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Abstract

We study the intersecting family process initially studied in [6]. Here k = k(n)

and E1, E2, . . . , Em is a random sequence of k-sets from
󰀃[n]
k

󰀄
where Er+1 is uniformly

chosen from those k-sets that are not already chosen and that meet Ei, i = 1, 2, . . . , r.
We prove some new results for the case where k = cn1/3 and for the case where
k ≫ n1/2.

Mathematics Subject Classifications: 05C80

1 Introduction

We study the following process introduced by Bohman, Cooper, Frieze, Martin and
Ruszinkó [6]: consider the random sequence Ik = (E1, E2, . . . , Em) where Ei ∈

󰀃
[n]
k

󰀄

for i = 1, 2, . . . ,m and (i) E1 is uniformly random and (ii) Ei+1 is randomly chosen from
the k-subsets of [n] that are not already chosen and that intersect each of E1, E2, . . . , Ei.
The process continues until no further sets can be added i.e. until {E1, E2, . . . , Em} is a
maximal intersecting family. We will abuse terminology and sometimes consider Ik to be
a set of edges (i.e. a k-uniform hypergraph) instead of a sequence of edges.

We denote the hypergraph comprising the first r accepted edges by Hr. For a set
S ⊆ [n], we let er(S) denote the number of edges Ei, i 󰃑 r such that Ei ∩ S ∕= ∅. For our
purposes, an intersecting family is trivial if it is of the form Ax =

󰁱
E ∈

󰀃
[n]
k

󰀄
: x ∈ E

󰁲

where x is some fixed element of [n]. Now |Ax| =
󰀃
n−1
k−1

󰀄
and the famous result of Erdős,

Ko and Rado [9] is that if k 󰃑 n/2 then any intersecting family of k-sets is bounded in
size by

󰀃
n−1
k−1

󰀄
and that the maximum is achieved only by trivial families. The aim of [6]

was to see when the process Ik produces a trivial family w.h.p. Their main result is the
following:
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Theorem 1. Let E0 be the event that Ik = Ax for some x ∈ [n]. If k = cnn
1/3 < n/2

then

lim
n→∞

P(E0) =

󰀻
󰁁󰀿

󰁁󰀽

1 cn → 0
1

1+c3
cn → c

0 cn → ∞
.

So if cn → c in this theorem, then in the limit, there is a positive probability of c3

1+c3

that Ik is not trivial. What can be said about this case?
Patkós [14] considered this question and showed that in the random intersecting pro-

cess we study here that for k = cnn
1/3 with cn → c with probability

󰀕
c3

1 + c3

󰀖󰀕
3

3 + c3

󰀖

Ik is a Hilton–Milner -type hypergraph. A Hilton–Milner-type hypergraph was first de-
scribed in [11] and is a k-uniform hypergraph obtained by specifying a single vertex v and a
single edge F that does not contain v and the edges are F ∪{E ∈

󰀃
[n]
k

󰀄
| v ∈ E,F ∩E ∕= ∅}.

Our goal here is to extend beyond the two possibilities considered so far, the trivial sys-
tem and the Hilton–Milner system, to further understand the full distribution of the
asymptotic behavior in the critical regime.

Our first result (Theorem 2 below) applies to the case where k = cnn
1/3 where cn → c.

We describe two randomly generated families I∗, I∗∗, which are approximately the same
size, such that w.h.p. I∗ ⊆ Ik ⊆ I∗∗. Furthermore I∗, I∗∗ can be determined from the
very early evolution of the process.

We define two hitting times which will help determine I∗, I∗∗. We let r0 be the first
step r such that Hr has a vertex of degree three. We let J be the set of vertices of degree
two in Hr0−1. A set S ⊆ J is said to be independent if no edge ofHr0−1 contains more than
one member of S. For r 󰃍 r0 we let Sr be the family of all S ⊆ J that are independent and
which meet every edge Er0 , . . . , Er. Let r1 be the first step r when Sr is an intersecting
family, and set S := Sr1 to be that intersecting family. (We show below that w.h.p. Sr

becomes an intersecting family before the process terminates.) To summarise:

r0 = the first step r such that Hr has a vertex of degree three.

r1 = the first step r when Sr is an intersecting family.

