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Abstract

In this paper, we introduce a discrete quantum walk model called bipartite
walks. Bipartite walks include many known discrete quantum walk models, like
Grover’s walks, vertex-face walks. For the transition matrix of a quantum walk,
there is a Hamiltonian associated with it. We will study the Hamiltonians of the
bipartite walks. Let S be a skew-symmetric matrix. We are mainly interested in
the Hamiltonians of the form iS. We show that the Hamiltonian can be written as
iS if and only if the adjacency matrix of the bipartite graph is invertible. We show
that Grover’s walks and vertex-face walks are special cases of bipartite walks. Via
the Hamiltonians, phenomena of bipartite walks lead to phenomena of continuous
walks. We show in detail how we use bipartite walks on paths to construct universal
perfect state transfer in continuous walks.

Mathematics Subject Classifications: 05C90, 05E99

1 Introduction

Quantum walks are a quantum mechanical analogue of classical random walks. They
provide a powerful tool for the study and development of quantum algorithms [4, 10].
Based on how time evolves, a quantum walk can be either continuous or discrete. For
discrete quantum walks, there are several models that have been proposed and studied [1,
8, 10]. In this paper, the walks we focus on are called bipartite walks; they generalize
many known models such as Grover’s walks and vertex-face walks.

We turn to a description of bipartite walks. A discrete quantum walk is given by a
unitary operator U on a complex vector space Cn. We refer to U as the transition matrix
of a discrete quantum walk. The state of the underlying quantum system is a unit vector
in Cn. If the initial state is z, then after k steps of the walk, the state is Ukz. This is
a unit vector, and so the squared absolute values of its entries sum to 1. The outcome
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of a measurement after k steps is an element i of {1, . . . , n}, and the probabilty that the
result is i is |(Ukz)i|2.

In our case, the state space is the space of complex functions on the edges of a bipartite
graph G. We assume that X and Y are the two colour classes of G and using these we
construct two partitions of E(G). For the first partition, π0, two edges are in the same cell
if they have a vertex in common, and that vertex is in X. For the second partition π1, two
edges are in the same cell if they have a vertex in common, and that vertex is in Y . Each
of these partitions determines a projection, namely the projection onto the functions on
E(G) that are constant on the cells of π0 and π1. We denote these projections by P and
Q respectively. Then 2P − I and 2Q− I are unitary. (Geometrically they are reflections.)
We define the transition matrix of the bipartite walk on G by

U := (2P − I)(2Q− I).

For each unitary matrix U , there are Hermitian matrices H such that

U = exp(iH). (1.1)

(We refer to H as a Hamiltonian of U .) Our goal in this paper is to study the Hamiltonians
of bipartite walks.

For the discrete quantum walk governed by the unitary matrix U , by Equation 1.1,
we know that there is a Hamiltonian H associated with it. When there is a real skew-
symmetric S such that the Hamiltonian H is of the form H = iS, it can be viewed as the
skew-adjacency matrix of an oriented weighted graph, which we call the H-digraph.

So far, most studies of the bipartite walk have been limited to the transition matrix
and the behaviors of the walk [7,9,10]. In this paper, we study Hamiltonians of bipartite
walks and H-digraphs associated with it. Spectral properties of the transition matrix is
the main tool we exploit to study the Hamiltonian of U .

Consider bipartite walk defined on G. Let S be a skew-symmetric matrix. We are
mainly interested in the case when the Hamiltonian H can be written as H = iS, which
is not always true. We prove that the Hamiltonian H is of the form H = iS if and only
if the adjacency matrix of G is invertible.

We look into the bipartite walks defined on paths and even cycles. When G is a path
on n vertices, the transition matrix of the bipartite walk is a permutation matrix. When
n > 4 is even, the associatedH-digraph is a weighted orientedKn−1. When n ≡ 3 (mod 4),
the associated H-digraph is two copies of a weighted oriented Kn−1

2
. Similar results can

also be proved for the bipartite walk on even cycles.
There is a second class of quantum walks: continuous quantum walks. Here the state

space is the space of complex functions on the vertices of a graph G. The walk is specified
by a Hermitian matrix H with rows and columns indexed by the vertices of G (for example,
the adjcency matrix of G). We then define transition matrices U(t) by

U(t) := exp(itH), (t ∈ R).

If the initial state of the walk is given by the unit vector z, the state at time t is U(t)z.
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Studying the Hamiltonian of bipartite walks helps us to construct examples of con-
tinuous walks with desired properties. Consider continuous quantum walk on a graph G
and the Hamiltonian is the adjacency matrix of G. If the walk has perfect state transfer
between every pair of vertices of G, the walk has universal perfect state transfer. This
is a rare and interesting phenomenon. Using the properties of bipartite walks on paths
and cycles, we find a way to weight the edges of complete graphs such that the resulting
weighted graph has universal perfect state transfer. This demonstrates how we can use the
Hamiltonian and bipartite walks to construct some interesting but previously hard-to-find
phenomenon in continuous walks.

Konno et al. in [7] introduce a family of discrete-time quantum walks, called two-
partition model, which is based on two equivalence-class partitions of the computational
basis. The two partitions used in the two-partition model do not necessarily give us two
reflections. Bipartite walks are a special case of the two-partition model introduced by
Konno et al. in [7]. Note that the paper by Konno et al. focuses on showing the unitary
equivalence between the members of two-partition model while we study the Hamiltonian
of the transition matrix of the bipartite walk in this paper.

On the other hand, many of the most commonly used discrete walks can be formulated
as bipartite walks. This is one of the reasons why we choose to study bipartite walks. We
will give a constructive proof to show that Grover’s walk can be viewed as a special case
of bipartite walk in Section 3. Besides Grover’s walk, vertex-face walk model can also be
viewed as a special case of bipartite walk. In Section 6, we show the equivalence relations
between bipartite walks and vertex-face walks. The Hamiltonians obtained from vertex-
face walks have some interesting properties, which have been studied extensively in [11].
Here we introduce those properties and rephrase them from perspective of bipartite walk
in Section 6 and Section 7.

