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Abstract

We study the (m,n)-word lattices recently introduced by V. Pilaud and D. Po-
liakova in their study of generalized Hochschild polytopes. We prove that these
lattices are extremal and constructable by interval doublings. Moreover, we de-
scribe further combinatorial properties of these lattices, such as their cardinality,
their canonical join representations and their Galois graphs.

Mathematics Subject Classifications: 06D75, 05E99

1 Introduction

The Hochschild polytope was introduced in algebraic topology [16, 17, 18] and has recently
gained quite some interest due to its wealth of combinatorial properties. Its 1-skeleton
can be realized in terms of a particular order on Dyck paths [2] and as the componentwise
order of certain integer tuples [3]. Intriguingly, the resulting poset, dubbed the Hochschild
lattice, is in fact a trim and interval-constructable lattice [3, 13].

In [13], a connection between the Hochschild lattice and a particular shuffle lattice
from [7] was established which nicely parallels the connection between the Tamari lat-
tice and the lattice of noncrossing partitions through the so-called core label order [15].
Question 7.1 in [13] asks for a two-parameter generalization of the Hochschild lattice
that extends the mentioned connection between Hochschild and shuffle lattices. One at-
tempt in answering this question was made by the author together with T. McConville
by introducing bubble lattices, which are an order extension of the shuffle lattices [10, 11].

Another intriguing generalization of the Hochschild lattice was recently presented in
[14] from a geometric point of view. In that article, the story of Hochschild polytopes and
Hochschild lattices was beautifully spun further, by introducing a new family of polytopes,
the (m,n)-Hochschild polytopes that arise as shadows of (m,n)-multiplihedra. We refer
the reader to the excellent article [14] for the whole story.

It turns out that the 1-skeleton of the (m,n)-Hochschild polytope can be oriented in
such a way that one obtains a lattice; the m-lighted n-shade (right) rotation lattice, which
simultaneously generalizes the boolean lattice (for m = 0) and the original Hochschild
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lattice (for m = 1). There is some computational evidence that this lattice is constructable
by interval doublings, but in contrast to the Hochschild lattice, it is in general not extremal
anymore [14, Remark 29].

However, the m-lighted n-shade (right) rotation lattice contains a natural quotient lat-
tice, the (m, n)-word lattice, which also generalizes the boolean lattice and the Hochschild
lattice and seems to retain all its beautiful lattice-theoretic properties. The main pur-
pose of this article is to confirm this suspicion and provide some lattice-theoretic and
combinatorial properties of these (m,n)-word lattices.

Theorem 1. For integers m,n > 0, the (m,n)-word lattice is extremal and constructable
by interval doublings.

The (as of yet) undefined lattice-theoretic concepts will be introduced in Section 2.
In Section 3, we formally introduce the (m,n)-word lattices, and prove Theorem 1 in
Section 4. Finally, in Section 5 we investigate further combinatorial properties of W (m, n),
such as its cardinality, its canonical join representations and its Galois graph.

2 Lattice-theoretic Background

2.1 Basics

A poset (short for partially ordered set) is a finite set (the ground set) equipped with a
reflexive, antisymmetric and transitive relation (the order relation). Usually, we denote
the ground set by P, the order relation by <, and denote the corresponding poset (P, <)
by P. The dual poset of P is obtained by reversing the relation, i.e., if P = (P, <), then
its dual is (P, >).

A classical example of a poset is a chain, i.e., a poset where for any two elements p, ¢ €
P it holds that p < g or ¢ < p. If the ground set of a chain has n elements, then we call
it an n-chain, and such a chain is isomorphic to n & ([n], <), where [n] = {1,2,...,n}.

The length of P, denoted by ¢(P), is one less than the maximum cardinality of a chain
contained in P.

If Py = (P,<1) and Py = (P, <3) are two posets, then their direct product is the

poset Py x Py oef (P, x Py, <), where (p1,p2) < (g1, ¢e) if and only if p; <; ¢4 and py <5 ¢o.

