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Abstract

We give a proof of the generalized Cauchy identity for double Grothendieck poly-
nomials, a combinatorial interpretation of the stable double Grothendieck polyno-
mials in terms of triples of tableaux, and an interpolation between the stable double
Grothendieck polynomial and the weak stable double Grothendieck polynomial.
This so-called half weak stable double Grothendieck polynomial evaluated at x = y
generalizes the type B Stanley symmetric function of Billey and Haiman and is
Q-Schur positive by degree. We conclude with two open problems as well as a con-
jecture regarding the K-theoretic analogues of factorial Schur Q-functions defined
by Ikeda and Naruse. The conjecture is supported by code given in the appendices.

Mathematics Subject Classifications: 05E05

1 Introduction

1.1 Background

Grothendieck polynomials [LS82b],[LS83], are a non-homogeneous generalization of Schu-
bert polynomials, the latter a family of polynomials indexed by permutations which are
studied among other things in relation to the combinatorics of Coxeter groups. In par-
ticular, the lowest degree term of a Grothendieck polynomial is a Schubert polynomial.
Combinatorially, Grothendieck polynomials replace the notion of the symmetric group
with that of the 0-Hecke monoid [BKS+08]. Double Schubert polynomials are considered
in [LS82a] to generalize Schubert polynomials by extending them to two sets of variables
in such a way that setting the second variable set to zero returns a regular Schubert poly-
nomial. In turn, double Grothendieck polynomials generalize Grothendieck polynomials
by extending them to two sets of variables in such a way that setting the second variable
set to zero returns a regular Grothendieck polynomial.

Double Grothendieck polynomials themselves are generally not symmetric in either set
of variables. However, there exists a way to derive a (doubly) symmetric function from a
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double Grothendieck polynomial through a process of taking a stable limit. These limits
are known as the stable double Grothendieck polynomials.

Stable double Grothendieck polynomials expand in terms of another class of poly-
nomials called the balanced double Grothendieck polynomials. These polynomials are
doubly Schur positive (Lenart ([Len00]) proves symmetric (single) Grothendieck polyno-
mials are Schur positive it follows from Fomin-Kirillov ([FK94]) that balanced double
Grothendieck polynomials can be written as a sum of products of the former) and have
nice combinatorial interpretations in terms of set valued tableaux [Buc02], [McN06]. We
also mention there exist weak versions of the stable (double) and symmetric (double)
Grothendieck polynomials. In particular the weak symmetric Grothendieck polynomials
have a combinatorial interpretation in terms of multiset valued tableaux [LP07].

1.2 Contributions and Organization

We explain what this paper contributes and how it is structured simultaneously. In sec-
tion 2 we recall various constructions and results pertaining to Grothendieck polynomials
appearing elsewhere in the literature that will be needed for the rest of the paper.

Section 3 deals with the most general version of double Grothendieck polynomials that
we consider in this paper. The main result of section 3 is Theorem 22 which proves three
formulae for the double Grothendieck polynomial. The first two are combinatorial ex-
pressions in terms of certain factorizations of Hecke words. Such interpretations are more
useful for our purposes than pipe dream formulations as they are amenable to the Hecke
insertion of [BKS+08]. Moreover, the relation between our two models helps to explicate
the relationship between double Grothendieck and single Grothendieck polynomials. This
relation is made explicit in the proof of the third formula, which is a generalization of the
Cauchy identity for Schubert polynomials and which can be credited to [FK94]. Here we
give a proof of this formula.

Section 4 deals with stable double Grothendieck polynomials, balanced double
Grothendieck polynomials and their relation. The main result of section 4 is Theorem 50
which gives a formula for the stable double Grothendieck polynomial in terms of triples
of tableaux (see remark 51) as well as a similar formula for the weak double Grothendieck
polynomial. If it were not for the fact that Hecke insertion lacks a certain property (see
remark 9) such an expression would be an easy corollary of the work of [BKS+08]. In-
deed in almost all imaginable analogous cases (i.e., for choices of the parameters single vs
double, type A vs other types, standard vs K-theoretic) that have been defined a similar
expression follows directly from the relevant insertion algorithm. However, in the absence
of the property of Remark 9 of Hecke insertion (we leave it as an open problem to amend
Hecke insertion so that it does have this property) some additional work must be done.
This work comprises the majority of section 4.

In section 5 we investigate the relation between stable double Grothendieck polyno-
mials (of type A) and a potential definition of stable (single) Grothendieck polynomials
of type B/C. The latter definition is given by first taking an interpolation of the stable
double Grothendieck polynomial and the weak stable double Grothendieck polynomial
and then evaluating the result when the two sets of variables are set equal to each other
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(i.e., at x = y). As we will see, the combinatorial definition of this “half weak” double
Grothendieck polynomial is more amenable to Hecke insertion than either the weak or
non-weak versions. Moreover, unlike the others, it is Q-Schur positive at x = y. This is
the main result of section 5, which is stated as Theorem 70 which also gives a combina-
torial interpretation of the coefficients in the Q-Schur expansion. The half weak double
Grothendieck polynomial (evaluated at x = y) generalizes nicely the type B Stanley sym-
metric function of [BH95]: In particular, the lowest degree part of the former function
recovers the latter. In addition, it is also Q-Schur positive by degree.

Section 6 includes two open problems and a conjecture that arise from our study of
double Grothendieck polynomials.

2 Single Grothendieck Polynomials

2.1 Operator definition

Definition 1. Let f ∈ Z[x1, . . . xn+1]. For each 1 󰃑 i 󰃑 n define the divided difference
operator ∂i by ∂i(f) =

f−sif
xi−xi+1

where si acts by interchanging the variables xi and xi+1.

Define πi by the formula πi(f) = ∂i(f) + ∂i(xi+1f).

Lemma 2. The divided difference operators satisfy the following relations: [LS82b],
[LS83]

1. If |i− j| > 1 then ∂i∂j = ∂j∂i and πiπj = πjπi.

2. If i = j + 1 then ∂i∂j∂i = ∂j∂i∂j and πiπjπi = πjπiπj.

3. ∂2
i = 0.

4. π2
i = −πi.

Given a permutation w ∈ Sn one can write down (non-uniquely in general) w as
sequence of adjacent transpositions, i.e.: w = si1 · · · siℓ where ℓ is the inversion number
of the permutation. We can then define ∂w by ∂i1 · · · ∂iℓ and πw to be πi1 · · · πiℓ . By parts
1 and 2 of Lemma 2 this procedure is well defined, i.e., the definition of ∂w and πw does
not depend on the chosen reduced word.

Definition 3. Fix w ∈ Sn and let w0 refer to the element of Sn with maximal inversion
number. Define the Grothendieck polynomial for w by:

Gw(x) = π(w−1w0)(x
n
1x

n−1
2 · · · x1

nx
0
n+1).

See [LS82b] and [LS83] for original formulations.
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2.2 Hecke Insertion

Consider a new operator s̄i (which we will frequently just write as i) acting on permuta-
tions of the set {1,2,3, . . . ,n,n+ 1} where the operation s̄i or i is given by interchanging
i and i+ 1 if i lies to the left of i+ 1 and by doing nothing otherwise (In particular i2 = i
whereas s2i = e). In this setting, a Hecke word for w is a sequence i1, . . . , ik such that
applying this sequence (right to left) to the starting arrangement {1,2,3, . . . ,n,n+ 1}
gives the permutation w.

We will give an overview of a simple insertion algorithm [BKS+08] for Hecke words
which will be necessary at various stages. First we need to define two types of tableaux:

Definition 4. A standard set-valued tableau of shape λ is a filling of a Young diagram
of shape λ with exactly one of each of the letters {1, . . . , N} for some integer N 󰃍 |λ|
such that each box contains at least one entry and such that all entries in a given box are
smaller than all the entries in the box below and smaller than all the entries in the box
to the right.

Definition 5. Given a permutation w, a Hecke tableau for w of shape λ or element of
HTw(λ) is a tableau where each box of λ is filled with exactly one of the symbols {1, . . . , n}
in such a way that reading the boxes by rows, moving left to right within the rows and
moving bottom to top amongst the rows gives a Hecke word for w, and, such that the
rows and columns are strictly increasing in the order 1 < · · · < n.

To define Hecke insertion1, we first show how to insert some a ∈ {1, . . . , n} into some
row of a Hecke tableau, say V = (v1, v2, . . . , vj) read from left to right. Suppose that the
row above V (if it exists) is U and it has entries U = (u1, u2, . . . , uk) and the row below
it is Z with entries Z = (z1, z2, . . . , zi). Here all u, v, z ∈ {1, . . . , n}. We assume that
a ∈ [uh, vh) for some h (where possibly h > j and vh is taken, by convention to be ∞)
and that a > u1 if U exists. There are no restrictions on a if U does not exist that is, if
V is the first row of the tableau.

u1 u2 · · · ui · · · uj uj+1· · · uk

v1 v2 · · · vi · · · vj

z1 z2 · · · zi

←− a

We insert a into V as follows:

1. If a 󰃍 vj and:

• a > vj and a > uj+1. Then a is appended to the right of vj.

• a = vj or a = uj+1. Then a simply disappears.

1In this paper we consider Hecke insertion as a row insertion algortihm (e.g., [PP16]) rather than a
column insertion algorithm.
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2. If a < vj. Let h be minimal such that a 󰃑 vh.

• a = vh. Then V stays the same and vh+1 is inserted into Z.

• a < vh and a > uh then a replaces vh and vh is inserted into row Z.

• a < vh and a = uh then V is unchanged and vh is inserted into row Z.

Note that the result is strictly decreasing down columns by construction and that our
assumption on a guarantees one of the situations above must occur. Moreover, the as-
sumption is maintained moving on to the next insertion. That is, the element (if it exists)
to be inserted into row Z exists in some interval [vℓ, zℓ) and is greater than v1.

We now describe complete Hecke insertion. Given a Hecke word say α1 · · ·αm create
a sequence of pairs of tableaux of the same shapes (P0, Q0), (P1, Q1), . . . , (Pm, Qm) by
setting P0 = ∅ = Q0 and creating (Pi+1, Qi+1) from (Pi, Qi) as follows. Insert αi+1 into
Pi by inserting it into the first row of Pi. As long as there is an output, insert the output
into the next row. The algorithm stops when either an element is appended to the end
of a row or disappears. The resulting Hecke tableau is Pi+1. If the algorithm ends by
appending an element, add a box to the corresponding position of Qi and fill it with the
number i + 1 to form Qi+1. If the algorithm stops by an element disappearing, take the
row where the last insertion occurred and caused this element to disappear and consider
its rightmost box b. Now find the lowest box in the same column as b, call it b′. Add
an i+ 1 to the position corresponding to b′ in Qi to form Qi+1. (Of course, it is possible
b′ = b.)

b

b′

←− disappearing element

Example 6. Suppose that we have

P10 =

2 4 5
4 6 8
5 7
7
8

Q10 =

1 2 4
3 6 7
5 10
8
9

α11 = 3

Then P11 and Q11 are computed as follows.

1. First the 3 is inserted into row one of P11. 3 replaces 4 in this row and 4 is sent to
be inserted into row two.

2. 4 is inserted into row two. Since a 4 already appears in row two this row does not
change and the number to the right of the 4 in row two, which is 6, will be inserted
into row three.
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3. When 6 is inserted into row three it would replace the 7 with itself except that the
number above this 7 in row two is not less than 6 (it is 6). Thus row three remains
unchanged and the 7 is inserted into row four.

4. Row four ends in 7 itself so the inserted 7 is disappeared.

To form the recording tableau an 11 is added not in the box, b, at the end of row four
but to the box b′ at the bottom of the column containing b. All in all the only changes
are in the first row of the insertion tableau and the fifth row of the recording tableau and
the result is:

P11 =

2 3 5
4 6 8
5 7
7
8

Q11 =

1 2 4
3 6 7
5 10
8
9, 11

Proposition 7 ([BKS+08]). Fix w ∈ Sn+1. Hecke insertion is a bijection from Hecke
words for w to pairs (P,Q) of tableaux of the same shape where P is a Hecke tableau for
w and Q is a standard set-valued tableau.

Additionally, Hecke insertion also has the following convenient property:

Lemma 8 ([BKS+08]). If the word α1 · · ·αm maps to (P,Q). Then αi > αi+1 if and only
if i+ 1 shows up in a row strictly below i in Q.

