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Abstract

We give a framework for growth models on posets which simultaneously gener-
alizes the Classical Sequential Growth models for posets from causal set theory and
the tree growth models of natural growth and simple tree classes, the latter of which
also appear as solutions of combinatorial Dyson-Schwinger equations in quantum
field theory. We prove which cases of the Classical Sequential Growth models give
subHopf algebras of the Hopf algebra of posets, in analogy to a characterization due
to Foissy in the Dyson-Schwinger case. We find a family of generating sets for the
Connes-Moscovici Hopf algebra.

Mathematics Subject Classifications: 06A07, 16T30

1 Introduction

In the causal set approach to quantum gravity, spacetime has two fundamental attributes:
a causal structure and a fundamental discreteness. Thus, this approach proposes that
spacetime is a locally finite poset (also known as a “causal set”), where the partial order
is interpreted as the causal order of spacetime [1–3].

An important challenge shared by all approaches to quantum gravity is that of defin-
ing a dynamics for spacetime. In this respect, the discreteness of the causal set approach
is both a blessing and a curse. On the one hand, the lack of a continuum time param-
eter renders the canonical approach and the continuum Lagrangian formalism obsolete.
On the other hand, some of the technical hurdles which one encounters in the path in-
tegral approach in the continuum are tamed in the discrete. Taking its cue from this
observation, one line of research investigates models of random causal sets as models
of dynamical spacetime [4–12]. In particular, one is interested in those random models
which are physically motivated. Broadly, physical motivations can include the recovery
of General Relativity in an appropriate large-scale approximation, as well as causality
and covariance. However, the exact formulation of such conditions is an open problem,
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especially in the case of bona fide quantum dynamics. In [10], a concrete formulation of
physical conditions suitable for a discrete setting was proposed and solved to give a family
of random causal set models, known as the Classical Sequential Growth (CSG) models,
see Section 2.2. Since their proposal, the CSG models have become the archetype for
causal set spacetime dynamics and their study has led to interesting insights, for example
in quantum cosmology [13,14], observables in quantum gravity [4,8], quantum spacetime
dynamics [5, 11] and combinatorics [7, 15–18].

Here, we study the relationship between CSG models and Hopf algebras of finite
posets. Our work is motivated by the existing connections between physics and Hopf
algebras – the Connes-Kreimer Hopf algebra of rooted trees is known to give a rigorous
underpinning to the process of renormalization in quantum field theory [19–21] – as well
as by their shared combinatorial language.

For our context, combinatorial Hopf algebras can be thought of as follows. If we have
two discrete objects, then a product for them will tell us how to combine the two objects
together into a new object, or possibly into a sum of new objects obtained from different
ways of combining the two original objects together. Disjoint union is an example of a
possible multiplication that will be especially useful for us. Dually, a coproduct will tell
us how to take one discrete object and break it into two, potentially in a single way,
or potentially as a sum of multiple ways. With suitable compatibilities, the product and
coproduct together give a Hopf algebra structure on these objects, see Section 2.3. We will
work with the Hopf algebra of finite posets in which the product is given by disjoint union
and the coproduct is given by decompositions into a down-set and the complimentary up-
set, see definition 8 in Section 2.3. This is a well-known Hopf algebra in the combinatorics
community, see section 13.1 of [22].

Rooted trees and forests can be seen as special cases of finite posets in two ways, with
roots taken to be either minimal or maximal elements of the poset (Fig.1). Depending
on which perspective is taken, then, one “grows” rooted trees either by adding leaves to
a tree or adding a new root to a forest. Both of these types of growth are important in
the combinatorial study of rooted trees. Growing by the addition of leaves appears in
particular in the realization of the Connes-Moscovici Hopf algebra by rooted trees [23]
(see [24] for the original formulation), while growing by the addition of roots is even
more fundamental to what rooted trees are since it is the basis for the standard recursive
definition of a rooted tree and for much of tree enumeration, see for instance [25] section
I.5 for an introduction. Following [26] we call classes of trees which are grown by roots
in a precise way that is determined by composition with a formal power series (see (15))
simple tree classes. Interpreted in the quantum field theory context, these are classes of
trees which come from Dyson-Schwinger equations, see [27] and references therein. In [28]
Foissy characterized precisely which simple tree classes give a subHopf algebra of the
Connes-Kreimer Hopf algebra.

Inspired by this context, in this work we present a framework for generalized growth
models of posets of which the CSG models, the Connes-Moscovici Hopf algebra of rooted
trees, and all simple tree classes are special cases, see Section 3. Our framework takes the
form of a recursive definition (see (17)), akin to the form of the simple tree classes, but
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Figure 1: Growing forests. In 1(a), a forest is grown by adding leaves, so the roots are
the minimal elements of the poset. In 1(b), a forest is grown by adding roots, so the roots
are the maximal elements of the poset.

with a new operator implementing the growth (Definition 11). As well as a base case, our
recursive formula intakes a countable set of a parameters.

We prove exactly when our framework gives subHopf algebras in two regions of pa-
rameter space, corresponding to the simple tree classes and the CSG models (Theorem
14). We find that the Transitive Percolation models (a sub-family of the CSG models)
give rise to co-commutative Hopf algebras, and we give a closed-form expression for their
coproduct coefficients (Lemma 23). We prove that the so-called “Forest” CSG models
give rise to Hopf algebras isomorphic to the Connes-Moscovici Hopf algebra and where
the isomorphisms themselves are interesting since they pick out different sets of genera-
tors (Lemma 24). Thus we find a new family of combinatorially-meaningful generating
sets for the Connes-Moscovici Hopf algebra and we give a recursive expression for their
co-product coefficients. As a special case of our result, we find a new expression for the
coproduct coefficients of the usual Connes-Moscovici generators. We conclude with some
comments on the application of our results within the causal set approach to quantum
gravity as well as some possible future directions.

2 Background

2.1 Posets

A partially ordered set or poset is a set P with a reflexive, antisymmetric, and transitive
relation, usually written ⪯, on it. We will use ⪯ to denote various partial orders, the
meaning should be clear from the context. We reserve the symbol ⩽ for the total order
on the integers. By the standard abuse of notation we also write P for the poset, that is,
we will use the same notation for a poset and its underlying set.

Given two elements x, y from a poset P , the interval defined by x and y, written [x, y]
is

[x, y] = {z : x ⪯ z ⪯ y}
which inherits a poset structure from P .

A poset is finite if the underlying set is finite. A poset is locally finite if every interval
of the poset is finite. A causal set or causet is a locally finite poset. We will be concerned
primarily with finite posets and all posets will be assumed to be finite unless otherwise
specified. Thus, the terms poset and causet are interchangable in our setting.
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An element x of a poset P is a maximal element if there is no element y ̸= x with
x ⪯ y. Likewise an element x of a poset P is a minimal element if there is no element
y ̸= x with y ⪯ x.

Given a poset P and x, y ∈ P , we say that there is a relation between x and y if x ≺ y
or y ≺ x. We say that x covers y and write x ·≻ y if x ⪰ y, x ̸= y and there is no element
z ̸= x, y with x ⪰ z ⪰ y. To put it more informally, x covers y if x is larger than y but
there is nothing between them. When x covers y we also say there is a link between x
and y.

A poset is often visualized via its Hasse diagram. The Hasse diagram of a poset P is
a drawing of the graph whose vertices are the elements of P and whose edges are given
by the cover relation, where if x ·≻ y then x is drawn above y.

A rooted tree is a connected acyclic graph with one vertex marked as the root, or
equivalently, a rooted tree is a vertex r called the root with a multiset of rooted trees
whose roots are the children of r. A forest (of rooted trees) is a disjoint union of rooted
trees. Rooted trees and forests can be seen as special cases of posets in two ways. The
first way is as a poset where the root is a maximal element and every non-root element has
exactly one element covering it. Then the cover relation gives the parent-child relation,
where if x ·≻ y then x is the parent of y, and the Hasse diagram is the rooted tree as a
graph, with the root at the top. The other way is as a poset where the root is a minimal
element and every non-root element covers exactly one other element. In this case the
Hasse diagram is again the rooted tree as a graph but with the root at the bottom and
the parent-child relation moving upwards.

Definition 1 (Down-set, up-set, component). Let P be a poset.

• A down-set of P is a set D of elements of P with the property that if x ∈ D and
y ∈ P with y ⪯ x then y ∈ D. D inherits a poset structure from P and so by the
usual abuse of notation we will also write D for the down-set as a poset. Down-sets
are known as stems in causal set theory and are sometimes also called lower sets or
ideals in mathematics.

• An up-set of P is a set U of elements of P with the property that if x ∈ U and
y ∈ P with y ⪰ x then y ∈ U . U inherits a poset structure from P and again we will
also write U for this poset. Up-sets are also sometimes called upper sets or filters.

• Given a subset S of the elements of P . Write

D(S) = {y ∈ P : ∃x ∈ S, y ⪯ x}
U(S) = {y ∈ P : ∃x ∈ S, y ⪰ x}

for the down-set and up-set (respectively) generated by S. In causal set theory
D(S) is the inclusive past of S and U(S) is the inclusive future of S.

• S ⊆ P is a component of P if S is both a down-set and an up-set of P and there is
no nonempty S ′ ⊊ S which is both a down-set and an up-set of P . P is the disjoint
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union of its components and the decomposition of P into its components is unique.
P is connected if it consists of exactly one component. In a Hasse diagram, each
component of P appears as a connected component in the sense of graph theory
and so a connected poset is a poset whose Hasse diagram is connected as a graph.
If a poset P is a forest then its components are the trees it contains.

Definition 2 (Isomorphism, labellings, unlabelled poset, template).

• Two posets P1 and P2 are isomorphic if there is a bijection between their underlying
sets that preserves the order relation. That is, if there is a bijection f : P1 → P2

such that f(x) ⪯ f(y) ⇔ x ⪯ y.

• We will call a poset P increasingly labelled if the underlying set is P ⊆ Z⩾1 and
whenever x ⪯ y in P then x ⩽ y. If P is increasingly labelled, x ∈ P is the nth

element of P if there exist exactly n distinct elements y ∈ P such that y ⩽ x. We
will call a poset P naturally labelled if it is increasingly labelled and has underlying
set P = [1, |P |]. So, if P is naturally labelled, the nth element of P is n.

• We will call a poset unlabelled when we consider it only up to isomorphism, or
more formally, the unlabelled posets are the equivalence classes of posets under
isomorphism. An unlabelled poset is generally drawn by giving its Hasse diagram
without any labels on the vertices. We will denote the set of finite unlabelled posets
by P .

• The cardinality of an unlabelled poset P is the cardinality of any of the labelled rep-
resentatives of P . The components of an unlabelled poset P are the unlabelled posets
represented by the connected components of the Hasse diagram of P , or equivalently,
are the equivalence classes of the components of any labelled representative of P .

• Given an unlabelled poset P , the templates of P are its naturally labelled repre-
sentatives. We call them templates because, given a template T and an underlying
set {i1, . . . , i|P |} ⊆ Z⩾1 with i1 < i2 < · · · < i|P |, one can construct an increasingly
labelled representative L of P by arranging the elements of the underlying set ac-
cording to the template by setting ix ⪯ iy in L whenever x ⪯ y in T . We denote
the set of templates of P by temp(P ). An example is shown in Fig.2.

• The number of natural labelings or number of templates of an unlabelled poset P is
Ψ(P ) = |temp(P )|.

The notion of natural labelling is also known as heap ordering or linear extension in
other contexts.

The interplay between unlabelled and increasingly labelled posets will be quite im-
portant in what follows. However, for our context the unlabelled posets are the default
and we will use the term poset to mean unlabelled poset, unless specified otherwise. To
remove any ambiguity, we will take the notational convention of using capital roman let-
ters, e.g. P,C, for unlabelled posets and capital roman letters with a tilde ˜ , e.g. P̃ , C̃,
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Figure 2: An illustration of the interplay between unlablled posets and their templates
(labelled representatives). Two unlabelled posets are shown with their templates. The
“V” poset has a unique template, while the 5-element poset shown has four templates.

for increasingly labelled posets. Unless otherwise specified, for a poset or increasingly
labelled poset Ck, C̃k the lower index will indicate the cardinality of the poset. Any other
indexing will be indicated with an upper index.