A lattice is a poset in which every two elements p,q € P have a join (i.e., a unique
minimal element that is above both p and ¢) and a meet (i.e., a unique maximal element
that is below both p and ¢). In such a case we write pV ¢ for the join of p and g and pA g
for the meet of p and gq.

2.2 Interval-constructable Lattices
Let X C P. The ideal generated by X is the set

Py ™ {pe€ P:p<xforsomex e X}
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An interval is a set X C P with the property that there exist two elements p,q € P
such that X = {z: p < & < ¢}. In this case, we usually write [p, ¢] instead of X. The
doubling of P by X is the subposet of P x 2 induced by the ground set

plx) & (ng x {1}) U (((P \ Pex) U X) x {2}).

Proposition 2 ([5]). If P = (P,<) is a lattice and X C P is an interval, then the
doubling of P by X is a lattice.

A lattice is interval constructable if it can be obtained from the 2-chain 2 by a sequence
of interval doublings.

2.3 Semidistributive lattices

From now on, let P = (P, <) be a finite lattice. An element j € P is join irreducible if it
cannot be written as the join of two distinct elements. In other words, whenever j = pVq
for p,q € P, then either p = j or ¢ = 5. We denote the set of all join-irreducible elements
of P by J(P).

A join representation of p € P is a set A C P such that p = \/ A. If the set
{P<4: Ais a join representation of p} has a unique minimal element with respect to inclu-
sion, then the join representation corresponding to this minimal element is the canonical
join representation of p, denoted by CJ(p).

A lattice is join semidistributive if and only if every element has a canonical join
representation [6, Theorem 2.24].

By duality, we can also define meet-irreducible elements, (canonical) meet represen-
tations and meet-semidistributive lattices. The set of meet-irreducible elements of P is
denoted by M(P).

A lattice is semidistributive if it is both join- and meet-semidistributive.

Lemma 3 ([6, Corollary 2.55]). If P is semidistributive, then |J(P)| = |[M(P)|.

Theorem 4 ([4, Lemma 4.2]). Every interval-constructable lattice is semidistributive.

2.4 Extremal lattices

Following [9], the lattice P is extremal if

An element z € P is left modular if (pV x) Aq = pV (z A q) holds for all p,q € P
with p < ¢. If P is extremal and contains a chain of length ¢(P) consisting entirely of
left-modular elements, then P is trim [19]. Surprisingly, the next result states that when
a lattice is extremal and semidistributive it must necessarily be trim.

Theorem 5 ([20, Theorem 1.4]). Every extremal, semidistributive lattice is trim.
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3 Basics on (m,n)-Words

Let us start right away with the central definition of this article.

Definition 6 ([14, Definition 75]). Let m,n > 0. An (m,n)-word is a word wyws ... w,
of length n on the alphabet {0,1,...,m+1} such that

(MN1) w; #m+1,
(MN2) for 1 < s < m, w; =s implies w; > s for all j <.

As a convention, we denote (m, n)-words by a latin letter in fraktur font, e.g., to, and
then denote its ™" member by the same letter in regular font with subscript i, e.g., w;.
More precisely, when we deal with an (m,n)-word to, then we will occasionally access
its letters through the variable w; without explicitly stating something along the lines of
“Let o = wiwsy - - - wy.”.

Let W(m,n) denote the set of (m,n)-words. For two words u = wujus---u, and
0 = VU9 - - U, We write U <comp 0 if and only if u; < v; for all @ € [n]. The (m,n)-word

poset is the poset W (m,n) def (W(m, n), <comp). It is quickly verified that W(m,n)

has a unique minimal element, namely o 00 --0, and a unique maximal element
m(m+1)(m+1)---(m+1).

Theorem 7 ([14, Corollary 82]). For m,n > 0, the poset W (m,n) is a lattice.

The main purpose of this article is a thorough study of the lattice W (m,n) through
which we will exhibit various nice properties. Before we can obtain certain enumerative
results, it will be of major help to understand some of the structural properties of W (m, n).

