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Abstract

A spherical three-distance set is a collection X of unit vectors in Rn such that
the set of distances between any two distinct vectors has cardinality three. In this
paper, we use the semidefinite programming method to improve the upper bounds
for spherical three-distance sets in various dimensions. Specifically, we obtain better
bounds in R7, R20, R21, R23, R24, and R25. Our results show that the maximum
size of a spherical three-distance set is 2300 in R23.
Mathematics Subject Classifications: Primary 52C35; Secondary 14N20, 90C22,
90C05

1 Introduction

A spherical s-distance set is a finite collection X of unit vectors in Rn such that the set
of distances between any two distinct vectors has size s. This problem of finding the
maximum size of spherical s-distance sets in Rn has been extensively studied, dating back
to the work of Delsarte, Goethals, and Seidel [DGS77]. They proved an upper bound on
the cardinality of a spherical s-distance set X, given by the following formula:

|X| ⩽
(
n+ s− 1

n− 1

)
+

(
n+ s− 2

n− 1

)
. (1)

For instance, if s = 2, then |X| ⩽ n(n+3)
2

, and if s = 3, then |X| ⩽ n(n+1)(n+5)
6

. Spherical
designs can be considered as well-distributed sampling points on a sphere, and maximum
spherical s-distance sets are closely related to tight spherical t-designs. The notion of
spherical designs was introduced by Delsarte, Goethals, and Seidel [DGS77], and the
definition is as follows:
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A finite set of points on a sphere X is called a spherical t-design in Rn if it satisfies
the following equality for all polynomials f of degree at most t:

1

|Sn−1|

∫
Sn−1

fds =
1

|X|
∑
y∈X

f(y). (2)

Also, there exist lower bounds on the size of spherical t-designs:

|X| ⩾


(
n+s−1
n−1

)
+
(
n+s−2
n−1

)
if t is even and t = 2s,

2
(
n+s−1
n−1

)
if t is odd and t = 2s+ 1.

(3)

If a spherical design attains the inequality mentioned above, it is called a tight spherical
design. Tight spherical designs have only a few distinct distances between their points. A
tight spherical 2s-design is a spherical s-distance set that attains the bound in equation
(3) [DGS77]. Similarly, a tight spherical (2s−1)-design is an antipodal s-distance set. For
example, a tight spherical 6-design is a spherical three-distance set, and a tight spherical 7-
design is an antipodal four-distance set. By taking half of the antipodal four-distance set,
we obtain a spherical three-distance set. Taking half of an antipodal set means selecting
only one point from each pair of antipodal points.

For s = 2, which corresponds to the maximum size of spherical two-distance sets,
significant progress has been made by Musin [Mus09], Barg-Yu [BY14], Yu [Yu17], and
Glazyrin-Yu [GY18]. In fact, the maximum size of spherical two-distance sets in Rn is
almost known for every dimension. It is n(n+1)

2
except for some possible exceptions when

n = (2k+1)2 − 3, where k ∈ N [GY18]. However, for s = 3, little is known. The problem
has only been solved for dimensions n = 2, 3, 4, 8, and 22. In this paper, we solve this
problem for R23, where the answer is 2300 points with inner product values ±1

3
, 0 (Table

1). The configuration is half of a tight spherical 7-design, which is a sharp code (a four-
distance set and a 7-design), and also a universal optimal code discussed in Cohn-Kumar
[CK07].

n Size Structure Inner product value
2 7 Heptagon (attaining bound (1))
3 12 Icosahedron [Shi13] (−1,−

√
5/5,

√
5/5)

4 13 Theorem 3.5 of [SÖ20]
8 120 Subset of E8 root system [MN11] (−1/2, 0, 1/2)
22 2025 Subset of the minimum vectors in the Leech

lattice [MN11]
(−4/11,−1/44, 7/22)

23 2300 Half of a tight spherical 7-design [*new re-
sult]

(−1/3, 0, 1/3)

Table 1: Known results of maximum spherical three-distance sets in Rn.
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The tight spherical 7-design in R23 is also known as the kissing configuration, consisting
of 4600 points with inner product values −1, 0,±1

3
. Interestingly, we prove that half of

this configuration forms the maximum spherical three-distance set in R23. The uniqueness
of the tight spherical 7-design has been discussed in previous work [BS81, Cuy05, CK07],
and it can be constructed as a subset of the Leech lattice: {x ∈ Leech lattice : ⟨x · e1⟩ =
1
2
, e1 = (1, 0, 0, . . . , 0)}. The Leech lattice is an elegant configuration with many interesting

properties, such as being the solution to the sphere packing problem [CKM+17] and the
kissing number problem [BV08, OS79] in R24. We can also note that a slice of the Leech
lattice yields a maximum spherical three-distance set in one lower dimension, which is
another interesting property.

Tight spherical 7-designs exist only in very specific dimensions; specifically, when the
dimension n is equal to three times the square of an integer minus 4, that is, n = 3k2− 4,
where k ∈ N and k ⩾ 2 [BB09]. For k = 2, i.e. n = 8, the tight spherical 7-design
in R8 corresponds to the root system of E8. Musin and Nozaki [MN11] proved that the
maximum spherical three-distance set in R8 is formed by half of the E8 root system,
which consists of 120 points. Our result extends this to k = 3 and n = 23. We prove
that half of the tight spherical 7-design in R23 is also a maximum spherical three-distance
set in R23. Could you consider investigating the existence of tight spherical 7-designs
for k ⩾ 4? Unfortunately, the existence is not yet clear for k ⩾ 4, which means that
there are currently no known constructions for tight spherical 7-designs in dimensions
n = 44, 71, 104, · · · . Bannai, Munemasa, and Venkov [BMV05] have proven some cases of
nonexistence. However, there are still infinitely many cases that remain open. We believe
that any tight spherical 7-design will give rise to a maximum spherical three-distance set,
but a proof of this assertion is still elusive.