Remark 9. Unfortunately, (this fact will cause mild consternation later) the following
statement is not true of Hecke insertion: Suppose α1 · · ·αm maps to (P,Q). Then
αi < αi+1 if and only if i+1 shows up in a column to the right of i in Q. In fact, neither
the if nor the only if part of this statement is true. For instance applying Hecke insertion
to 1322 results in:

󰀋
1 , 1

󰀌
,
󰀋
1 3 , 1 2

󰀌
,

󰀝
1 2
3

, 1 2
3

󰀞
,

󰀝
1 2
3

, 1 24
3

󰀞

showing that although 4 shows up in a column to the right of 3 in Q, it is not true that
α3 = 2 < 2 = α4. Conversely, applying Hecke insertion to 1312 results in:

󰀋
1 , 1

󰀌
,
󰀋
1 3 , 1 2

󰀌
,

󰀝
1 3
3

, 1 2
3

󰀞
,

󰀝
1 2
3

, 1 2
34

󰀞

showing that although α3 = 1 < 2 = α4, it is not true that 4 shows up in a column to the
right of 3 in Q.

Definition 10. A Hecke word that has been partitioned into groups of transpositions
with decreasing indices is known as a Hecke factorization. For instance (32)(321)()(1) is
a Hecke factorization with four factors for the permutation (4, 1, 3, 2) ∈ S4. If f is a Hecke
factorization we denote by wt(f) the vector whose ith coordinate records the number of
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entries in the ith factor (from left to right) of f. In general, we will be concerned with
Hecke factorizations that have a fixed number of factors. This number of factors will
usually be clear from context, but whenever that number is not of particular importance
we will assume it is equal to m+ 1 where m is a positive integer that should be assumed
to be the same throughout its appearances in different definitions.

Definition 11. A Hecke factorization of an element in Sn+1 with n + 1 factors that has
only entries with indices of at least i in the ith subdivision is known as a bounded Hecke
factorization. For instance, (321)(2)(3)() is a bounded Hecke factorization in S4. (Note
that the definition implies the last factor is always empty.)

• Let Fw denote the set of all (unbounded) Hecke factorizations of w into m+1 parts
for some integer m.

• Let Fw denote the set of all bounded Hecke factorizations of w into n+ 1 parts.

Definition 12. A conjugate (semistandard) set-valued tableau or CSV T of shape λ is
a filling of a Young diagram of shape λ with the letters {1, . . . ,m,m + 1} (repetition
allowed) for some integer m such that each box contains a nonempty set of numbers and

• If box b lies to the left of box b′ then max(b) < max(b′).

• If box b lies above box b′ then max(b) 󰃑 max(b′).

A skew CSV T of shape λ/µ is defined similarly.

Definition 13. Semistandard Hecke insertion is the following algorithm. Starting with
f ∈ Fw first consider the underlying Hecke word, α, given by erasing the parentheses in f.
Apply regular Hecke insertion to obtain a pair of tableaux (P,Q). Now form Q′ from Q
as follows. Wherever j appears in Q replace the j with an i where i is chosen such that
the jth entry in f appears in the ith factor of f. The result of the algorithm is the pair
(P,Q′).

We end this section with a few results that will be useful later.

Proposition 14. [BKS+08] Semistandard Hecke insertion is a weight preserving bijection
from Fw to pairs (P,Q) where P ∈ HTw and Q ∈ CSV T have the same shape.

Theorem 15. [Las90] We have that

Gw(x) =
󰁛

f∈Fw

xwt(f).

Lemma 16. [Buc02] Suppose that ℓ1 󰃍 ℓ2. We have:
󰁛

Q∈CSV T (ℓ1,ℓ2)

x(#1)
r x

(#2)
r+1 = πsr(x

ℓ1+1
r xℓ2

r+1)

where the left hand sum is over all CSV T with two columns, of lengths ℓ1 and ℓ2, in the
letters {1, 2} and where (#1) and (#2) is the number of 1s and 2s respectively in Q.
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3 Double Grothendieck Polynomials

Consider two sets of variables x = (x1, . . . , xn+1) and y = (y1, . . . , yn+1). We extend the
action of πsr linearly over Z[y] to get an action on Z[x, y].

Definition 17. A circled Hecke factorization is a factorization of a Hecke word into
factors, where some of the elements have been circled. Moreover, each factor must be
decreasing in the order 1 < 1 < 2 < · · · < n < n. For instance

󰀃
32 2

󰀄󰀃
3 21 1

󰀄󰀃󰀄󰀃
1
󰀄

is a circled Hecke factorization for the permutation (4, 1, 3, 2) ∈ S4.

Definition 18. A bounded circled Hecke factorization is a circled Hecke factorization
with n + 1 factors such that all the elements in the ith factor are 󰃍 i . For instance,󰀃
4 3 2 1

󰀄󰀃
3 3

󰀄󰀃
43 3

󰀄󰀃
4
󰀄󰀃󰀄

is a bounded circled Hecke factorization for the permutation
(5, 1, 4, 3, 2) ∈ S5. The x-weight of a bounded circled Hecke factorization is the vector
whose ith entry records the number of uncircled elements in its ith factor. The x-weight
of the example above is (2, 1, 2, 1, 0). The y-weight of such a factorization is the vector
whose ith entry records the number of circled entries that have some value j and appear in
some factor k such that j − k+1 = i. The y-weight of the example above is (1, 2, 0, 1, 0).

Definition 19. A double Hecke factorization is a factorization into an even number of
factors where the first half of the factors are increasing in the order 1 < · · · < n and the last
half of the factors are decreasing in the order 1 < · · · < n. For example (12)(13)|(21)(32)
is a double Hecke factorization for (4, 3, 2, 1) ∈ S4, where we have drawn a “|” between
the left half and the right half of the factors for viewing convenience. (Such factorizations
are combinatorially equivalent to (non-reduced) pipe dreams as used to express double
Grothendieck polynomials. See [Me16] for example.)

Definition 20. A bounded double Hecke factorization is a double Hecke factorization into
2n+2 factors where all elements in the ith factor to the right of center are 󰃍 i and all ele-
ments in the ith factor to the left of center are 󰃍 i. For instance, ()(3)(2)(12)|(31)(32)(3)()
is a bounded double Hecke factorization for the permutation (4, 3, 2, 1) ∈ S4. The x-weight
of a bounded or unbounded double Hecke factorization is the vector whose ith entry records
the number of elements in the ith factor to the right of center. The x-weight of the example
above is (2, 2, 1, 0). The y-weight of a bounded or unbounded double Hecke factorization
is the vector whose ith entry records the number of entries in the ith factor to the left of
center. The y-weight of the example above is (2, 1, 1, 0).

We will use the following notation:

• Let F󵀆
w denote the set of all (unbounded) circled Hecke factorizations of w into m+1

parts.

• Let F󵀆
w denote the set of all bounded circled Hecke factorizations of w into n + 1

parts.

• Let F□
w denote the set of all (unbounded) double Hecke factorizations of w into

2m+ 2 parts.
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• Let F□
w denote the set of all bounded double Hecke factorizations of w into 2n + 2

parts.

If f is one of the factorizations above we write (x, y)wt(f) to mean the monomial
xwtx(f)ywty(f) where wtx(f) and wty(f) refer to the x-weight and y-weight of f respectively.
If two Hecke words represent the same permutation, we denote this by writing a “∼”
between them. Moreover, if µ is any permutation, let 󰁨µ denote an arbitrary Hecke word
for µ. Finally, if µ is any permutation let Xµ be the set of all pairs of permutations (u, v)
such that the concatenation 󰁨u󰁨v represents the permutation µ. Finally, we need one more
definition before we can state the main result:

Definition 21. The double Grothendieck polynomial for w is [Las85]:

Gw(x, y) = π(w−1w0)

󰀣
󰁜

i+j󰃑n+1

xi + yj + xiyj

󰀤
.

The rest of this section will be devoted to proving that:

Theorem 22. We have:

Gw(x, y) =
󰁛

f∈F󵀆
w

(x, y)wt(f) (3.1)

Gw(x, y) =
󰁛

f∈F□
w

(x, y)wt(f)[FK94], [KM04] (3.2)

Gw(x, y) =
󰁛

(u,v)∈Xw

Gu−1(y)Gv(x)[FK94],[McN06],[BFH+20]. (3.3)

The theorem will follow immediately from combining the three main Lemmas of this
section: 23, 26, and 29.

Lemma 23. We have

󰁛

f∈F□
w

(x, y)wt(f) =
󰁛

(u,v)∈Xw

Gu−1(y)Gv(x).

Proof. We have:

󰁛

f∈F□
w

(x, y)wt(f) =
󰁛

(u,v)∈Xw

󰁛

f∈F□
(u,v)

(x, y)wt(f)

where F□
(u,v) is the subset of F□

w such that the left (resp. right) n+ 1 factors give a Hecke

word for the permutation u (resp. v). Since the left side of a bounded double Hecke
factorization for u is just a bounded Hecke factorization for u−1 (written in reverse order)
the lemma follows.
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If µ is a permutation then define

• ∨(µ) = {(a, b) : ab ∼ 󰁨µ, a is strictly decreasing, b is strictly increasing.}

• ∧(µ) = {(a, b) : ab ∼ 󰁨µ, a is strictly increasing, b is strictly decreasing.}

Claim 24. There is a bijection from ∧(µ) → ∨(µ) such that, denoting word length by | · |,
if (b, c) → (a, d) then |a| = |c| and |b| = |d|.

Proof. Denote by W k(µ) the set of all quadruples of Hecke words (a, b, c, d) such that the
concatenation abcd is a Hecke word for µ and such that

• a and c are strictly decreasing.

• b and d are strictly increasing.

• b and c only contain elements from the set {1, 2, . . . , k}.

• a and d only contain elements from the set {k + 1, . . . , n}.

It suffices to find a bijection W k+1(µ) → W k(µ), such that if (a, b, c, d) → (a′, b′, c′, d′)
then |a| + |c| = |a′| + |c′| and |b| + |d| = |b′| + |d′|. The bijection is given by the identity
in the case that no Hecke word for µ contains a k + 1. If some Hecke word for µ does
contain a k + 1 then set K = k + 1. In this case the bijection fixes all entries which are
not equal to k or K and changes the entries equal to k or K as follows:

(∗ · · · ∗)(∗ · · · ∗ kK)(Kk ∗ · · · ∗)(∗ · · · ∗) → (∗ · · · ∗K)(∗ · · · ∗ k)(k ∗ · · · ∗)(K ∗ · · · ∗)
(∗ · · · ∗)(∗ · · · ∗ kK)(k ∗ · · · ∗)(∗ · · · ∗) → (∗ · · · ∗K)(∗ · · · ∗ k)(∗ · · · ∗)(K ∗ · · · ∗)
(∗ · · · ∗)(∗ · · · ∗ k)(Kk ∗ · · · ∗)(∗ · · · ∗) → (∗ · · · ∗K)(∗ · · · ∗)(k ∗ · · · ∗)(K ∗ · · · ∗)
(∗ · · · ∗)(∗ · · · ∗ kK)(K ∗ · · · ∗)(∗ · · · ∗) → (∗ · · · ∗)(∗ · · · ∗ k)(k ∗ · · · ∗)(K ∗ · · · ∗)
(∗ · · · ∗)(∗ · · · ∗K)(Kk ∗ · · · ∗)(∗ · · · ∗) → (∗ · · · ∗K)(∗ · · · ∗ k)(k ∗ · · · ∗)(∗ · · · ∗)
(∗ · · · ∗)(∗ · · · ∗K)(K ∗ · · · ∗)(∗ · · · ∗) → (∗ · · · ∗K)(∗ · · · ∗)(∗ · · · ∗)(K ∗ · · · ∗)
(∗ · · · ∗)(∗ · · · ∗K)(k ∗ · · · ∗)(∗ · · · ∗) → (∗ · · · ∗K)(∗ · · · ∗ k)(∗ · · · ∗)(∗ · · · ∗)
(∗ · · · ∗)(∗ · · · ∗ k)(K ∗ · · · ∗)(∗ · · · ∗) → (∗ · · · ∗)(∗ · · · ∗)(k ∗ · · · ∗)(K ∗ · · · ∗)
(∗ · · · ∗)(∗ · · · ∗ kK)(∗ · · · ∗)(∗ · · · ∗) → (∗ · · · ∗)(∗ · · · ∗ k)(∗ · · · ∗)(K ∗ · · · ∗)
(∗ · · · ∗)(∗ · · · ∗)(Kk ∗ · · · ∗)(∗ · · · ∗) → (∗ · · · ∗K)(∗ · · · ∗)(k ∗ · · · ∗)(∗ · · · ∗)
(∗ · · · ∗)(∗ · · · ∗K)(∗ · · · ∗)(∗ · · · ∗) → (∗ · · · ∗)(∗ · · · ∗)(∗ · · · ∗)(K ∗ · · · ∗)
(∗ · · · ∗)(∗ · · · ∗)(K ∗ · · · ∗)(∗ · · · ∗) → (∗ · · · ∗K)(∗ · · · ∗)(∗ · · · ∗)(∗ · · · ∗)

It is easy to see that this defines a bijection with the desired properties.