Definition 3 (Forest partitions). A partition of a forest F is a multiset of forests whose
union is F . The coarsest partition of F contains only F , while the finest partition contains
the components of F . Given a forest F with some partition π, we write N(π) to denote
the multiset of integers whose entries are the cardinalities of the forests in π.

An illustration is shown in table 1.
It will be useful later to count the number of times an integer appears in N(π) and

the number of times a given forest appears in π. When π is the finest partition of F ,
the latter is equivalent to counting the number of times a tree appears as a component
in F . For consistency, we combine these various notions of counting into the notion of
multiplicity.

Definition 4 (Multiplicity). We write µy(x) to denote the multiplicity of x in y in the
following contexts:

• When y is a multiset, µy(x) is the number of times x appears as an element in y.
Specifically, we will consider multisets whose elements are posets or whose elements
are positive integers.

• When y is a poset and x is a connected poset, µy(x) is the number of times x appears
as a component in y.

To simplify our notation, we may write µ(x) when y can be understood from the context.

The following relationships between the number of templates of a poset and its com-
ponents will be useful to us.
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π N(π) µN(π)(2)

{ } 4 0

{ }, 3,1 0

{ }, 2,2 2

{ }, , 2,1,1 1

Table 1: Illustration of definitions 3 and 4. The partitions π of the forest , the
associated lists of integers N(π), and the multiplicity µN(π)(2) of 2 in N(π) are shown.

Lemma 5. Let Ck be a poset with d components, C1
k1
, · · · , Cd

kd
(so that k1+ · · ·+kd = k).

Then the relationship between the number of templates of Ck, Ψ(Ck), and the number of
templates of its components, Ψ(Ci

ki
), is given by,

Ψ(Ck) =

(
k

k1, k2 · · · kd

)∏d
i=1Ψ(Ci

ki
)∏

P∈C µ(P )!
=

k!
∏d

i=1Ψ(Ci
ki
)∏d

i=1 ki!
∏

P∈C µ(P )!
, (1)

where C is the set of connected finite posets and µ(P ) = µCk(P ).
When Ck is a forest, the relationship between the number of templates of Ck and the

number of templates of the forests in any partition π of Ck is given by,

Ψ(Ck) = k!
∏
F∈π

Ψ(F )

|F |!
∏
P∈C

∏
F∈π µ

F (P )!

µ(P )!

= k!
∏
F∈P

(
Ψ(F )

|F |!

)µπ(F ) ∏
P∈C

∏
F∈P

(
µF (P )!

)µπ(F )

µ(P )!
,

(2)

where P is the set of finite posets. One can verify that equation (2) reduces to equation
(1) when π is the unique partition of Ck into its component trees.

Proof. To arrive at (1), note that the multinomial coefficient counts the number of ways
of assigning a subset of the interval [1, k] as a set of labels to each component; the product
of Ψ’s counts the number of ways of arranging these labels within each component; and
the denominator ensures that no over-counting takes place when a connected poset P
appears as a component in Ck more than once.

To see that (2) holds, start with its RHS and use (1) to write Ψ(F ) in terms of Ψ(t),
where t are the trees in F . After simplifying, one finds that the resulting expression is
equal to Ψ(Ck) by (1).

2.2 Classical Sequential Growth

The Classical Sequential Growth (CSG) models are the archetypal toy-models of spacetime
dynamics within causal set theory. The CSG models are models of random posets in which
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a poset grows stochastically through an accretion of elements. The growth happens in
stages. At each stage, an element is born into the poset, forming relations with the
existing elements subject to the rule that the new element cannot be made to precede
any of the existing elements in the partial order.

Keeping track of which element was born at which stage is tantamount to the statement
that the CSG models grow naturally labelled posets. Indeed, we can think of stage n of
the process as a transition C̃n → C̃n+1 from a poset with n elements to a poset with n+1
elements, where both posets are naturally labelled and C̃n is a down-set in C̃n+1. The
down-set relation induces a partial order on the set of finite naturally labeled posets, i.e.
C̃n ⪯ C̃m ⇐⇒ C̃n is a down-set in C̃m. This partial order of finite posets (known in the
causal set literature as poscau) is a tree, and each stage of the growth is a transition from
a parent C̃n to one of its children C̃n+1. A CSG model is a set of transition probabilities
P(C̃n → C̃n+1), one probability for each parent-child pair.

A CSG model is specified by a countable sequence (t0, t1, t2, . . .) of real non-negative
numbers (or “couplings”) from which the transition probabilities are obtained via,

P(C̃n → C̃n+1) =
λ(ϖ,m)

λ(n, 0)
∀n ⩾ 1 (3)

λ(k, p) =

k−p∑
i=0

(
k − p

i

)
tp+i, (4)

where ϖ and m are the number of relations and links, respectively, formed by the new
element. An illustration is given in Fig.3 and a more intuitive understanding of the form of
these transition probabilities is discussed later in Example 6. The transition probabilities

Figure 3: An illustration of the CSG transition probabilities. A transition between a
parent and its child is shown. During the transition, the new element 6 forms m = 2
links (with elements 3 and 5) and ϖ = 4 relations (with elements 1,2,3 and 5). Thus the

probability for the transition is equal to λ(4,2)
λ(5,0)

, as given by equation (3).

are normalised so that they satisfy the Markov sum rule,∑
C̃n+1

P(C̃n → C̃n+1) = 1, (5)

where the sum is over all children C̃n+1 of a fixed parent C̃n. The probability P(C̃n) of
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growing some poset C̃n is given by,

P(C̃1) = 1,

P(C̃n) =
n−1∏
i=1

P(C̃i → C̃i+1) ∀n ⩾ 1,
(6)

where for each i, C̃i is the unique parent of C̃i+1. The CSG models possess the property
of discrete general covariance1, namely that given a pair of isomorphic posets C̃n and C̃ ′

n,
we have P(C̃n) = P(C̃ ′

n). Given an unlabelled poset Cn, the probability P(Cn) assigned
to Cn by a CSG model is,

P(Cn) =
∑

C̃n∈temp(Cn)

P(C̃n) = Ψ(Cn)P(C̃n), (7)

where on the right hand side C̃n is any template of Cn (cf. definition 2). The second
equality follows from discrete general covariance. The probabilities satisfy the sum rule,∑

C̃n

P(C̃n) =
∑
Cn

P(Cn) = 1, (8)

where the sums are over all labelled posets of cardinality n and unlabelled posets of
cardinality n, respectively.

Sometimes we will be interested in relative probabilities rather than in normalised
probabilities. For this purpose, we define the weight w as,

w(C̃n → C̃n+1) = λ(ϖ,m) ∀n ⩾ 1,

w(C̃1) = 1,

w(C̃n) =
n−1∏
i=1

w(C̃i → C̃i+1), ∀n ⩾ 1,

w(Cn) =
∑

C̃n∈temp(Cn)

w(C̃n) = Ψ(Cn)w(C̃n),

(9)

where ϖ and m are as in (3). We can define the weight of a transition between two
unlabelled posets w(Cn → Cn+1) as the sum of transition weights w(C̃n → C̃n+1) over
representatives C̃n+1 of Cn+1 given a fixed representative C̃n of Cn. Writing Ψ(Cn+1|Cn)
to denote the number of ways of extending a fixed natural labelling of Cn to a natural
labelling of Cn+1, we have,

w(Cn → Cn+1) = Ψ(Cn+1|Cn) w(C̃n → C̃n+1), (10)

where for any pair of representatives with C̃n a down-set in C̃n+1.

1The CSG models are the unique solution to the simultaneous conditions of discrete general covariance
and “bell causality”, a condition relating ratios of transition probabilities [10].
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Now we consider the couplings (t0, t1, · · · ) in some detail. First, note the a set of
couplings (tk)k⩾0 provides a projective parameterisation, since any two sequences related
by an overall positive factor, (tk)k⩾0 = c(t′k)k⩾0, give rise to the same set of transition
probabilities (though they give rise to different weights) [9]. Second, we remark below on
a meaningful interpretation of the couplings which will be useful for us.

Remark 6. At stage n of the CSG process, a subset R̃ ⊆ C̃n is selected with relative
probability t|R̃| and the new element n + 1 is put above all elements which are below or

equal to some element in R̃. We say that R̃ is the proto-past from which the past of n+1
is constructed. This interpretation is reflected in the form of the transition probabilities
given in (3): the numerator is a sum over all proto-pasts which contribute to a particular
transition C̃n → C̃n+1, while the denominator sums over the proto-pasts which contribute
to all possible transitions from the parent C̃n. An illustration is shown in Fig.4.

Figure 4: A pictorial representation of the transition probabilities of (3). Each diagram
on the right hand side represents a proto-past R̃ (shown in white) and contributes a factor
of t|R̃|. The numerator is a sum over all proto-pasts which contribute to the transition on
the left hand side. The denominator sums over all possible proto-pasts.

Thus, t0 is the relative probability of the new element to be minimal in the poset, and
t1 is the relative probability of the new element to cover exactly one element in the poset
(though it may have more elements in its past). Although there is an infinite sequence
of couplings, only a finite number of them is needed to compute each probability since
the couplings tk with k ⩾ n are “inactive” at stage n (one cannot choose a subset with a
cardinality greater than that of the set!).

Originary CSG models are those with t0 = 0 and t1 > 0. These models only grow
posets with a unique minimal element (an “origin”).2 More care is needed in defining CSG
models with tk = 0 for all k ⩽ N for some N > 0, since these models require a choice
of initial conditions beyond the trivial P(C̃1) = 1. Such models are not common in the
physics literature, perhaps because a choice of one set of initial conditions over another
would require additional physical motivation. For our purposes, we will define them as
follows. Given some N > 0, a CSG model with tk = 0 for all k < N and tN > 0 is given
by (i) the set of transition probabilities (3) restricted to n ⩾ N and (ii) a probability
distribution on the posets of cardinality N , i.e. a complete set of probabilities P(C̃N)
satisfying the normalisation condition (8). In these models, it is meaningless to ask what
is the probability of a poset C̃n with n < N .

2The original formulation of the CSG models required that t0 > 0 [10], but since then variations
including the originary models have been widely studied, see for example [9, 29,30].
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The following CSG models will be important for us:

• The Forest Models: t0 > 0, t1 > 0, tk = 0 ∀ k > 1. This is a 1-parameter family of
models which only grows forests with roots as minimal elements, i.e. P(Cn) = 0 if
Cn is not a forest. The probability of growing a forest Cn with τ trees is given by ,

P(Cn) = Ψ(Cn)
tτ−1
0 tn−τ

1∏n−1
x=1(t0 + xt1)

. (11)

• The Tree Model: t1 ̸= 0, tk = 0 ∀ k ̸= 1. Due to the projective nature of the tk
parameters, all values of t1 are equivalent as they give rise to the same transition
probabilities. This model only grows trees, with roots as minimal elements, and can
be seen as the t0 → 0 limit of the forest models. The probability of growing a tree
Cn is given by,

P(Cn) =
Ψ(Cn)

(n− 1)!
. (12)

• Transitive Percolation: tk+1

tk
= t ∀ k, t > 0. This 1-parameter family is also known

as the model of random graph orders in the mathematics literature [31]. Defining
the Transitive Percolation parameters,

p =
t

1 + t
, q = 1− p, (13)

the probabilities (3) and (7) can be recast as,

P(C̃n → C̃n+1) = pmqn−ϖ,

P(Cn) = Ψ(Cn)p
Lq(

n
2)−R,

(14)

where L and R are the total number of links and relations in Cn, respectively. An
interpretation of this form is that each new element forms a relation with each
already-existing element with probability p independently and then the transitive
closure is taken to obtain C̃n+1. This reflects the “local” nature of Transitive Per-
colation and all other CSG models can be seen as non-local generalisations of it in
which the probability of forming a relation with a given element depends on whether
or not a relation is formed with each of the other elements.