We define A(Sn−1) as the maximum size of spherical 3-distance sets in Sn−1, where
Sn−1 is the unit sphere in Rn. Our work is motivated by Barg and Yu [BY13], who
used the semidefinite programming (SDP) method to improve the upper bounds for the
size of spherical two-distance sets. They obtained exact values of 276 for dimension
n = 23 and n(n+1)

2
for 40 ⩽ n ⩽ 93 except for n = 46 and n = 78. Musin and Nozaki

[MN11] improved the upper bounds for A(Sn−1) using Delsarte’s linear programming
method. They obtained exact answers for A(S7) = 120 and A(S21) = 2025. Additionally,
they improved upper bounds for dimensions from n = 6 to 50, e.g., A(S6) ⩽ 91. Our
contribution is to achieve tighter upper bounds using the SDP method. We prove that
A(S6) ⩽ 84, A(S19) ⩽ 1540, A(S20) ⩽ 1771, A(S23) ⩽ 2600, A(S24) ⩽ 2925, and we obtain
the exact answer for R23, where A(S22) = 2300. We summarize our results in Table 4 for
readers’ convenience.

This paper is organized into the following sections: Section 1 provides a brief introduc-
tion to spherical three-distance sets. Section 2 discusses previous methods for obtaining
upper bounds on the maximum size of spherical three-distance sets, including absolute
harmonic bounds and linear programming bounds. Section 3 introduces the concept of
semidefinite programming and its application to improving upper bounds on A(Sn−1).
Section 4 presents a method that combines Nozaki’s theorem (Theorem 6) with SD-
P/LP methods to perform sampling on the (0, 1) interval. Section 5 uses the sum of
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squares method to rigorously prove the relationship between the sampling points. Section
6 includes discussions and conclusions.

2 Previous methods

In this section, we introduce two previous methods for studying the upper bounds of
spherical three-distance sets: the harmonic absolute bounds and the linear programming
bounds.

Denote the Gegenbauer polynomials of degree k with dimension parameter n as Gn
k(x).

They are defined using the following recurrence relation:

Gn
0 (x) = 1, Gn

1 (x) = x,

Gn
k(x) =

(2k + n− 4) xGn
k−1(x)− (k − 1)Gn

k−2(x)

k + n− 3
, k ⩾ 2.

For instance, we have:

Gn
2 (x) =

nx2 − 1

n− 1
, Gn

3 (x) =
x

n− 1

(
nx2 + 2x2 − 3

)
.

These Gegenbauer polynomials play important roles in the harmonic absolute bounds.

Harmonic absolute bound

Harmonic absolute bound (HB) was originally proven by Delsarte [Del73a, Del73b, Lev92].
A more advanced version is mentioned in Godsil’s [God17] book, while Nozaki [Noz09]
provides detailed proof in his paper.

Theorem 1. (Harmonic absolute bound) [God17][Noz09]
Let X be a three-distance set in Sn−1 ⊂ Rn with D(X) = {d1, d2, d3}, where D(X)

collects all the inner product values of any two distinct points in X. Consider the poly-
nomial f(x) =

∏3
i=1(x − di) and suppose its expansion in the basis Gn

k(x) has the form

f(x) =
3∑

k=0

fn
k G

n
k(x) in the basis Gn

k . Then, we have

|X| ⩽
∑

k:fn
k >0

hn
k ,

where hn
k =

(
n+k−1

k

)
−
(
n+k−3
k−2

)
which represents the dimension of linear space of all real

harmonic homogeneous polynomials of degree k.

If we are given the dimension and three inner product values, we can calculate the
harmonic bounds. Let’s consider the following example:
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Example 2. Considering the half of tight spherical 7-designs in R23, the three inner
product values between distinct points are (−1

3
, 0, 1

3
). We calculate the harmonic bounds

with given three inner product values in the following.

Let f(x) =
∏3

i=1(x− di) =
3∑

k=0

fn
k G

n
k(x), fn

k can be written as the following term:

fn
0 = −d1d2d3 −

d1 + d2 + d3
n

,

fn
1 = d1d2 + d1d3 + d2d3 +

3

n+ 2
,

fn
2 =

1− n

n
(d1 + d2 + d3),

fn
3 =

n− 1

n+ 2
.

Substitute fn
k with the dimension n = 23, and (d1, d2, d3) = (−1

3
, 0, 1

3
), then fn

1 , f
n
3 > 0

and fn
0 , f

n
2 ⩽ 0. Thus, the harmonic absolute bound is

|X| ⩽
∑

k:fn
k >0

hn
k = hn

1 + hn
3 = 23 + 2277 = 2300.

Linear programming bound

Linear programming (LP) is another method to estimate the upper bound of spherical
few distance sets. This theorem is established by Delsarte et al. [DGS77]. Musin and
Nozaki [MN11] incorporate LP method and Nozaki theorem (Theorem 6) to obtain the
upper bound of spherical codes.