We denote the map ∧(µ) → ∨(µ) by ↓ and its inverse by ↑.
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Example 25. Let (123568)(8752) ∈ ∧(µ). Thus:

W 8 = ()(123568)(8752)()

W 7 = (8)(123567)(752)()

W 6 = (8)(12356)(652)(7)

W 5 = (86)(1235)(52)(67)

W 4 = (865)(123)(2)(567)

W 3 = (865)(123)(2)(567)

W 2 = (8653)(12)()(3567)

W 1 = (8653)(1)()(23567)

W 0 = (8653)()()(123567)

so that ↓ (123568)(8752) = (8653)(123567) ∈ ∨(µ).

Lemma 26. We have
󰁛

f∈F󵀆
w

(x, y)wt(f) =
󰁛

f∈F□
w

(x, y)wt(f).

Proof. We need to find a bijection from F󵀆
w to F□

w that preserves the x-weight and the
y-weight. The arguments are quite technical and the reader is encouraged to use example
27 as a running example while reading through the proof.

For each k ∈ {1, 2, . . . , n} and j ∈ {0, 1, . . . , n− k+1} we define the set Fjk
w to be the

set of factorizations f = f−(n+1), . . . , f−(k+1), f1, . . . fj, fmov, fj+1, . . . , fn+1 such that the
Hecke word given by this factorization represents w and where:

• The factors f−(n+1), f−(n), . . . , f−(k+1) are called the left factors and:

1. Each left factor f−(i) only contains elements from the set {i, . . . , n}.
2. Each left factor is strictly increasing in the order 1 < · · · < n.

• The factors f1, . . . , fj, fj+1, . . . , fn+1 are called the right factors and:

1. The uncircled elements that each right factor fi contains must come from the
set {i, . . . , n}.

2. For i 󰃑 j, the circled elements that the right factor fi contains must come from
the set { i , . . . , s } where s = k + i− 1.

3. For i > j, the circled elements that the right factor fi contains must come from
the set { i , . . . , t } where t = k + i− 2.

4. The right factors strictly decrease in the order 1 < 1 < · · · < n < n.

• The factor fmov, or the moving factor, has the properties:

1. fmov contains elements from {j + k, . . . , n}.
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2. fmov is strictly increasing in the order 1 < · · · < n.

If f ∈ Fjk
w we define (x, y)wt(f) to be the monomial such that the power of xi is the

number of uncircled elements in fi. For i > k the power of yi is the number of elements
in f−i. For i < k the power of yi is the number of times some m appears in some
factor fℓ such that m − ℓ + 1 = i. The power of yk is the number of times some m
appears in some factor fℓ such that m − ℓ + 1 = k plus the number of elements in fmov.
(Essentially what we want to do now is show that we can take a factorization of the form
f−(n+1) · · · f−(k+1)f1 · · · fjfmovfj+1 · · · fn+1 and move the moving factor fmov from the right
of fj to its left via some process. If we repeat this process eventually we can pull fmov all
the way to the left of f1 · · · fn+1 and make it f−k. If this in turn can be done for each k
it means that if we start with a factorization of the form f1 · · · fn+1 ∈ F󵀆

w we can get one
of the form f−(n+1) · · · f−1f1 · · · fn+1. We will then want to show the latter lies in F□

w .)

Example 27. Let w = (4, 3, 2, 1) ∈ S4. The following sequence of factorizations would
be computed under the bijection described later in this proof to get from an element of
F󵀆
w to an element of F□

w. The moving factor is shown in red. Note that for fixed k the
moving factor always moves to the left. When k decreases by one, the new moving factor
starts one position to the right of where the moving factor for the previous k started.

󰀃
3 3 2 1 1

󰀄󰀃
3 2

󰀄󰀃
3 3

󰀄󰀃󰀄
∈ F󵀆

w

()|
󰀃
3 3 2 1 1

󰀄
()
󰀃
3 2

󰀄󰀃
3 3

󰀄󰀃󰀄
∈ F13

w

()| (3)
󰀃
3 2 1 1

󰀄󰀃
3 2

󰀄󰀃
3 3

󰀄󰀃󰀄
∈ F03

w

()(3)|
󰀃
3 2 1 1

󰀄󰀃
3 2

󰀄
()
󰀃
3 3

󰀄󰀃󰀄
∈ F22

w

()(3)|
󰀃
3 2 1 1

󰀄
(3)

󰀃
2
󰀄󰀃
3 3

󰀄󰀃󰀄
∈ F12

w

()(3)| (23)
󰀃
21 1

󰀄󰀃
2
󰀄󰀃
3 3

󰀄󰀃󰀄
∈ F02

w

()(3)(23)|
󰀃
21 1

󰀄󰀃
2
󰀄󰀃
3 3

󰀄
()
󰀃󰀄

∈ F31
w

()(3)(23)|
󰀃
321 1

󰀄󰀃
2
󰀄
(3)

󰀃
3
󰀄󰀃󰀄

∈ F21
w

()(3)(23)|
󰀃
321 1

󰀄
(2)

󰀃
3
󰀄󰀃
3
󰀄󰀃󰀄

∈ F11
w

()(3)(23)| (13)
󰀃
321

󰀄󰀃
3
󰀄󰀃
3
󰀄󰀃󰀄

∈ F01
w

()(3)(23)(13)|
󰀃
321

󰀄󰀃
3
󰀄󰀃
3
󰀄󰀃󰀄

∈ F□
w

We begin by noting that F1n
w = F󵀆

w and that F01
w = F□

w. Moreover, we have that

F0k
w = F

(n−k+2)(k−1)
w for k > 1. Hence it suffices to find an x-weight and y-weight preserving

bijection from Fjk
w to F

(j−1)k
w for j ∈ {1, . . . , n − k + 1} and k ∈ {1, . . . , n}. To do the

latter it suffices to find a bijection, Ψjk between pairs (fj, fmov) such that:

• fj contains uncircled elements only from {j, . . . , n}.

• fj contains circled elements only from { j , . . . , s } where s = j + k − 1.

• fmov contains elements from {j + k, . . . , n}
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• fmov is strictly increasing in the order 1 < · · · < n.

• fj is strictly decreasing in the order 1 < 1 < · · · < n < n.

to pairs (f ′
mov, f

′
j) such that:

• f ′
j contains uncircled elements only from {j, . . . , n}.

• f ′
j contains circled elements only from { j , . . . , t } where t = j + k − 2.

• f ′
mov contains elements from {j + k − 1, . . . , n}

• f ′
mov is strictly increasing in the order 1 < · · · < n.

• f ′
j is strictly decreasing in the order 1 < 1 < · · · < n < n.

with the property that if (fj, fmov) → (f ′
mov, f

′
j) then the Hecke words fjfmov and f ′

movf
′
j

represent the same permutation and whenever (fj)(fmov) appears in an element of Fjk
w (in

the expected position) these two factors make the same contribution to the x-weight and

y-weight as the pair (f ′
mov)(f

′
j) when it appears in an element of F

(j−1)k
w (in the expected

position).
To do this write fj = f>

j f
=
j f

<
j where f>

j , f=
j , f<

j are the parts of fj composed,
respectively, of elements greater than, equal to, or less than s (where s = j + k − 1) in
the order 1 < 1 < · · · < n < n. If f=

j is nonempty then append s to the left of fmov

to form f+
mov. Otherwise set f+

mov = fmov. Then let (g1, g2) =↑ (f>
j , f

+
mov). We define

Ψjk(fj, fmov) = (f ′
mov, f

′
j) where f ′

mov = g1 and f ′
j = g2f

<
j .

On the other hand given a pair (f ′
mov, f

′
j) write f

′
j = f ′>

j f ′<
j where f ′>

j and f ′<
j are the

parts of f ′
j composed, respectively, of elements greater than or less than s in the order

1 < 1 < · · · < n < n. Next set (h1, h2) =↓ (f ′
mov, f

′>
j ). Now write h2 = h=

2 h
>
2 where h=

2

and h>
2 are the parts of h2 composed respectively of elements equal to or greater than s

in the order 1 < · · · < n. We define Ψ−1
jk (f

′
mov, f

′
j) = (fj, fmov) where fj = h1f

′<
j if h=

2 is
empty and fj = h1 s f

′<
j otherwise and fmov = h>

2 .
The fact that ↑ and ↓ preserve the permutation represented along with the commuta-

tion of nonadjacent transpositions implies that Ψ and Ψ−1 do not change the permutation
represented. Moreover the constructions of Ψ and Ψ−1 make it clear that they map into
the proper images. One can easily check that Ψ−1 ◦ Ψ is the identity by considering the
two cases where either fj contains a s or does not. Similarly, one can check that Ψ ◦Ψ−1

is the identity by considering the two cases where either the h2 of the construction of Ψ−1

contains an s or does not.
Finally, if (fj, fmov) → (f ′

mov, f
′
j), we need to check these two pairs make the same

contributions to the x-weight and y-weight of the factorization they are part of. For the
first pair, the contribution to the x-weight is simply to add r to the jth coordinate of
the x-weight where r is the number of uncircled elements in fj. For the second pair, the
contribution to the x-weight is simply to add r′ to the jth coordinate of the x-weight
where r′ is the number of uncircled elements in f ′

j. Clearly the construction of Ψ implies
that r = r′. Now the circled elements of fj and f ′

j other than s (which only affects the
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kth coordinate of the y-weight since s− (j− 1) = k) are the same and fmov and f ′
mov only

affect the kth coordinate of the y-weight. Thus it suffices just to check that (fj)(fmov)
and (f ′

mov)(f
′
j) make the same contribution to the kth coordinate of the y-weight. If fj

does not contain a s then fmov and f ′
mov have the same length ℓ and the contribution

to the kth coordinate of the y-weight is just ℓ + 0 in either case since neither fj nor f ′
j

contain a s . If fj does contain a s then if fmov has length ℓ then f ′
mov has length ℓ+ 1.

The contribution to the kth coordinate of the y-weight from (fj)(fmov) is (1) + (ℓ) since
fj contains one s . The contribution to the kth coordinate of the y-weight from (f ′

mov)(f
′
j)

is (ℓ+ 1) + (0) since f ′
j contains no s .

Example 28. Set n = 9 and k = 3 and j = 2. Suppose that fj = (9764 4 3 2 2 ) and
fmov = (5689). Then as in the construction of Ψjk we set s = j + k − 1 = 4 and f>

j

becomes (9764) while f=
j becomes ( 4 ) and f<

j becomes ( 3 2 2 ) . To compute f+
mov we

append a 4 to fmov, and so f+
mov becomes (45689). Next we set (g1, g2) =↑ (9764)(45689).

To evaluate this we compute:

W 3 = (9764)()()(45689)

W 4 = (976)(4)(4)(5689)

W 5 = (976)(45)(5)(689)

W 6 = (97)(456)(65)(89)

W 7 = (9)(457)(765)(89)

W 8 = (9)(4578)(865)(9)

W 9 = ()(45789)(9865)()

and see that g1 = (45789) and g2 = (9865). Therefore we get that f ′
mov = g1 = (45789)

and f ′
j = g2f

<
j = (9865 3 2 2 ). All in all, we see that Ψ23 sends

(9764 4 3 2 2 )(5689) → (45789)(9865 3 2 2 ).

Lemma 29. We have

Gw(x, y) =
󰁛

(u,v)∈Xw

Gu−1(y)Gv(x).

Proof. We proceed by induction on the number of inversions of w−1w0. First suppose
that this number is 0. That is, w = w0. First we compute

󰁛

f∈F◦
w0

(x, y)wt(f).

For any f ∈ F◦
w0

the boundedness condition implies that for each i, the ith factor of f
contains a subset of { i , i, . . . , n , n}. Letting ℓi denote the number of distinct numerical
values that appear (uncircled, circled, or both) in the ith factor of f, it is clear that the
inversion number of the permutation represented by f is bounded by

󰁓
ℓi, which, in turn

the electronic journal of combinatorics 31(4) (2024), #P4.13 14



is bounded by n + (n − 1) + · · · + 1 + 0 =
󰀃
n+1
2

󰀄
. But

󰀃
n+1
2

󰀄
actually is the inversion

number of w0 ∈ Sn+1. Thus
󰁓

ℓi =
󰀃
n+1
2

󰀄
, which means that ℓi = n + 1 − i for each i

or that all the numerical values {i, i+ 1, . . . , n} show up in the ith factor of f (uncircled,

circled, or both). This means that there are precisely 3(
n+1
2 ) factorizations in F◦

w0
. Each

factorization, f, is specified by choosing, for each i ∈ [1, n+1] and j ∈ [1, n+1−i] whether
the value (i+ j − 1) appears in the ith factor as circled, uncircled, or both. The value of
(x, y)wt(f) is computed by starting with 1 and, for each i ∈ [1, n+ 1] and j ∈ [1, n+ 1− i]
multiplying by xi, yj, or xiyj depending on whether the value (i + j − 1) appears in the
ith factor as circled, uncircled, or both.