4 Lattice-theoretic Properties of W (m,n)

4.1 Interval-constructability

Given a word v = wyws - - - w, € W(m,n), we write min(w) for the minimum letter of tv.
For i € [0,m] let us define

WO (m,n) € {ro € W(m,n): min(w) > i}. (1)

Then, clearly, W (m,n) = W(m,n) and W=V (m,n) D W (m,n) for i € [m).

Lemma 8. Leti € [0,m]. The poset (W(i) (m,n), gcomp) is the upper interval of W (m,n)
above the word ii-- 1.

Proof. This is a straightforward computation. n

If to is a word, then for any integer i, we write toi for the word obtained by adding
the letter ¢ to the end of tv.
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Lemma 9. Leti € [0,m]. Forw € W9 (m,n), we have vi € W(m,n + 1).

Proof. This is a straightforward computation. n
We will now prove one part of our main result.

Theorem 10. For m,n > 0, the lattice W (m,n) is interval-constructable.

Proof. We fix m > 0 and proceed by induction on n. If n = 0, then W(m,0) is the
singleton lattice consisting of the empty word. If n = 1, then W(m, 1) is an (m+1)-chain,
consisting of the words 0,1, ..., m. Both of these lattices are interval-constructable.

Now let » > 1 and assume inductively that W (m,n) is interval-constructable. We
now describe how to obtain W(m,n + 1) by m + 1 successive interval doublings.

First, we consider the poset P(© (PO, <comp), where
pO < {w0: v € W(m,n)} W {rw(m+1): o € W(m,n)}.

Then, clearly, P(®) 2 W(m,n) x 2. Moreover, (MN2) implies that P(®) C W(m,n+1).

Now, for i € [m], we set j ' n 41— i and define
p) &f {mj: € W(j)(m,n)}.

Lemma 9 implies that P® C W(m,n + 1). Moreover, it follows from Lemma 8 that
W) (m, n) is an interval of W (m,n), which by construction is isomorphic to the interval

of PO induced by 10 %! {w0: w € WO (m,n)}. Thus, if we define
PO E (PO PO ...ty PO < o),

then P® is obtained from P! through doubling by I\,

It remains to show that P(™) is indeed equal to W (m,n + 1). Since both posets have
as ground sets words of length n + 1 and use componentwise order, it is enough to show
that the ground set of P equals W(m,n + 1).

The ground set of P is PO w PM w ... w P and we have already established
that P C W(m,n + 1) for all 0 < i < m.

Conversely, let w € W(m,n + 1), and suppose that o = wjws ... w,w,y1. Then, by
definition, wyws ... w, € W(m,n). If w,y; € {0,m + 1}, then o € P©. Otherwise, it
must be that w,4; = m + 1 — i for some i € [m], which implies v € P%. Thus, tv is in
the ground set of P(™ and the proof is complete. n

For m = 1, the doubling construction described in the proof of Theorem 10 consists
of two steps and agrees with the doubling procedure described in [3, Section 3.3]. Our
doubling procedure is illustrated in Figure 1.

Corollary 11. For m,n > 0, the lattice W(m,n) is semidistributive.
Proof. This follows from Theorems 10 and 4. O]

(S8
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/2) = W(2,3)

000

Figure 1: The doubling procedure that produces W (2, 3) from W (2, 2). Along each arrow,
the highlighted interval is doubled.

4.2 Extremality

Let us consider the following words:

a(i’j) d:ef ap = j7 if k < ia
ar =0, ifk>i

by = 0, if k.

By (MN1), a®) € W(m,n) if i € [n] and j € [0,m] and b; € W(m,n) if i € [2,n].

Lemma 12. An (m,n)-word wo € W(m,n) is join-irreducible in W (m,n) if and only if
either vo = a®) fori € [n] and j € [m] or vo = b® fori € [2,n].

Proof. For all i € [n], a®® = o is the bottom element of W(m,n) and therefore cannot
be join-irreducible.

As b® has only one non-zero entry for all i € [2,n], it is clear that it is join-irreducible.
In fact, (MN2) implies 0 <comp 6.

Likewise, if i € [n] and j € [m], then (MN2) implies that only the i*" letter of a7
can be decreased so that one still obtains an (m,n)-word. This implies that a®) covers
a unique element, and is therefore join-irreducible.