Theorem 3. (Delsarte’s inequality) [DGS77]
For any finite set of points X ⊂ Sn−1∑

(x,y)∈X2

Gn
k(⟨x, y⟩) ⩾ 0, ∀k ∈ N.

Delsarte proved this inequality by the addition formula for spherical harmonics. With
this linear inequality, we can derive the Delsarte linear programming bounds for the
spherical three-distance sets.

Theorem 4. (Delsarte’s linear programming bound) [MN11][DGS77]
Let X ∈ Sn−1 be a finite set and assume that for any x, y ∈ X, ⟨x, y⟩ ∈ {d1, d2, d3}.

Then the cardinality of X is bounded above by the solution of the following linear pro-
gramming problem:

maximize 1 + x1 + x2 + x3 (4a)

subject to 1 + x1G
n
k(d1) + x2G

n
k(d2) + x3G

n
k(d3) ⩾ 0, ∀k ∈ N (4b)

xj ⩾ 0, j = 1, 2, 3. (4c)
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Therefore, if the dimension n and the three inner product values d1, d2, d3 are given,
we can solve the above LP problem to obtain the upper bounds for the size of a spherical
three-distance set. For instance, if we set n = 23, (d1, d2, d3) = (−1/3, 0, 1/3) (half of a
tight 7-design in R23) and k ⩽ 18, we can obtain the upper bound 2300 which is coherent
to the harmonic bound Example 2.

3 Semidefinite programming method

3.1 Semidefinite Programming

A semidefinite program (SDP) is an optimization problem of the form [VB96]

minimize cTx

subject to F (x) ⪰ 0,

where
F (x) ≜ F0 +

m∑
i=1

xiFi.

The vector c ∈ Rm and F0, · · · , Fm are symmetric matrices in Rn×n. The inequality sign
in F (x) ⪰ 0 means that F (x) is positive semidefinite, i.e.,

zTFz ⩾ 0, ∀z ∈ Rn.

SDP is an extension of linear programming, which has been utilized to bound the
size of codes under specific constraints. For instance, Schrijver [Sch05] applied the SDP
method to enhance the bounds for the A(n, d) problem, which seeks the maximum size of
a binary code of length n with the constraint of a minimum distance at least d. Schrijver’s
work was grounded in the block diagonalization of the Terwilliger algebra of the Hamming
cube.

As another example, the kissing number problem has also been improved by SDP.
This problem seeks to determine how many unit spheres can touch the center unit sphere
without overlapping. It is equivalent to finding the maximum size of spherical codes such
that each pair of points has inner product values in the interval [−1, 1/2].

Bachoc-Vallentin [BV08] applied SDP to enhance the upper bounds for the kissing
number problem in various dimensions. We adapted their formula to the case of spherical
three-distance sets. The SDP method might yield tighter upper bounds compared to the
linear programming method, as we incorporate matrix constraints in addition to the linear
constraints.

Following [BV08], we define the matrices Y n
k (u, v, t) and Sn

k (u, v, t) with dimensions
(pSDP−k+1)×(pSDP−k+1), where pSDP is the parameter of the SDP matrix constraints.

For all 0 ⩽ i, j ⩽ pSDP − k,

(Y n
k (u, v, t))ij = uivj((1− u2)(1− v2))

k
2Gn−1

k

(
t− uv√

(1− u2)(1− v2)

)
, 0 ⩽ k ⩽ pSDP,
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Sn
k (u, v, t) =

1

6

∑
σ∈S3

Y n
k (σ(u, v, t)),

Sn
k (1, 1, 1) = 0M , k ⩾ 1,

where σ(u, v, t) represents all permutations in the permutation group S3. 0M denotes
the zero matrix.

Then ∑
(x,y,z)∈X3

Sn
k (x · y, x · z, y · z) ⪰ 0.

Semidefinite programming bound

Barg and Yu [BY13] utilized SDP to derive upper bounds for spherical two-distance sets.
Nozaki proved that d1 and d2 can be expressed as functions of d3 (Theorems 6, 7, 8).
We incorporated their approach to implement SDP programming for establishing upper
bounds on spherical three-distance sets.

Theorem 5. Let pLP , pSDP be the parameters of LP constraints and SDP matrix con-
straints. 1 If X is a spherical three-distance set with inner product values d1, d2, d3 in Rn,
then the cardinality of X is bounded above by the solution of the following semidefinite
programming problem:

maximize 1 +
1

3
(x1 + x2 + x3) (5a)

subject to
(
1 0
0 0

)
+

1

3

(
0 1
1 1

)
(x1 + x2 + x3) +

(
0 0
0 1

)
13∑
i=4

xi ⪰ 0, (5b)

3 + x1G
n
k(d1) + x2G

n
k(d2) + x3G

n
k(d3) ⩾ 0, k = 1, 2, · · · , pLP , (5c)

Sn
k (1, 1, 1) + x1S

n
k (d1, d1, 1) + x2S

n
k (d2, d2, 1) + x3S

n
k (d3, d3, 1)

+ x4S
n
k (d1, d1, d1) + x5S

n
k (d2, d2, d2) + x6S

n
k (d3, d3, d3)

+ x7S
n
k (d1, d1, d2) + x8S

n
k (d1, d1, d3) + x9S

n
k (d2, d2, d1)

+ x10S
n
k (d2, d2, d3) + x11S

n
k (d3, d3, d1) + x12S

n
k (d3, d3, d2)

+ x13S
n
k (d1, d2, d3) ⪰ 0, k = 0, 1, 2, · · · , pSDP ,

(5d)

xj ⩾ 0, j = 1, 2, · · · , 13. (5e)

In this theorem, the variables xi represent the number of triple points in X associated
with certain combinations of inner product values d1, d2, d3, and 1. For instance, x1 is
related to the counting of triple points in X where the three inner product values are
(d1, d1, 1). In a similar setting, x2 corresponds to (d2, d2, 1), and so on up to x13, which
is associated with (d1, d2, d3).