2 Preliminaries

We have described bipartite walks in previous section. Here we give a more detailed
description of how we build the transition matrix of the bipartite walk on a given graph.
Main purpose of this section is to set up the notations for later use.

Let G be a bipartite graph with two parts C0, C1. Now we define two partitions of the
edges of G, denoted by π0, π1 respectively. If two edges have the same end x in C0, then
they belong to the same cell of π0. Similarly, if two edges have the same end y in C1, then
they belong to the same cell of π1.

Given a matrix M , we normalize it by scaling each column of M to a unit vector. Let
P0, P1 be characteristic matrix of π0, π1 respectively and let P̂0, P̂1 denote the normalized
P0, P1 respectively.

Let
P = P̂0P̂

T
0 , Q = P̂1P̂

T
1

be the projections onto the vectors that is constant on the cells of π0, π1 respectively. We
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define the transition matrix of the bipartite walk over G to be

U =
(

2P̂0P̂
T
0 − I

)(
2P̂1P̂

T
1 − I

)
= (2P − I) (2Q− I) .

0 1

2 3

4 5

6 7

Figure 1: Bipartite graph on 8 vertices.

Now consider the bipartite graph G in Figure 1 as an example. We define a bipartite
walk onG. The two parts ofG are C0 = {0, 2, 4, 6} and C2 = {1, 3, 5, 7}. For the partitions
π0, π1, the edge (0, 1), (0, 5) are in the same cell in π0 and Edge (0, 1), (2, 1), (4, 1) are in
the same cell in π1. We have that

P̂0 =



1√
2

0 0 0
1√
2

0 0 0

0 1√
2

0 0

0 0 1 0
0 1√

2
0 0

0 0 0 1√
2

0 0 0 1√
2


, P̂1 =



1√
3

0 0 0

0 0 1√
2

0
1√
3

0 0 0
1√
3

0 0 0

0 1 0 0
0 0 1√

2
0

0 0 0 1


and hence, the corresponding projections are

P =



1
3

0 1
3

1
3

0 0 0

0 1
2

0 0 0 1
2

0

1
3

0 1
3

1
3

0 0 0

1
3

0 1
3

1
3

0 0 0

0 0 0 0 1 0 0

0 1
2

0 0 0 1
2

0

0 0 0 0 0 0 1


, Q =



1
2

1
2

0 0 0 0 0

1
2

1
2

0 0 0 0 0

0 0 1
2

0 1
2

0 0

0 0 0 1 0 0 0

0 0 1
2

0 1
2

0 0

0 0 0 0 0 1
2

1
2

0 0 0 0 0 1
2

1
2


.
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The transition matrix of the bipartite walk on G is

U =



0 −1
3

0 2
3

2
3

0 0

0 0 0 0 0 0 1

0 2
3

0 2
3

1
3

0 0

0 2
3

0 −1
3

2
3

0 0

0 0 1 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 0 1 0


.

Let C denote the characteristic matrix of the incidence relation between π0, π1 with
its rows indexed by the cells of π1 and its columns indexed by the cells of π0 such that

Ci,j = 1

if there is an edge that belongs to both ci in π1 and cj in π0. Then we have that

C = P T
1 P0

and normalized C is
Ĉ = P̂ T

1 P̂0.

The adjacency matrix of G can be written as

A(G) =

(
0 C
CT 0

)
.

The incidence matrix and the normalized incidence matrix of the bipartite graph in
Figure 1 are

C =


1 0 1 0
1 1 0 0
1 0 0 0
0 0 1 1

 , Ĉ =



1√
6

0 1
2

0

1√
6

1√
2

0 0

1√
3

0 0 0

0 0 1
2

1√
2

 .

3 Grover’s walks are a special case

Grover’s walk is a well-studied discrete quantum walk model. We are going to show that
Grover’s walk is a special case of bipartite walk model. That is, given a graph G, the
transition matrix of the Grover’s walk on G is the same as the transition matrix of the
bipartite walk on the subdivision graph of G.
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First, we define the transition matrix of Grover’s walks. Given a undirected graph G,
we can give directions to the edges of G such that the arc set of the directed G, denoted

by
−→
G , is

A =
{

(a, b), (b, a) | {a, b} ∈ E(G)
}
.

Let α = (x, y) be an arc in A, we say x is the head of α, denoted by o(α) and y is the
tail of α, denoted by t(α). When α = (x, y), we define α−1 = (y, x). Define a matrix
D ∈ CV (G)×A such that

Dx,α =
1√

deg(x)
δx,t(α).

So, we know that D∗D ∈ CA×A with

(D∗D)α,β =


1

deg(t(α))
if t(α) = t(β)

0 otherwise.

Let R ∈ CA×A denote the arc-reversal matrix, i.e.,

Rα,β = δα,β−1 .

The transition matrix of the Grover’s walk defined on G is

UGW = R(2D∗D − I).

Given a graph G, we define a new graph by subdividing every edge of G exactly once
and we call the resulting graph the subdivision graph of G, denoted by S(G). Now we
are going to show the transition matrix of the Grover’s walk defined on G is exactly the
same as the transition matrix of the bipartite walk defined on S(G).

Given a graph G, its subdivision graph S(G) is a bipartite graph with parts

C0 = V (S(G))\V (G) = {a0, a1, . . . , am},
C1 = V (G) = {v1, v2, . . . , vn}.

