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Abstract

We show that the natural directed analogues of the KKL theorem [6] and the
Eldan–Gross inequality [4] from the analysis of Boolean functions fail to hold. This
is in contrast to several other isoperimetric inequalities on the Boolean hypercube
(such as the Poincaré inequality, Margulis’s inequality [9] and Talagrand’s inequal-
ity [14]) for which directed strengthenings have recently been established.
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In this note, we consider isoperimetric inequalities over the Boolean hypercube {0, 1}n.
Our notation and terminology follow O’Donnell [11]; in particular, we refer the reader to
introductory chapters of [11] for further background.

Given a Boolean function f : {0, 1}n → {0, 1} and an input x ∈ {0, 1}n, we define the
sensitivity of f at x as

sensf (x) =
i : f(x) ∕= f(x⊕i)

 ,
where x⊕i = (x1, . . . , 1− xi, . . . , xn). Two closely related isoperimetric quantities are the
influence of a variable i ∈ [n] on f , given by

Infi[f ] = P
x∼{0,1}n


f(x) ∕= f(x⊕i)


,

where x ∼ {0, 1}n represents a uniform sample from {0, 1}n, and the total influence of f ,
given by

I[f ] =
n

i=1

Infi[f ].

It is easy to check that I[f ] = E[sensf (x)], and so the total influence of a function is
sometimes also referred to as its average sensitivity.

To set the stage, we recall perhaps the simplest isoperimetric inequality on the Boolean
hypercube, the Poincaré inequality, which says that

I[f ]  Var[f ].
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The following strengthening of the Poincaré inequality was obtained by Talagrand [14],
and is known to imply yet another isoperimetric inequality due to Margulis [9].

Theorem 1. Given a Boolean function f : {0, 1}n → {0, 1}, we have

E
x∼{0,1}n


sensf (x)


= Ω(Var[f ]).

An alternative (and incomparable) strengthening of the Poincaré inequality is given
by the celebrated Kahn–Kalai–Linial theorem [6].

Theorem 2. Given a Boolean function f : {0, 1}n → {0, 1}, there exists i ∈ [n] such that

Infi[f ] = Ω


Var[f ] · log2 n

n


.

Talagrand [15] conjectured the following common generalization of Theorems 1 and 2,
which was proved by Eldan and Gross [4].

Theorem 3. Given a Boolean function f : {0, 1}n → {0, 1}, we have

E
x∼{0,1}n


sensf (x)


= Ω


Var[f ]



log2


2 +

en
i=1 Infi[f ]

2


.

Here, we will be concerned with directed versions of such results in the Boolean hy-
percube. Recall that a Boolean function f : {0, 1}n → {0, 1} is said to be monotone
(respectively anti-monotone) if for all x, y ∈ {0, 1}n, x  y implies f(x)  f(y) (respec-
tively f(x)  f(y)), where we write x  y to mean xi  yi for all i ∈ [n]. In connection
with the problem of monotonicity testing, Khot, Minzer, and Safra [7] obtained a ‘directed’
analogue of Theorem 1. Writing

sens−f (x) =
i : f(x) > f(x⊕i) and x  x⊕i



for the negative sensitivity of f at x, and

ε(f) = min
g monotone

dist(f, g)

for the distance to monotonicity of f , where dist(f, g) = Px∼{0,1}n [f(x) ∕= g(x)], the follow-
ing result, a slight sharpening of the result of Khot, Minzer, and Safra [7], was established
by Pallavoor, Raskhodnikova, and Waingarten [12].

Theorem 4. Given a Boolean function f : {0, 1}n → {0, 1}, we have

E
x∼{0,1}n


sens−f (x)


= Ω(ε(f)).
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Indeed, prior results on monotonicity testing due to Goldreich, Goldwasser, Lehman,
Ron and Samordinsky [5] and Chakrabarty and Seshahdri [3] can be viewed as directed
analogues of the Poincaré inequality and Margulis’s inequality [9] respectively. Finally,
a directed analogue of an inequality due to Pisier [13] was obtained by Canonne, Chen,
Kamath, Levi and Waingarten [2].

Although the directed analogues are known to imply their undirected counterparts,
see [7], their proofs bear little resemblance to the proofs in the undirected setting (with
the exception of the directed Pisier inequality) and are usually much more involved.