It follows that:

󰁛

(u,v)∈Xw

Gu−1(y)Gv(x) =
󰁛

f∈F◦
w0

(x, y)wt(f) =
󰁜

i+j󰃑n+1

(xi + yj + xiyj) = Gw0(x, y).

where the first equality comes from combining Lemmas 26 and 23. This completes the
base step of induction. Now suppose that w−1w0 has at least one inversion. Choose sr
such that wsr has more inversions than w. By definition we have πsrGwsr(x, y) = Gw(x, y)
and so if we can show that

πsr

󰁛

(u,v)∈Xwsr

Gu−1(y)Gv(x) =
󰁛

(u,v)∈Xw

Gu−1(y)Gv(x), (3.4)

then since the inductive hypothesis implies that the left hand sides of the two former
equations are equal it will imply that the right hand sides are also equal. First we write
Xwsr = A ∪B ∪ C where:

• A = {(u, v) ∈ Xwsr : no reduced word for v ends in sr}.

• B = {(u, v) ∈ Xwsr : ∃ν s.t. 󰁨v ∼ 󰁨νs̄r, 󰁨ν ∕∼ 󰁨νs̄r, 󰁨u󰁨ν ∼ 󰁨u󰁨νs̄r}.

• C = {(u, v) ∈ Xwsr : ∃ν s.t. 󰁨v ∼ 󰁨νs̄r, 󰁨ν ∕∼ 󰁨νs̄r, 󰁨u󰁨ν ∕∼ 󰁨u󰁨νs̄r}.

(Recall that s̄r is the idempotent or Hecke version of the simple transposition sr.)

Claim 30. There exist bijections

(i) B −→ A

(ii) C −→ Xw

Proof. We describe a single procedure and its inverse that actually gives both the bijec-
tions. First let (u, v) ∈ B or (u, v) ∈ C. In either case we may write v = νsr for a
(unique) permutation ν with 󰁨ν ∕∼ 󰁨νs̄r. We now simply send (u, v) to (u, ν).

If (u, v) ∈ B then 󰁨u󰁨ν ∼ 󰁨u󰁨νs̄r so that (u, ν) ∈ Xwsr . Moreover, 󰁨ν ∕∼ 󰁨νs̄r implies that
ν has no reduced word ending in sr, so (u, ν) ∈ A. If (u, v) ∈ C then 󰁨u󰁨ν ∕∼ 󰁨u󰁨νs̄r implies
that (u, ν) ∈ Xw.
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Next let (u, v) ∈ A or (u, v) ∈ Xw. Then the inverse map sends (u, v) to (u, vsr). First,
suppose that (u, v) ∈ A. Then the permutation that the Hecke word 󰁨u󰁨v represents is wsr
which obviously has a reduced word ending in sr. Thus the permutation represented by
󰁨u󰁨vs̄r is also wsr. Further, in the definition of B, replacing v with vsr and ν with v satisfies
the three requirements of the definition, (󰁨vs̄r) ∼ 󰁨vs̄r (clearly), 󰁨v ∕∼ 󰁨vs̄r (because v has no
reduced word ending in sr), and 󰁨u󰁨v ∼ 󰁨u󰁨vs̄r (by the previous sentence). Thus (u, vsr) ∈ B.
On the other hand if (u, v) ∈ Xw then the fact that 󰁨u󰁨v represents the permutation w
implies that 󰁨u󰁨vs̄r represents the permutation wsr. Moreover, in the definition of C,
replacing v with vsr and ν with v satisfies the three conditions: (󰁨vs̄r) ∼ 󰁨vs̄r (clearly),
󰁨v ∕∼ 󰁨vs̄r (because the fact uv has no reduced word ending in sr implies the same for v),
and 󰁨u󰁨v ∕∼ 󰁨u󰁨vs̄r (because 󰁨u󰁨v ∼ 󰁨w and w has no reduced word ending in sr). Finally, it is
clear the given maps are mutual inverses. 󰃈

Claim 31.

πsr

󰁛

(u,v)∈B

Gu−1(y)Gv(x) = −πsr

󰁛

(u,v)∈A

Gu−1(y)Gv(x) (3.5)

πsr

󰁛

(u,v)∈C

Gu−1(y)Gv(x) =
󰁛

(u,v)∈Xw

Gu−1(y)Gv(x) (3.6)

Proof. To prove 3.5 it suffices to show if (u, νsr) → (u, ν) under bijection (i) then,

πsrGνsr(x) = −πsrGν(x).

To prove 3.6 it suffices to show if (u, νsr) → (u, ν) under bijection (ii) then,

πsrGνsr(x) = Gν(x).

In either case if µ = µ1 · · ·µℓ is a reduced word for the permutation (νsr)
−1w0, then

srµ1 · · ·µℓ is a reduced word for ν−1w0. So by the divided difference operator definition,
the equations become:

πsr(πµ1 · · · πµℓ
)(xn

1 · · · x0
n+1) = −πsr(πsrπµ1 · · · πµℓ

)(xn
1 · · · x0

n+1)

and

πsr(πµ1 · · · πµℓ
)(xn

1 · · · x0
n+1) = (πsrπµ1 · · · πµℓ

)(xn
1 · · · x0

n+1).

The first follows by part (4) of Lemma 2 and the second is immediate. 󰃈

Combining equations 3.5 and 3.6 gives equation 3.4 thereby completing the induction
step and finishing the proof.
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4 Stable Grothendieck Polynomials

In this section we discuss certain limits of Grothendieck polynomials as well as the doubled
versions of these limits. The main result of this section is a formula for the double stable
Grothendieck polynomials in terms of set-valued tableaux.

We will use the following notation in this section: Let w ∈ Sk+1 and choose some m 󰃍
0. m will remain fixed throughout this section. Let −→w ∈ Sm+k+1 be the permutation of
[1, . . . ,m, (m+1), . . . , (m+k+1)] that fixes the firstm entries and applies the permutation
w to the last k + 1 entries. In other words, si1 · · · siℓ is a reduced word for w if and
only if si1+m · · · siℓ+m is a reduced word for −→w . Let ←−x = (x1, . . . , xm+1) and −→x =
(xm+2, . . . , xm+k+1). Similarly let ←−y = (y1, . . . , ym+1) and

−→y = (ym+2, . . . , ym+k+1). Write
x = (←−x ,−→x ) and y = (←−y ,−→y ).

4.1 Single Stable and Single Symmetric Grothendieck polynomials

We quickly review the situation for single Grothendieck polynomials:

Definition 32 ([Las90]). The stable Grothendieck polynomial for w is

Gw(
←−x ) = G−→w (x)|−→x=0.

Lemma 33 ([Las90]). We have

Gw(
←−x ) =

󰁛

f∈Fw

(←−x )wt(f).

Definition 34 ([Buc02]). The conjugate symmetric Grothendieck polynomial for a par-
tition λ is

Gλ(
←−x ) =

󰁛

T∈CSV T (λ)

(←−x )wt(T ).

The conjugate symmetric Grothendieck polynomial is defined for skew shapes similarly.

Proposition 35 ([BKS+08]). We have

Gw(
←−x ) =

󰁛

λ

󰁛

T∈HTw(λ)

Gλ(
←−x ).

Proof. This follows immediately from Lemma 14.

4.2 Stable Double Grothendieck Polynomials

Definition 36 ([Las90]). The stable double Grothendieck polynomial for w is given by:

Gw(
←−x ,←−y ) = G−→w (x, y)|−→x=0=−→y .
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Proposition 37.

Gw(
←−x ,←−y ) =

󰁛

f∈F□
w

(←−x ,←−y )wt(f)

Proof. We have that

G−→w (x, y) = G□−→w (x, y) =
󰁛

f∈F□−→w

(x, y)wt(f).

Therefore we have that

G−→w (x, y)|−→x=0=−→y =
󰁛

f∈F□−→w (2m+2)

(←−x ,←−y )wt(f)

where F□−→w (2m+2) is the subset of F□−→w where all but the middle 2m+2 factors are empty.
But every Hecke word for −→w only contains elements from the set of {(m + 1), . . . , (m +
k)} and the boundedness condition on the central 2m + 2 factors of a factorization of
F□−→w (2m + 2) only requires elements to be greater 󰃍 i for some i 󰃑 m + 1. Therefore no
factorization of F□

w fails to lie inside of F□−→w (2m+2) (after changing each si to si+m), that
is, F□

w = F□−→w (2m+ 2) (after changing each si to si+m).

4.3 Balanced Double Grothendieck Polynomials

Definition 38. Consider the orderdered alphabet {1 < 2 < · · · < m + 1 < 1′ < 2′ <
· · · < (m+ 1)′}. A primed set valued tableau of shape λ, or an element of PSV T (λ), is a
filling of a Young diagram of shape λ such that each box is nonempty and contains a set
from this alphabet such that

• All of the entries in a box are less than or equal to all of the entries in the box to
its right.

• All of the entries in a box are less than or equal to all of the entries in the box below
it.

• i appears in at most one box in each column.

• i′ appears in at most one box in each row.

The x-weight of such a tableau is the vector whose ith coordinate records the number
of times i′ appears in the tableau. The y-weight is the vector whose ith coordinate records
the number of times i appears in the tableau.

Example 39. The following is a PSV T with x-weight (3, 3, 2, 2) and y-weight (1, 2, 2, 0)

12 23 1′2′

31′ 2′3′ 4′

1′2′ 3′4′
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Definition 40. We define the balanced double Grothendieck polynomial2:

Gλ(
←−x ,←−y ) =

󰁛

T∈PSV T (λ)

(←−x ,←−y )wt(T )

4.4 Relationship between Stable Double Grothendieck Polynomials and Bal-
anced Double Grothendieck Polynomials

We are interested now in the relationship between Gw(
←−x ,←−y ) and Gλ(

←−x ,←−y ).

Proposition 41. There is an x-weight and y-weight preserving bijection from F□
w to pairs

(P,Q) where P ∈ HTw and Q ∈ PSV T have the same shape.

Proof. Let f ∈ F□
w and let fℓ represent the leftmost m+1 factors of f and fr represent the

rightmost m + 1 factors of f. Suppose that fℓ represents the permutation µ and denote

by
←→
fℓ the factorization given by reversing the order of the factors of fℓ and reversing the

order of the letters within each factor. Note that if fℓ is a Hecke factorization for µ then←→
fℓ is a Hecke factorization of µ−1. Apply semistandard Hecke insertion to

←→
fℓ to obtain

a pair (Pℓ, Qℓ) where Pℓ ∈ HTµ−1(λℓ) and Qℓ ∈ CSV T (λℓ) for some λℓ. Now transpose
both tableaux to get a pair (P t

ℓ , Q
t
ℓ) of shape λt

ℓ. Now, proceed with semistandard Hecke
insertion as if the current insertion tableau were P t

ℓ and the current recording tableau
were Qt

ℓ and exactly the factors of fr remained to be inserted. The only ambiguity to
starting in the middle of Hecke insertion like this is not knowing what entry to add to
the recording tableau during insertion of the ith factor of fr: Use the entry i′. Denote the
final insertion tableau and recording tableau as P and Q respectively. We can now define
the bijection: Φ(f) = (P,Q).

Example 42. Let f = (124)(13)|(432)(3) ∈ F□
w . we have fℓ = (124)(13) and fr = (432)(3).

First apply semistandard Hecke insertion to
←→
fℓ = (31)(421) to find that

Pℓ =
1 2
2 4
3

, Qℓ =
1 2
1 2
2

, P t
ℓ = 1 2 3

2 4
, Qt

ℓ =
1 1 2
2 2

Now apply semistandard Hecke insertion of fr = (432)(3) to the starting pair (P t
ℓ , Q

t′
ℓ )

P = P t
ℓ ← (432)(3) = 1 2 3

2 4
← (432)(3) =

1 2 3 4
2 3 4
4

Q =
1 1 2 1′

2 21′2′

1′

2Although, as we will see the stable double Grothendiecks will expand in terms of these polynomials, it
should be noted that this does not imply that they are stable limits themselves (in general, they are
not instantiations of stable double Grothendieck polynomials indexed by Grassmannian permutations).
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There is much to prove:

• P is a Hecke tableau and it represents the permutation w: Suppose fℓ is a Hecke
word for some permutation µ. Now, Pℓ was formed by applying Hecke insertion

to
←→
fℓ and so is a Hecke tableau whose rows read left to right, from bottom row

to top row form a Hecke word for µ−1. Since the only requirement for being a
Hecke tableau is that the rows and columns are strictly increasing, (which is clearly
preserved under transposition) it is also true that P t

ℓ is a Hecke tableau. Next, the
columns of P t

ℓ read from top to bottom from rightmost column to leftmost column
give a Hecke word for µ−1. Therefore the columns of P t

ℓ read from bottom to top
from leftmost column to rightmost column give a Hecke word for µ. However:

Claim 43. The column reading word and row reading word of a Hecke tableau, H,
represent the same permutation.