• The Dust Model: t0 > 0, tk = 0∀k > 0. This model generates antichains (posets in
which none of the elements are related) with unit probability. It is the t1 → 0 limit
of the forest models, and the t → 0 (or p → 0) limit of transitive percolation.

2.3 Hopf algebras

Let K be a field of characteristic 0; the reader will lose nothing in taking K = R or K = C.
In order to define a Hopf algebra, let us first review the notion of algebra in a language

most suited to what will follow.
An algebra over K is a vector space A over K along with linear maps m : A⊗A → A,

called the product, and η : K → A, called the unit, with the properties
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• (associativity) m ◦ (m⊗ id) = m ◦ (id⊗m) where id is the identity map.

• (unitality) m◦(η⊗ id) = id = m◦(id⊗η) using the canonical isomorphisms between
K⊗ A, A and A⊗K.

For the reader who is more familiar with the usual undergrad abstract algebra take on
an algebra, note that if we rewritem(a, b) as a·b then the first property is (a·b)·c = a·(b·c)
which is the associativity of ·. The unital map η relates to the unit in the more naive
sense in that η(1) ∈ A is the unit. The property above tells us this because the canonical
isomorphism between K⊗A and A is the one taking 1⊗a to a, and so the unital property
tells us η(1) ·a = a = a ·η(1) as expected of a unit. The final thing about this formulation
which might be unexpected from the perspective of undergrad abstract algebra is how the
product has domain A ⊗ A rather than A × A. The point here is that bilinear maps on
A×A correspond to linear maps on A⊗A via the universal property of tensor product.
For this formulation using A ⊗ A is better, but the same information is being carried
either way.

To get a coalgebra we take analogous maps and properties as in the definition of
algebra, but reverse their directions.

A coalgebra over K is a vector space C over K along with linear maps ∆ : C → C⊗C,
called the coproduct, and ϵ : C → K, called the counit, with the properties

• (coassociativity) (∆⊗ id) ◦∆ = (id⊗∆) ◦∆ where again id is the identity map.

• (counitality) (ϵ⊗ id)◦∆ = id = (id⊗ ϵ)◦∆ again using the canonical isomorphisms
between K⊗ C, C and C ⊗K.

All these identities can be written quite insighfully in terms of commutative diagrams,
and the duality which gives the coalgebra is particularly clear in that way. In the interests
of space we will leave the commutative diagrams to the references. One suitable nice
reference with a combinatorial focus is [32].

A K-linear map f : A → B between two algebras A and B is an algebra homomorphism
(or algebra morphism) if f ◦mA = mB ◦ (f ⊗ f) and f ◦ ηA = ηB. Again these identities
correspond exactly to what one expects from the more typical undergrad take on algebras
and as expected flipping all arrows gives the analogous coalgebra notion. A map g : C →
D between two coalgebras C and D is a coalgebra homomorphism (or coalgebra morphism)
if ∆D ◦ g = (g ⊗ g) ◦∆C and ϵD ◦ g = ϵC .

A bialgebra is simultaneously and compatibly both an algebra and a coalgebra in
the following sense. Let B be both an algebra over K and a coalgebra over K with the
property that ∆ and ϵ are both algebra homomorphims, or equivalently that m and η are
both coalgebra homomorphims. Then we say B is a bialgebra. The equivalence between
∆ and ϵ being algebra homomorphims and m and η being coalgebra homomorphims, is
easy to check as the four necessary properties in each case end up being the same. This
can be found in any standard reference, see for instance Proposition 1.3.5 of [32].

To get a Hopf algebra we need one more map. First, if A is an algebra, C a coalgebra,
and f, g : C → A linear maps between them, then the convolution product of f and g is

f ⋆ g = m ◦ (f ⊗ g) ◦∆.
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Then a bialgebra B is a Hopf algebra if there exists a linear map S : B → B, called the
antipode, such that S ⋆ id = η ◦ ϵ = id ⋆ S.

For an algebra, coalgebra, or bialgebra, if the underlying vector space is graded and
the defining maps are also graded then we say the algebra, coalgebra, or bialgebra is
graded. Our examples will always be combinatorial and so have a grading coming from
the notion of size on the combinatorial objects – for us the number of elements in a poset
or the number of vertices of a rooted tree. Additionally, our combinatorial contexts will
always have a unique empty object of size 0 and so the 0-graded piece will always be
simply a copy of K. A convenient result for us is the following, see Proposition 1.4.16
of [32] for a proof.

Proposition 7. Let B be a bialgebra that is graded and has the 0-graded piece3 isomorphic
to K. Then B is a Hopf algebra with antipode recursively defined.

Given an algebra A, a subset A′ of A is a subalgebra if it is a subspace of A and is
closed under m and η, that is A′ is a subspace and for all a, b ∈ A′, m(a, b) ∈ A′ and for
all k ∈ K, η(k) ∈ A′. Likewise given a bialgebra B, a subset B′ of B is a subbialgebra of
B if it is a subspace of B and is closed under m, η, ∆, and ϵ. Note that closure under ϵ is
trivial – there is nothing to check. In our combinatorial examples, the subbialgebras we’re
interested in will be built of homogenous generators and also have a unique generator of
degree 0 and so we will be in the situation where B and B′ will both be graded and
connected and hence so both be Hopf algebras. Furthermore, when both are graded and
connected with the same grading, the recursive expressions for the antipodes mentioned
in Proposition 7 agree giving that B′ is a subHopf algebra of B.

We will be particularly interested in the situation where we have a graded connected
Hopf algebra H and we have a subset H ′ of H that is a subalgebra by construction, but
we will want to know when H ′ is a subHopf algebra. By the observations above, the only
thing to check is that H ′ is closed under ∆. That is, we will need to check that for any
h ∈ H ′, ∆(h) ∈ H ′ ⊗H ′.

Now we are ready to define the primary Hopf algebra of interest to us. Let P be the
set of (unlabelled) posets and let C ⊆ P be the set of connected posets. As a vector space,
the Hopf algebra of posets is spanK(P). We make this into an algebra by taking disjoint
union as the product, and the empty poset as the image of η(1). Identifying monomials
with the disjoint union of their elements, this is equivalent to saying that as an algebra
the Hopf algebra of posets is K[C]. We will take the counit to be ϵ(P ) = 0 for nonempty
posets P , ϵ(∅) = 1 and extended linearly; this is an algebra homomorphism. Note that
K[C] is graded by the size function on posets and with this grading has spanK({∅}) ∼= K
as the 0-graded piece. All the maps, including ϵ are graded, and so it remains to define a
compatible graded coproduct on K[C].
3When the B has 0-graded piece isomorphic to K then B is said to be connected. However, this notion
of connected bialgebra is quite different from the notion of connected poset or connected graph, and
this is the only place we need it, so to avoid confusion we will avoid using the language of connectivity
for bialgebras.
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Definition 8. Define the coproduct on K[C] to be

∆(P ) =
∑

U up-set of P

U ⊗ (P \ U) =
∑

D down-set of P

(P \D)⊗D

for P ∈ P and extended linearly.

Observe that the two sums of the definition do agree since the complement of an up-set
is a down-set and vice versa. Additionally, ∆ is graded since each element of P appears
on exactly one side of each term in the sum.

One can check directly that with this coproduct K[C] is a Hopf algebra, see Section
13.1 of [22] for details.

Since the interplay between unlabelled and naturally labelled will be important later, it
is worth being a bit more explicit about how to understand labellings and the coproduct.
As defined the coproduct is for unlabelled posets, however an unlabelled poset is an
isomorphism class and the sum over up-sets (or down-sets) should be interpreted as a
sum over up-sets (or down-sets) in any representative of the class with the resulting
summands only subsequently taken up to isomorphism. In particular, if a poset P has
two isomorphic copies of the same up-set, then both of them contribute to the sum. This
means that the coproduct of particular posets may contain multiplicities, for example,

∆( ) = 1⊗ +2 ⊗ +2 ⊗ + ⊗ +2 ⊗ + ⊗1,

where we denote the empty set by 1. It will be useful later to have language for the terms
of the sum before forgetting the labels. Define a labelled cut as a pair (C̃, Ũ⊗D̃) consisting
of a naturally labelled poset C̃ and a partition of it into two increasingly labelled posets,
a downset D̃ and an upset Ũ . Examples are shown in Fig.5. For any fixed naturally
labelled representative P̃ of a poset P , the terms of ∆(P ) are exactly the second entries
in the labelled cuts of P̃ after forgetting their labellings.

(
2 4

1 3 ,

2 4

1 3
⊗

) (
2 4

1 3 ,

4 2

3 1
⊗

) (
2

1

4

3

,

4 2

3 1
⊗

)
Figure 5: Three distinct labelled cuts.

When we look at the special case of posets which are forests, we get another well-
known Hopf algebra. Let HCK be the subset of K[C] given by the span of forests viewed
as posets with the roots as maximal elements. Then HCK is a subHopf algebra, called
the Connes–Kreimer Hopf algebra of rooted trees [19–21].

The Connes–Kreimer Hopf algebra of rooted trees is used in the Hopf algebraic for-
mulation of renormalization in quantum field theory. In this context the trees give the
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insertion structure of subdivergent Feynman diagrams in a larger Feynman diagram, and
the Hopf algebra structure gives the Zimmerman forest formula and hence can encode
BPHZ renormalization. Overlapping subdivergences are represented by sums of trees.

Note that we could alternately represent the Connes–Kreimer Hopf algebra inside K[C]
with roots as minimal elements, however, we will always want to use the form with roots
as maximal elements, because the recursive structure of HCK comes from building new
trees by adding a new root to a forest, and, inspired by the CSG model, we will always
build by adding new maximal elements.

We encode the add-a-root construction in the following definition: given f a forest,
define B+(f) to be the rooted tree obtained by adding a new root r and letting the
children of r be the roots of the trees in f . Extend B+ linearly to HCK .

Recursive equations using B+ in HCK are the combinatorial avatar of the Dyson-
Schwinger equations of quantum field theory [27]. An important case of such equations
is those of the form

X(x) = xB+(f(X(x)) (15)

where f is a formal power series with constant term equal to 1. This equation has a
unique solution X(x) ∈ HCK [x] defined recursively; see Proposition 2 of [28]. In the
pure combinatorics context solutions to equations of the form (15) are sometimes known
as simple tree classes following [26]. The equation can also be written in the slightly
different from

Y (x) = 1 + xB+(g(Y (x)))

but after the substitution X(x) = Y (x) − 1 and f(z) = g(z + 1) the only difference is
in whether or not the solution includes a constant term, so it is mostly a matter of taste
whether the base case of 1 is inside the B+ (by the condition on f) or outside the B+ (by
the explicit 1). However, one reason to avoid the constant term in the solution is that
then the composition inside B+ is not transparently a well-defined composition of formal
power series; it is only the particular shape of g, having come from f , that makes this
composition valid.

Foissy characterized when the algebra generated by the coefficients of X(x) is a Hopf
subalgebra of HCK . Specifically:

Proposition 9 (Theorem 4 of [28]). Let f ∈ K[[x]] such that f(0) = 1 and let X(x) =∑
n⩾1 anx

n with an ∈ HCK be the unique solution to X(x) = xB+(f(X(x))). The following
are equivalent:

1. K[a1, a2, a3, . . .] is a subHopf algebra of HCK

2. There exists (α, β) ∈ K2 such that (1− αβx)f ′(x) = αf(x)

3. There exists (α, β) ∈ K2 such that

(a) f(x) = 1 if α = 0

(b) f(x) = eαx if β = 0
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(c) f(x) = (1− αβx)−
1
β if αβ ̸= 0.