Note that every edge (vi, vj) ∈ E(G) is subdivided into two edges (vi, as), (vj, as) in
S(G) for some as ∈ C0. We also have that for every edge (vi, vj) ∈ E(G), it contributes

two arcs (vi, vj), (vj, vi) in A of
−→
G . Define η : E (S(G))→ A to be

η(vi, as) = (vi, vj),

where (vi, as), (vj, as) are obtained from the edge (vi, vj) of G. This is not hard to see
that η is a bijection.

Following the notations and the construction in Section 2, the transition matrix of the
bipartite walk on S(G) is

UBW = (2P − I)(2Q− I).

Note that rows and columns of UBW are indexed by the edges of S(G) and rows

and columns of UGW are indexed by arcs of
−→
G . For each vertex vi ∈ C1, we have
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degS(G)(vi) = degG(vi) and C1 = V (G). Then using the bijection η, we can index edges

of S(G) and arcs of
−→
G such that

2Q− I = 2D∗D − I.

Also, note that for each vertex ai ∈ C0, we have degS(G)(ai) = 2. Two edges (vi, as), (vj, as)
of S(G) share a vertex as ∈ C0 if and only if (vi, vj) ∈ E(G). We index rows and columns
of P using the same indexing as we do for Q and we also index rows and columns of R
use the same indexing as we do for D∗D. Consequently,

2P − I = R.

Thus, the transition matrix UBW defined on S(G) equals the transition matrix UGW on
G.

4 Spectrum of the transition matrix U

Spectral properties of the transition matrix U are the main machinery that we use to
analyse the Hamiltonian of U . In this section, we present a complete characterization on
the eigenvalues and eigenspaces of U . All the statements presented here are proved in [11]
by Zhan in detail, so in this paper we omit the proofs. Note that here we use the same
notations as defined before and so,

P = P̂0P̂
T
0 , Q = P̂1P̂

T
1 , Ĉ = P̂ T

1 P̂0

and
U = (2P − I)(2Q− I).

Theorem 1 (Lemma 2.3.5 in [11]). Let P,Q be projections on Cm. The 1-eigenspace of
U is

(Col(P ) ∩ Col(Q))⊕ (ker(P ) ∩ ker(Q))

and it has dimension

m− rk(P )− rk(Q) + 2 dim (Col(P ) ∩ Col(Q)) .

Moreover,
Col(P ) ∩ Col(Q) = span{1}.

Theorem 2 (Lemma 2.3.6 in [11]). The (−1)-eigenspace for U is

(Col(P ) ∩ ker(Q))⊕ (ker(P ) ∩ Col(Q))

and its dimension is
|C0|+ |C1| − 2 rk(C).
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Theorem 3 (Lemma 2.3.7 in [11]). Let µ ∈ (0, 1) be an eigenvalue of ĈĈT . Choose θ
such that

cos θ = 2µ− 1.

The map
y 7→ (cos θ + 1) P̂1y −

(
eiθ + 1

)
P̂0Ĉ

Ty

is an isomorphism from µ-eigenspace of ĈĈT to the eiθ-eigenspace of U , and the map

y 7→ (cos θ + 1) P̂1y −
(
e−iθ + 1

)
P̂0Ĉ

Ty

is an isomorphism from µ-eigenspace of ĈĈT to the e−iθ-eigenspace of U .

Corollary 4 (Corollary 5.2.5 in [11]). Let µ ∈ (0, 1) be an eigenvalue of ĈĈT . Choose
θ such that cos θ = 2µ − 1. Let Eµ be the orthogonal projection onto the µ-eigenspace of

ĈĈT . Set
W := P̂1EµP̂

T
1 .

Then the eiθ-eigenmatrix of U is

1

sin2(θ)

(
(cos θ + 1)W − (eiθ + 1)PW − (e−iθ + 1)WP + 2PWP

)
,

and the e−iθ-eigenmatrix of U is

1

sin2(θ)

(
(cos θ + 1)W − (e−iθ + 1)PW − (eiθ + 1)WP + 2PWP

)
.

5 Hamiltonians

For every unitary matrix U , there exist Hermitian matrices H such that

U = exp(iH).

We call such H a Hamiltonian of U . Since U is unitary, it has spectral decomposition

U =
∑
r

eiθrEr = exp(iH),

and we can write
H = −i

∑
r

log(eiθr)Eθr =
∑
r

θrEθr .

For each eigenvalue eiθr of U , we have that

log(eiθr) = log(eiθr+2krπ)

for non-zero integer kr and so, the choice of H is not unique. That is, the Hamiltonian of
U is

H =
∑
θr

(θr + 2krπ)Eθr ,
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for any non-zero integer kr. Note that kr are not necessarily equal for all the θr.
Let S be a real skew-symmetric matrix and S can be viewed as the skew-adjacency

matrix of a weighted oriented graph. When H = iS, we define the H-digraph to be the
weighted oriented graph whose skew-adjacency matrix is S. This paper focuses on the case
when the Hamiltonian can be written as H = iS and studies the associated H-digraph.

For each eigenvalue eiθr of U , if −π < θr 6 π and kr = 0, the resulting unique
Hamiltonian is called principal Hamiltonian. Let H0 be the principal Hamiltonian. In
general, if there is a real skew-symmetric S0 such that H0 = iS0, the choice

H = H0 +
∑
r

2krπEθr

for non-constant kr, cannot be written as H = iS for a real skew-symmetric S.
Unless explicitly stated otherwise, we take the principal Hamiltonian to be the Hamil-

tonian of U . Later in Corollary 6, we will show that there is a real skew-symmetric S such
that H = iS if and only if the adjacency matrix of the bipartite graph A(G) is invertible.

Theorem 5. Let U be the transition matrix of the bipartite walk on a bipartite graph G.
Let H be the Hamiltonian of U and let E−1 be the projection onto the (−1)-eigenspace of
U . Then there is a real skew-symmetric matrix S such that

H = iS + πE−1,

Proof. Using the spectral decomposition

U =
∑
r

eiθrEr = exp(iH),

we can write
H = −i

∑
r

log(eiθr)Er =
∑
r

θrEθr ,

where −π < θr 6 π. It follows that the 1-eigenspace of U corresponds to the 0-
eigenspace of H and the (−1)-eigenspace of U corresponds to the π-eigenspace of H
and eiθr -eigenspace gives θr-eigenspace of H.