In the limit as n → ∞, S has a natural interpretation as an intersecting family of
matchings of a complete graph. Both the size of this complete graph and the actual
intersecting family are random, and in general S will not be a uniform hypergraph. In
the appendix we explain this random process to generate S outside the broader context
of its role in Theorem 2.

Theorem 2. Let k =
󰀇
cn1/3

󰀈
for some positive constant c. Then we have the following.

(a) Let b = b(n) → ∞. Then w.h.p. r0 󰃑 r1 󰃑 b.
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(b) W.h.p. I∗ ⊆ Ik ⊆ I∗∗ where

I∗ = Hr0−1 ∪ {E : E contains some S ∈ S and intersects every edge of Hr0−1},
I∗∗ = Hr0−1 ∪ {E : E intersects each S ∈ S and intersects every edge of Hr0−1}.

(c) W.h.p. |I∗∗ \ I∗| = o(|I∗|) and

|Ik|󰀃
n
k

󰀄 = (1 + o(1))

󰁓
S∈S c

3(r0−1−|S|)

kr0−1
as n → ∞.

(d) The sequence 󰀝
limn→∞ P(r0 = i+ 1)

limn→∞ P(r0 > i+ 1)

󰀞

i󰃍0

has exponential generating function

ex(ex
2/(2c3) − 1).

Theorem 2 recovers the eariler results of [6] that the probability of E0 is asymptotically
1/(1+ c3) and the result of [14] about the probabiliy of a Hilton–Milner-type hypergraph
as special cases. After carefully describing the distribution of S, we explain how these
results are recovered in Example 13.

Note that the distribution of r0 can be recovered from part (d). Regarding part (b),
we note that the containment I∗ ⊆ Ik ⊆ I∗∗ is not in general strict at either end. For
example I∗ may not be maximally intersecting, and I∗∗ may not be intersecting at all.
We suspect that it may be possible to give a better estimate for where the final Ik falls
in between I∗ and I∗∗, but that this information cannot be determined from the first few
edges.

We say that a family J ⊆
󰀃
[n]
k

󰀄
is a j-junta if there is some J ⊆ [n] with |J | = j > 0

and a family J ∗ of subsets of J such that

J = {T ∈
󰀕
[n]

k

󰀖
: T ∩ J ∈ J ∗}.

We say that J is generated by (J,J ∗). Juntas are relevant here because, roughly speaking,
they can provide a simple “certificate” that a family is intersecting. Specifically if H ⊆ J
for some junta J generated by (J,J ∗) with J ∗ intersecting, then H must be intersecting.
For example a trivial intersecting family is a 1-junta, sometimes called a dictatorship. For
a second example a Hilton–Milner-type hypergraph is almost (with the exception of one
edge) contained in a dictatorship. Using this terminology, Theorem 2 has the following
corollary.

Corollary 3. Let k =
󰀇
cn1/3

󰀈
where c > 0, and b = b(n) → ∞. Then w.h.p. there

is some b-junta J such that |Ik \ J | = o(|Ik|). Furthermore J is determined by the
hypergraph Hb.
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Bohman, Frieze, Martin, Ruszinkó and Smyth [7] considered the case where n1/3 ≪
k ≪ n5/12. They prove that w.h.p. the structure of Ik satisfies the following: there
exists a hypergraph H with τ edges and a vertex v such that the following holds: (i)
nτ 3/6k3 converges to the exponential distribution with mean 1 and (ii) Ik consists of all
E ∈

󰀃
[n]
k

󰀄
that (a) contain v and (b) meet every edge of H that does not contain v. So

in this regime we also have that w.h.p. Ik is almost (with the exception of the poly(n)
edges of H) contained in a dictatorship. It is interesting to note that, combining the
results of [6], [7] and Theorem 2, for the whole regime k ≪ n5/12 we have that w.h.p.
Ik is almost contained in a relatively small junta of order k2/n1/3, and furthermore this
small junta is a dictatorship unless k = Θ(n1/3). This is not a shortcoming in our proof:
indeed, for k = Θ(n1/3) and sufficently small fixed ε > 0, Theorem 2 implies that there
is a probability bounded away from zero that no dictatorship contains more than 1 − ε
proportion of Ik.