Proof. Let wk(H) be the permutation represented by reading the leftmost k columns
of H bottom to top, leftmost column to rightmost column and then, ignoring the
first k columns of H, reading rows left to right, bottom row to top row. It suffices
to show that wk(H) = wk+1(H). Without loss of generality we may assume k = 0.
Now let wj(H) be the permutation represented by reading the lowest j entries of the
leftmost column of H from bottom to top and then reading the remaining entries of
H by rows, left to right, bottom to top. To show that wk(H) = wk+1(H) for k = 0
it suffices to show that wj(H) = wj+1(H). If a is the entry in the leftmost column
of H in the j + 1st row from the bottom and b is any entry in H in the jth row
from the bottom or lower not in the first column of H then a < b− 1. Therefore a
commutes with all such b which shows that wj(H) = wj+1(H).

Therefore reading the rows of P t
ℓ left to right, bottom to top also gives a Hecke word

for µ. Since fr gives a Hecke word for some permutation ν such that 󰁨µ󰁨ν ∼ −→w the
properties of Hecke insertion imply that the Hecke word formed by reading the rows
of P from left to right, bottom to top also represents w. All this shows that P is a
Hecke tableau and it represents the permutation w.

• Q ∈ PSV T (λ) where λ is the shape of P : First, Qℓ ∈ CSV T (λℓ) by Lemma 14 so
it follows that Qt

ℓ ∈ PSV T (λt
ℓ) (and has no primed entries). On the other hand it

also follows from Lemma 14 that the primed entries from Q will give (ignoring their
primes) an element of CSV T (λ/ρ) for some ρ ⊆ λt

ℓ such that λt
ℓ \ ρ contains no

more than one box in any row or column. The fact that the primed and unprimed
entries give such tableaux along with the fact that i < j′ for any i and j imply that
Q ∈ PSV T (λ).

• Φ is injective. Let f, f× ∈ F□
w . Suppose that Φ(f) = Φ(f×) = (P,Q) with f ∕= f×.

We use the same notation as in the construction of Φ(f) and also set pℓ equal to
the Hecke factorization given by reading the columns of P t

ℓ bottom to top from left
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column to right column. Use the same notation for corresponding objects associated
to f× but with a ×.

If fℓ ∕= f×ℓ then by Lemma 14 (Pℓ, Qℓ) ∕= (P×
ℓ , Q×

ℓ ). But Qℓ ∕= Q×
ℓ would force

Q ∕= Q× so we must have Pℓ ∕= P×
ℓ and so P t

ℓ ∕= (P×
ℓ )t. Thus either fℓ ∕= f×ℓ in which

case pℓ ∕= p×ℓ or else fr ∕= f×r . Either way, pℓfr ∕= p×ℓ f
×
r . On the other hand, the

insertion tableau of pℓ is just P
t
ℓ and its recording tableau is the obvious canonical

one, Qcan. It follows that the insertion tableau of pℓfr is just P and its recording
tableau can be easily obtained from Qcan and the outer part of Q. Similarly, the
insertion tableau of p×ℓ f

×
r is also P and its recording tableau is obtained from Qcan

and Q in the same way. Thus the Hecke factorizations pℓfr and p×ℓ f
×
r are two distinct

elements mapping to the same insertion and recording tableaux under the bijection
of Lemma 14 which is a contradiction.

• Φ is surjective. Suppose we are given (P,Q) of the same shape λ where P ∈ HTw

and Q ∈ PSV T . Let Qout denote the skew tableau formed by only taking the
primed entries of Q and unpriming them. Let Qin denote the tableau formed by
taking only the unprimed entries of Q. Take j sufficiently large, (for example more
than the number of unprimed entries in Q) and let Qfill be any CSV T such that
erasing all integers less than or equal to j and subtracting j from the rest gives Qout

and such that removing all entries greater than j gives a tableau of the same shape
as Qin.

Now use Lemma 14 to find a Hecke factorization 󰁨f mapping to (P,Qfill). Write
󰁨f = 󰁨fℓfr where 󰁨fℓ represents the first j factors of 󰁨f. Suppose the insertion tableau of
󰁨fℓ is T . Use Lemma 14 to find a Hecke factorization fℓ mapping to (T t, Qt

in). Let
←→
fℓ represent the result of reversing the order of the factors of fℓ and reversing the

order of the entries within each factor. Then we have that Φ(
←→
fℓ fr) = (P,Q). Now

←→
fℓ fr ∈ F□

w′ for some w′ just by construction. But by the first bullet point we have
w′ = w.

• Φ preserves the x-weight and the y-weight: Suppose Φ(f) = (P,Q) where f = fℓfr.
The y-weight of f is the vector whose ith coordinate records the number of entries

in the ith factor of
←→
fℓ which is the number of times i appears in Qℓ or equivalently

in Q. This is the definition of the y-weight of Q. The x-weight of f is the vector
whose ith coordinate records the number of entries in the ith factor of fr which is
the number of times i′ appears in Q. This is the definition of the x-weight of Q.

Remark 44. If it were not for the unfortunate fact mentioned in Remark 9 the whole pro-
cess of reversing the left side of the factorization and then inserting and then transposing
would not be necessary and the proposition could be proved through just inserting the
factors directly. We leave it as an open problem to find a way of altering Hecke insertion
so it has the additional properties needed for this simpler proof.
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Corollary 45. Given a partition µ we say that ρ ⊆· µ if ρ ⊆ µ and µ/ρ contains no two
boxes in the same row and no two boxes in the same column. For a tableau, T , let Ts

denote the shape of T . We have:

Gw(
←−x ,←−y ) =

󰁛

T∈HTw

󰁛

ρ⊆· µ⊆Ts

GTs/ρ(
←−x )Gµ′(←−y ). (4.1)

Proof. It follows from proposition 41 that we have:

Gw(
←−x ,←−y ) =

󰁛

T∈HTw

GTs(
←−x ,←−y ).

Next, note that there is a canonical bijection from PSV T (λ) to pairs of tableaux (P,Q)
where P is a skew CSV T and Qt is a straight shape CSV T such that Ps∩Qs contains no
two boxes in the same row or column and where Ps ∪ Qs = λ. Since the bijection sends
x-weight to the weight of P and y-weight to the weight of Q the theorem follows from the
formula above.

4.5 Double Grothendieck functions

We will now be interested in Grothendieck polynomials over infinite set(s) of variables.
To distinguish when we are talking about such polynomials will refer to them as functions
from now on. Let x = (x1, x2, . . .) and y = (y1, y2, . . .) be infinite lists of variables. Let
Ωx be the Z[y] linear involution on functions symmetric with respect to x in Z[x,y] which
sends sλ(x) → sλ′(x). Let Ωy be the Z[x] linear involution on functions symmetric with
respect to y in Z[x,y] that sends sλ(y) → sλ′(y).

In what follows CSV T (λ), Fw, PSV T (λ), and F□
w refer to the sets obtained by al-

tering the definitions of CSV T (λ), Fw, PSV T (λ), and F□
w respectively by replacing the

requirement that entries come from the set {1, 2, . . . ,m,m+1} (and possibly their primed
versions) with the requirement that the entries come from the set of positive integers (and
possibly their primed versions).

Definition 46. [LS82b] Define the conjugate symmetric Grothendieck function and the
stable Grothendieck function, respectively, by:

Gλ(x) =
󰁛

T∈CSV T (λ)

(x)wt(T )

Gw(x) =
󰁛

f∈Fw

(x)wt(f).

Definition 47. [LP07] Define the weak symmetric Grothendieck function and the weak
stable Grothendieck function, respectively, by:

∗Gλ(x) = Ωx(Gλ(x))
∗Gw(x) = Ωx(Gw(x)).
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Definition 48. Define the balanced double Grothendieck function and the stable double
Grothendieck function [Buc02], respectively, by:

Gλ(x,y) =
󰁛

T∈PSV T (λ)

(x,y)wt(T )

Gw(x,y) =
󰁛

f∈F□
w

(x,y)wt(f).

Definition 49. Define the weak balanced double Grothendieck function and the weak
stable double Grothendieck function, respectively, by:

∗Gλ(x,y) = ΩxΩy(Gλ(x,y))
∗Gw(x,y) = ΩxΩy(Gw(x,y)).

This allows us to state the main theorem of this section:

Theorem 50. Given a partition µ we say that ρ ⊆· µ if ρ ⊆ µ and µ/ρ contains no two
boxes in the same row and no two boxes in the same column. For a tableau, T , let Ts

denote the shape of T . We have:

Gw(x,y) =
󰁛

T∈HTw

󰁛

ρ⊆· µ⊆Ts

GTs/ρ(x)Gµ′(y) (4.2)

∗Gw(x,y) =
󰁛

T∈HTw

󰁛

ρ⊆· µ⊆Ts

∗GTs/ρ(x)
∗Gµ′(y). (4.3)

Proof. Equation 4.2 follows from equation 4.1. Equation 4.3 follows by applying Ωx ◦ Ωy

to equation 4.2.

Remark 51. Since Gλ(x) can be defined combinatorially in terms of set-valued tableaux
of shape λ′ [Buc02], equation 4.2 gives us a way to express Gw(x,y) in terms of triples
of tableaux, (T, P,Q) where T is a Hecke tableau and P and Q are (possibly skew) set-
valued tableaux. Similarly, since ∗Gλ(x) can be defined combinatorially in terms of weak
set-valued tableaux of shape λ′ [LP07], equation 4.3 gives us a way to express Gw(x,y)
in terms of triples of tableaux, (T, P,Q) where T is a Hecke tableau and P and Q are
(possibly skew) weak set-valued tableaux.

5 Half weak double Grothendieck functions

5.1 Motivation

We begin by noting that there is a large degree of flexibility in the combinatorial models
we have chosen in this paper.

First note that Gλ(x,y) is expressed combinatorially in terms of primed set valued
tableaux with entries from the infinite alphabet {1′, 2′, . . . , 1, 2, . . .}. On the other hand,
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it may be shown that ∗Gλ(x,y) may be expressed in terms of “primed multiset valued
tableaux” where boxes can now be filled with multisets from {1′, 2′, . . . , 1, 2, . . .}. Further,
in both cases, the ordering of the alphabet {1′, 2′, . . . , 1, 2, . . .} is irrelevant as long as it
is fixed. We can, for instance, assume the order 1′ < 1 < 2′ < 2 < · · · in either definition.
This can be proven using a generalization of the maps ↗ and ↘ from Lemma 2.2 of
[Haw22] to the set valued and multiset valued cases respectively.

As a side note, this freedom of ordering implies that the functions Gλ(x,x) are actually
certain skew GQ functions as defined in [IN13]: Precisely, suppose that the partition λ
has k parts and let δ = (k − 1, k − 2, . . . , 1) be the staircase partition. Then Gλ(x,x) is
the K-theoretic GQ function of [IN13] indexed by the skew shifted shape (λ+ δ)/δ3. This
can be seen by noting that primed set valued tableaux of shape λ using the particular
ordering of 1′ < 1 < 2′ < 2 < · · · are precisely the set-valued shifted tableaux of [IN13]
of shape (λ + δ)/δ. Interestingly, it appears that Gλ(x,x) expands in terms of non-skew
GQ functions and that this fact is a result of a more general phenomenon. In Conjecture
74 of Section 6 we give a precise statement of what we mean by this (see also Conjecture
5.14 of [LM21]).

On the other hand, Gw(x,y) may be expressed combinatorially in terms of (un-
bounded) double Hecke factorizations where we allow an infinite number of factors to
the left and to the right. Similarly, it may be shown that ∗Gw(x,y) has such a combinato-
rial interpretation if we change the strictly increasing and strictly decreasing requirements
on the left and right hand factors, respectively, to weakly decreasing and weakly increas-
ing, respectively. Again there is freedom in how we choose to define these double Hecke
factorizations. Namely, the relative order in which the (weakly) increasing and (weakly)
decreasing factors appear is not important as long as it is fixed. For example, instead
of requiring the increasing factors of an (unbounded) double Hecke factorization to all
appear to the left of the decreasing factors, we may instead require they appear to the
right of the decreasing factors, or, we could require that increasing and decreasing factors
alternate, or, any other fixed arrangement of increasing and decreasing factors. The sit-
uation is the same for the weak case. These statements can be proven using the maps ↑
and ↓ of section 3 along with an adaptation of these maps to the weak case.