There’s another important example of a Hopf algebra which can be built out of rooted
trees but which does not come out of Proposition 9. Usually this is formulated as a
subHopf algebra of HCK , however, it is built by adding leaves, rather than adding roots,
and so in the spirit that we always build upwards in this paper, we will instead define
it as a subHopf algebra of K[C] that consists of trees with minimal elements as roots, in
contrast to how HCK is built from trees with maximal elements as roots.

For a rooted tree t (as a poset, with the root as the minimal element), define the
natural growth operator N(t) to be the sum of all trees obtained by adding a new leaf to
a vertex of t, and extend N linearly to the span of trees. Using N we define,

δi =

{
• i = 1

N(δi−1) i > 1.
(16)

Then HCM = K[δ1, δ2, δ3, . . .] is a subHopf algebra of K[C] and is called the Connes–
Moscovici Hopf algebra [23,24]. Note that by construction, the coefficient of a rooted tree
in δi is the number of natural labellings of the tree. We can draw the first few terms as
follows,

δ1 = • δ2 = δ3 = + δ4 = + + 3 + .

In contrast, if we take the Dyson-Schwinger equation with f(x) = (1 − x)−1 (α = β = 1
in Proposition 9), then we get the expansion,

a1 = • a2 = a3 = + a4 = + + 2 +

since the coefficents in this case count the number of plane embeddings.

3 General set up

The similarities and differences between B+ and N as operations for growing rooted trees
along with the fact that both yield subHopf algebras has long suggested to researchers
in the area to try to bring either the operations or the sums of trees they generate into
a common framework. However there has been no solution so that the Hopf structure
comes in both cases from a result with the flavour of Proposition 9. The CSG models
are also built by a growing process, and the main insight of the present section is that
moving to the poset context, and in both cases taking B+ and N as growing upwards,
so having them involve different realizations of rooted trees within posets, finally permits
this common framework.

We are not able, however, to give a generalization of Proposition 9 to our full frame-
work. Rather, our main result, see Section 4, tackles the case of CSG models. We none
the less find our general framework interesting for its unification of combinatorial DSEs
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for trees, the Connes–Moscovici Hopf algebra, and CSG models into one framework. In
order to allow our models to be built simply by growing, without needing to count how
many posets are grown, we will be building the un-normalised version of the CSG models
here, as described in (9).

First we need an operation which is general enough to allow all of these growth models.
Recall from definition 1, that given some S ⊆ P , D(S) denotes the down-set generated
by S.

Definition 10. For a poset P and a subset S of elements of P , define BS(P ) to be the
poset obtained from P by adding one new element which is larger than the elements of
D(S) and incomparable with all other elements of P .

For example,

B ( ) = .

Here we are working with unlabelled posets, so we have not specified a label for the new
element. Alternately, in the naturally labelled context, the new element could be given
the new label |P |+ 1, maintaining that the labelling is a natural labelling.

Note that if P is a forest with roots as maximal elements then BP (P ) = B+(P ), while
if P is a tree with roots as minimal elements then

∑
a∈P B{a}(P ) = N(P ).

From the CSG perspective the set S in Definition 10 is the proto-past of the to-be-
added new element, see Remark 6. Consequently, we may have S ̸= S ′ but BS(P ) =
BS′(P ) as two different proto-pasts may generate the same downset. This can even
happen when S and S ′ have the same size. For example if P = {a < b < c} then
B{a,c}(P ) = B{b,c}(P ) = {a < b < c < d} where we let the new element be d.

Definition 11. Define Ms0,s1,...
t0,t1,...

to be the linear map that takes a poset P to

Ms0,s1,...
t0,t1,...

(P ) =
∑
S⊆P

t|S|s|P |−|S|BS(P )

and extended linearly to spanK(P) = K[C].

Ms0,s1,...
t0,t1,...

is the operator that puts a factor tksn−k when growing an n element poset by

putting a new descendant of a subset of size k (cf. Remark 6).
For the CSG context we will take ti ∈ R, ti ⩾ 0. However, for the purposes of the

general framework we could just as well treat the si and ti as indeterminates and upgrade
Ms0,s1,...

t0,t1,...
to act on K[C][s0, s1, . . . , t0, t1, . . .] by acting on the coefficients of each monomial

in the si and tj.
The operator Ms0,s1,...

t0,t1,...
is the simultaneous generalization of all our growth operators

to date.
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Lemma 12. • For f a forest with roots as maximal elements,

B+(f) = M1,0,0,...
1,1,1,...

(f),

that is, B+ is M with s0 = 1, si = 0 for i > 0, and all tj = 1.

• For t a tree with the root as the minimal element,

N(t) = M1,1,1,1,...
0,1,0,0,...

(t),

that is, N is M with t1 = 1, ti = 0 for i ̸= 1 and all sj = 1.

• For Cn a poset with n elements,∑
Cn+1

w(Cn → Cn+1)Cn+1 = M1,1,1,...
t0,t1,...

(Cn)

where the sum is over all children Cn+1 of Cn and the transition weight w(Cn →
Cn+1) is as given in (10). That is, the CSG growth operation with couplings t0, t1, . . .
is M with all si = 1.

Proof.

• s0 appears as a coefficient in Ms0,s1,...
t0,t1,...

(P ) when the proto-past S consists of all

elements of P and si for i > 0 appears when S consists of a proper subset of
elements of P . Therefore setting s0 = 1 and si = 0 for i > 0 means we are only
considering the whole input poset as a possible proto-past, i.e. the new element
added is above all existing elements. Given that the input is a forest f with roots
as maximal elements, the new element added is the new root of B+(f). The tj play
no role so are all set to 1.

• t1 appears as a coefficient in Ms0,s1,...
t0,t1,...

(P ) when the proto-past S consists of a single

element of P and ti for i ̸= 1 appears when S consists of some other number of
elements of P . Therefore setting t0 = 1 and ti = 0 for i > 0 means we are only
considering single elements of P as possible proto-pasts. Given that the input is a
tree t with the root as the minimal element, this means that the allowed proto-pasts
correspond to the various ways of adding a new leaf to t, i.e. the various ways of
growing through N(t). The sj play no role so are all set to 1.

• With the sj set to 1, M is directly the growth operator of the CSG model as
described in Remark 6, but without the normalization (cf. equations (9) and (10)).
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We are interested in recursively building series of posets in K[C][[x]] using the operator
Ms0,s1,...

t0,t1,...
, in such a way that the combinatorial Dyson-Schwinger equations on trees, the

Connes-Moscovici Hopf algebra, and the CSG models can all be produced. Specifically,
we are interested in solutions to equations of the form

A(x) = b(x) + xMs0,s1,...
t0,t1,...

(f(A(x))) (17)

where f(u) ∈ K[[u]] is a formal power series with f(0) = 1 and b(x) ∈ K[C][x] is a
polynomial in x where b(0) = 0, the coefficient of xk is homogeneous of degree k in K[C],
and degree bound,

deg(b(x)) = min{k : tk ̸= 0}+min{k : sk ̸= 0}. (18)

Note that in contrast to the set up from Proposition 9 we have the potential for base
case terms outside the growth operator M in the polynomial b(x). This is because in
the case that some si or ti vanish then M may not generate any poset when applied
to the constant term of f and so we will need to include an external base case. See
the definition of originary models and the discussion that follows in Section 2.2 for the
analogous situation in that context. The degree constraint on b(x) avoids overlap between
posets explicitly in b(x) and those built by M and also forces there to be something
on which M can operate. However, since b(0) = 0 we are also guaranteed that the
composition g(A(x)) is well defined as a composition of formal power series.

Lemma 13. With hypotheses as above, (17) recursively defines a unique series A(x).

Proof. Write A(x) =
∑

n⩾1 anx
n with the an ∈ K[C] and write b(x) =

∑d
n=0 bnx

n with the
bn ∈ K[C] and with d = deg(b(x)).

Suppose d > 0 and n ⩽ d. By the degree constraint on b(x), we have an = bn as the
other term in (17) does not contribute. Now suppose d = 0. Then a1 = Ms0,s1,...

t0,t1,...
(f(0)) =

s0t0. This gives the base case for our induction.
Now suppose that for i < n the ai are uniquely determined. Consider an. This is the

coefficient of xn in b(x) + xMs0,s1,...
t0,t1,...

(f(A(x))), but by the degree constraints on b(x) this

is equal to Ms0,s1,...
t0,t1,...

applied to the coefficient of xn−1 in f(A(x)) for n > d. However, the

coefficient of xn−1 in f(A(x)) depends only on the ai with i < n and the coefficients of f .
Inductively these coefficients are known and hence so is an.

Alternately, for the reader who does not want to get their hands dirty, Lemma 13 can
be proved analytically by the Banach fixed point theorem using the usual metric on the
ring of formal power series.

Observe that (17) simultaneously generalizes all of the growth models we have dis-
cussed. By Remark 6, CSG models can be obtained from (17) by taking f(u) = 1 + u,
and si = 1 for all i. The combinatorial Dyson-Schwinger equations of Proposition 9 where
trees are taken as having roots as maximal elements can be obtained from (17) by taking
s0 = 1, si = 0 for i > 0, tj = 1 for all j, in which case b(x) = 0. The Connes-Moscovici
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Hopf algebra can be generated, where trees are taken as having roots as minimal elements,
by taking t1 = 1, ti = 0 for i ̸= 1, all sj = 1, b(x) = x• and f(u) = 1 + u.

The question of interest to us regarding solutions to (17) is when the coefficients
generate a subHopf algebra. Specifically, if A(x) =

∑
n⩾1 anx

n is the solution to (17),
what conditions on b(x), f(x), si and ti must hold in order for K[a1, a2, . . .] ⊆ P to be
a subHopf algebra of P? Foissy’s result, Proposition 9, answers one special case of that
question. The fact that the Connes-Moscovici Hopf algebra is a Hopf algebra gives another
answer in a special case. In the rest of this work, we answer this question in the special
case of the CSG models.

4 Main result

Our main result characterises when certain solutions to (17) are subHopf.

Theorem 14. Let A(x) =
∑

n⩾1 anx
n with an ∈ K[C] be the unique solution to (17).

1. If ti = tj ̸= 0 ∀ i, j and s0 ̸= 0, si = 0 ∀ i > 0, then K[a1, a2, a3, . . .] is a subHopf
algebra of K[C] if and only if f(u) satisfies the conditions of Proposition 9, clause (3).

2. If f(u) = 1 + u, R ⊆ K, si = sj ̸= 0 ∀ i, j and ti ⩾ 0 ∀i then K[a1, a2, a3, . . .] is a
subHopf algebra of K[C] if and only if one of the following holds:

(a) ti+1

ti
= t ∀ i for some t > 0,

(b) t0 > 0, t1 > 0 and ti = 0 ∀ i > 1,

(c) t1 > 0 and ti = 0 ∀ i ̸= 1,

(d) t0 > 0, ti = 0 ∀ i ⩾ 0.

Part 2 of theorem 14 is equivalent to the following two propositions.
Recall the form of the CSG probabilities P(Cn) as given in (7).

Proposition 15. Consider a CSG model with couplings t0, t1, t2, . . ., where one or both
of t0 and t1 are greater than zero. For all n ⩾ 1, define an :=

∑
P(Cn)Cn, where the sum

is over all posets of cardinality n. Then, R[a1, a2, a3, . . .] is a subHopf algebra of R[C] if
and only if one of the following holds:

1. tk+1

tk
= t ∀k, for some t > 0 (Transitive Percolation Models),

2. t0 > 0, t1 > 0 and tk = 0 ∀k > 1 (Forest Models),

3. t1 > 0 and tk = 0 ∀k ̸= 1 (Tree Model),

4. t0 > 0, tk = 0∀k > 0 (Dust Model).