We also make a little progress on the case where k ≫ n1/2. In particular we give
non-trivial upper and lower bounds on |Ik|. Let N =

󰀃
n
k

󰀄
and d =

󰀃
n−k
k

󰀄
. There is a

trivial lower bound of N/(d + 1) on the minimum size of a maximal intersecting family.
We prove that w.h.p. |Ik| is significantly larger.

Theorem 4. For all fixed and sufficiently small ζ > 0 there exists some η = η(ζ) > 0
such that we have the following. For all k such that ζ−1n1/2 log1/2 n 󰃑 k 󰃑

󰀃
1
2
− ζ

󰀄
n,

w.h.p. Ω
󰀃
N
d
log N

d

󰀄
󰃑 |Ik| 󰃑 O

󰀃
N

󰀃
d
N

󰀄η󰀄
.

Our proof of Theorem 4 will resemble the analysis of some similar processes that
have been studied. Suppose we are given a graph G. In the random greedy independent
set process, or just independent process, we choose a random sequence (v1, . . . , vm) of
vertices of G where vi+1 is randomly chosen from all vertices not already chosen and not
adjacent to any chosen vertex. Then the process we are studying is equivalent to the

independent process on the Kneser graph K(n, k) which has vertex set
󰁱
vS : S ∈

󰀃
[n]
k

󰀄󰁲
,

and where vS is adjacent to vS′ whenever S ∩ S ′ = ∅. Wormald [15] was the first to
study the independent process, which he analyzed on random regular graphs. Lauer and
Wormald [13] extended the analysis from random regular graphs to all regular graphs of
sufficiently high girth. Bennett and Bohman [4] analyzed a generalization of this process
to d-regular hypergraphs with d → ∞ sufficiently fast assuming a relatively mild upper
bound on codegrees. So, one could hope that we could just use some existing analysis of
the independent process and apply it to the Kneser graph. Unfortunately, all the results
for general deterministic graphs (or at least the ones we could find) assume a similar
upper bound on vertex codegrees which the Kneser graph does not satisfy. Indeed, for
say k = cn for constant c, the graph K(n, k) has pairs of vertices whose codegree is the
same order of magnitude as their degrees. Even worse, every vertex in the whole graph
has high codegree with a few other vertices. Thus, our main contribution in this regime is
to carry out an analysis of the process that resembles previous work but allows for a few
pairs of vertices with high codegree. The analysis uses the so-called differential equation
method (see [5] for a gentle introduction).
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To put the above results in some context we point out another related but distinct
random model of intersecting families. Improving a result of Balogh, Das, Delcourt, Liu
and Sharifzadeh [1], Balogh, Das, Liu, Sharifzadeh and Tran [2] and Frankl and Kupavskii
[12] showed that if n 󰃍 2k+Ω((k log k)1/2) then almost all intersecting families are trivial.
Balogh, Garcia, Li and Wagner [3] reduced the lower bound on n to 2k+100 log k. Dinur
and Friedgut [8] proved that when k = pn for constant 0 < p < 1/2, every intersecting
family is (up to a small number of members) contained in an O(1)-junta. In [8] they also
proved that when k = o(n) every intersecting family is almost contained in a trivial family
(a dictatorship).

The organization of the paper is as follows. In Section 2 we prove Theorem 2. In
Sections 3 and 4 we prove Theorem 4, where in each of the two sections we consider a
certain range of k. The proofs for each regime are almost identical, but the error bounds
are somewhat different. In Section 5 we give some concluding remarks.