1In our paper, we set (pLP , pSDP ) = (18, 6). Besides, we also tried with (pLP , pSDP ) = (18, 5), then
our experiment is not able to obtain the upper bound A(S22) ⩽ 2300. We conclude that the matrix
condition with pSDP = 6 is crucial, though we do not have a theoretical explanation.
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4 Discrete sampling points with Nozaki theorem

With given three inner product values d1, d2, d3, we can explore the harmonic absolute
bound (Section 2), the linear programming bound (Section 2), and the semidefinite
programming bound (Section 3.1). Moreover, when the size of X is sufficiently large,
there exist certain relations among d1, d2, d3. In this section, we introduce Nozaki’s The-
orem. With this result, we can express d1, d2 as function of d3, thereby reducing the three
variables d1, d2, d3 to a single variable d3. Upon reduction to a single variable d3, we
sample points in the interval d3 ∈ (0, 1) 2 3.

First, define

(K1, K2, K3) = (
(d2 − 1)(d3 − 1)

(d2 − d1)(d3 − d1)
,
(d1 − 1)(d3 − 1)

(d1 − d2)(d3 − d2)
,
(d1 − 1)(d2 − 1)

(d1 − d3)(d2 − d3)
).

Then, if the size of spherical three-distance set is large enough, then Ki will be integers
and bounded above.

Theorem 6. (Nozaki Theorem) [Noz11]
If X is a spherical three-distance set and the size of X is greater than or equal to

2N(Sn−1), then (K1, K2, K3) are all integers, and Ki are bounded as follows:

|Ki| ⩽ ⌊1/2 +
√

N(Sn−1)2/(2N(Sn−1)− 2) + 1/4⌋, i = 1, 2, 3.

where N(Sn−1) := hn
0 + hn

1 + hn
2 .

The numbers (K1, K2, K3) also satisfy the following equation [MN11].
K1 +K2 +K3 = 1

d1K1 + d2K2 + d3K3 = 1

d21K1 + d22K2 + d23K3 = 1.

(6)

Through observation of (K1, K2, K3) and simple calculation, we can derive more prop-
erties involving (K1, K2, K3). (Prop 7)

Proposition 7. K1, K2 and K3 have the following properties when −1 ⩽ d1 < d2 < d3 <
1.

1. |K1| < |K2|

2. K1K2 < 0

3. K1 ̸= 0, K2 ̸= 0, K3 ̸= 0.
2If d1 < d2 < d3 and d3 < 0, then the cardinality of the set is at most 2n+1 by Rankin’s bound [Ran47].
3For the sampling experiment in the paper, we place 1000 uniform sampling points for the interval
d3 ∈ (0, 1).
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Furthermore, we can solve the system of equations 6. Without loss of generality, let’s
assume that d1 < d2 < d3, and then we can find the roots using the Matlab Symbolic

Toolbox [TM19]:

(d1, d2) = (
K1 − d3K1K3 − (d3 − 1)

√
−K1K2K3

K1(K1 +K2)
,
K2 − d3K2K3 + (d3 − 1)

√
−K1K2K3

K2(K1 +K2)
)

or

(d∗1, d
∗
2) = (

K1 − d3K1K3 + (d3 − 1)
√
−K1K2K3

K1(K1 +K2)
,
K2 − d3K2K3 − (d3 − 1)

√
−K1K2K3

K2(K1 +K2)
)

However, (d∗1, d∗2) is invalid. By proposition 7,

d∗1 − d∗2 =
(d3 − 1)

√
−K1K2K3

K1K2

⩾ 0.

This contradicts the initial assumption d∗1 < d∗2. Therefore, the following theorem
holds.

Theorem 8. Suppose that d1 < d2 < d3. Using the system of equations 6, we can solve
for d1 and d2 with the following formula:

d1 =
K1 − d3K1K3 − (d3 − 1)

√
−K1K2K3

K1(K1 +K2)

d2 =
K2 − d3K2K3 + (d3 − 1)

√
−K1K2K3

K2(K1 +K2)

Theorem 9. (Improved bounds of [MN11] with SDP)
Let D(Sn−1) denote the set of all possible spherical three distances D(X) = {d1, d2, d3}

such that (K1, K2, K3) are integers and satisfy the upper bounds in Theorem 6. For
each D ∈ D(Sn−1), we have two bounds: the Harmonic absolute bound (HB) [1] and the
semidefinite programming bound (SDP) [3.1]. The following result holds:

Let
B(D) := min

D∈D(Sn−1)
{SDP (D), HB(D)}, 4

then
A(Sn−1) ⩽ max

D∈D(Sn−1)
{B(D), 2N(Sn−1)− 1}.