Proposition 16. Consider a CSG model with ti = 0 for all i < N and tN > 0 for some
N > 1. For all n ⩾ N , define an :=

∑
P(Cn)Cn, where the sum is over all posets of

cardinality n. Then, there exists no choice of a1, . . . aN−1 such that R[a1, a2, a3, . . .] is a
subHopf algebra of R[C].
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The reason for restricting to nonnegative real ti is because this is standard for CSG
models and makes the probabalistic interpretation possible. Note that Propositions 15
and 16 hold by the same arguments for nonnegative rational ti (in particular when solving
equations in the proof of Proposition 16 no real but non-rational solutions appear), and
so extending scalars, Part 2 of theorem 14 can also be given with ti nonnegative reals and
K any field of characteristic zero.

The majority of this section is dedicated to proving a series of lemmas which we will
need in order to prove proposition 15. The proofs of the propositions and the theorem
are given in section 4.4.

The following notation will be useful for us. We will use bold letters to denote un-
ordered lists of positive integers. In particular, given a positive integer k and an integer
partition of it into d parts, k1, . . . , kd we will write k ≡ k1, . . . , kd. We define the factorial
of a list to be equal to the product of the factorials of its entries, k! ≡ k1! · · · kd! . We will
write Ck to denote a poset of cardinality k which has exactly d components of cardinalities
k1, · · · , kd. When the subscript on a poset is not bold, then it denotes the cardinality of
the poset without making any assumptions about its components, e.g. Cl is a poset of
cardinality l.

Definition 17. Let ak+l denote the sum of cardinality k + l posets weighted by their
respective CSG probabilities, as in proposition 15. Then, for any pair of unlabelled
posets, Ck and Cl, of cardinalities k and l respectively, we write Γ(Ck, Cl) to denote the
coefficient of Ck ⊗ Cl in ∆(ak+l).

Our notation in definition 17 anticipates the asymmetry between the up-sets and the
down-sets in the coproduct. In particular, we will see that the Γ coefficient will depend
on the component decomposition of the up-set but not of the down-set (cf. lemma 19).

When rebuilding posets out of up-sets and down-sets we will need to keep track of
certain features of shuffles of their labels.

Definition 18. Let w1, w2, . . . , wd+1 be words, and let w1
�w2

� · · ·�wd+1 denote the
set of shuffles of w1, w2, . . . , wd+1.

• For w ∈ w1
�w2

� · · ·�wd+1, let vix be the number of letters of wd+1 which appear
before the xth letter of wi in w.

• When only the lengths of the words matter, we write Sh(k, l) for the set of shuffles
of words w1, w2, . . . , wd, wd+1 of lengths k1, k2, . . . , kd, l respectively.

The only parameters we will need for these shuffles are the vix and so it will never
be important to specify the alphabet or any information about the wi other than their
lengths; only the permutation structure of the shuffle will be needed.4

Recall definition 4 of the multiplicity µ, and definition 2 of templates.

4Sometimes shuffles are defined as certain permutations, but we chose the word-based formulation
because it keeps the exposition more elementary.
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Lemma 19. Given a set of CSG couplings t0, t1, t2 . . ., where one or both of t0 and t1 are
greater than zero, and any pair of unlabelled posets, Ck and Cl,

Γ(Ck, Cl) =
P(Cl)∏

P∈C µ(P )!
∏k+l−1

i=l λ(i, 0)

∑
Sh(k,l)

d∏
i=1

∑
C̃i

ki
∈temp(Ci

ki
)

∏
x∈C̃i

ki

λ(vix)(ϖx,mx), (19)

where C1
k1
, C2

k2
, . . . , Cd

kd
are the components of Ck; µ(P ) = µCk(P ); for a fixed template

C̃i
ki

and a fixed x ∈ C̃i
ki
, mx is the number of elements y ∈ C̃i

ki
such that y ≺· x and ϖx is

the number of elements y ∈ C̃i
ki

such that y ≺ x and y ̸≺· x; and

λ(vix)(ϖx,mx) :=

vix∑
r=0

ϖx−mx∑
s=0

(
vix
r

)(
ϖx −mx

s

)
tr+s+mx . (20)

Proof. Recall the notion of labelled cuts from the discussion after Definition 8. Then we
have,

Γ(Ck, Cl) =
∑
cuts

P(C̃k+l), (21)

where the sum is over labelled cuts (C̃k+l, Ũ ⊗ D̃) with Ũ and D̃ being increasingly la-
belled representatives of Ck and Cl respectively and C̃k+l any naturally labelled poset of
cardinality k + l.

Each of the labelled cuts contributing to Γ(Ck, Cl) can be constructed as follows:

step 1 Partition the labels: Choose an ordered partition of the interval [1, k + l] into
d + 1 sets Ũ1, Ũ2, . . . , Ũd, D̃ of cardinalities k1, . . . , kd, l respectively. The parts of
this partition will give the labels for the connected components of Ũ and for D̃
respectively. Note that this is an ordered partition, so for example when k = l = 1,(
Ũ1 = {1}, D̃ = {2}

)
and

(
Ũ1 = {2}, D̃ = {1}

)
constitute distinct choices.

step 2 Choose templates: Upgrade the sets Ũ1, Ũ2, . . . , Ũd, D̃ to posets by ordering the
elements in D̃ according to some choice of template of Cl and for each i = 1, . . . , d
order the elements in Ũ i according to some choice of template of Ci

ki
.

step 3 Choose straddling relations: For each i = 1, . . . , d, choose a set Λi ⊆ {(x, y) :
x < y, x ∈ D̃, y ∈ Ũ i} with the property that for each y ∈ Ũ i, the x such that
(x, y) ∈ Λi are incomparable. The pairs in Λi give the covering relations x ≺· y
between elements of D̃ and Ũ i. Impose these covering relations for all i in addition
to the already chosen poset structures on Ũ1, Ũ2, . . . , Ũd, D̃ and take the transitive
closure to obtain a poset on [1, k + l] which we call C̃k+l.

By construction, C̃k+l is a naturally labelled poset of cardinality k + l and the resulting
pair (C̃k+l, Ũ1Ũ2 · · · Ũd ⊗ D̃) is a labelled cut. Furthermore, every labelled cut can be
obtained in this way as given a labelled cut we can read off the Λi, the templates and the
partition of the labels. However, since the partition of the labels was an ordered partition
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but the decomposition of Ck into connected components does not impose an order on
isomorphic connected components, we find that every labelled cut is obtained exactly∏

P∈C µ(P )! times.
Therefore,

Γ(Ck, Cl) =
1∏

P∈C µ(P )!

∑
step 1

∑
step 2

∑
step 3

P(C̃k+l). (22)

We can rewrite the sums as follows.

• Each choice of step 1 can be viewed as a shuffle of d+1 words of lengths k1, . . . , kd, l.
Denoting these words by w1, . . . , wd, wd+1, where wi has length ki when i < d + 1
and length l when i = d + 1, then the correspondence between a choice of step 1
and a shuffle of words is: the jth smallest integer in Ũ i (D̃) is the position of the jth

letter of wi (wd+1) in the shuffle. Therefore,
∑

step 1 can be rewritten as
∑

Sh(k,l).

• The sum of step 2 we leave for the moment as a sum over templates, that is
∑

step 2

can be written as
∑

temp(Cl)

∑
temp(C1

k1
) · · ·

∑
temp(Cd

kd
). The sums over the temp(Ci

ki
)

remain in the statement of the lemma, but we will see below how to simplify the
sum over the temp(Cl).

• The sum of step 3, we leave for the moment as
∑

Λ1 · · ·
∑

Λd .

Now consider the summand P(C̃k+l), where C̃k+l corresponds to some fixed choice of
shuffle, templates and covering relations Λi, i = 1, . . . , d. For 2 ⩽ x ⩽ k+ l, let D̃x denote
the naturally labelled down-sets of C̃k+l, and define the shorthand P(x) := P(D̃x−1 → D̃x)
and w(x) := P(x)λ(x − 1, 0). w(x) is the weight (un-normalised probability) of the
transition in which x is born. Then,

P(C̃k+l) =
k+l∏
x=2

P(x) =

( ∏
x∈D̃ w(x)∏l−1
x=1 λ(x, 0)

)(∏d
i=1

∏
x∈Ũi w(x)∏k+l−1

x=l λ(x, 0)

)

=
P(C̃l)∏k+l−1

x=l λ(x, 0)

d∏
i=1

∏
x∈Ũi

w(x) =
P(C̃l)∏k+l−1

x=l λ(x, 0)

d∏
i=1

w(Λi),

where C̃l is any naturally labelled representative of Cl since in a CSG model all natu-
rally labelled representatives have the same probability (see Section 2.2), and w(Λi) :=∏

x∈Ũ i w(x). Therefore given a fixed choice of shuffle and templates, the sum over the

straddling relations factorises as
∑

step 3 P(C̃k+l) =
P(C̃l)∏k+l−1

x=l λ(x,0)

∏d
i=1

∑
Λi w(Λi).

In a CSG model, we can replace the choice of straddling relations with a choice of
proto-past pr(x) for each x ∈ Ũ i. That is, replace each set of covering relations Λi with
the set pr(Λi) of proto-past configurations which give rise to the covering relations Λi.5

5In analogy with statistical physics, one can think of Λi and pr(Λi) as a macroscopic configuration and
the set of microscopic configurations which give rise to it, respectively.
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Each configuration c ∈ pr(Λi) is a set of proto-pasts pr(x), one proto-past for each x ∈ Ũ i.
Then, using Remark 6,

w(Λi) =
∑

c∈pr(Λi)

∏
pr(x)∈c

t|pr(x)|, (23)

where t|pr(x)| is the weight of pr(x) and we used the fact that the choices of pr(x) and
pr(y) are independent when y ̸= x. Hence,∑

Λi

w(Λi) =
∑
Λi

∑
c∈pr(Λi)

∏
pr(x)∈c

t|pr(x)| =
∑
C i

∏
pr(x)∈c

t|pr(x)| =
∏
x∈Ũi

∑
pr(x)∈Cx

t|pr(x)|, (24)

where C i := ⊔Λipr(Λi) is the set of all proto-past configurations (given fixed shuffle and
templates), Cx is the set of all possible proto-pasts of a single element x ∈ Ũ i (given
the same fixed shuffle and templates), and the final equality follows from the relation
C i =

∏
x∈Ũi Cx where the product symbol denotes the cartesian product.

Now consider some x ∈ Ũ i and some proto-past of it pr(x) ∈ Cx. The weight of pr(x)
is tmx+s+r, where r is the number of elements y ∈ D̃ contained in pr(x), s is the number
of elements y ∈ Ũ i such that y ≺ x but y ̸≺· x which are contained in pr(x), and mx is
the number of elements y ∈ Ũ i such that y ≺· x. The range for r is 0 ⩽ r ⩽ φi

x, where φi
x

is the number of elements y ∈ D̃ satisfying y < x. The range for s is 0 ⩽ s ⩽ ϖx −mx.
Every choice of r and s in their ranges is possible and each choice of subsets of sizes r
and s corresponds to a distinct proto-past for x (i.e. a distinct element of Cx). Then,

∑
pr(x)∈Cx

t|pr(x)| =

φi
x∑

r=0

ϖx−mx∑
s=0

(
φi
x

r

)(
ϖx −mx

s

)
tr+s+mx = λ(φi

x)(ϖx,mx), (25)

where the second equality follows from definition (20).
Note that given a fixed shuffle, the product

∏
x∈Ũi λ(φi

x)(ϖx,mx) depends on the tem-

plate C̃i
ki

chosen for ordering the elements of Ũ i. The product
∏

x∈Ũi λ(φi
x)(ϖx,mx) also

depends on the underlying sets of Ũ i and D̃ in as much as these sets encode the shuffle
(i.e. through φi

x), but this dependence can be removed by writing the product as,∏
x∈Ũi

λ(φi
x)(ϖx,mx) =

∏
x∈C̃i

ki

λ(vix)(ϖx,mx). (26)
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Finally we find,

∑
step 2

∑
step 3

P(C̃k+l) =
∑

temp(Cn)

∑
temp(C1

k1
)

· · ·
∑

temp(Cd
kd

)

P(C̃l)∏k+l−1
x=l λ(x, 0)

d∏
i=1

∏
x∈C̃i

ki

λ(vix)(ϖx,mx)

=
P(C̃l)∏k+l−1

x=l λ(x, 0)

( ∑
temp(Cl)

1

) d∏
i=1

∑
C̃i

ki
∈temp(Ci

ki
)

∏
x∈C̃i

ki

λ(vix)(ϖx,mx)

=
P(Cl)∏k+l−1

x=l λ(x, 0)

d∏
i=1

∑
C̃i

ki
∈temp(Ci

ki
)

∏
x∈C̃i

ki

λ(vix)(ϖx,mx),

(27)

where in the last line we used equation (7) for the CSG probability of an unlabelled poset.
The result follows.