If we were to choose to define (unbounded) double Hecke factorizations using the
requirement that we must alternate between (strictly) decreasing and (strictly) increasing
factors we would in essence end up with a definition in terms of “strict hook factors” where
the decreasing part of each factor contributes to the x-weight and the increasing part to
the y-weight. This is precisely the definition of type B Stanley symmetric functions in
[BH95] except that those authors have only one weight per hook factor (which is the total
length of that hook factor) and they only consider reduced words. Since Gw(x,x) also
computes the weight this way it agrees with the type B Stanley symmetric function on
terms of lowest degree (since the terms of lowest degree in Gw(x,x) represent precisely the
reduced words for w). As an example if w = (3,2,1) then (we leave it to the reader to

3Here λ + δ means the strict partition obtained by adding δ to λ coordinate-wise. Since δ itself is a
strict partition we can consider both δ and λ + δ as shifted shapes and (λ + δ)/δ as a skew shifted
shape. This allows us to consider the straight-shape partition λ as a skew shifted shape.
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compute) that Gw(x1, x2) = 2x3
1+8x2

1x2+8x1x
2
2+2x2

2+x4
1+12x3

1x2+24x2
1x

2
2+12x1x

3
2+x4

2 · · ·
whereas the type B Stanley symmetric function is just 2x3

1 + 8x2
1x2 + 8x1x

2
2 + 2x2

2.
However, since ∗Gw(x,y) can be interpreted combinatorially using “weak” (unbounded)

double Hecke factorizations with the requirement that we must alternate between (weakly)
decreasing and (weakly) increasing factors we see that ∗Gw(x,y) has a similar combina-
torial interpretation in terms of “weak hook factorizations.” Now, any weak hook factor-
ization corresponding to a reduced word is automatically also a strict hook factorization
(and vice versa). Thus ∗Gw(x,x) also agrees with the type B Stanley symmetric function
on terms of lowest degree.

Finally, we could also define a new function ×Gw(x,y) using “half weak” hook fac-
torizations that are composed of factors that are strictly decreasing and then weakly
increasing. By similar reasoning as above we see that ×Gw(x,x) would also generalize the
type B Stanley symmetric function in the sense that its lowest degree term would return
the latter. Moreover, there is a natural interpolation of Gw(x,y) and

∗Gw(x,y), which we
denote ×Gw(x,y), such that ×Gw(x,y) expands in terms of ×Gw(x,y) with non-negative
integer coefficients. Further, the expansion coefficients are the same as those in the ex-
pansion of Gw(x,y) in terms of Gw(x,y) (and so also as in the expansion of ∗Gw(x,y) in
terms of ∗Gw(x,y)). In fact the relation between ×Gw(x,y) and

×Gw(x,y) appears more
naturally in the sense that it can be proven directly using Hecke insertion (remark 9 does
not cause issues in this case). However, the most compelling evidence that ×Gw(x,x) is
a more natural generalization of the type B Stanley symmetric function than Gw(x,x)
or ∗Gw(x,x) is that, like the type B Stanley symmetric function, ×Gw(x,x) is Q-Schur
positive whereas neither Gw(x,x) nor

∗Gw(x,x) is.
For these reasons it seems like ×Gw(x,x) is a suitable candidate for a type B stable

Grothendieck function. Of course, our definition is incomplete in the sense that it is
only defined for (unsigned) permutations whereas we would ideally like something defined
for all signed permutations. This is equivalent to adding a rule as to how the special
generator, s0, of the type B Weyl group should be incorporated into the definition of
hook Hecke factorization found in the next subsection. We leave this as an open problem.

5.2 Results

We need to introduce a number of definitions:

Definition 52. A hook Hecke factorization of w is a factorization into hook factors. Each
hook factor contains a subset of { 1 , 2 , . . .} and a multiset from {1, 2, . . .} arranged so
that all circled factors lie to the left of all uncircled factors and such that the circled
elements are strictly decreasing left to right and the uncircled elements are weakly in-
creasing left to right. Moreover, erasing the circles and parentheses should give a Hecke
word for w. For instance,

󰀃
3 2 233

󰀄󰀃
1 22

󰀄󰀃
3 2 1133

󰀄
is a hook Hecke factorization for

the permutation (4, 3, 2, 1) ∈ S4. The x-weight of a hook Hecke factorization is the vector
whose ith entry records the number of uncircled elements in its ith factor. The x-weight of
the example above is (3, 2, 4). The y-weight of such a factorization is the vector whose ith
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entry records the number of circled entries in the ith factor. The y-weight of the example
above is (2, 1, 2).

Remark 53. There is a symmetry that must be broken as to the assignment of the x-
weight and y-weight. While the x-weight of Gw(x,y) corresponds to strictly decreasing
factors, the x-weight of ∗Gw(x,y) corresponds to weakly increasing factors. Thus either
half of the hooks could naturally be chosen as the x-weight of a hook Hecke factorization.
We break the symmetry in such a way that agrees with [Haw22].

Definition 54. Denote the set of all hook Hecke factorizations of w by ×Fw. Define the
half weak stable double Grothendieck function by

×Gw(x,y) =
󰁛

f∈×Fw

(x,y)wt(f).

Definition 55. Consider the ordered alphabet 1′ < 1 < 2′ < 2 < · · · . A primed special
multiset tableau of shape λ, or an element of PSMT (λ), is a filling of a Young diagram of
shape λ such that each box is nonempty and contains a multiset from this alphabet such
that

• All of the entries in a box are less than or equal to all of the entries in the box to
its right.

• All of the entries in a box are less than or equal to all of the entries in the box below
it.

• i appears in at most one box in each column.

• i′ appears in at most one box in each row.

• Each box contains at most one i′.

Definition 56. If T ∈ PSMT (λ) then the x-weight4 of T is the vector whose ith entry
records the number of instances of i in T and the y-weight of T is the vector whose ith

entry records the number of instances of i′ in T . Define the half weak balanced double
Grothendieck function by

×Gw(x,y) =
󰁛

T∈PSMT (λ)

(x,y)wt(T ).

Example 57. A primed special multiset tableau, Q ∈ PSMT (3, 3, 2), with x-weight of
(3, 2, 3, 0, 0, . . .) and y-weight of (1, 3, 3, 0, 0, . . .) is shown below.

Q =

1′11 12′ 23′

2′ 2 3′33

2′3′ 3
4The assignment is the reverse of that which appears in definition 38 as a result of the way we have
broken the symmetry referred to in remark 53.
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The following lemma and its corollary relates these definitions.

Lemma 58. There is an x-weight and y-weight preserving bijection from ×Fw to pairs
(P,Q) where P ∈ HTw and Q ∈ PSMT have the same shape. Here the x-weight and
y-weight of (P,Q) are defined as the x-weight and y-weight of Q.

Proof. A hook Hecke factorization is just a Hecke word, α, along with an ordered set
partition of {1, 2, . . . , |α|} into parts such that

• Each part contains consecutive numbers and parts with smaller numbers precede
parts with larger numbers.

• If a and a+1 occur in the same one of one of parts number 1, 3, 5, . . . then, αa > αa+1.

• If a and a+1 occur in the same one of one of parts number 2, 4, 6, . . . then, αa 󰃑 αa+1.

On the other hand using a standardization argument we see that a PSMT is just a
standard set valued tableau, T , along with a set partition of {1, 2, . . . ,max(T )} into
parts such that

• Each part contains consecutive numbers and parts with smaller numbers precede
parts with larger numbers.

• If a and a + 1 occur in the same one of one of parts number 1, 3, 5, . . . then a + 1
lies strictly below a in T .

• If a and a + 1 occur in the same one of one of parts number 2, 4, 6, . . . then a + 1
lies either in the same box as a or strictly right of a in T .

Lemma 8 implies that if α → (P,Q) under the bijection of Proposition 7 then a given set
partition of {1, 2, . . . , |α|} turns α into a hook Hecke factorization if and only if the same
set partition turns Q into a PSMT . Thus combining the bijection of Proposition 7 with
the identity on set partitions induces the weight preserving bijection of the lemma.

Corollary 59. Letting Hρ
w denote the number of Hecke tableaux for w with shape ρ we

have

×Gw(x,y) =
󰁛

ρ

(Hρ
w)

×Gρ(x,y).

Proof. This follows from the lemma above.

Next, we need to define another couple of types of tableaux:

Definition 60. Let µ ⊆ λ be partitions with an equal number of rows. A flagged reverse
semistandard tableau of shape λ/µ, or an element of FRSST (λ/µ), is a filling of a Young
diagram of shape λ/µ using the alphabet 1 < 2 < · · · such that:

• Each box in row i of λ/µ contains one element from {1, 2, . . . , µi}.
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• The rows are weakly decreasing from left to right.

• The columns are strictly decreasing from top to bottom.

On the other hand, if λ contains more rows than µ, we define FRSST (λ/µ) = ∅.

Example 61. An FRSST of shape (6, 6, 5, 4)/(4, 3, 2, 1)) with the inner shape shown
filled with grey boxes is shown below.

4 2

3 2 1

2 2 1

1 1 1

Note that the definition requires that the maximum number in row i is no greater
than the number of shaded boxes in that row (which is µi).

Definition 62. A primed tableau of shape λ, or element of PT (λ) is an element of
PSMT (λ) with exactly one entry in each box.

Definition 63. The double Q-Schur function is defined as:

Rλ(x,y) =
󰁛

T∈PT (λ)

(x,y)wt(T ).

The relationship between PSMT , PT , and FRSST (called OFT therein) is given by
part (1) of Lemma 1.9 of [Haw22].

Lemma 64 ([Haw22]). There is an x-weight and y-weight preserving bijection from
PSMT (µ) to pairs of tableaux (P,Q) where P ∈ PT (λ) and Q ∈ FRSST (λ/µ) for
some λ ⊇ µ. Here the x-weight and y-weight of (P,Q) are defined as the x-weight and
y-weight of P .

A corollary of this lemma relates ×Gw(x,y) to Rµ(x,y).

Corollary 65. Letting Kµ
ρ be the number of FRSST of shape µ/ρ we have

×Gw(x,y) =
󰁛

ρ⊆µ

Hρ
wK

µ
ρRµ(x,y).

Proof. This follows from the lemma above along with corollary 59.

Finally, we need to identify certain special elements of PT (λ). (The following two
definitions are more general than they need to be for this purpose alone. They are also
used in Conjecture 74.)
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Definition 66. Let T be any tableau whose entries come from the alphabet
{1′, 2′, . . . , 1, 2, . . .}. If T has boxes with multiple entries, order the entries horizontally
within those boxes as follows: Starting from the left and moving right, list the unprimed
entries in increasing order followed by the primed entries in decreasing order.

Start with your finger in the leftmost box of the lowest row of T . Now move your
finger left to right across rows moving from bottom row to top row stopping once your
finger lies over an instance of i or i′ for the first time. If your finger lies over an i′ we say
that T has the i-primed property. If T has no i or i′ we also say that T (trivially) has the
i-primed property.

Definition 67. Let T be any tableau whose entries come from the alphabet
{1′, 2′, . . . , 1, 2, . . .}. If T has boxes with multiple entries, order the entries horizontally
within those boxes as follows: Starting from the left and moving right, list the unprimed
entries in increasing order followed by the primed entries in decreasing order. Let prop
be a Boolean initialized to true.

• Place your finger in the rightmost box of the top row of T . Drag your finger right
to left across rows moving down a row each time you get to the leftmost box of a
row until you reach the bottom left box of T . While you are scanning, any time
your finger lies over an i place a tally mark above T . Any time your finger lies over
an i − 1 place a tally mark under T . If there are ever more tally marks above T
than below T , set prop = false and terminate the algorithm. If there are ever an
equal number of tally marks above T and below T and your finger lies on an i′ also
set prop = false and terminate the algorithm.

• Next (do NOT erase the tally marks from the last step), start with your finger in
the leftmost box of the lowest row of T . Now move your finger left to right across
rows moving from bottom row to top row. While you are scanning, any time your
finger lies over an i′ place a tally mark above T . Any time your finger lies over an
(i−1)′ place a tally mark under T . If there are ever more tally marks above T than
below T , set prop = false and terminate the algorithm. If there are ever an equal
number of tally marks above T and below T and your finger lies on an i− 1 also set
prop = false and terminate the algorithm.

For i > 1, we say that T has the i-lattice property if at the end of this process prop = true.
We say T has the 1-lattice property by default.

Example 68. An element P ∈ PT (6, 4, 4, 4, 3) is shown below.

1′ 1 1 1 1 1
1 2′ 2 2
2′ 2 3′ 3
2 3′ 3 4
3 4′ 4

Note that:
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• P lacks the 1-primed property.

• P lacks the 2-primed property.

• P lacks the 3-primed property.

• P has the 4-primed property.

• P has the i-primed property for i 󰃍 5.

• P has the 1-lattice property (by de-
fault).

• P has the 2-lattice property.

• P has the 3-lattice property

• P does not have the 4-lattice property:
You set prop = false when your fin-
ger first passes over the 4′.

• P has the i-lattice property for i 󰃍 5.