These results suggest an informal analogy between the undirected and the directed
cube, with isoperimetric quantities being replaced with their directed counterparts and
Var[f ] being replaced with ε(f) in the latter. Writing

Inf−i [f ] =
x : f(x) > f(x⊕i) and x  x⊕i

 · 1

2n−1

for the negative influence of i on f , the following directed variant of Theorem 2 would
yield a natural directed analogue of the KKL inequality.

Conjecture 5. Given a Boolean function f : {0, 1}n → {0, 1}, there exists i ∈ [n] such
that

Inf−i [f ]  Ω


ε(f) · log2 n

n


.

Conjecture 5, as well as a Fourier analytic reformulation thereof, appears to have been
first raised by Khot [8]. Our aim in this short note is to show that Conjecture 5 fails to
hold.

Theorem 6. There is a function f : {0, 1}2n → {0, 1} with

1. Inf−i [f ] = 0 for all i ∈ [n],

2. Inf−i [f ] = O(1/n) for all i ∈ [2n] \ [n], and

3. ε(f) = Ω(1),

We note that this further rules out a natural directed analogue of Theorem 3 (which
would imply Conjecture 5).

To prove Theorem 6, We view {0, 1}2n as {0, 1}n × {0, 1}n and construct a function
f : {0, 1}n × {0, 1}n → {0, 1} with

1. Inf−i [f ] = 0 for all i ∈ [n],

2. Inf−i [f ] = O(1/n) for all i ∈ [2n] \ [n], and

3. ε(f) = Ω(1),

thereby refuting Conjecture 5.
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Proof of Theorem 6. Let T1, . . . , Tn ∈


[n]
log2 n


be drawn independently and uniformly at

random. Set

f(x, y) :=
n

i=1




j∈Ti

xj


∧ (1− yi)


.

We note that this function is closely related to the well-known ‘tribes’ function due to
Ben-Or and Linial [1].

It is clear that f is monotone in the first n coordinates and anti-monotone in the last
n coordinates; consequently Inf−i [f ] = 0 for all i ∈ [n]. A coordinate i ∈ [2n] \ [n] is
relevant only on x ∈ {0, 1}n for which


j∈Ti

xj = 1; as |Ti| = log2 n, this set has measure
at most

2n−log2 n

2n
=

1

n
.

It follows that Inf−i [f ] = O(1/n) for all i ∈ [2n].
Before turning to the third item above, we recall the following fact from [7] without

proof.

Lemma 7. For f : {0, 1}n × {0, 1}n → {0, 1} such that f is monotone in the first n
coordinates and anti-monotone in the last n coordinates, we have

ε(f) = Θ


E

x∼{0,1}n


Var

y∼{0,1}n
[f(x, y)]


.

Suppose, for convenience, that x ∈ {0, 1}n is such that


j∈Ti
xj = 1 for exactly

one i ∈ [n]. Then the restricted function f(x, ·) : {0, 1}n → {0, 1} is simply the anti-
dictatorship (1 − yi), and has Var [f(x, ·)] = Ω(1). We will be done if we can show that
there exist T1, . . . , Tn for which this happens for Ω(1) fraction of x ∈ {0, 1}n. As before,
for fixed i ∈ [n] we have

P
x∼{0,1}n




j∈Ti

xj


=

1

n
,

which tells us that

E
x∼{0,1}n




i :



j∈Ti

xj = 1




= 1.

By Markov’s inequality, we thus have

P
x∼{0,1}n




i :



j∈Ti

xj = 1

  2


 1

2
.

In addition, with expectation over choices of T1, . . . , Tn,

E


P

x∼{0,1}n




i :



j∈Ti

xj = 1

 = 0


≈


1− 1

n

n

≈ 1

e
,
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since for fixed x, the events {


j∈Ti
xj = 1} (i ∈ [n]) are independent, and for x with

|


xi| < n2/3 (where almost all of the measure of {0, 1}n lies), P(


j∈Ti
xj = 1) = 1/n +

O(n−5/4). Therefore there is a choice of T1, . . . , Tn with

P
x∼{0,1}n




i :



j∈Ti

xj = 1

 = 1


 1

2
− 1

e
= Ω(1),

and we are done.

Note added in proof

After a draft of this paper was circulated, it was brought to our attention that Minzer and
Khot [10] have independently discovered a similar construction to the one establishing our
main result.
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