Since G is bipartite, the adjacency matrix of G can be written as

A(G) =

(
0 C
CT 0

)
for some 01-matrix C. Let Ĉ be denoted the normalized version of C and let µ ∈ (0, 1)
be an eigenvalue of ĈĈT . Choose θ such that cos θ = 2µ − 1. Let Fµ be the orthogonal

projection onto the µ-eigenspace of ĈĈT . Set

W := P̂1FµP̂
T
1 .
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By Corollary 4, we have that

H =
∑

θr 6={1,−1}

θr (Eθr − E−θr) + π · E−1

=
∑

θr 6={1,−1}

θr

(
− 2i

sin(θ)
(PW −WP )

)
+ π · E−1.

Since ĈĈT is real and symmetric, we know that the orthogonal projection onto its µ-
eigenspace Fµ is real and symmetric. It follows that W = P̂1FµP̂

T
1 is real and symmetric.

So the matrix PW −WP is real. Set

S =
∑

θr 6={1,−1}

θr

(
− 2

sin(θr)
(PW −WP )

)
and we know that S is skew-symmetric.

Corollary 6. Let U be the transition matrix of the bipartite walk on a bipartite graph
G. Let S be a real skew-symmetric matrix. Then the Hamiltonian H of U is of the form
H = iS if and only if A(G) is invertible.

Proof. Since P,Q are real matrices, it follows from Theorem 2 that E−1, the projection
onto the (−1)-eigenspace of U , is a real matrix. By Theorem 5, there is a real skew-
symmetric matrix S such that

H = iS + πE−1.

So to prove this corollary, it is sufficient to prove that E−1 = 0 if and only if A(G) is
invertible.

Now consider the (−1)-eigenvalue of U . From Theorem 2 we know that the dimension
of (−1)-eigenspace of U is

|C0|+ |C1| − 2 rk(C).

This implies that E−1 = 0 if and only if

|C0|+ |C1| − 2 rk(C) = 0.

Since rk(P0) = |C0| and rk(P1) = |C1| and C = P T
1 P0, we get that

rkC 6 min{|C0| , |C1|}.

Thus, E−1 = 0 if and only if rk(P0) = rk(P1) = rk(C), which is equivalent to requiring
that C is invertible. Therefore we can conclude that there is a real skew-symmetric S
such that H = iS if and only if A(G) is invertible.

Let Eθr , E−θr be the corresponding eigenprojections of eigenvalue eiθr , e−iθr of U . Since
Eθr are Hermitian, we have that

Eθr = E−θr .
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It follows that when A(G) is invertible, the Hamiltonian

H =
∑
r

θr
(
Eθr − Eθr .

)
has zero diagonal, which implies that the H-digraph has no loops.

We have proved that when −1 is an eigenvalue of U , there is no skew-symmetric matrix
S such that its Hamiltonian is in the form H = iS. So when U has eigenvalue −1, we
consider instead the Hamiltonian of U2 and the H-digraph obtained from the Hamiltonian
of U2.

6 Vertex-Face walks

Bipartite walks can be used to generalize many known walk models and one of them is
the vertex-face walk. Here we show that vertex-face walk can be viewed as a special case
of bipartite walk. That is, given a embeddingM of a graph, the transition matrix of the
bipartite walk defined on the vertex-face incidence graph ofM is the same as the transition
matrix of vertex-face walk defined on M. As shown in [11], the Hamiltonian raised from
vertex-face walk has many interesting properties, some of which will be presented using
the bipartite walk language in this section and the next section.

A surface is a connected compact Hausdorff topological space S which is locally home-
omorphic to an open disc in the plane. A simple arc in S is the image of a one-to-one
continuous function f : [0, 1]→ S. The arc α = f([0, 1]) is said to join its endpoint f(0)
and f(1) and we use (f(0), f(1)) to denote the arc α. A graph G is embedded in S if the
vertices of G are distinct elements of S and every edge of G is a simple arc connecting in
S the two vertices which it joins in G, such that its interior is disjoint from other edges
and vertices. An embedding of G in S is an isomorphism of G with a graphM embedded
in S. In this case,M is a representation of G in S. The component of S\M are the faces
of the embedding. When each face of the embedding is a cycle, we say the embedding is
circular. In this paper, when we say the embedding of G in S, we refer to M. All the
definitions and terms regarding graph embeddings used in this paper can be found in [6].

Zhan [11, Section 5.1] defines a new model of discrete quantum walk, the vertex-face
walk. Let M be a circular embedding of graph G on an orientable surface. Note that
here the tail of the arc (a, b) is vertex a. Let M denote the arc-face incidence matrix,
i.e., M is a 01-matrix with its rows and columns indexed by the arcs and faces of the the
embedding M and

Mi,j = 1

if the arc i is on the face j. In a similar fashion, we define the arc-tail incidence matrix,
which is denoted by N . The transition matrix of vertex-face walk on M is

U :=
(

2M̂M̂T − I
)(

2N̂N̂T − I
)
,

where M̂, N̂ is the matrices obtained from M,N respectively by scaling each column to
a unit vector.
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The face-vertex incidence graph X of the embedding M is a bipartite graph and two
parts X0, X1 of X are labelled by the faces and the vertices of M respectively, i.e.,

X0 = {f0, f1, . . . , fn}, X1 = {v0, v1, . . . , vm}.