These definitions allow us to state a particular case of Theorem 8.3 of [Ste89]:

Proposition 69 ([Ste89]). We have:

Rµ(x,x) =
󰁛

λ

F λ
µQλ(x)

where F λ
µ is the number of elements T ∈ PT (µ) that have i-lattice property and the i-

primed property for all i and such that the sum of the x-weight and y-weight of T is equal
to λ.

Combining Corollary 65 with Proposition 69 will now give us the Q-Schur expansion
of ×Gw(x,x):

Theorem 70. The function ×Gw evaluated at x = y is Q-Schur positive and:

×Gw(x,x) =
󰁛

(ρ⊆µ),λ

Hρ
wK

µ
ρF

λ
µQλ(x).

Example 71. Consider the permutation w = (2, 3, 1, 5, 4) ∈ S5 and suppose that we are
interested in computing the degree 4 part of ×G(2,3,1,5,4)(x,x).

To do this we first compute the three elements of HTw shown in the top of the diagram
below. For each such tableau, H, we compute all elements of FRSST (µ/Hs) for all
possible partitions µ ⊇ Hs that have 4 boxes (since we are concerned with the degree
4 part). These are shown in the middle of the diagram below. Finally, for each such
tableau, O, we compute all elements of PT (Os) that have the i-primed property and the
i-lattice property for all i. The resulting tableaux are shown in the last two lines of the
diagram.
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4
1 2

4
1 2 4 1 2 4

1 2
1

1 2 3

1′
1′ 1 1

1′
1′ 1 1

1′
1′ 1
2′ 1′

1′ 1 1 1′ 1 1 1 1′ 1 1 1 1′ 1 1 1

2′
1′ 1 1

2′
1′ 1 1

2′
1′ 1 1

After counting the tableaux appearing in the last two lines of the digram above and
computing their weights we see by Theorem 70 that the degree 4 part of ×G(3,1,2,5,4)(x,x)
is equal to 6Q(4,0)(x) + 4Q(3,1)(x). In particular, the coefficient of x4

1x
0
2x

0
3 · · · in this

expression is 12 since this coefficient is 2 in Q(4,0)(x) and 0 in Q(3,1)(x). This implies that
there ought to be exactly 12 hook Hecke factorizations of w which are composed of only
one factor which has length 4. Indeed the following are all such factorizations:

󰀃
1124

󰀄
,

󰀃
1224

󰀄
,

󰀃
1244

󰀄
,

󰀃
4 112

󰀄
,

󰀃
4 122

󰀄
,

󰀃
4 124

󰀄
,󰀃

1 124
󰀄
,
󰀃
1 224

󰀄
,
󰀃
1 244

󰀄
,
󰀃
4 1 12

󰀄
,
󰀃
4 1 22

󰀄
,
󰀃
4 1 24

󰀄
.

6 Conjectures and Open Problems

We end this paper with two open problems and a conjecture that have come up in our
treatment of double Grothendieck polynomials.

Open Problem 72. The first open problem is to reformulate Hecke insertion so that it
does not suffer from the drawback mentioned in remark 9 (while still maintaining the
properties of Lemma 8). More explicitly, the problem is to define an insertion algorithm
that gives a bijection from Hecke words for a permutation w to pairs (P,Q) of tableaux of
the same shape where P is a Hecke tableau for w and Q is a standard set-valued tableau
such that the algorithm has the following property: Suppose the word α1 · · ·αm maps to
(P,Q). Then

• αi > αi+1 if and only if i+ 1 shows up in a row strictly below i in Q.

• αi < αi+1 if and only if i+ 1 shows up in a column to the right of i in Q.

Open Problem 73. The second open problem is to generalize our definition of hook Hecke
factorization to include signed permutations that have one or more instances of the gen-
erator s0 in a reduced word for said signed permutation. This should be done in such
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a way that the resulting generating function is symmetric, Q-Schur positive, and agrees
with the type B Stanley symmetric function on terms of lowest degree. The author has
tried a few of the more obvious ways of doing this, and so far none have been successful.
For instance, the most obvious approach–of simply extending the definition to include s0
quickly fails: For instance, the signed permutation s0s1s0 has 8 hook Hecke factorizations
of weight (3, 1):

󰀃
001

󰀄󰀃
0
󰀄
,
󰀃
001

󰀄󰀃
0
󰀄
,
󰀃
0 01

󰀄󰀃
0
󰀄
,
󰀃
0 01

󰀄󰀃
0
󰀄
,
󰀃
011

󰀄󰀃
0
󰀄
,
󰀃
011

󰀄󰀃
0
󰀄
,
󰀃
0 11

󰀄󰀃
0
󰀄
,
󰀃
0 11

󰀄󰀃
0
󰀄

but only 4 hook Hecke factorizations of weight (1, 3):

󰀃
0
󰀄󰀃
100

󰀄
,
󰀃
0
󰀄󰀃

1 00
󰀄
,
󰀃
0
󰀄󰀃
100

󰀄
,
󰀃
0
󰀄󰀃

1 00
󰀄

so does not even result in a symmetric polynomial.

Finally, we end with the conjecture we alluded to at the beginning of Section 5.
Appendix A and Appendix B found after the references include code that can be used to
check this conjecture.

Conjecture 74. Recall the definitions of set-valued shifted tableaux and GQλ(x)
given in [IN13]. Then if γ ⊇ ν are shifted shapes we have

GQγ/ν(x) =
󰁛

µ

bµγ/ν ·GQµ(x),

where bµγ/ν is the number of set-valued shifted tableaux of shape γ/ν and weight µ
having the i-primed property of definition 66 and i-lattice property of definition 67
for all i.

Remark 75. Note that a particular case of the conjecture implies that

Gλ(x,x) = GQ(λ+δ)/δ(x) =
󰁛

µ

bµ(λ+δ)/δ ·GQµ(x).

Since the equation 4.2 with y = x implies that:

Gw(x,x) =
󰁛

T∈HTw

Gλ(x,x),

Conjecture 74 would show that Gw(x,x) is GQ-positive and give a combinatorial inter-
pretation of the expansion coefficients.
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R. Acad. Sci. Paris Sér. I Math., 295(11):629–633, 1982.

the electronic journal of combinatorics 31(4) (2024), #P4.13 33

https://arxiv.org/abs/2108.00522


[LS83] Alain Lascoux and Marcel-Paul Schützenberger. Symmetry and flag manifolds.
In Invariant theory (Montecatini, 1982), volume 996 of Lecture Notes in Math.,
pages 118–144. Springer, Berlin, 1983.

[McN06] Peter J. McNamara. Factorial Grothendieck polynomials. Electron. J. Com-
bin., 13(1):Research Paper 71, 40, 2006.
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A Expanding GQγ/ν in terms of GQµ

In this appendix we give the python code needed to determine the GQ expansion of GQγ/ν

according to Conjecture 74. The input syntax is GQ expand(gamma, nu) where gamma and
nu are lists of integers. The output is a list of pairs. Each pair in the list consists of, first,
a partition mu, and, second, the multiplicity of GQµ in the expansion of GQγ/ν .

#//////////////////////////Create Sequence Function for Later//////////////////////////////

def sequences(length ,maxi):

#Create list of all sequences of fixed length using numbers {0,...,maxi}

seq_list =[[]]

while len(seq_list [0])< length:

new_list =[]

for seq in seq_list:

for j in range(0,maxi +1):

new_list.append(seq+[j])

seq_list=new_list

return(seq_list)

#/////////////////////////////One-Row Tableaux/////////////////////////////////////

def row(m,n):

#Function to create list of all ("shifted") one-row set-valued tableaux of length m and max entry n.

#We use the representation 1’-->1, 1-->2, 2’-->3, 2-->4, etc.

row_tabs =[[]]

while len(row_tabs [0])<m:

#(Continue until the first tab (and all other tabs) in row_tabs has the desired length.)

#Initialize new list whose tabs will have one more box than those in row_tabs.

new_tabs =[]

for rowtab in row_tabs:

if len(rowtab )>0:

rightmost=rowtab [-1][-1]

else:

rightmost =1

#Create a list of 0-1 sequences representing all possible subsets of {rightmost,rightmost+1,...,2n}

#0 represents in, 1 represents out.

subset_reps=sequences (2*n+1-rightmost ,1)

for rep in subset_reps:

#Create the subset represented by the rep

subset =[]

for k in range(0,len(rep )):

if rep[k]==0:
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subset.append(k+rightmost)

#Create a newtab by appending this subset to the end of rowtab:

newtab=rowtab +[ subset]

#Check if newtab is valid

#The new box (subset) must be nonempty and the rightmost element of previous box must either:

#be unprimed (i.e., represented by an even integer) or

#be primed (i.e., represented by an odd integer) and strictly less than than first element of new box or

#not actually exist (i.e., the new box will be the first box)

if len(subset)>0 and (rightmost %2==0 or rightmost <subset [0] or len(rowtab )==0):

#add subset in next box of rowtab

new_tabs.append(newtab)

#Replace rowtabs with newtabs

row_tabs=new_tabs

return(row_tabs)

#/////////////////////////////Check Column Requirement/////////////////////////////////////

def over (top_row ,top_skew ,bottom_row ,bottom_skew ):

#Function to determine the validity of the two row tableau [top_row,bottom_row] where:

#top_row is skewed to the right by top_skew units

#bottom_row is skewed to the right by bottom_skew units

#bottom_row is additionally shifted one position to the right relative to top_row

#note that top_skew>bottom_skew unless both are 0

#If the bottom row extends past the top row in the rightward direction the tableau is invalid.

if top_skew+len(top_row )<1+ bottom_skew+len(bottom_row ):

return false

#Check the column condition for each box in top_row.

for i in range(0,len(top_row )):

top_box=top_row[i]

#Determine if there is a box below top_box and if so what it contains

j=( top_skew+i)-( bottom_skew +1)

if 0<=j<len(bottom_row ):

#Then the box below exists

bottom_box=bottom_row[j]

if max(top_box)>min(bottom_box ):

#Larger number over smaller number --> Column condition broken

return False

if max(top_box )== min(bottom_box) and max(top_box )%2==0:

#An unprimed number over the same unprimed number --> Column condition broken

return False

return True

#/////////////////////////////Create Candidates for Stembridge Tableaux/////////////////////////////////////

def row_flagged(gamma ,nu):

#We start by noting that any tableau with the i-lattice property for all i cannot have a j>i in row i.

#So first return all shifted set-valued tableau of shape lam/mu such that entries in row i are <=i.

#Step 1: Ensure the partitions have same length

while len(nu)<len(gamma ):

nu.append (0)

flag_tabs =[]

#Step 2: Initialize flag_tabs to the set of one-row tableau in the alphabet {1’,1}

base_rows=row(gamma [0]-nu[0] ,1)

for baserow in base_rows:

flag_tabs.append ([ baserow ])

#base_rows is a list of lists (rows): flag_tabs is a list of LISTS (tableaux--with one row right now) of lists

#Step 3: Redefine flag_tabs until it is a list of tableaux each of which has |gamma| rows.

for j in range(1,len(gamma )):

new_tabs =[]

new_rows=row(gamma[j]-nu[j],j+1)

for tab in flag_tabs:

last_row=tab[-1]

for newrow in new_rows:

#Check if adding this newrow is valid

if over(last_row ,nu[j-1],newrow ,nu[j])== True:

new_tabs.append(tab+[ newrow ])

flag_tabs=new_tabs

return(flag_tabs)

#////////////////////////////////////Read the word of a tableau//////////////////////////////

def read(P):

#Return reading word: bottom row to top row; left to right within rows; preserving whatever intra box order

r=[]

for i in range(len(P)-1,-1,-1):

for j in range(0,len(P[i])):

for k in range(0,len(P[i][j])):
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r.append(P[i][j][k])

return(r)

#/////////////////////////////////Sort as in Definition 5.15 and 5.16////////////////////////

def sort_boxes(P):

#Function to sort the elements within a box in accordance with Definition 5.15 and 5.16

#Returns new tableau with the elements in the boxes sorted in the order 1,2,3,...,3’,2’,1’

Q=[]

for row in P:

Q.append ([])

for box in row:

newbox=copy.copy(box)

newbox.sort(key=lambda x: -1/(x*math.pow(-1,x%2)))

#Recall boxes actually contain letters from {1,2,3,4,...} corresponding to {1’,1,2’,2,...}

Q[-1]. append(newbox)

return(Q)

#////////////////////////////////////Check Definition 5.15//////////////////////////////

def primed_prop(P):

Q=sort_boxes(P)

#Function to check Definition 5.15 (the i-primed property)

word=read(Q)

#Recall word is composed of letters from {1,2,3,4,...} corresponding to {1’,1,2’,2,...}

maxi=max(word)

starts =[0]*( math.ceil(maxi /2)+1)

#(This vector counts whether an i or i’ has appeared (starts[0] always is 0 by convention))

#We simply need to read through the word left to right due to how it was constructed.

for letter in word:

#Recall letter is the representative from {1,2,3,4,...} corresponding to {1’,1,2’,2,...}

base=math.ceil(letter /2)

#Now, we check whether this is the first i or i’ appearing and if so record what type it is

if starts[base ]==0:

#0 indicates no i or i’ has appeared yet

if letter %2==0:

starts[base ]=1

#record that the first i or i’ is an i with a 1

if letter %2==1:

starts[base]=-1

#record that the first i or i’ is an i’ with a -1

ok=True

for k in range(0,len(starts )):

if starts[k]==1:

ok=False

return(ok)

#////////////////////////////////////Check Definition 5.16//////////////////////////////

def lattice_prop(P):

#Does the tableau P have the lattice property?