Notice that the above theorem is not rigorous until we use the sum of squares (SOS)
methods to guarantee that there is no significant oscillation between the sampling points.
The details can be found in ”Section 5.”

We illustrate the upper bound in Figure 1.
4In Musin and Nozaki’s paper [MN11], they use two bounds: harmonic absolute bound HB and
Delsarte’s linear programming bound LP . Therefore, they define the upper bound B(D) :=
minD∈D(Sn−1){LP (D),HB(D)}.
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Figure 1: Sampling points figure with (K1, K2, K3) = (1,−3, 3) on R7

In the blue region of Figure 1, LP/SDP bound will become unbounded when d3 is
close to 1. Therefore, we utilize the harmonic bound to control this area. Furthermore,
the harmonic bound in this region is always less than or equal to h1 + h3 (which is 84,
if n = 7). On the other hand, the performance of LP/SDP bounds is consistently better
than the harmonic bound in the red region. However, in certain cases of (K1, K2, K3),
the LP bound is worse than the harmonic bound in the blue region. In fact, SDP plays
a crucial role in dominating the red region with a much smaller upper bound. We can
observe how the SDP bounds outperform the LP bounds in Table 2.

When the dimension n is given, there are many possibilities for (K1, K2, K3) in Rn.
Our SDP method only improves the upper bounds of certain (K1, K2, K3), but these im-
provements do indeed contribute to enhancing the overall upper bounds. For example, for
n = 23 and Ki = (1,−3, 3) and (2,−6, 5), the LP bounds are 2385 and 2319 respectively.
The SDP bounds are 1072 and 1693 respectively, which are crucial improvements that
SDP can achieve by proving the upper bounds to 2300, a feat that LP cannot accomplish.
For other cases not listed, the LP bounds are already well controlled below 2300. We will
include additional figures in the Appendix.

In these dimensions, there are 338 different possible choices of (K1, K2, K3). The
number of choices for Ki is determined by Theorem 6. For example, in R7, there are six
choices of Ki: (1,−4, 4), (1,−3, 3), (1,−2, 2), (2,−4, 3), (2,−3, 2), and (3,−4, 2). We have
successfully improved 12 cases of (K1, K2, K3) out of all 338 cases. (see Table 3)
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Dimension (K1, K2, K3) Max LP of Red region Max SDP of Red region HB of Blue region
7 (1, -3, 3) (91.22, (d3 = 0.474)) (80.23, (d3 = 0.479)) 84
20 (1, -4, 4) (1589.65, (d3 = 0.543)) (756.18, (d3 = 0.543)) 1540
21 (2, -6, 5) (1867.02, (d3 = 0.420)) (1332.83, (d3 = 0.420)) 1771
23 (1, -3, 3) (2385.60, (d3 = 0.590)) (1072.29, (d3 = 0.593)) 2300
23 (2, -6, 5) (2319.82, (d3 = 0.421)) (1693.01, (d3 = 0.430)) 2300
23 (3, -8, 6) (2300.03, (d3 = 0.332)) (2298.12, (d3 = 0.333)) 2300
24 (1, -5, 5) (2821.84, (d3 = 0.500)) (1594.81, (d3 = 0.500)) 2600
24 (1, -4, 4) (2681.29, (d3 = 0.556)) (1759.73, (d3 = 0.556)) 2600
24 (1, -3, 3) (2758.20, (d3 = 0.589)) (1293.60, (d3 = 0.596)) 2600
25 (1, -5, 5) (4138.41, (d3 = 0.511)) (2472.46, (d3 = 0.522)) 2925
25 (1, -4, 4) (3210.08, (d3 = 0.559)) (2238.27, (d3 = 0.559)) 2925
25 (1, -3, 3) (3166.53, (d3 = 0.588)) (1883.75, (d3 = 0.600)) 2925

Table 2: Sampling points table with SDP bounds perform better than LP bounds

Dimension Improved (K1, K2, K3) Total (K1, K2, K3)

7 1 6
20 1 55
21 1 55
23 3 66
24 3 78
25 3 78

Table 3: Numbers of improved (K1, K2, K3) with respect to total numbers

By combining the SDP bound of the red region with the harmonic bound of the blue
region, we obtain a new upper bound for R7, R20, R21, R23, R24, and R25. (see Table 4)

Dimension Original bound [MN11] New bound
7 91 84
20 1541 1540
21 1772 1771
23 2301 2300
24 2601 2600
25 2926 2925

Table 4: Our new results on upper bounds of maximum spherical three-distance sets
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5 Rigorous proof with sum-of-squares (SOS) decomposition

We presented the SDP bounds on the sampling points in the previous section. However,
there might be significant oscillation in the upper bounds between two adjacent sampling
points. We need a rigorous proof to ensure that the upper bound between the sampling
points is also well bounded. Theorem 5 provides us with the upper bound for a single
sampling point d3. We introduce another advanced approach, the sum-of-squares de-
composition (SOS), to handle the upper bound for the interval [a1, a2]. Let’s begin
with a simple example of SOS:

Example 10. (SOS example with YALMIP) 5

Given the non-negative polynomial constraint p(x) = x2+(y+2)x+(3−y) for x ∈ R, it
can be expressed as the sum of squares of polynomials [Hil88]. Our objective is to minimize
the objective function y2 − 3y + 1. We can perform sum-of-squares decomposition using
the YALMIP package in the MATLAB 2019a environment.