One vertex fi in X0 is adjacent to a vertex vj in X1 if the corresponding vertex vj is on
the corresponding face fi inM. The graph in Figure 2b is the face-vertex incidence graph
of the circular embedding of K4 shown in Figure 2a. We can view the vertex-face walk
on the circular embedding M as a bipartite walk by considering the bipartite walk over
the face-vertex incidence graph of M.

Now we show that the transition matrix of vertex-face walk on M is the same as the
transition matrix of the bipartite walk on the face-vertex incidence graph G ofM. Since
M is a circular orientable embedding, the edges of the face-vertex incidence graph G
correspond to arcs of the embedding M. To see this, we construct a bijection between
between arcs of M and edges of G. Let (a, b) be an arc in M and since M is circular
embedding on an orientable surface, there is a unique face fi that contains arc (a, b). The
map τ :

(a, b) 7→ (a, fi)

gives the desired bijection.
The arc-face incidence matrix M of the embedding M is exactly the characteristic

matrix of the edge-partition matrix P0 of the vertex-face incidence graph based on X0.
The rows of M are indexed by the arcs ofM with the ordering σA = {α0, α1, . . . , αm} and
the columns of M are index by the faces of M with the ordering σF = {f0, f1, . . . , fn}.
Now we define a ordering of edges of G:

τ(σA) = {τ(α0), τ(α1), . . . , τ(αm)}.

Let the rows of P0 be indexed by the edges of G according to the ordering τ(σ) and let
the columns of P0 be indexed by vertices of X0 with the ordering where vertices are in
order with the faces in the ordering of σF . Then we have that

M = P0.

Now we show that the arc-tail incidence matrix N of the embedding M is exactly the
characteristic matrix P1 of the edge-partition matrix of the vertex-face incidence graph
according to X1. We index the rows of N using the same ordering σA as in M . The
columns of N are indexed by vertices of M according to the order σV . Note that every
vertex is a tail of some arc α of M. Now we index the rows of P1 according to the order
στ(A). Let id : V (M)→ V (G) be

vi 7→ vi.

Then we index the columns of P1 according to id (σV). Then we have that

N = P1.
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Hence, using the same notations as in Section 2, we have shown that(
2P̂0P̂

T
0 − I

)(
2P̂1P̂

T
1 − I

)
=
(

2M̂M̂T − I
)(

2N̂N̂T − I
)
,

i.e., the transition matrix of the bipartite walk on the incidence graph of the embedding
M equals the transition matrix of the vertex-face walk on M.

1

23

0

(a) The circular embedding of K4.
The facial walks on K4 embedding above:

f0 = {(0, 1), (1, 2), (2, 0)}
f1 = {(1, 3), (3, 2), (2, 1)}
f2 = {(0, 2), (2, 3), (3, 0)}
f3 = {(0, 3), (3, 1), (1, 0)}

f0

f1

f2

f3

v0

v1

v2

v3

(b) The face-vertex incidence graph of the pla-
nar embedding of K4.

Figure 2: The circular embedding of K4 and its corresponding vertex-face incidence graph.

In [11], Zhan focuses on the circular orientable embedding of graph G such that both
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G and its dual graph are regular. The embedding M has type (k, l) if each vertex has
degree l and each faces uses k vertices. Note that a vertex-face walk over a (k, l)-type
embedding M corresponds to a bipartite walk on a (k, l)-regular bipartite graph that is
the vertex-face incidence graph of M.

Theorem 7 (Theorem 6.5.4 in [5]). Let G be a semi-regular bipartite graph with degree
(k, l) and P0, P1 denote its two parts. Let π0, π1 denote the partitions of edges of G
according to P0, P1 respectively. Let U be the bipartite walk transition matrix for G. Then

U2 = exp
(
γ(U − UT )

)
for some real number γ if and only if G has four or five distinct eigenvalues. Moreover,

S =
kl

4
(UT − U)

is the skew-adjacency matrix of some oriented graph on the edges of G.
Let c0,k denote the cell of partition π0 containing edge ek and similarly, c1,k denote the

cell of partition π1 containing edge ek. Then we have

Si,j =


1, if |c0,i ∩ c1,j| = 1 and |c1,i ∩ c0,j| = 0,

−1, if |c0,i ∩ c1,j| = 0 and |c1,i ∩ c0,j| = 1,

0, otherwise.

A partial geometric design with parameters (d, k, t, c) is a point-d-regular and block-k-
regular design, where for each point-block pair (p,B), the number of incident point-block
pairs

|{(p′, B′) : p′ 6= p,B′ 6= B, p′ ∈ B, p ∈ B′}|
equals c or t, depending on whether p is in B or not. In Section 6.5 [5], Godsil and Zhan
have showed that when G is an incidence graph of a partial geometric design, then we
have that

U2 = exp
(
γ(U − UT )

)
for some real number γ.

7 Vertex-Face walks on complete graphs

In [2], Biggs states that Kn has a regular embedding if and only if n is a prime power and
every regular embedding of Kn must arise from the rotation system stated in [11].

Lemma 8 (Theorem 5.6.2 in [11]). Let n = pk for some prime p. Let g be a primitive
generator of the finite field F of order n. For each element u in F, define the cyclic
permutation

πu = {v + g0, v + g1, . . . , v + gn−2}.
The rotation system {πu : u ∈ V (Km)} gives a circular embedding of Kn.
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In the case of H-digraphs arised from the vertex-face walk on Kn, we know that the

skew-adjacency matrix of H-digraph A
(−→
H
)

is indexed by arcs of Kn. Let fab denote the
unique face that contains arc (a, b). From the proof of Theorem 6.5.4 in [5], we have that

A
(−→
H
)
(a,b),(c,d)

=


1, if c ∈ fab and a 6∈ fcd,

−1, if a ∈ fcd and c 6∈ fab,

0, otherwise.

Note that in a self-dual circular embedding of Kn, each face consists of n − 1 distinct
vertices, which implies that each face misses a unique vertex of Kn.