Q=sort_boxes(P)

word=read(Q)

maxi=max(word)

counts =[0]*( math.ceil(maxi /2)+2)

#This keeps track of the number of times an i appears when reading backwards and an i’ appears when reading forward.

#By convention counts[0]=0 and counts[ -1]=0 always.

#read backwards

for j in range(len(word)-1,-1,-1):

letter=word[j]

base=math.ceil(letter /2)

#while reading backwards each time you read an i add 1 to counts[i]

if letter %2==0:

counts[base ]+=1

#if counts[i] becomes greater than counts[i-1] return false

if base >1 and counts[base]>counts[base -1]:

return False

#each time you read an i’ while reading backward:

if letter %2==1:

#counts does not change

#if you read an i’ while counts[i] equals counts[i-1] return false

if base >1 and counts[base ]== counts[base -1]:

return False

#read forwards starting with the currect value of counts

for j in range(0,len(word )):

letter=word[j]

base=math.ceil(letter /2)

#while reading forward add 1 to counts[i] each time you read an i’

if letter %2==1:
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counts[base ]+=1

#if counts[i] becomes greater than counts[i-1] return false

if base >1 and counts[base]>counts[base -1]:

return False

#each time you read an i while reading forward:

if letter %2==0:

#counts does not change

#if you read an i while counts[i+1] equals counts[i] return false

if base >0 and counts[base +1]== counts[base]:

return False

return(True)

#////////////////////////////////////Find the Stembridge tableaux//////////////////////////////

def stembridge(gamma ,nu):

S=[]

Candidates=row_flagged(gamma ,nu)

for P in Candidates:

if primed_prop(P)== True and lattice_prop(P)== True:

S.append(P)

return(S)

#/////////////////////////////////////Compute the Weight//////////////////////////////

def weight(word):

#Recall word is composed of letters from {1,2,3,4,...} corresponding to {1’,1,2’,2,...}

maxi=max(word)

counts =[0]*( math.ceil(maxi /2))

#This vector will count the number of times an i or i’ appears.

for letter in word:

base=math.ceil(letter /2)

counts[base -1]+=1

#base-1 because our tableaux do not have 0s

return(counts)

#/////////////////////////////////////Find the GQ expansion//////////////////////////////

def GQ_expand(gamma ,nu):

#Write GQ_{gamma/nu} as a sum of GQ_{mu} as in Conjecture 5.1

#Find all the gamma/nu Stembridge tableaux

S=stembridge(gamma ,nu)

#Create a list of their weights

W=[]

for tab in S:

W.append(weight(read(tab )))

#Sorts the weights

W.sort(key=lambda x: str(x)[1: -1])

W.reverse ()

#Record the weights along with the multiplicity with which they appear

U=[[W[0] ,1]]

for i in range(1,len(W)):

if W[i]==W[i-1]:

U[ -1][1]+=1

else:

U.append ([W[i],1])

#Return a list of pairs: First element is a partition, second element is its GQ multiplicity in GQ_{gamma/nu}.

return(U)

GQ_expand ([5 ,4 ,2] ,[3 ,1])

B Checking Conjecture 74 for fixed γ/ν

Recall GQγ/ν(x) is the generating function over set-valued shifted tableaux as they are
defined in [IN13]. Now let GRγ/ν(x) be the generating function over the set-valued shifted
tableaux of [IN13] which happen to have the i-primed property of definition 66 for all i.
Note that each set-valued shifted tableau, T , with the i-primed property for all i can be
seen as giving rise to 3a set-valued shifted tableaux, where a is the number of values of
i for which at least one i′ shows up in T . These tableaux arise from T by, for each such
i, replacing the first i′ in the tableau with one of i′, i, or (i′, i). Keeping this in mind
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it is not hard to see that if we know GRγ/ν(x) we can compute GQγ/ν(x) (each degree
d monomial in the former will give rise to 3a monomials in the latter ranging in degree
from d to d+a where a is the number of variables in the original monomial with non-zero
exponent). In fact, it is not difficult to show that Conjecture 74 follows from showing
that

GRγ/ν(x) =
󰁛

µ

bµγ/ν ·GRµ(x).

Finally, the fact that GQγ/ν(x) is symmetric implies that GRγ/ν(x) is symmetric so
it suffices to check that the same dominant monomials appear (with the same mulit-
plicities) on the left and right side of the equation above to establish Conjecture 74.
This check is performed by the code below for fixed parameters. The input syntax is
Test Conjecture(gamma, nu, num vars, up to degree. This performs the check for shape
γ/ν for all monomials in the finite set of variables (x1, . . . , xnum vars) that have degree at
most up to degree. The code in the previous appendix is needed to run this code.

import copy

import math

#///////////Function to determine all standard shifted tableaux of shape gamma/nu in the letters {0,...,alph-1}

def standard_tabs(gamma ,nu ,alph):

#make nu and gamma have same length

while len(nu)<len(gamma ):

nu.append (0)

#Create an empty tableau with len(gamma) rows.

#Add ["x"] in each location of a box that is skewed or shifted out.

empty_tab =[]

for i in range(0,len(gamma )):

offset=nu[i]+i+1

empty_row =[]

for j in range(0,offset ):

empty_row.append (["x"])

empty_tab.append(empty_row)

#Initialize a list with a pair composed of this tableau and an empty positions set

positions =[]

tab_list =[ [ empty_tab , positions ] ]

#positions is the list of the (x,y)-coordinates of the entries of the tableau

#positions will be used to determine the peak_set and repeat_set of the tableau

#Create all tableaux by successively adding each n from 0 to alph-1 to a new box or a terminal box

for n in range(1,alph +1):

new_list =[]

for old in tab_list:

old_tab=old [0]

positions=old [1]

for i in range(0,len(old_tab )):

#try to add n to last box of row i

if old_tab[i][ -1]!=["x"]:

if i==len(old_tab)-1 or old_tab[i+1][ -1]==["x"] or len(old_tab[i])>len(old_tab[i+1]):

new_tab=copy.deepcopy(old_tab)

new_tab[i][ -1]+=[n]

new_position =[i,len(new_tab[i])]

new_list.append ([new_tab ,positions +[ new_position ]])

#also try to add new box to row i with [n]

if len(old_tab[i])<gamma[i]+i+1:

if i==0 or len(old_tab[i])<len(old_tab[i -1]):

new_tab=copy.deepcopy(old_tab)

new_tab[i]+=[[n]]

new_position =[i,len(new_tab[i])]

new_list.append ([new_tab ,positions +[ new_position ]])

tab_list=new_list

#Create the final list of tableaux and record their peak and repeat sets.

P=[]

for tab in tab_list:

#Check that each box of gamma/nu has been filled with at least one entry.

boxes_full=True
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for h in range(len(gamma )):

if len(tab [0][h])!= gamma[h]+h+1:

boxes_full=False

if boxes_full ==True:

#compute the peak_set and repeat_set for each tableau

#the peak_set is the set of j such that j-1 lies strictly left of j and j+1 lies strictly below j

#the repeat_set is the set of i such that i+1 lies in the same box as i.

peak_set =[]

repeat_set =[]

positions=tab [1]

for i in range(0,len(positions )-2):

j=i+1

k=i+2

if positions[j][1]> positions[i][1] and positions[k][0]> positions[j][0]:

peak_set.append(j)

for i in range(0,len(positions )-1):

if positions[i]== positions[i+1]:

repeat_set.append(i)

P.append ([tab[0],peak_set ,repeat_set ])

return(P)

#////////////Function to return list of all partitions of n into at most k parts//////////

def partitions(n,k):

par_list =[[1]]

while sum(par_list [0])<n:

new_list =[]

#Any partition of size m+1 and at most k rows can be uniquely created by

#Starting with a partition of size m, say old_par

for old_par in par_list:

#And then either:

#Trying to add a box to the last row of old_par

if len(old_par )==1 or (len(old_par)>1 and old_par [-1]< old_par [ -2]):

new_par=copy.copy(old_par)

new_par [ -1]+=1

new_list.append(new_par)

#Or trying to add a new row with one box to old_par

if len(old_par)<k:

new_par=copy.copy(old_par)

new_par.append (1)

new_list.append(new_par)

par_list=new_list

return(par_list)

#///////Returns all (dominant) weights that arise from a valid semi-standardization of a given standard_tab

#(Set-valued shifted tableaux (with i-primed prop) are in bijection with pairs (standard_tab, valid weight))

#See the definiction of the function for a precise understanding of ’valid’

def polynomial(standard_tab ,num_vars ):

#We are given a standard tab along with peak and repeat sets:

tab=standard_tab [0]

peak_set=standard_tab [1]

repeat_set=standard_tab [2]

#Compute number of entries in tab so we know what size of partitions to check.

num_entries =0

for row in tab:

for box in row:

if box !=["x"]:

num_entries +=len(box)

#Find all partitions of num_entries into at most num_vars parts

pars=partitions(num_entries ,num_vars)

#For each partition we check if there is a semi-standarization of tab with this weight.

Weights =[]

for par in pars:

#Express partition as a weakly increasing sequence with par[j] entries equal to j+1

weak_seq =[]

for j in range(0,len(par )):

weak_seq +=[j+1]* par[j]

#Determine whether this sequence is a valid semi-standardization of tab

good=True

#Check that whenever weak_seq[k]=weak_seq[k+1], k and k+1 are in different boxes

for k in range(0,len(weak_seq )-1):

if weak_seq[k]== weak_seq[k+1] and k in repeat_set:

good=False

#Check that whenever weak_seq[j]=weak_seq[j+1]=weak_seq[j+2], j+1 is not a peak

for j in range(0,len(weak_seq )-2):

if weak_seq[j]== weak_seq[j+1] and weak_seq[j+1]== weak_seq[j+2] and j+1 in peak_set:

good=False

#This ensures that the set of consecutive entries of tab corresponding to a fixed value

#under semi-standardization form a ’vee’ in the tableau

if good==True:

Weights.append(par)

return(Weights)
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#//////////Find the monomial expansion of GR_{gamma/mu} in num_vars variables of degree at most up_to_degree

def monomial_exp(gamma ,nu ,num_vars ,up_to_degree ):

#Compute the (dominant) monomials appearing in GR_{gamma/nu}.

P=[]

alph=sum(gamma)-sum(nu)

while alph <= up_to_degree:

print("-computing␠terms␠of␠degree␠"+str(alph)+".")

#Q will hold the monomials of degree alph.

Q=[]

#Find the standard tabs of shape gamma/mu using alph numbers

tabs=standard_tabs(gamma ,nu ,alph)

for tab in tabs:

#Find all the (semi-standard) set-valued shifted tableau (with i-primed prop) and dominant weight

#that are asociated to tab. And add the terms corresponding to their weights to Q

Q+= polynomial(tab ,num_vars)

if Q!=[]:

#Add Q to P

P+=Q

else:

alph=up_to_degree

alph +=1

return(P)

#Compare GR_{gamma/nu} calculated directly with GR_{gamma/mu} expanded into GR_{mu}’s and then into monomials

def Test_Conjecture(gamma ,nu ,num_vars ,up_to_degree ):

print("Computing␠the␠value␠of␠GR_{"+str(gamma )+"/"+str(nu)+"}␠directly")

direct=monomial_exp(gamma ,nu ,num_vars ,up_to_degree)

direct.sort(key=lambda x: str(x))

print("There␠are␠"+str(len(direct ))+"␠dominant␠monomials")

conjectured =[]

print("Computing␠the␠conjectured␠expansion.")

Expansion=GQ_expand(gamma ,nu)

print("There␠are␠"+str(len(Expansion ))+"␠distinct␠shapes␠in␠the␠expansion.")

for pair in Expansion:

print("Computing␠the␠value␠of␠GR_{"+str(pair [0])+"}")

shape=pair [0]

shape_mult=pair [1]

monomials=monomial_exp(shape ,[],num_vars ,up_to_degree)

#Add the monomials from this shape to the list as many times as the shape shows up.

for i in range(0, shape_mult ):

conjectured += monomials

conjectured.sort(key=lambda x: str(x))

return(direct == conjectured)

Test_Conjecture ([5,4,2],[3,1],3,9)
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