1 f un c t i on sos_example ( )
2 sdpvar x y
3 p = x^2 + (y+2)∗x + (3−y ) ;
4 F = sos (p ) ; % Create so s c o n s t r a i n t
5 obj = y^2 − 3∗y + 1 ; % Minimize ob j e c t f un c t i on
6 s o l v e s o s (F , obj ) ; % So lve so s problem
7 d i sp ( va lue ( obj ) ) % Show min ( obj )
8 d i sp ( va lue ( y ) ) % Show cor r e spond ing argument y
9 s d i s p l a y ( sosd (F) ) % Show sum−of−squar e s

decompos i t ion
10 end

After performing the calculation, we obtain min(obj) = −0.8888, with y = 0.8990.
The polynomial p(x) = x2 + (y + 2)x + (3 − y) can be expressed as the sum of (x +
1.44948974278)2 and (−4.39561910079 × 10−7x + 3.03252860027 × 10−7)2 numerically,
indicating a sum-of-squares decomposition.

We can provide further details about solvesos. Nesterov [Nes00] proved that a poly-
nomial p(x) can be expressed in sum-of-squares form if and only if there exists a posi-
tive semidefinite matrix Q such that p = XQXT , where X = (1, x, x2, · · · , xm) if deg
p = 2m. In this example, we can express the polynomial p(x) = x2 + (y + 2)x + (3 − y)

as p(x) =
(
1 x

)
Q

(
1
x

)
, where Q is a 2 by 2 semidefinite matrix. Therefore, this sum-

of-squares (SOS) problem is equivalent to the following semidefinite programming (SDP)
problem: 6

5YALMIP Sum-of-squares programming tutorial:
https://yalmip.github.io/tutorial/sumofsquaresprogramming/

6YALMIP will automatically transform the SOS problem into an SDP problem and use an SDP solver
to solve it.
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Example 11. (Equivalent format of SOS example 10)

minimize y2 − 3y + 1 (7a)

subject to
(
q11 q12
q21 q22

)
⪰ 0 (7b)

q11 = 3− y (7c)
q12 + q21 = y + 2 (7d)
q22 = 1 (7e)

Actually, our problem is much more complex than this simple example. Barg and Yu
[BY13] employed the SOS method to prove the upper bound of spherical two-distance
sets. Nozaki demonstrated that d1 and d2 could be expressed as functions of d3 (Theorem
6, 7, 8). We integrated their approach to perform sum-of-squares programming in order
to rigorously establish the upper bound of spherical three-distance sets.

We will proceed with the proof through the following steps:(1) Rewrite the original
SDP problem into its dual form and extend the non-negative polynomial constraints,
originally applicable only on the finite interval [a1, a2], to non-negative polynomials over
the entire real line R. (2) Convert the non-negative polynomial constraints over R into
a sum-of-squares decomposition. (3) Transform the constraints of the sum-of-squares
decomposition into an SDP problem.

Theorem 12. (SDP Dual Form of Theorem 5)

minimize 1 + {
pLP∑
i=1

αi + β11 + ⟨F0, S
n
0 (1, 1, 1)⟩} (8a)

subject to
(
β11 β12

β12 β22

)
⪰ 0 (8b)

2β12 + β22 +

pLP∑
i=1

(αiG
n
i (d1)) + 3

pSDP∑
i=0

⟨Fi, S
n
i (d1, d1, 1)⟩ ⩽ −1 (8c)

2β12 + β22 +

pLP∑
i=1

(αiG
n
i (d2)) + 3

pSDP∑
i=0

⟨Fi, S
n
i (d2, d2, 1)⟩ ⩽ −1 (8d)

2β12 + β22 +

pLP∑
i=1

(αiG
n
i (d3)) + 3

pSDP∑
i=0

⟨Fi, S
n
i (d3, d3, 1)⟩ ⩽ −1 (8e)

β22 +

pSDP∑
i=0

⟨Fi, S
n
i (y1, y2, y3)⟩ ⩽ 0 (8f)

αi ⩾ 0, i = 1, 2, · · · , pLP (8g)
Fi ⪰ 0, i = 0, 1, 2, · · · , pSDP (8h)
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where
(y1, y2, y3) ∈ {(d1, d1, d1), (d2, d2, d2), (d3, d3, d3), (d1, d1, d2), (d1, d1, d3),

(d2, d2, d1), (d2, d2, d3), (d3, d3, d1), (d3, d3, d2), (d1, d2, d3)}.

First, let’s rewrite the original SDP problem (Theorem 5) in its dual form. Con-
straints (8c)-(8f) impose positivity conditions on the univariate polynomials of d3 (where
d1 and d2 can be expressed as functions of d3, according to Nozaki’s theorem 6), denoting
d3 as a. To extend these non-negative polynomial constraints from the small interval
[a1, a2] to the entire real numbers, we can utilize the following theorem:

Theorem 13. If f(a) is a polynomial of degree m satisfies f(a) ⩾ 0 for a ∈ [a1, a2], then

f+(a) = (1 + a2)mf(
a1 + a2a

2

1 + a2
) ⩾ 0, ∀a ∈ R.

Proof. Define g(a) = a1+a2a2

1+a2
and consider the values of g on a ∈ [0,∞). The function

values at the boundary points of the interval [0,∞) are g(0) = a1, and lim
a→∞

g(a) = a2.