Corollary 20. For all n > 0, let an be defined via the CSG probabilities as in proposi-
tion 15.
If R[a1, a2, a3, . . .] is a subHopf algebra of R[C], then ∆(an) =

∑n
k=0 Pk,n(a1, . . . , ak)⊗an−k,

where Pk,n(a1, · · · , ak) is a polynomial homogeneous of degree k and a0 = 1.

Proof. By definition 17 of Γ(Ck, Cl), we may write the coproduct of the generator an as,

∆(an) =
n∑

k=0

∑
k∈p(k)

∑
Ck

∑
Cn−k

Γ(Ck, Cn−k) Ck ⊗ Cn−k, (28)

where p(k) is the set of integer partitions of k, and the sums over Ck and Cn−k run
over all posets with the corresponding cardinalities (see the discussion of notation before
definition 17).

An immediate corollary of lemma 19 is that Γ(Ck, Cl) has a separable form so that
it can be written as Γ(Ck, Cl) = Γ̃(Ck)P(Cl), for some function Γ̃(Ck). Substituting this
separable form into (28) yields,

∆(an) =
n∑

k=0

( ∑
k∈p(k)

∑
Ck

Γ̃(Ck) Ck

)
︸ ︷︷ ︸

Qk,n

⊗an−k,
(29)

where we note that an−k ̸= 0 ∀ k by the statement of corollary 20.
As ak is homogeneous of degree k for any k, the ak are linearly independent. Therefore,

there exists a family φk of linear forms on R[C] such that,

φk(al) =

{
1 if l = k

0 otherwise.
(30)
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Additionally, since R[a1, a2, . . .] is a subHopf algebra of R[C], we have,

(id⊗ φn−k)∆(an) = Qk,n ∈ R[C] ∀ k. (31)

Hence, there exists a polynomial Pk,n(a1, . . . , an) such that, Qk,n = Pk,n(a1, a2, . . . , an).
As ∆ is homogeneous, Pk,n is homogeneous of degree k, so in particular does not depend
on al if l > k. This completes the proof.

It will be convenient to have notation for the coefficients of the polynomials of the
previous corollary. The next corollary sets this notation.

Corollary 21. For all n > 0, let an be defined via the CSG probabilities as in proposi-
tion 15. If R[a1, a2, a3, . . .] is a subHopf algebra of R[C], then the coproduct of its generators
can be written as,

∆(an) =
∑

k+l=n

k∑
d=1

∑
k∈pd(k)

βk,l ak1 . . . akd ⊗ al, (32)

where pd(k) is the set of integer partitions k ≡ k1, . . . , kd of k into d parts.

4.1 Transitive Percolation

Definition 22. For n and k nonnegative integers, the q-binomial coefficient is[
n
k

]
q

=
(1− qn)(1− qn−1) · · · (1− qn−k+1)

(1− q)(1− q2) · · · (1− qk)
.

The q-binomial coefficients have many nice properties generalizing properties of the
usual binomial coefficients. The facts that we will make use of are the observation that
taking the limit as q → 1 gives the usual binomial coefficients along with an identity
from [33].

Lemma 23. For all n > 0 let an be defined via the Transitive Percolation models, as
in proposition 15, clause 1. Then R[a1, a2, . . .] is a co-commutative Hopf algebra with

coproduct coefficients given by βk,l = 0 when d > 1 and βk,l = βl,k =

[
l + k
l

]
q

, where q is

the Transitive Percolation parameter defined in (13), when d = 1, k = k1 = k.

Proof. Using the Transitive Percolation parameters (13) we evaluate the product,∏
x∈C̃i

ki

λ(vix)(ϖx,mx) = q−
∑ki

x=1 v
i
xq−Ri

pL
i

,
(33)

where Li and Ri are the total number of links and relations in the component C̃i
ki
. This

expression is independent of the templates so we can perform the sums in (19) to get,

Γ(Ck, Cl) =
P(Cl)q

−RpL
∏d

i=1 Ψ(Ci
ki
)∏

P∈C µ(P )!
∏k+l−1

x=l q−x

∑
Sh(k,l)

q−
∑d

i=1

∑ki
x=1 v

i
x , (34)
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where R =
∑

i R
i and L =

∑
i L

i are the total number of relations and links in Ck, and
where we used the fact that in transitive percolation λ(x, 0) = q−x.

Using relations (1) and (14), we manipulate the RHS to get,

Γ(Ck, Cl) = P(Cl)P(Ck)
qkl k!

k!

∑
Sh(k,l)

q−
∑d

i=1

∑ki
x=1 v

i
x . (35)

Now consider the sum
∑

Sh(k,l) q−
∑

x,i v
i
x . Because the summand treats the words of

length k1, . . . , kd and the letters they contain on an equal footing, we can rewrite the sum
as a shuffle over two words of lengths k and l respectively,∑

Sh(k,l)

q−
∑

x,i v
i
x =

k!

k!

∑
Sh(k,l)

q−
∑k

x=1 v
1
x , (36)

where k!
k!

=
(

k
k1,...,kd

)
is the number of shuffles of d words of length k1, . . . , kd into a single

word of length k. Plugging this back into (35) we have,

Γ(Ck, Cl) = P(Cl)P(Ck)

[
l + k
l

]
q

, (37)

where we manipulated the sum as,

qkl
∑

Sh(k,l)

q−
∑k

x=1 v
1
x = qkl

∑
v11⩽v12 ···⩽v1k⩽l

q−v11−v12 ···−v1k =

[
l + k
l

]
q

, by [33]. (38)

The result follows by comparison of definition 17 of Γ with the definition of β in
(32).

As a consistency check we note that the β coefficients of dust model, in which an is
the n-antichain, is recovered in the limit q → 1 where we have βk,l =

(
k+l
l

)
.

4.2 The Forest Models, Tree Model and Connes-Moscovici

In this section we prove that the CSG Forest models are Hopf. More precisely, we prove
that the CSG Forest generators an generate the Connes-Moscovici Hopf algebra (lemma
24), thus providing a new collection of combinatorially-meaningful generating sets. We
give a recursive formula for their coproduct coefficients, βk,l (lemma 26). This formula is
combinatorial in nature, since it involves the enumeration of shuffles and the enumeration
of forest partitions, the trees they contain and the components of those trees. From these
βk,l, the coproduct coefficients of closely related Hopf algebras of trees can be derived,
and we give these explicitly in table 2. For the case of k = k1 = k, we give a closed form
algebraic expression for βk,l as a weighted sum of binomial coefficients (table 3). As an
example, we use our formulae to compute the coproduct of the generators of degree 2, 3
and 4 in an un-normalised variation of the forest models. Setting t0 = 0, t1 = 1 in these
expressions yields the coproduct of the usual Connes-Moscovici generators δn. The latter
were previously computed in [34], providing a consistency check for our results.

the electronic journal of combinatorics 31(3) (2024), #P3.9 27



Lemma 24. For all n > 0, let an be defined via the CSG Forest models as in proposition
15, clause 2, and let δn denote the Connes-Moscovici generators as defined in (16). Then,
R[a1, a2, . . .] = R[δ1, δ2, . . .].

Proof. Scaling the generators an by non-zero elements of R does not change the algebra
R[a1, a2, . . .]. Therefore, for convenience we scale an by a factor of t0t

−n
1

∏n−1
x=1(t0 + xt1).

The rescaled generator is the sum of forests f with n vertices, each weighted Ψ(f)tτ ,
where Ψ(f) is the number of natural labellings of f , τ is the number of trees in f and
t = t0

t1
. We write an(t) to denote this scaled generator.

Consider an(1), it is the sum of forests with n vertices each weighted by their number of
natural labellings. Note that δn = B+(an−1(1)) for n ⩾ 2, where δn are the homogeneous
generators for the Connes-Moscovici Hopf algebra as given in (16) and B+ is, as before,
the add-a-root operator, however in this context we’re working with trees with roots as
minimal elements, so B+ adds a new minimal element below all other elements. To see
this, observe that taking B+ of a forest does not change the number of natural labellings
as the root must always take the smallest label, and we already know that the generators
of Connes-Moscovici are precisely the rooted trees of each size weighted by their number
of natural labellings.

We also know that Connes-Moscovici is Hopf and in particular its coproduct has the
following form

∆(δn) =
n∑

j=0

Pj,n(δ1, . . . , δj)⊗ δn−j

where Pj,n is a polynomial homogeneous of degree j. The exact form of the Pj,n will not
be important, except for the following two observations. Since δn+1 = B+(an(1)), the only
term of the form x⊗ • in ∆(δn+1) is an(1)⊗ • and so,

an(1) = Pn,n+1(δ1, . . . , δn). (39)

Furthermore, the trees in an(1) are the same trees as in δn with the same weights (both
weighted by the number of natural labellings), so,

Pn,n+1(δ1, . . . , δn) = δn + (products of δk, k < n).

Moving from an(1) to an(t) the only difference is the power of t counting the number
of trees in each forest. Since each δj consists of sums of single trees, we get from (39),

an(t) = Pn,n+1(tδ1, . . . , tδn), (40)

so,
an(t) = tδn + (products of tδk, k < n).

Therefore, using tδ1 = a1(t) = t•, inductively for any t > 0 we can invert the system of
equations given by (40) to obtain δn as a polynomial in a1(t), . . . , an(t). This is the desired
automorphism between the Forest Models and the Connes-Moscovici Hopf algebra giving
the map between their generators explicitly.
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Remark 25. The argument in the proof of Lemma 24 does not directly give the form of
the coproduct for the original generators an that we know holds for the Forest models
by Corollary 20. In the particular case of t = 1 we can obtain this form algebraically by
continuing the proof of Lemma 24 as follows.

By the 1-cocycle property of B+ (see [23]) we have,

∆(δn+1) = ∆(B+(an(1))) = (id⊗B+)∆(an(1)) +B+(an(1))⊗ 1,

so, writing B− for the operation of removing the root from a tree we get,

∆(an(1)) = (id⊗B−)(∆(δn+1)− δn+1 ⊗ 1)

= (id⊗B−)

(
n∑

j=0

Pj,n+1(δ0, . . . , δj)⊗ δn+1−j

)

=
n∑

j=0

Pj,n+1(δ0, . . . , δj)⊗ an−j(1).

Subbing in for each δk on the left hand side of the tensor products its expression as a
polynomial in a0(1), . . . , ak(1) from Lemma 24 we obtain an expression for ∆(an(1)) of
the form

∆(an(1)) =
n∑

j=0

P ′
j,n(a0(1), . . . , aj(1))⊗ an−j(1)

where the P ′ are some different polynomials with once again the property that P ′
j,n is

homogeneous of degree j (with ak(1) taken to have degree k), giving an alternate proof
of Corollary 20 in this particular case.

In what follows, we give a combinatorial formulation of the coproducts of the an and
the δn. Recall the definition of the coproduct coefficients, βk,l, as given in (32), and
definition 3 of forest partitions.

Lemma 26. In the Forest Models, as defined in proposition 15, clause 2, the coproduct
coefficients are given by,

βk,l =

∏
ki∈k

∏ki−1
x=1 (t0 + xt1)∏

γ∈Z⩾1
µk(γ)!