Conversely, suppose that v = vjvy - - - v, is join-irreducible. This means that v covers
a unique element u = wuyuy - - - u,. By construction, there exists a unique index i € [n]
such that u; < v; and u; = v; for all j # 7. This implies in particular that v; # 0.
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(i) Assume that v; = m + 1. Suppose further that there exists a largest index k € [n],
k # i, such that v, > 0. Then, consider the word w = wyws - -w, with wy = 0 and
w; = v; for j # k. Since wy = v < m+1, (MN1) is satisfied. If wy = s ¢ {0, m+ 1}, then
¢ < k and vy = s and by (MN2), w; = v; > s for all j < £. This means that to € W(m,n)
with 10 <comp © but 1 Zcomp u Which contradicts v being join-irreducible. We conclude
that when v; = m + 1, it must be the case that v = b®

(ii) Assume that v; = s ¢ {0,m + 1}. By (MN2), v; > s for all j < i. Suppose
that there exists a largest index k € [i — 1] such that vy, > s. Then, consider the word
0 = wyws . .. w, with w, = s and w; = v; for all j # k. It is clear that v € W(m,n). Then
10 <comp 0 and 10 Lcomp U, Which contradicts v being join-irreducible. It follows that v; =
vy = --- = v; = s. Now suppose that there exists a largest index k € {i+ 1,1+ 2,...,n}
such that v, > 0. If we consider the word o’ = wjwj ... w,, with wj =0 and w} = v; for
all j # k, then analogously to (i) we obtain a contradiction to v being join-irreducible.
We conclude that when v; = s ¢ {0,m + 1}, it must be the case that v = a(>*. O

Lemma 13. For m > 0 and n > 0, W(m,n) contains a chain of length (m + 1)n — 1.

Proof. We prove this statement by induction on n. If n = 1, then W(m, 1) is itself a
chain of length m (because it consists of the m + 1 words 0,1,...,m).

Now let n > 1. By Theorem 10, we may obtain W(m,n) from W(m,n — 1) by
consecutively doubling m+ 1 intervals. This implies that we may extend a chain of length
k from bottom to top in W (m,n — 1) to a chain of length k + m + 1 from bottom to top
in W(m,n).

By induction assumption, we can find a chain of length (m+1)(n—1)—1 from bottom
to top in W(m,n — 1) which can thus be extended to a chain of length (m +1)(n —1) —
1+m+1=(m+ 1)n—1 from bottom to top in W (m,n). O

We conclude with the proof of the remaining part of our main theorem.
Theorem 14. For m,n > 0, the lattice W (m,n) is extremal.

Proof. 1f n = 0, then W (m, 0) is the singleton lattice, which is trivially extremal.
So let n > 0. By Corollary 11, W(m,n) is semidistributive, which implies that
[J(W(m,n))| = [M(W(m,n))| by Lemma 3. Moreover, Lemma 12 implies that

[J(W(m,n))| = (m+1)n—1.
Lemma 13 implies that ¢(W (m, )) (m 4+ 1)n — 1, which yields
(m+1)n—1=[J(W(m,n))| = ((W(m,n)) = (m+1)n -1,
and thus proves the theorem. O
Corollary 15. For m,n > 0, the lattice W (m,n) is trim.
Proof. This follows from Corollary 11 and Theorems 5 and 14. [
We finish this section by proving Theorem 1.
Proof of Theorem 1. This follows from Theorems 14 and 10. n
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5 Combinatorial Properties of W(m, n)

5.1 Cardinality

A topless (m,n)-word is an (m, n)-word that does not contain the letter m+1. By (MN2),
every topless (m,n)-word is a weakly decreasing sequence of letters from {0,1,...,m};

thus the number of topless (m,n)-words is ("1").