The function g is increasing for a ∈ [0,∞) since g′(a) = 2a(a2−a1)
(a2+1)2

⩾ 0. Consequently,
f(g(a)) is non-negative for a ∈ [0,∞). Moreover, g(a) is an even function and f(g(a)) is
also non-negative for a ∈ (−∞, 0]. Therefore, f+(a) = (1 + a2)mf(g(a)) is non-negative
for all real numbers.

Secondly, Hilbert proved that a non-negative polynomial over the entire real numbers
can be expressed as the sum of squares [Hil88]. Specifically, f+(a) =

∑
i r

2
i (a), where ri are

polynomials. Finally, according to Nesterov’s result [Nes00], a polynomial f+(a) can be
expressed in sum-of-squares form if and only if there exists a positive semidefinite matrix
Q such that f+ = XQXT , where X = (1, a, a2, · · · , am) if deg f+ = 2m. Therefore,
constraints (8c)-(8f) can be reformulated as conditions involving positive semidefinite
matrices.

If there are positive semidefinite matrices M1,M2, . . . ,Mk, then we can deduce that

the block matrix

M1 0 ··· 0
0 M2 ··· 0
... ... ... ...
0 0 ··· Mk

 is also positive semidefinite. We employ this technique

to handle the constraints involving semidefinite matrices.
Consider d3 ∈ I = [0, 1]. Partition it into n sub-intervals Ik, where Ik = [ i−1

n
, i
n
].

Denote the upper bound as UB, UB(I) := max
k∈[1,n],k∈N

UB(Ik). In our SOS experiment, we

set n = 200, and each sub-interval has a width of 0.005.7 The results of the sum-of-squares
experiment are presented in Table 5.

The SOS decomposition ensures that there are no issues between the sampling points.
All values are smaller than the harmonic bound of the blue region, thus completing the
rigorous proof.

7Using a higher value of n would provide a tighter upper bound for I, but it would also require more
computing resources. To balance the accuracy of the upper bound and computational resources, we
choose n = 200 and the corresponding sub-interval width of 0.005.
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Dimension (K1, K2, K3)
SOS Decompostion Value

(covered Max SDP in Red Region)
Harmonic Bound

(Blue Region)

7 (1, -3, 3) SOS(0.475, 0.480) = 80.29 84
20 (1, -4, 4) SOS(0.540, 0.545) = 804.06 1540
21 (2, -6, 5) SOS(0.415, 0.420) = 1343.66 1771
23 (1, -3, 3) SOS(0.590, 0.595) = 1234.62 2300
23 (2, -6, 5) SOS(0.425, 0.430) = 1703.71 2300
23 (3, -8, 6) SOS(0.332, 0.335) = 2300.85 8 2300
24 (1, -5, 5) SOS(0.495, 0.500) = 1594.80 2600
24 (1, -4, 4) SOS(0.555, 0.560) = 2159.78 2600
24 (1, -3, 3) SOS(0.595, 0.600) = 1605.49 2600
25 (1, -5, 5) SOS(0.520, 0.525) = 2495.09 2925
25 (1, -4, 4) SOS(0.555, 0.560) = 2474.14 2925
25 (1, -3, 3) SOS(0.595, 0.600) = 2080.54 2925

Table 5: SOS Decomposition Value Covered Max SDP

6 Discussions and conclusions

We improved the bounds up to n = 25 since our SDP bounds did not perform well
in achieving tighter bounds for larger dimensions. For example, for n = 26 and Ki =
(1,−5, 5), the SDP bound exceeded the harmonic bound. Consequently, we did not
obtain better results than Musin-Nozaki [MN11]. In R23, we found that the SDP bound
for spherical three-distance sets is 2300, and we also have knowledge of constructing such
sets with 2300 points from tight spherical 7-designs. Therefore, we are curious about the
existence of constructions for spherical three-distance sets with 84 points in R7.

Initially, we considered the orbit of a group. Eiichi Bannai suggested trying the group
PSL(2, 7), which has an order of 168, just double our target of 84 points. We attempted
to find a suitable initial vector such that the orbit of the group action by PSL(2, 7) forms
a three-distance set with 84 points. However, the orbit of the irreducible or reducible
representation of PSL(2, 7) in 7 dimensions could not produce such three-distance sets.
Next, we performed numerical non-linear optimization to calculate the energy-minimizing
configuration of 84 points on S6.

Unfortunately, neither of these two methods has helped us find the desired construc-
tion. We will intensify our efforts to identify a more powerful algorithm capable of discov-
ering this construction. We firmly believe that such a construction exists for the 84 points
to form a spherical three-distance set in R7. If we manage to find such a construction, in
conjunction with our new bounds, we can establish that A(S6) = 84.

8Since SOS(0.330, 0.335) = 2302.64, it is not tight enough. We cut it into two smaller intervals, and
calculate their SOS result separately: SOS(0.330, 0.332) = 2297.42 and SOS(0.332, 0.335) = 2300.85.
This is the tighter upper bound.

the electronic journal of combinatorics 31(4) (2024), #P4.11 15



Currently, the largest known construction size for spherical three-distance sets on S6

is 64, which can be derived from a 3-class association scheme with 64 vertices and a Krein
array [7, 6, 5; 1, 2, 3]. Additionally, the half of the E7 root system forms a spherical
three-distance set in R7 with 63 vertices. However, it is evident that this cannot be the
maximum size.