We use LD (Kn) to denote the line digraph of Kn.

Theorem 9. The H-digraphs Zn obtained from the vertex-face walks of a self-dual em-
bedding of Kn is the line digraphs of Kn.

Proof. We construct an isomorphism from Zn to LD(Kn). Define a map f : V (Zn) →
V (LD(Kn)) as

(a, b) 7→ (u, a),

where u is the unique vertex missed by fab. First we show that f is a homomorphism.
Say

f(a, b) = (u, a), f(c, d) = (v, c),

which implies that u is the unique vertex missed by fab and v is the unique vertex missed
by fcd. We know that there is an arc from (a, b) to (c, d) in Zn if and only if

c ∈ fab and a 6∈ fcd.

Since each face miss a unique vertex in the circular embedding of Kn, we must have that

a = v,

which means that there is an arc from f(a, b) to f(c, d) in LD(Kn). Thus, the map f is
indeed a homomorphism.

Now we prove that f is a bijection and since LD(Kn) is finite, it suffices to prove that
f is an injection. Assume towards contradictions that two distinct arcs (a, b) and (a′, b′)
get mapped to (x, y) by the map f . Then by how we define the map f , we know that

a = a′ = y.

The vertex x is missed by fab and fa′b′ = fab′ . Since the faces here arised from facial walks
on the circular embedding of Kn, we must have that

(a, b) = (a′, b′).

This means that f has to be an injection and hence, a bijection. Therefore, we can
conclude that the map f gives an isomorphism from Zn to LD(Kn).
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Theorem 10 (Theorem 5.6.3 in [11]). Let n be a prime power. Let U be the transition
matrix of the vertex-face walk for a regular embedding of Kn. Then there is a γ ∈ R such
that

U = exp
(
γ(UT − U)

)
.

Further UT − U is a scalar multiple of the skew-adjacency matrix of an oriented graph,
which

(i) has n(n− 1) vertices,

(ii) is (n− 2)-regular, and

(iii) has exactly three eigenvalues: 0 and ±i
√
n(n− 2)

We rephrase Theorem 9 in terms of bipartite walk and we get the following theorem.

Theorem 11. Let Gn be a (n− 1)-regular bipartite graph with each part of size n. Then
the H-digraph obtained from the bipartite walk on Gn is the line digraph of Kn.

Proof. Since there is every cell of π1 miss a unique vertex in C0 and every cell of π0 misses
a unique vertex in C1, the proof of Theorem 9 applies here.

8 Paths and even cycles

The vertex-face incidence graph of a cellular embedding of a graph must have degree
at least three for each vertex. So neither a path nor a cycle can be a bipartite graph
raised from the vertex-face incidence relation of an circular embedding. In this section,
we discuss the bipartite walk defined on paths and even cycles.

01

23

45

67

e0
e1
e2
e3
e4
e5
e6

Figure 3: P8.

We label the vertices of Pn as v0, v1, . . . , vn−1 accordingly from the leftmost vertices to
the rightmost vertices of Pn. Note that v0, vn−1 are the only two vertices of degree 1 with
all the others of degree 2. Partition π0 is the partition of edges such that edges with the
same end at a vertex in {v1, v3, . . . , vn−1} are in the same cell of π0. Partition π1 is the
partition of edges such that edges with the same end at a vertex in {v0, v2, . . . , vn−2} are
in the same cell of π1. Edge ei is the edge between vi, vi+1 for all integer 0 6 i 6 n− 2.
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Recall that P,Q are the projections onto the vectors that is constant on the cells of
π0, π1 respectively. Let ci denote the characteristic vector of the edges adjacent to vertex
i. The column space of Q is

Col(Q) = span{c0, c2, . . . , cn−2},

The matrix 2Q− I is a reflection about the column space of Q, which is the span of cells
of π1. If two edges belong to the same cell, then they are the “cellmate” of each other.

Note that every vertex of a path has degree 6 2, which means that each edge has at
most one cellmate in the partitions. For each 0 6 i 6 n − 2, let ej be the cellmate of ei
in π1. Using that each cell in π0, π1 has size 6 2, we have that

(2Q− I)ei = ej.

Similarly, if ei, ej are cellmates in π0, then we have that

(2P − I)ei = ej.

Here both reflections 2P − I and 2Q − I is permutation matrices. Thus, the transition
matrix U = (2P − I)(2Q− I) of bipartite walk on Pn is a permutation matrix such that
for each integer 0 6 i 6 n− 2,

Uei =


ei+2, if i is odd and i 6= n− 3;

ei−2, if i is even and i 6= 0;

e1, if i = 0;

en−2, if i = n− 3.

(8.1)

Theorem 12. The transition matrix of the bipartite walk on Pn corresponds to a (n−1)-
cycle permutation whose cycle form is

(e0, e1, e3, . . . , en−3, en−2, en−4, . . . , e2) .

Proof. It follows from the discussion above.

For example, the transition matrix of the bipartite walk on P8 is

U =



0 0 1 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 1 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 1 0 0 0
0 0 0 0 0 1 0


.

This correspond to the permutation (0135642) in S7 and we have that

U7 = I.
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Since U(P8) is a permutation matrix of order 7, it is easy to see that every edge of P8 can
be mapped to any other edges within 7 steps in the bipartite walk. This is an interesting
phenomenon called universal perfect state transfer. Note that if U is the transition matrix
of bipartite walk on Pn, then

Un−1 = I,

which implies that for every n, the bipartite walk on Pn has the universal perfect state
transfer. We will discuss this property further in the next section.

Cyclic permutation matrix U is of order n− 1, then it has eigenvalue

λk =
(
e

2πi
n−1

)k
with eigenvector

fk =
(

1 λ−1k λk λ−2k λ2k · · · λ
−(n−2)/2
k λ

(n−2)/2
k

)T
, (8.2)

for k = 0, . . . , n− 2. The λk-eigenspace of U is

Eλk =
1

n− 1
ff ∗.