Proposition 16. For m,n > 0, the cardinality of W(m,n) is given by
" /m+k\[(n-1
2 (") 6o g
k=1

Proof. Every (m,n)-word t can be written as wyaMwoa®wsa® - - - a*HDwa® for some

k € [n], where each a' is a possibly empty sequence of m +1’s and the sum of the lengths
of all a’s is n — k. We can thus view (e, a®, ... o) as a weak composition of n — k
into exactly k parts. Thus, the number of all (m,n)-words is

2”: m+k\(n—1
k E—1
k=1
as desired. n

The formula in Proposition 16 can also be derived by combining [14, Proposition 30]
and [14, Lemma 80] with [14, Definitions 75 and 77].

5.2 Canonical Join Representations

Lemma 17. Let u,0 € W(m,n). The join of u and v in W(m,n) is obtained by taking
the componentwise maximum of u and v.

Proof. Let u = ujug---u, and v = v1vy - - v, and let w; = max{u;, v;}. By (MN1), we
have u; < m and v; < m, which implies w; < m. Moreover, let s € [m] such that w; = s.
Then, without loss of generality we may assume that u; = s, and it follows from (MN2)
that u; > s for all j < 4. Consequently, w; = max{u;,v;} > u; > s for all j < i. It follows
that w0 = wywy - - - w, € W(m,n).

Moreover, it follows from the definition of the w; that u <comp 0 and v <comp v and
that 10 <comp 0’ for all ' € W(m,n) with u <comp 0’ and v <comp W', This proves the
claim. ]

For v € W(m,n), we define

in(0) & [{u € W(m,n): u <comp 0}

Y

top(v) & |{i € [2,n]: v; = m + 1}.

The support of v is the set Supp(b) def {v;: j € [n] and v; € [m]}, i.e., the set of all
letters appearing in v that are different from 0 and m + 1.
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Lemma 18. For v = vvy---v, € W(m,n), we have

in(v) = top(v) + |Supp(v)|.

Proof. Suppose that there exists ¢ € [n] such that v; = m + 1. Then, by (MN1), ¢ > 1.
Let s = min{v;: 1 < j < i and v; < m + 1}, and consider the word u = wjuy - - u,
with u; = s and u; = v; for j # 7. Then, for j < ¢ we have u; = v; > s = u;. For
k # i with u, < m+ 1, we get u; = v; > v, = uy, for all j < k. Thus, u € W(m,n)
and u <comp 0. If there was ' = wju)y---u), € W(m,n) with u <comp ' <comp 0 then,
necessarily u; = u; = v; for all j # i and u; < uj < v;. By design, however, there exists
some k < ¢ such that s = uy, = wuj, so that u] > u; = s = uj, which contradicts (MN2), and
we conclude u <comp 0.

Now pick s € Supp(b). Let ¢ be the maximum index such that v; = s, and consider the
word u = wjug - - - u, with u; = s — 1 and u; = v; for all j # 4. Since v € W(m,n), then
by (MN2) implies that v; > v; = s for all j < i and therefore u; = s — 1 < s < v; = u;.
It follows that u € W(m,n), and it must then necessarily be that u <comp .

Conversely, if ¢ is a non-maximum index such that v; = s, i.e., there exists k > ¢ such
that v, = s. Then, if we consider the word u = ujuy - - - u,, with u; < v; and u; = v;, then
u; < ug but ¢ < k contradicting (MN2).

Therefore, every entry in the support of v and every entry in v equal to m+1 contribute
an element covered by v. Since every element covered by v is obtained by reducing some
letter of v, this concludes the proof. ]

Corollary 19. The number of to € W(m,n) with in(to) = a and |Supp(w)| = b is

)6

Proof. 1f |Supp(to)| = b, then v contains a — b letters equal to m+ 1. This means that the
topless (m,n)-word obtained from t by deleting all letters equal to m +1 hasn —a + b
letters and comprises a weakly decreasing sequence with b different letters and possibly
some zeroes at the end. In other words, it can be regarded as a (descending) staircase of
total length n —a+ b and steps (of length > 1) at heights s € Supp(rw) U{0}. The lengths
of these steps form a composition of n —a+b into b+ 1 parts (if 1 has a letter equal to 0)
or into b parts (if 1w has no letter equal to 0). Therefore, for a given support set of size b,
we can form ("7“?71) - ("fgff *1) = ("*ZH’) of these staircases, and can augment each of
them by inserting a — b letters equal to m + 1 as described in the proof of Proposition 16.