We also attempted to estimate the upper bounds without relying on the integer con-
ditions of di (Nozaki Theorem 6). In R4 and R5, we conducted SDP on sampling points
covering all possible inner product values, effectively dividing the intervals of d1, d2, and
d3 into numerous segments. Specifically, we subdivided d1 ∈ (−1, 1) and d2 ∈ (−1, 1) into
100 segments each, and d3 ∈ (0, 1) into 50 segments. In R4, the numerical SDP bound
was reduced to 26, while LP yielded an upper bound of 27 [MN11]. For instance, for
(d1, d2, d3) = (−0.76,−0.16, 0.54), the LP bound was 27, whereas the SDP bound was 13.
In certain instances, the SDP bound appeared large, while at that moment, the harmonic
bound was 26. Therefore, the SDP method only yielded the optimal bound of 26 in R4.

However, [SÖ20] proved the bound to be 13 and provided the construction. In R5,
when we do not use Nozaki’s Theorem 6, the SDP bounds on some di are larger than the
harmonic bound (45 points). Therefore, we do not improve upon the results of Musin and
Nozaki [MN11]. For other dimensions, the results from sampling points do not improve the
upper bounds, and we opt to save our time by not conducting sum-of-squares experiments.

Furthermore, we attempt to utilize the bounds for s-distance sets proposed by Glazyrin
and Yu when s = 3. The bound is derived from the polynomial method and certain rank
arguments. Readers can refer to Section 2.3 in [GY18] for further details. According to
Corollary 3 in [GY18], if X is a spherical three-distance set in Rn with inner product
values (d1, d2, d3), then

|X| ⩽ 1 + n(n+ 3)

1− n−1
(n+2)(1−d1)(1−d2)(1−d3)

, if the right hand side is positive.

While the upper bound may prove efficient for small di, this represents a distinct
approach to estimating the upper bounds for spherical three-distance sets. It could po-
tentially serve as a valuable tool when LP and SDP methods fail to produce satisfactory
results. Nevertheless, its contribution to our current bounds is limited.
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Appendix

Experiments in R7

There are 6 types of (K1, K2, K3) in R7 [Proposition 7]. The LP, SDP, and HB results
are presented in the following table and figures.

K1 K2 K3 d1 d2 d3 Notes
1 -4 4 8d3

3
− 5

3
5d3
3

− 2
3

d3 Already controlled by LP and HB [2]
1 -3 3 3d3 − 2 2d3 − 1 d3 Improved bound by SDP and HB [3]
1 -2 2 4d3 − 3 3d3 − 2 d3 Already controlled by LP and HB [4]
2 -4 3 3d3

2
+

√
6(d3−1)

2
− 1

2
3d3
2

+
√
6(d3−1)

4
− 1

2
d3 Already controlled by LP and HB [5]

2 -3 2 2d3 +
√
3 (d3 − 1)− 1 2d3 +

2
√
3(d3−1)
3

− 1 d3 Already controlled by LP and HB [6]
3 -4 2 2d3 +

2
√
6(d3−1)
3

− 1 2d3 +
√
6(d3−1)

2
− 1 d3 Already controlled by LP and HB [7]

Table 6: Six kinds of (K1, K2, K3) in R7 and corresponding three inner product values

Figure 2: Sampling points with (K1, K2, K3) = (1,−4, 4) in R7
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Figure 3: Sampling points with (K1, K2, K3) = (1,−3, 3) in R7

Figure 4: Sampling points with (K1, K2, K3) = (1,−2, 2) in R7
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Figure 5: Sampling points with (K1, K2, K3) = (2,−4, 3) in R7

Figure 6: Sampling points with (K1, K2, K3) = (2,−3, 2) in R7
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Figure 7: Sampling points with (K1, K2, K3) = (3,−4, 2) in R7

Experiment in R23

There are 66 types of (K1, K2, K3) in R23 [Prop 7]. We only improve two instances of
Ki and present the LP, SDP, and HB results in the following table and figures.

K1 K2 K3 d1 d2 d3 Notes
1 -3 3 3d3 − 2 2d3 − 1 d3 Improved bound by SDP and HB [8]
2 -6 5 5d3

4
+

√
15(d3−1)

4
− 1

4
5d3
4

+
√
15(d3−1)

12
− 1

4
d3 Improved bound by SDP and HB [9]

(Others) Already controlled by LP and HB

Table 7: (K1, K2, K3) in R23 and corresponding three inner product values

In the (1,−3, 3) case, the purple line represents the harmonic bound 2301, while the
green line (LP) exceeds the purple line in some regions around d3 = 0.59. Therefore, in
those regions, the best bound we can obtain is 2301. However, the red line (SDP) always
stays below the purple line in that region. Therefore, SDP indeed plays a crucial role in
achieving a tighter upper bound of 2300. A similar phenomenon occurs for the (2,−6, 5)
case; without SDP, the best bound is 2301. For other cases of Ki in R23, the LP bounds
have already performed well in achieving the bound 2300.
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Figure 8: Sampling points with (K1, K2, K3) = (1,−3, 3) in R23

Figure 9: Sampling points with (K1, K2, K3) = (2,−6, 5) in R23

For R23, we also provide the detailed experimental data in the GitHub website:
https://github.com/smileyung/SEMIDEFINITE-PROGRAMMING-BOUNDS-FOR-SPHERICAL
-THREE-DISTANCE-SETS-Appendix
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