2 Proof of Theorem 2

2.1 The first o(
√
logn) steps: generating S

We examine the first r steps in the process for r = o(
√
log n). The most important part

of the random intersecting process in these first few steps is the generation of a (not
necessarily uniform) intersecting hypergraph S that will be the S in the definition of I∗

and I∗∗. The random intersecting hypergraph S in the limit as n → ∞ is described on
its own in the appendix. To describe S here we introduce some notation.

Denote by V (Hr) the set of all vertices of degree at least one in Hr, and by U(Hr) the
set of vertices of degree exactly one. For any set S of vertices of degree at least two in Hr,
let Er(S) denote the set of edges of Hr that contain a vertex in S and let er(S) = |Er(S)|.
Let χr(S) = er(S) − 2|S| and let χ∗

r = max{χr(S) | S ⊆ V (Hr) \ U(Hr)}. At each step
r, we let

Sr = {S ⊆ V (Hr) \ U(Hr) | χr(S) = χ∗
r}

It will become clear in the proof that this Sr is indeed the same as the Sr mentioned in the
introduction. Here we will describe three regimes for Sr: a growing regime, a diminishing
regime, and a stable regime. As the name suggests, S will denote the unchanging Sr

within the stable regime.
The growing regime coincides with all steps before vertices of degree three show up.

Letting r0 denote the number of edges when the first vertex of degree three appears
we have by the following lemma that w.h.p. for r < r0, Sr is just the collection of all
independent sets of vertices of degree two in Hr and χ∗

r = 0. A hypergraph H is simple
if E1, E2 ∈ E(H) implies that |E1 ∩ E2| 󰃑 1.

Lemma 5. If r = o(
√
log n) and Hr−1 is simple and has no vertices of degree at least 3

then the probability that Hr is not simple is O(1/k1−o(1)).

This lemma will follow as a corollary to another lemma we prove shortly, so we save the
proof for later. By part (d) of Theorem 2, r0 will take some value bounded by any slowly
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growing function of n, and we use without further remark that with high probability r0
is smaller than any function that tends to infinity.

By simplicity, before vertices of degree three appear the size of Sr is given by the follow-
ing lemma: a hypergraph will be called intersecting if its edge set defines an intersecting
family.

Lemma 6. If H is a k-uniform simple intersecting hypergraph on r edges with maximum
degree two then for each 1 󰃑 m 󰃑 r/2 the number of independent sets of vertices of degree
two of size m is

r!

(r − 2m)!m!2m
.

Proof. Let Ir,m denote the number of independent sets of vertices of degree two of size m
when H satisfies the assumptions. Then, Ir,m satisfies the recurrence,

Ir,m =

󰀃
r
2

󰀄
Ir−2,m−1

m
.

Indeed we can pick any of the
󰀃
r
2

󰀄
vertices of degree two to start building an independent

set. We then delete the selected vertex and the two edges that contain it and then take
an independent set of vertices of degree two of size m−1 from the remaining hypergraph.
However, this overcounts by a factor of m because of the choice of the first vertex.

Now clearly Ir,1 =
󰀃
r
2

󰀄
= r!

(r−2)!1!21
. And by induction using the recurrence above we

have

Ir,m =
r(r − 1)(r − 2)!

2m(r − 2− 2m+ 2)!(m− 1)!2m−1
=

r!

(r − 2m)!m!2m
=

󰀕
r

2m

󰀖󰀕
2m

m

󰀖
2−m.

We next show that once vertices of degree three appear χ∗
r starts to increase by one

at each step, and that Sr decays, until it reaches an intersecting family at time r1 with
S := Sr1 .

Before we prove how the random intersecting process stabilizes to S, we introduce
some definitions:

Definition 7. An edge E that extends the intersecting familyHr to an intersecting family
Hr+1 is said to be an almost simple extension if for every pair of distinct x, y ∈ E that
are already contained in a common edge in Hr, both x and y have degree at least two in
Hr.