(
1∏k+l−1

x=l (t0 + xt1)

∑
Sh(k,l)

d∏
i=1

(t0 + vi1t1)−
td0
k!

Bk,l

)
, (41)

where Bk,l can be evaluated using any choice of forest Ck via,

Bk,l :=
∑
n ̸=k

βn,l

(
n!
∏

γ∈Z⩾1
µn(γ)!∏

ni∈n
∏ni−1

x=0 (t0 + xt1)

) ∑
π s.t.

N(π)=n

1∏
P∈P µπ(P )!

∏
P∈C

µ(P )!∏
F∈π µ

F (P )!
, (42)

where the first sum is over unordered lists n of positive integers, the second sum is over
forest partitions π of Ck, and µ(P ) = µCk(P ).
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Proof. We will obtain an expression for βk,l by equating two expressions for Γ(Ck, Cl),
where Ck and Cl are forests with roots as minimal elements of the poset. (In the Forest
models, Γ(Ck, Cl) = 0 if Ck or Cl are not forests.) We get our first expression by plugging
the Forest models coefficients, tk = 0 for all k > 1, into (19),

Γ(Ck, Cl) =
P(Cl) t

k−d
1

∏d
i=1 Ψ(Ci

ki
)∏

P∈C µ(P )!
∏k+l−1

x=l (t0 + xt1)

∑
Sh(k,l)

d∏
i=1

(t0 + vi1t1)

=
P(Cl)P(Ck)

k!

k−1∏
x=0

(t0 + xt1)
k! t−d

0∏k+l−1
x=l (t0 + xt1)

∑
Sh(k,l)

d∏
i=1

(t0 + vi1t1),

(43)

where in the first line we were able to perform the sum over templates since the product∏
x∈C̃i

ki

λ(vix)(ϖx,mx) = (t0 + vi1t1)t
ki−1
1 is label independent, and in the second line we

manipulated our expression using (1) and (11).
We obtain a second expression for Γ(Ck, Cl) by comparing definition 17 of Γ with the

definition of β in (32) to obtain,

Γ(Ck, Cl) =P(Cl)
∑
π

GπβN(π),l

∏
F∈π

P(F )

=
P(Cl)P(Ck)

k!

k−1∏
x=0

(t0 + xt1)
∑
π

GπβN(π),l

∏
i∈N(π)

i!∏i−1
x=0(t0 + xt1)

∏
P∈C

µ(P )!∏
F∈π µ

F (P )!
,

(44)

where π denotes a partition of Ck and N(π) denotes the list of cardinalities of the forests
in π (see definition 3); µ(P ) = µCk(P ); Gπ is the product of multinomial coefficients
which we get from the expansion of the product of generators in (32) and is given by,

Gπ =

∏
γ∈Z⩾1

µN(π)(γ)!∏
P∈P µπ(P )!

, (45)

and in the second line we manipulated our expression using (2) and (11).
Note that βk,l appears in exactly one term in (44) – in the term corresponding to the

unique partition of Ck into its components. The result follows by equating (43) and (44)
and rearranging for βk,l. In particular, the expression for Bk,l is obtained by substituting
expression (45) for Gπ and by re-ordering the terms in the sum over partitions by grouping
together all partitions π which share the same N(π).

We now comment on the validity of our result.
Firstly, note that while a tree Ck must be chosen in order to compute Bk,l, it is

a corollary of the result that the Forest Models are Hopf (cf. lemma 24) and of the
definition of the β coefficients in these models (cf. (32)) that the value of Bk,l will be
independent of this choice.

Secondly, for each list n, the value of the sum over π s.t. N(π) = n is non-vanishing
only if n can be obtained from k by combining some of its entries. For example, when
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k = k1, k2 the only contribution to Bk,l comes from the single-entry list n = k1 + k2 = k.
When k = k1, k2, k3, the contributions to Bk,l come n = k, n = k1+k2, k3, n = k1+k3, k2
and n = k2+k3, k1, although depending on the symmetries of k some of these contributions
may be equal and should not be over-counted, e.g. when k1 = k2 = k3 there are only two
terms in the sum corresponding to n = k and n = k1 + k2, k3 = k1 + k3, k2 = k3 + k2, k1.
The upshot is that the βk,l are well-defined recursively: each βk,l depends only on a finite
number of βn,l where the length of n is strictly smaller than the length of k. In particular,
Bk,l = 0 when k = k1 = k.

In table 2, we give the corresponding expressions for the coproduct coefficients in the
various forest and tree algebras which are referred to in theorem 14 and proposition 15.
In table 3, we give the algebraic expressions for the coproduct coefficients in the special
case when k = k1 = k. In table 4, we explicitly compute several coproduct coefficients
in the un-normalised forest model (theorem 14, clause 2c) with k ̸= k . Putting together
the results from all three tables, we find that in the un-normalised forest models we have
the following,

∆̃(a2) = (t0 + 2t1) a1 ⊗ a1,

∆̃(a3) =
(
(3t0 + t1) a2 + t1(t1 + 2t0) a1a1

)
⊗ a1 + (3t0 + 3t1) a1 ⊗ a2,

∆̃(a4) =
(
(4t0 + t1) a3 + (7t1t0 + 3t21) a2a1 + (t31 − 2t20t1 + t0t

2
1) a1a1a1

)
⊗ a1

+
(
(6t0 + 4t1) a2 + (7t21 + 8t1t0) a1a1

)
⊗ a2 + (4t0 + 6t1) a1 ⊗ a3.

(46)

Setting t0 = 0, t1 = 1 in (46) yields the coproduct of the corresponding δn which were
previously computed in [34].

Finally, we note that defining,

fn(Ck) :=
∑
π s.t.

N(π)=n

1∏
P∈P µπ(P )!

∏
P∈C

µ(P )!∏
F∈π µ

F (P )!
,

(47)

where the sum is over paritions π of Ck and µ(P ) = µCk(P ), we can express (52) as,

Bk,l =
∑
n ̸=k

βn,l t
−|n|
0 n!

( ∏
γ∈Z⩾1

µn(γ)!

)
fn(Ck), (48)

where the dependence of Bk,l on the chosen Ck is carried entirely by the fn(Ck). While
our result proves only that the value of Bk,l is independent of the poset Ck, we observed in
our computations that the value of fn(Ck) is also independent of Ck, i.e. fn(Ck) = fn(C

′
k)

for any pair of posets Ck and C ′
k.
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Normalised forests (proposition 15, clause 2)
Define t = t1

t0
.

βk,l =

∏
ki∈k

∏ki−1
x=1 (1 + xt)∏

γ∈Z⩾1
µk(γ)!

(
1∏k+l−1

x=l (1 + xt)

∑
Sh(k,l)

d∏
i=1

(1 + vi1t)−
1

k!
Bk,l

)
(49)

Bk,l =
∑
n̸=k

βn,l

(
n!
∏

γ∈Z⩾1
µn(γ)!∏

ni∈n
∏ni−1

x=0 (1 + xt)

) ∑
π s.t.

N(π)=n

1∏
P∈P µπ(P )!

∏
P∈C

µ(P )!∏
F∈π µ

F (P )!

(50)

Un-normalised forests (theorem 14, clause 2b)

βk,l =
1∏

γ∈Z⩾1
µk(γ)!

( ∑
Sh(k,l)

d∏
i=1

(t0 + vi1t1)−
td0
k!

Bk,l

)
(51)

Bk,l =
∑
n ̸=k

βn,l t
−|n|
0 n!

∏
γ∈Z⩾1

µn(γ)!
∑
π s.t.

N(π)=n

1∏
P∈P µπ(P )!

∏
P∈C

µ(P )!∏
F∈π µ

F (P )!
(52)

Normalised trees (proposition 15, clause 3)

βk,l =
Γ(l)

∏
ki∈k Γ(ki)

Γ(k + l)

∑
Sh(k,l)

∏d
i=1 v

i
1∏

γ∈Z⩾1
µk(γ)!

(53)

Un-normalised trees (theorem 14, clause 2c)

βk,l =

∑
Sh(k,l)

∏d
i=1 v

i
1t1∏

γ∈Z⩾1
µk(γ)!

(54)

Connes-Moscovici (theorem 14, clause 2c with t1 = 1)

βk,l =

∑
Sh(k,l)

∏d
i=1 v

i
1∏

γ∈Z⩾1
µk(γ)!

(55)

Table 2: The coproduct coefficients in the various forest and tree models. Expressions (49)
and (50) are equal to expressions (41) and (42) , respectively - the only difference being
that the former are manifestly independent of the absolute values of t1 to t0. The tree
expressions are obtained from the forest expressions by setting t0 = 0. The un-normalised
expressions are obtained using an un-normalised version of equation (19) in which the
probabilties are replaced by weights.
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Normalised forests
(proposition 15, clause 2)

βk,l =

∏k−1
x=1(1 + xt)∏l+k−1

x=l (1 + xt)

l+1∑
i=1

(
l + k − i

l + 1− i

)
(1 + (i− 1)t) (56)

Un-normalised forests
(theorem 14, clause 2b)

βk,l =
l+1∑
i=1

(
l + k − i

l + 1− i

)
(t0 + (i− 1)t1) (57)

Normalised trees
(proposition 15, clause 3)

βk,l =
(k − 1)!(l − 1)!

(k + l − 1)!

l+1∑
i=1

(
l + k − i

l + 1− i

)
(i− 1) (58)

Un-normalised trees
(theorem 14, clause 2c)

βk,l =
l+1∑
i=1

(
l + k − i

l + 1− i

)
(i− 1)t1 (59)

Connes-Moscovici
(theorem 14, clause 2c with t1 = 1)

βk,l =
l+1∑
i=1

(
l + k − i

l + 1− i

)
(i− 1) (60)

Table 3: The coproduct coefficients in the special case when k = k1 = k, that is when
there is only one factor on the left hand side of the coproduct, in the various forest and
tree models.
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(k, l)
∑

Sh(k,l)

∏d
i=1(t0+vi1t1)∏

γ∈Z⩾1
µk(γ)!

td0Bk,l

k!
∏

γ∈Z⩾1
µk(γ)!

βk,l

(1, 1, 1) 3t20 + 3t0t1 + t21 3t20 + t1t0 β1,1,1 = t21 + 2t1t0
(2, 1, 1) 12t20 + 10t0t1 + 3t21 12t20 + 3t1t0 β2,1,1 = 7t1t0 + 3t21
(1, 1, 2) 6t20 + 7t1 + 12t0t1 6t20 + 4t0t1 β1,1,2 = 7t21 + 8t0t1
(1, 1, 1, 1) 4t30 + 6t20t1 + 4t0t

2
1 + t31 8t1t

2
0+4t30+3t21t0 β1,1,1,1 = t31 − 2t20t1 + t0t

2
1

Table 4: Computing the coproduct coefficients in the un-normalised forest model (theorem
14, clause 2b) using equations (51) and (52). The fourth column is obtained by subtracting
the third column from the second.

4.3 CSG models which are not sub-Hopf

We now prove in a series of lemmas that CSG models with one or both of t0 and t1 being
greater than zero which are not contained in any of the families of proposition 15 are not
Hopf.

In each case below, let an denote the generator of degree n, with a1 = •. Let cn denote
the corolla of degree n, i.e. the poset which contains a single minimal element with n− 1
elements directly above it. Let c̄n denote the anti-corolla of degree n, i.e. the poset which
contains a single maximal element with n − 1 elements directly below it. Let dn denote
the poset we get by adding a unique maximal element to cn−1, or equivalently adding a
unique minimal element to c̄n−1 (e.g. d4 is the diamond). Let ln denote the n-element
ladder or chain, i.e. the poset in which all n elements are related.

Lemma 27. An originary CSG model (i.e. a model with t0 = 0, t1 ̸= 0) is not Hopf if
tk ̸= 0 for some k > 1.

