasing sequence of integers 0 󰃑 m1 󰃑 m2 󰃑 · · · 󰃑 mn−i+1 󰃑 i. Add one to the
last mj entries in v(j)i∗ to obtain v(j)i. Then each word contributes a increase of qmj to
the total weight. Together there are

󰀅
n+1

n−i+1

󰀆
q
=

󰀅
n+1
i

󰀆
q
ways to do that.

In summary, the total weight increased is

n+1󰁛

i=0

󰀗
n+ 1

i

󰀘

q

[i]q!q
(n−i+1

2 )zn−i+1 =
n+1󰁛

k=0

q(
k
2) · [n+ 1]q!

[k]q!
· zk

as desired.
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6 Concluding remarks

In this paper, we give combinatorial proofs of the Hankel determinant Eq. (1.1) for the
cases s = 0, 1, 2. The closed forms of the determinant for other values of s remain open.
Theorem 3 presents a simplified determinantal form for the computation. One natural
question is, can we derive closed forms for the determinant for general s? Notice that in
our proof of the case s = 2, the words are constructed based on the words in the case of
s = 1, one may expect that the constructions for general s is recursive, that is, the words
in the case of s is based on the words in the case of s− 1. Thus the idea of the RG-word
decomposition may be used for general cases.

There are many other combinatorial structures giving q-Stirling numbers of the second
kind such as rook placements [11], 0-1 tableaux [7] and juggling patterns [10], it would
also be interesting to find combinatorial proofs of the determinantal formula using these
structures.
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