Definition 8. Given a k-uniform intersecting family Hr on r edges, an edge E that
extends the intersecting family is good if it is an almost simple extension and the set of
vertices S of Hr of degree at least two that belong to E satisfies χr(S) = χ∗

r. Otherwise
we say the extension is bad.
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Lemma 9. Suppose that r = o(
√
log n) and that Hr has been generated by the random

intersecting process via good extensions with Sr as defined above, then the probability that
Hr+1 is generated by selecting a bad extension of Hr is at most 1/k1−o(1).

Proof. We first show that the number of extensions that are not almost simple is at most
k−(r+1−χ∗

r+o(1))
󰀃
n
k

󰀄
.

We have two cases to consider, either E contains two vertices of degree one in the
same edge of Hr or else it contains one vertex of degree one and one vertex of degree two
from an edge of Hr. To build such an extension in the former case we first choose an
edge (r choices) and then two vertices of degree one from it (at most k2 choices). Next
we choose a set S of vertices of degree at least two to belong to the new edge. Since Hr

has been built out of good extensions, the number of vertices of degree at least two is at
most

󰀃
r
2

󰀄
. So we have at most 2r

2
choices for S. Once the two vertices of degree one in

a common edge and S have been selected for E we have covered 1 + er(S) edges, so we
have r − er(S) − 1 edges still to cover. We cover these remaining edges with vertices of
degree one since S already accounts for the vertices of degree larger than 1 that we will
use. So we have to pick at least one vertex from the remaining r− er(S)−1 edges. Lastly
we choose another k − (r − er(S) − 1) − |S| − 2 vertices from the ground set. So, using
the fact that k ∼ cn1/3, we see that the number of extensions that are not almost simple
is at most

rk22r
2

kr−er(S)−1

󰀕
n

k − (r − er(S) + |S|+ 1)

󰀖
󰃑 kr−er(S)+1+o(1)

󰀕
k

n

󰀖r−er(S)+|S|+1 󰀕
n

k

󰀖

=
1

kr+1−(er(S)−2|S|)+o(1)

󰀕
n

k

󰀖

This is therefore at most what we claimed since er(S)− 2|S| 󰃑 χ∗
r.

For the other type of not almost simple extensions we have the upper bound of

rkr22r
2

kr−er(S)

󰀕
n

k − (r − er(S) + |S|+ 1)

󰀖
󰃑 1

kr+1−(er(S)−2|S|)+o(1)

󰀕
n

k

󰀖

So again using er(S)− 2|S| 󰃑 χ∗
r we arrive at the same conclusion as in the first case.

Next we turn our attention to almost simple extensions for which the chosen set S has
χr(S) 󰃑 χ∗

r − 1. Let ν(S) for S a collection of vertices of degree at least two in Hr be
the number of almost simple extensions which contain S and otherwise meet each edge
of Hr at a vertex of degree one. To build such an extension we choose a vertex of degree
one from the r − er(S) edges not covered by S. For each such edge E there are between
k − r2 and k choices. This leaves k − (r − er(S)) − |S| vertices of E to be chosen from
[n] \ V (Hr). Thus,

󰀃
k − r2

󰀄r−er(S)
󰀕

n− kr

k − (r − er(S))− |S|

󰀖
󰃑 ν(S) 󰃑 kr−er(S)

󰀕
n

k − (r − er(S))− |S|

󰀖
. (1)
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Thus, since r = o(k1/2),

ν(S) = eO(r2/k)k
2r−2er(S)+|S|

nr−er(S)+|S|

󰀕
n

k

󰀖
= eO(r2/k) k2r−2er(S)+|S|

(c−1k)3(r−er(S)+|S|)

󰀕
n

k

󰀖

= eO(r2/k) c
3(r−er(S)+|S|)

kr−er(S)+2|S|

󰀕
n

k

󰀖
∼ c3(r−er(S)+|S|)

kr−er(S)+2|S|

󰀕
n

k

󰀖
. (2)

Thus the number of almost simple extensions with χr(S) < χ∗
r − 1 is at most

k−(r−er(S)+2|S|+o(1))

󰀕
n

k

󰀖
󰃑 k−(r+1+χ∗

r+o(1))

󰀕
n

k

󰀖

The total number of extensions of Hr is at least the number of good extensions and by
our estimate on ν(S) when χr(S) = χ∗

r we have the number of good extensions is at least
k−(r+χ∗

r+o(1)))
󰀃
n
k

󰀄
and the claim follows.