Note that E1 = 1
n−1J.

From the eigenvectors (8.2) of U , we know that if s, t are integers in {1, . . . , n − 2},
we have that

(Eλr)s,t =



1
n−1(λr)

− s+1
2 (λr)

t+1
2 if both s, t are odd;

1
n−1(λr)

s
2 (λr)

t+1
2 if s is even and t is odd;

1
n−1(λr)

− s+1
2 (λr)

− t
2 if s is odd and t is even;

1
n−1(λr)

s
2 (λr)

− t
2 if both s, t are even.

(8.3)

Theorem 13. For an even n > 4, the H-digraph obtained from the bipartite walk on Pn
is an oriented Kn−1.

Proof. As the discussion above, the transition matrix of bipartite walk on Pn has spectral
decomposition

U =
n−2∑
k=0

λkEλk ,

where

λk =
(
e

2πi
n−1

)k
.

When n is even, the Hamiltonian of U is

H =

(n−2)/2∑
k=0

2kπ

n− 1

(
Eλk − Eλk

)
.
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To prove that the H-digraph is an oriented complete graph, we show that the Hamil-
tonian H has non-zero off-diagonal entries. As shown above that the eigenvector of U
with eigenvalue λk is of the form 8.2, each row of Eλk is a permutation of its first row,
which implies that each row of H is a permutation of its first row. So in order to prove
that all the off-diagonal entries of H are non-zero, it is sufficient to prove that

H0,t 6= 0

for all t 6= 0.
Based on the formula of the (s, t)-th entry of Eλr shown in 8.3 we have that for

r ∈ {0, 1, 2, . . . , n− 2} and, s, t ∈ {0, 1, . . . , n− 2}, we have that

(
Eλr − Eλr

)
s,t

=



2
n−1 sin

(
2πr
n−1 ·

t−s
2

)
i, if both s, t are odd;

2
n−1 sin

(
2πr
n−1 ·

s+t+1
2

)
i if s is even and t is odd;

2
n−1 sin

(
2πr
n−1 ·

−t−s−1
2

)
i, if s is odd and t is even;

2
n−1 sin

(
2πr
n−1 ·

s−t
2

)
i, if both s, t are even.

0 if s = t.

Then entries of the first row of H are

(H)0,t =

(n−2)/2∑
k=0

2kπ

n− 1
(Eλk)0,t =


∑(n−2)/2

k=0
4kπ

(n−1)2 sin
(
2kπ
n−1 ·

t+1
2

)
if t is odd;∑(n−2)/2

k=0
4kπ

(n−1)2 sin
(
2kπ
n−1 ·

−t
2

)
if t is even;

0 if t = 0

When n = 2a + 2 for some integer a > 1, then for each positive odd integer b, we have
that

(n−2)/2∑
k=0

2kπ

n− 1
sin

(
2kπ

n− 1
· b
)

=
π csc

(
bπ

2a+1

) (
2(a+ 1) + sin

(
2bπ(a+1)
2a+1

)
csc
(
b·π

2a+1

))
4a+ 2

(8.4)

and for each positive even integer b, we have that

(n−2)/2∑
k=0

2kπ

n− 1
sin

(
2kπ

n− 1
· b
)

=
π csc

(
bπ

2a+1

) (
−2(a+ 1) + sin

(
2bπ(a+1)
2a+1

)
csc
(
b·π

2a+1

))
4a+ 2

.

(8.5)
Since the sine function is an odd function, we only need to show that H0,t 6= 0 for all odd
1 6 t 6 n

2
. Since csc(x) 6= 0 over all its domain and when 1 6 b 6 a+ 1,

sin

(
2bπ(a+ 1)

2a+ 1

)
csc

(
b · π

2a+ 1

)
± 2(a+ 1) 6= 0.

the electronic journal of combinatorics 31(4) (2024), #P4.10 19



The sum shown in 8.5 and 8.4 are non-zero for all 1 6 b 6 a+ 1. Thus, we have that

(H)0,t 6= 0

for all t 6= 0. Therefore, we can conclude that the H-digraph is an oriented Kn−1.

Note that when n is odd, the adjacency matrix of Pn is not invertible and so we
consider the Hamiltonian of U2. When n = 3, the Hamiltonian of U2 is zero matrix.
When n ≡ 1 (mod 4), the square of its transition matrix U2 still has −1 as an eigenvalue,
which implies that there is no real skew-symmetric S such that Hamiltonian of U2 is of
the form iS. So here, we omit the case when n ≡ 1 (mod 4).

Corollary 14. When n ≡ 3 (mod 4), let

U2 = exp(iH),

then H is the weighted skew adjacency matrix of two copies of oriented Kn−1
2

.

Proof. By Theorem 12, we know that U2 corresponds to two
(
n−1
2

)
-cycles. Each

(
n−1
2

)
-

cycle is equivalent to the permutation associated with the transition matrix of Pn+1
2

. The

result follows from Theorem 13.

Even cycles are another class of bipartite graphs that cannot be raised from the vertex-
face incidence relation of a circular embedding.

For an even integer n, consider a path Pn with the same labelling as before and add an
edge en−1 between v0, vn−1, which gives us a even cycle Cn. Partition π0 are the partition
of edges based on vertices {v1, v3, . . . , vn−1} and partition π1 are the partition of edges
based on vertices {v0, v2, . . . , vn−2}.

01

23

45

e0

e1

e2

e3

e4

e5

Figure 4: C6.

When n is even and U is the transition matrix of bipartite walk on Cn, using the same
argument as we do when we discuss the transition matrix of bipartite walk on paths, we
have that

Uei =

{
ei+2 (mod n) if i is odd;

ei−2 (mod n) if i is even.
(8.6)

the electronic journal of combinatorics 31(4) (2024), #P4.10 20



Theorem 15. When n is even, the transition matrix U of the bipartite walk on Cn is a
cyclic permutation matrix of order n/2.