Proof. For contradiction, consider an originary model with at least two non-vanishing
couplings, and let k be the smallest integer greater than 1 for which tk ̸= 0. Now, tk ̸= 0
implies P(dk+1) ̸= 0 which implies Γ(c̄k−1, a1) ̸= 0. Since c̄k−1 is connected and contains
more than one minimal element it can never be generated in this model and so the model
is not Hopf.

Lemma 28. Consider a CSG model with t0 ̸= 0. If there exists some k ⩾ 1 for which
tk = 0, tk+1 ̸= 0 then the model is not Hopf.

Proof. t0 ̸= 0 and tk+1 ̸= 0 implies P(c̄k+2) ̸= 0 which implies Γ(c̄k+1, a1) ̸= 0. Note also
that tk = 0 implies P(c̄k+1) = 0. Then, since c̄k+1 is connected the model is not Hopf.

Lemma 29. Consider a CSG model with t0 ̸= 0. If t1 ̸= 0 and t2 ̸= 0, then the model is
Hopf only if it is a Transitive Percolation model.

Proof. Without loss of generality, similarly to the argument in the proof of Lemma 24,
let t0 = 1 and t1 = t.
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By direct computation we find,

Γ(l3, a1)

P(l3)
=

1

λ(3, 0)

(
4 + 3

t2 + t3
t+ t2

+ 2
t2(t+ 2t2 + t3)

t(t+ t2)
+ t+ 2t2 + t3

)
,

Γ(c3, a1)

P(c3)
=

1

λ(3, 0)

(
4 + t+ 5

t2
t
+ 2t2 + 2

t22
t2

+
t22
t

)
,

Γ(c̄3, a1)

P(c̄3)
=

1

λ(3, 0)

(
4 + 3(t+

t3
t2
) + t2 + 3

t3t

t2
+

t3t
2

t2

)
.

(61)

That the model be Hopf requires that the three lines above are equal to each other.
Solving the equalities we find the unique solution t2 = t2, t3 = t3 for t2, t3 > 0.

Suppose tk = tk for all k = 0, 1, 2, · · · ,m. Then, by equating the expressions in (62),
we find that the model is Hopf only if tm+1 = tm+1. To obtain the first (second) expression
of (62), we compute Γ(cm+1, a1) (Γ(c̄m+1, a1)) by summing over all posets which can be cut
to give an upset cm+1 (c̄m+1) and a downset a1. Each poset contributes a factor equal to
its probability times the number of allowed cuts. The allowed posets and their associated
factors are shown in tables 5 and 6.

Γ(cm+1, a1)

P(cm+1)
=

1

λ(m+ 1, 0)

[
tm+1(t+ 1)m + 2t2m + (m+ 2)tm

+
m−1∑
i=1

t2m−i

(
2

(
m

i

)
+

i+1∑
j=2

(
m− j + 1

m− i

))]
,

Γ(c̄m+1, a1)

P(c̄m+1)
=

1

λ(m+ 1, 0)

[
tm(tm + tm+1) + (m+ 1)tm+1 + (m+ 2)tm

+
m−1∑
i=1

(
ti(tm + tm+1)

m−i∑
j=0

(
m− j

i

))]
.

(62)

4.4 Proofs of the main propositions and theorem

Proof of proposition 15. By lemma 23, the Transitive Percolation models are Hopf. By
lemma 24, the Forest models are Hopf. The Tree model generators an are related to the
Connes-Moscovici Hopf algebra generators δn via δn = Γ(n)an. Therefore, the Tree model
is Hopf. The Dust model is the model in which each generator an is the n-antichain,
which is known to be Hopf.

By lemma 27, an originary CSG model (t0 = 0) is only Hopf if it is the Tree model.
By lemma 28, a CSG model with t0 > 0 and t2 = 0 cannot be Hopf unless it is a Forest
model or the Dust model. By lemma 28, a CSG model with t0 > 0 and t2 > 0 cannot be
Hopf unless t1 > 0. By lemma 29, a CSG model with t0 > 0, t1 > 0 and t2 > 0 cannot be
Hopf unless it is a Transitive Percolation model.
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poset
probability of each natural
labeling

number of natu-
ral labelings

number of cuts

m

t1(t1+t2)m∏m+1
x=1 λ(x,0)

1 1

m

t0tm2∏m+1
x=1 λ(x,0)

1 2

lk

with k + l = m
and 1 ⩽ k < m

t0tk1 t
l
2∏m+1

x=1 λ(x,0)

2
(
m
k

)
+
∑k+1

j=2

(
m−j+1

l

) 1

m

t0tm1∏m+1
x=1 λ(x,0)

m+ 2 1

Table 5: The contributions to Γ(cm+1, a1). Each poset contributes a factor equal to the
product of the entries in its row with t0 = 1 and tk = tk for k = 1, · · · ,m.

Proof of proposition 16. Given a poset CN+1 of cardinality N+1, note that (i) P(CN+1) ̸=
0 only if CN+1 contains a unique maximal element. Note also that (ii) there exists at least
one connected poset CN+2 with two maximal elements such that P(CN+2) ̸= 0. Then (ii)
implies that there exists some connected poset CN+1 with 2 maximal elements for which
Γ(CN+1, •) ̸= 0. By (i), such poset does not appear in aN+1.

Proof of theorem 14. By extension of the reasoning in Lemma 12, note that when
s0 = s ̸= 0, si = 0 for all i > 0 and ti = t ̸= 0 for all i we have Ms0,s1,...

t0,t1,...
= stB+.

Therefore, A(x) = xstB+(f(A(x))) which is sub-Hopf if and only ifX(x) = xB+(f(A(x)))
is sub-Hopf. The conditions for X(x) to be sub-Hopf are given in proposition 9.

Now, when si = s ̸= 0 for all i and ti ⩾ 0 for all i,

Ms,s,s,...
t0,t1,...

(Cn) = s
∑
Cn+1

w(Cn → Cn+1)Cn+1.

Suppose an = sn
∑

Cn
w(Cn)Cn, where the sum is over all posets with n elements and w

is the weight as defined in (9). Then using the properties of w one can show that when
f(u) = 1 + u,

an+1 = sn
∑
Cn

w(Cn)Ms,s,s,...
t0,t1,...

(Cn) = sn+1
∑
Cn+1

w(Cn+1)Cn+1.
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When at least one of t0 and t1 is greater than zero we find,
an = sn

∏n−1
x=1 λ(x, 0)

∑
Cn

P(Cn)Cn for all n > 0. Since a rescaling of the generators has
no effect on the algebra, given set of couplings t0, t1, . . . the algebra generated by these an
is Hopf if and only if the generators given by

∑
Cn

P(Cn)Cn with the same couplings are
Hopf. The conditions for such models to be Hopf are given in proposition 15.

Now suppose t0 = t1 = 0 and let tN denote the first non-zero coupling. By similar
argument to the above, when f(u) = 1 + u, for all n > N , an is proportional to the
generators of proposition 16, and the result follows.

poset
probability of each
natural labeling

number of natu-
ral labelings

number of cuts

m
t0tm1 (tm+tm+1)∏m+1

x=0 λ(x,0)
1 1

k

l

with k + l = m
and 1 ⩽ k < m

tl+1
0 tk1(tm+tm+1)∏m+1

x=0 λ(x,0)

∑l
j=0

(
m−j
k

)
1

m

tm+1
0 tm+1∏m+1
x=0 λ(x,0)

1 m+ 1

m

tm+1
0 tm∏m+1

x=0 λ(x,0)
m+ 2 1

Table 6: The contributions to Γ(c̄m+1, a1). Each poset contributes a factor equal to the
product of the entries in its row with t0 = 1 and tk = tk for k = 1, · · · ,m.

5 Conclusions

The CSG dynamics are the archetype of spacetime dynamics in causal set theory. In
this work, we were able to set the CSG dynamics into a wider context and explore their
algebraic properties. Searching for new formulations of spacetime dynamics (especially
fully quantal dynamics) has been a long-time research goal of causal set theory (see for
example [11, 12, 35]), and since equation (17) plays the role of an equation of motion
of sorts for the causal set spacetime it may hold new opportunities for doing so. In
particular, requiring that a dynamics is Hopf in the sense of Theorem 14 could become a
new physically-motivated requirement on our dynamics.
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The reason that it is physically interesting for solutions of Dyson-Schwinger equations
to give subHopf algebras is that the Connes-Kreimer Hopf algebra is used to mathemat-
ically encode renormalization, so a solution giving a subHopf algebra means that the
solution to the Dyson-Schwinger equation can be renormalized without needing any di-
agrams or combinations of diagrams that aren’t built by the Dyson-Schwinger equation
itself. This is as it should be physically, and so it is gratifying that the cases that show up
in physics are among those in Foissy’s characterization Proposition 9. To put it another
way, the result is telling us that the Dyson-Schwinger equations which appear in physics
are compatible with renormalization. One further aspect of this compatibility is that if
X(x) is the solution to the Dyson-Schwinger equation, then there are formulas for the
coproduct ∆(X(x)) as a whole, without needing to work term by term.

Thus, to try to understand the second part of Theorem 14 physically, we need to
understand what the poset Hopf algebra’s physical interpretation in causal set theory
should be and then we can understand Theorem 14 as telling us that the particular models
it picks out have a compatibility with this interpretation of the Hopf algebra. The Hopf
algebra works by cutting a causal set into a past and a future (not in the narrower sense of
a past or future of a single element, but the a broader sense of simply a down-set and an up-
set) in all possible ways. Indeed, down-sets (or “stems”) are known to play an important
role in causal set theory where they play the role of observables, see for example [4,8,12].
If we could formulate this or other physical statements algebraically in terms of the poset
Hopf algebra, for instance using Möbius inversion, then these interpretations in causal set
theory would continue to make sense directly on the growth models we found to be Hopf.
In other words, Theorem 14 is telling us that transitive percolation, along with the tree,
forest and dust models, are distinguished by the fact that properties expressible in terms
of the Hopf algebra all make sense directly on these models as well.

On the mathematical side of things, one direction for future investigation stemming
from this work is finding the full characterization of when solutions to (17) give subHopf
algebras. To this effect, preliminary investigations which we carried out suggest which
particular generalizations of Theorem 14 might be most accessible.

As a first step, one can consider the models with s0 ̸= 0, si = 0 for all i > 0, while
leaving t0, t1, . . . unconstrained. When f(u) = 1+u this gives an = lns

n
∏n−1

i=0 ti, where ln
is the ladder (or chain) with n elements, so the model is Hopf for any t0, t1, . . .. Setting
f = 1

1−• we get an = cns
ntn−1, where cn is a corolla, so the model is Hopf as long as ti ̸= 0

for all i. We conjecture that for a generic f(u), each poset Cn is weighted in an by the
product of three numbers: the CSG probability of a labelled representative of it, P(C̃n),
the coefficient with which Cn appears in X(x) = B+(f(X(x))), and sn.

One can also look at relaxing the constraint that the ti are positive reals. In this case
there are three additional solutions to (61). Further constraints will be introduced by
the equations at the next order and many of these solutions will not end up giving Hopf
models, though some cases such as ti = (−1)i are Hopf.

Additionally, our proofs for the CSG models which do not give Hopf algebras do not
make deep use of the shape of f(u) and so suggests the possibility that with quite mild
hypotheses (excluding for instance when f(u) is a constant) being Hopf for nonlinear f(u)
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may require being Hopf for f(u) = 1 + u, which would be very helpful towards a general
characterization. Considering varying f(u) within the CSG models which are Hopf would
also be interesting.

Other special cases, including f(u) = 1 + u while leaving the si and the ti both
unconstrained, can be explored computationally, recursively generating the first half a
dozen or so terms of the solution to (17) with particular parameters and then computing
the coproducts of these terms.

Other combinatorial puzzles arising from this work are, finding a closed-form algebraic
expression for the coproduct coefficients shown in Table 2 (via a method akin to that we
used in the proof to Lemma 23), and proving that fn(Ck) as defined in (47) depends only
on k.
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