Since we can choose (7;}) such support sets, we get the formula from the statement. [

Corollary 20. The number of o € W(m,n) with in(to) = a is

i m\ (n—a+b\ [n—1
b n—a a—>b)
b=0
Computer experiments suggest the following formula equivalent to the sum in Corol-
lary 20.
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Conjecture 21. The number of v € W(m, n) with in(tv) = a is

m+a\ (n m+a—1\/n—1
a a m a—1)
Proposition 22. The canonical join representation of w0 = wyws -+ - w, € W(m,n) is

CJ(ro) def{ (03): j = max{l: w, = j € Supp(t )}}Lﬂ{b(i):wi:m%—l}. (3)

Proof. As described in the proof of Lemma 18, the positions ¢ € [n] with w; = m + 1 or
i = max{/: w, = s € Supp(t } each correspond to an element covered by to, so that the
set in (3) has the correct cardinality. Moreover, it is quickly verified that the join over
(3) is indeed tv.

Assume that there exists some join-irreducible element u” € W(m, n) such that u' <comp
u for some u € CJ(w) and

= \/(CJ(w) \ {u}) U {u'}. (4)

Since each b® is an atom, we conclude that u = a(») for some 7, j. Then, the it letter
of ' is strictly smaller than j. Since w; = j, and no other word in CJ(tv) has j as its i*"
letter, we obtain a contradiction to (4). This concludes the proof. O

Example 23. Let o = 474337720 € W(6,9). We have wy = wg = w; = 7 and Supp(w) =
{2,3,4}, where max{(: wy = 4} = 3, max{{: w, = 3} =5 and max{(: wy, = 2} = 8. Thus,

the canonical join representation of v is

{a<&2>7 a53)_ g3 p2) p(©) b(?)}

= { 222222220, 333330000, 444000000, 070000000, 000007000, 000000700} .

Lemma 24. For m,n > 0, the induced subposet of join-irreducibles of W(m,n) is iso-
morphic to
MmMxn)ylyly..-Wl.
—

n—1 times

Proof By inspection we see that {63, 63 ... b} is an antichain of atoms of W (m, n),
and b® L o, a9 for all 4, 5, k.

Moreover, we have a(®J) Lcomp a®7) if and only if ¢« < k and altd) < Lcomp a(@®) if and
only if j < k. Thus, the set {a®: i € [n],j € [m]} under <comp is 1somorph1c to the
direct product of an n-chain and an m-chain. O

5.3 The Chapoton-style H-Triangle

Let us define
atom(r) £ |CJ(w) N {a®D, 6@, 6O ... b}
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to count the number of atoms of W (m,n) contained in the canonical join representation
of . Then, the H-triangle of W (m,n) is

def in atom
Hon(,y) € ) an®yton),

weW(m,n)

Remark 25. Our H-triangle is modeled after the prototypical polynomial introduced by
F. Chapoton in the context of cluster algebras and root systems [1].

Proposition 26. For m,n > 0 and 0 < b < a < n, the coefficient of x%y® in H,, (2, y)

18 equal to
(e, fo<a-1,
Ponmap = (mn —ma+m —1)("- 1) ifb=ua—1,
(Z), ifb=a.

Proof. As an auxiliary tool, we consider the following counting function, whose coefficients
can be deduced from Corollary 19:

(@ y) &7 anyroet)

weW(m,n)

ol m n—>b\/n—-1\ ,
- a—b)\a=b)\ v )"V
0 b=0

Let o € W(m,n).
o If aD) ¢ CJ(tv), then top(tn) = atom(tv).

e If aY € CJ(v), then Lemma 24 implies that a() ¢ Cl(w) for (i,5) # (1,1) as
CJ(w) is an antichain and a®™" <comp a®?). Thus, in this situation, Proposition 22
states that tv = 1u, where u is a word consisting only of the letters 0 or m + 1. It
follows that in(tv) = atom(tv) = top(tv) + 1.