Proof. The mapping relation 8.6 implies that U is a cyclic permutation whose cycle form
is

(e0, en−2, · · · , e2)(e1, e3, . . . , en−1).

Note that eigenvalues of Cn are{
2 cos

(
2πk

n

)
: k ∈ {0, 1, . . . , n− 1}

}
.

So when n ≡ 0 (mod 4), the adjacency matrix of Cn is not invertible and we consider the
Hamiltonian of U2 instead.

Corollary 16. Let U be the transition matrix of bipartite walk on Cn for some even n.
When n ≡ 2 (mod 4), let H be the Hamiltonian of U , then the corresponding H-digraph
is two copies of a weighted oriented Kn

2
. When n ≡ 0 (mod 4) and n > 12, let H be

the Hamiltonian of U2, then the corresponding H-digraph is three copies of a weighted
oriented Kn

4
.

Proof. From Theorem 15, the transition matrix of U is two n
2
-cycles and each cycle is

the permutation associated with the transition matrix of bipartite walk on Pn
2
+1. Results

follow from Theorem 13 and Corollary 14.

Note that when n = 4, the Hamiltonian of U is zero matrix. When n = 8, the transition
matrix U and U2 both have −1 as eigenvalues. There is no real skew-symmetric S such
that the Hamiltonian of U or the Hamiltonian of U2 is of the form iS and so, we omit
the case when n = 8.

9 Universal PST

Let U be the transition matrix of the continuous walk defined over graph G, then we say
there is perfect state transfer from state a to state b if

|U(t)a,b| = 1.

A graph G has universal perfect state transfer if it has perfect state transfer between
every pair of its vertices. According to Cameron et al. in [3], the only known graphs that
have universal perfect state transfer are oriented K2, C3 with constant weight i assigned
on each arc.

In this section, we show that bipartite walk can help us to construct weighted oriented
graphs where the continuous quantum walk has universal perfect state transfer. Note that
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when we talk about continuous walks on weighted graph, the Hamiltonian is the weighted
adjacency matrix A of the graph, i.e., the transition matrix is of the form

exp(iA).

If the transition matrix U of a bipartite walk is a permutation matrix with finite order,
then its H-digraph has universal perfect state transfer.

Lemma 17. Let G be a connected bipartite walk. The transition matrix of the bipartite
walk on G is a permutation matrix if and only if every vertex of G has degree either 1 or
2.

Proof. Here, we use the same notations as defined in Section 2. If every vertex of G has
degree either 1 or 2, using the same notations as before, then both 2P − I and 2Q − I
are permutation matrices. Hence, the transition matrix U is also a permutation matrix.

For the other direction, note that 2P − I, 2Q − I are reflections about the spaces
spanned by characteristic vectors of cells of π0, π1 respectively and cells in one partition
are disjoint. Then in order for U to map an edge ei to another edge ej, the size of each
cell of both partitions π1, π2 cannot be greater than two.

We have shown in Theorem 12 that the transition matrix of the bipartite walk over
Pn for some even n is a permutation matrix with finite order. We can use this to produce
weighted graphs over which continuous walks have universal perfect state transfer.

The following theorem follows directly from the fact that Un−1 = I and Theorem 13.

Corollary 18. Let n be an even integer. Let s, t be distinct integer in {0, . . . , n− 2}. we
define

α =



t−s
2
, if both s, t are odd;

s+t+1
2

if s is even and t is odd;

−t−s−1
2

, if s is odd and t is even;

s−t
2
, if both s, t are even.

.

When n is even, the edge (s, t) of Kn−1 is assigned with weight

2

n− 1

n
2
−1∑
r=1

2πr

(n− 1)
sin

(
2πr

n− 1
α

)
for all distinct s, t ∈ {0, . . . , n−2}. Let A be the weighted adjacency matrix of the resulting
weighted Kn−1. Then the continuous walk with transition matrix exp(iA) has universal
perfect state transfer and every state will get transferred perfectly to any other state within
time t 6 n− 1.
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10 Open questions

Since continuous quantum walks whose Hamiltonians are symmetric, perfect state transfer
is symmetric. That is, in continuous walks, there exists time t when there is perfect state
transfer from state a to b and from state b to a. However, perfect state transfer in the
discrete quantum walk is not necessarily symmetric. Because the transition matrices of
discrete quantum walks are not symmetric in general, there is no guarantee that there
exists a positive integer k such that at k-th step there is perfect state transfer between
two states. In fact, there may be cases where there is perfect state transfer from state a
to state b while there is no perfect state transfer from state b to state a.

Recall that the transition matrix of the bipartite walk defined on the graph in Figure 1
is

U =



0 −1
3

0 2
3

2
3

0 0

0 0 0 0 0 0 1

0 2
3

0 2
3

1
3

0 0

0 2
3

0 −1
3

2
3

0 0

0 0 1 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 0 1 0


.

State ei is the characteristic vector of i. It is easy to see that there is perfect state transfer
from state e1 to e6 at step k = 1. But up to k = 300000 steps, there is no perfect state
transfer observed from e6 to e1. We suspect that there is no perfect state transfer from
e6 to e1. We would like to find a condition on graph G that determines whether or not
perfect state transfer is symmetric.

So far, the graphs we observed, over which bipartite walks defined has perfect state
transfer, all have minimum degree at most two. We would like to know if there is any
graph G with minimum degree at least three that has perfect state transfer in the bipartite
walk defined on G.

We would like to know how the structure of the graph G affects behaviors of state
transfer in the bipartite walk and if there is any feature of bipartite walk that can be
determined by the combinatorial or algebraic properties of the graph it is defined on.
This will be the future direction of our studies.
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