As the number of v € W (m,n) with in(t) = a and ™Y € CJ(w) is ("), we obtain
the following in combination with Corollary 19.

e The number of v € W(m,n) with in(tv) = a and atom(w) = b < a — 1 equals the

number of o € W(m, n) with in(tv) = a and top(w) = b; this is (") (Z:Z) (™1

e The number of v € W(m,n) with in(to) = a and atom(tw) = a — 1 equals the
number of w € W(m,n) with in(tw) = a and top(tv) = a — 1 minus the number of
w' € W(m,n) with a®b € CJ(w’); this is (7) ("¢ (")) — (7))

1 a—1 a—1

e The number of v € W(m,n) with in(tv) = a and atom(w) = a equals the number
of w € W(m,n) with in(to) = a and top(m) = a plus the number of w’ € W(m,n)
with a® € CJ(w'); this is (7) (")) (") + (7).

Some simplification then yields the claim. O]
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5.4 The Galois Graph of W(m,n)

It is well known among lattice theorists that a finite lattice P can be represented as
a set system ordered by inclusion. In such a representation, the sets corresponding to
the lattice elements can be described by a binary relation, connecting the join- and the
meet-irreducible elements of P. This binary relation is the poset of irreducibles [8] or—
essentially equivalent—the formal context [21] associated with P.

If P is extremal of length n, then the poset of irreducibles can essentially be described
by a certain directed graph on the ground set [n|, the Galois graph of P. We refer the
reader to [20] for more background on and some examples of Galois graphs.

If, moreover, P is interval constructable, then its Galois graph is the directed graph
(J(P), —>), where the relation — is characterized as follows.

Lemma 27 ([12, Corollary A.18(ii)]). Let P be an extremal, interval-constructable lattice.
For j,j" € J(P), we have j — j" if and only if j # j' and j' < j”" V j.

We use Lemma 27 to describe the Galois graph of W (m,n). Figure 2 shows the Galois
graph of W(2,3).

Theorem 28. Let m,n > 0. The Galois graph of W (m,n) is the directed graph
(J (W(m,n)), —>>, where forj,j € J(W(m, n)) with j # i we have

M— (S,t) A (S/,t,) d > / t > t,

. . i X ) a 5 ) a anas =2 Ss,t =21,
— 3" if and only 1 .
) ) f Yy f {j:b(s),jlza(s’t)andSZS/.

Proof. Recall from Section 4.2 that the join-irreducible elements of W (m,n) are of the
following form:

al®) =¢t...100---0, I<s<n,1<t<m
S times
6 =00---0(m+1)0---0, 2<s<n.
T
sth letter

Let j,j’ € J(W(m,n)). We thus need to check the condition from Lemma 27 in the
following cases:

(i) Suppose that j = a®?, i = al"). By definition, the s'" letter of j* is strictly
smaller than #. Thus, a®? — a®*) if and only if s > s’ and ¢t > ¢

(ii) Suppose that j = a*?, i’ = b, In that case, we have j’* = o, and thus b*) =
i <i*Vi=o0Vji=j=a®Y. Asno letter of al®" is equal to m + 1, we get al*>? 4 b)),

(iii) Suppose that j = 6@, 7/ = a ). By definition, the s'™ letter of j’* is strictly
smaller than ¢’. Thus, i/ < j* Vj can only be true if the s’™ letter of j is at least .
However, if s = = 1, then j* = 0, and j’ < j will never be true.

By definition, s > 1 and the only non-zero letter of b® is the st letter which is equal
to m + 1, which implies that 6®) — a®*) if and only if s = §'.
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Figure 2: The Galois graph of W (2, 3).

iv) Suppose that j = b®), i/ = b®). In that case, we have i/ = o, and thus j <
pp

i*Vij=o0Vj=jif and only if = j as both b®) and b®) are atoms. Thus, we have

b(s)

4 66 for all s, 5. ]

Remark 29. For m = 1, Theorem 28 is equivalent to [13, Theorem 1.1].
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