We see that Lemma 5 follows from Lemma 9.

Proof of Lemma 5. If Hr is simple with no vertices of degree at least 3 then Hr has been
generated by good extensions with Sr as the collection of independent sets of vertices of
degree two. If Hr has no vertices of degree at least 3 and is simple then the only good
extensions of Hr are simple extensions, thus the probability of a non-simple extension is
at most 1/k1−o(1).

Lemma 9 implies that w.h.p., step r0 coincides exactly with the first time we take
S ∈ Sr with S ∕= ∅ and take a good extension with S as the set of vertices in Hr of degree
at least two. It follows from (2) that S ∈ Sr is selected at each step for the next good
extension with probability proportional (c−3)|S|. So, if Hr has maximum degree two and
|Sr| = σ =

󰀃
r
2

󰀄
then

P(r0 = r + 1 | r0 > r) =
eO(r2/k)

󰁓
s󰃍1

󰀃
σ
s

󰀄
c−3s

󰁓
s󰃍0

󰀃
σ
s

󰀄
c−3s

= eO(r2/k)

󰀕
1− 1

(1 + c−3)σ

󰀖
. (3)

and so for r = o(
√
log n),

P(r0 > r) 󰃑
r󰁜

ρ=1

󰀣
1

(1 + c−3)(
ρ
2)

+O

󰀕
r2

k

󰀖󰀤
<

1 +O(r3/k)

(1 + c−3)r(r+1)/2
.

Clearly a maximal intersecting family has size at least k. Thus w.h.p. r0 󰃑 ω = ω(n) for
any function ω → ∞,ω = o(k).

Note that in general χr+1(T ) 󰃑 χr(T ) + 1 for T ⊆ Sr. Now for any T ∈ Sr so that
T∩S = ∅, with S selected for the good extension toHr+1 we observe that χr+1(T ) = χr(T )
while for any T ∈ Sr such that T ∩ S ∕= ∅, χr+1(T ) = χr(T ) + 1. Thus if T ∩ S = ∅ then
T /∈ Sr+1 while if T ∩ S ∕= ∅ then T remains in Sr+1.
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Suppose now that Sr is not intersecting and that T ∈ Sr. Then if S ∩ T = ∅ then
T /∈ Sr+1. So,

P(T ∈ Sr+1) 󰃑 1− eO(r2/k)c−3|T |
󰁓

S∈Sr
c−3|S|

and so, assuming r1 󰃍 r0 + ρ,

P(T ∈ Sr0+ρ) 󰃑
ρ󰁜

i=1

󰀣
1− eO((r0+i)2/k)c−3|T |

󰁓
S∈Sr0

c−3|S|

󰀤i

󰃑 exp

󰀫
−ρ

eO((r0+ρ)2/k)c−3(r02 )
󰁓

S∈Sr0
c−3|S|

󰀬

This implies that if ρ ≫ c
−3(r02 )

󰁓
S∈Sr0

c−3|S| then r1 󰃑 r0 + ρ w.h.p. So, without further remark

we have that with high probability r1 is smaller than any function of n tending to infinity.
This verifies part (a) of Theorem 2.

2.2 Step o(
√
logn) to step nω(1)

We’ve shown that with high probability in the first o(
√
log n) steps we have only made

good extensions. Moreover we have also described the growing regime, diminishing regime,
and stable regime for Sr. We now want to show that conditioned on knowing the final,
stable family S, and the two hitting times r0 and r1 (each of which is a random positive
integer that is sampled according to some asymptotic distribution) that we have I∗ ⊆
Ik ⊆ I∗∗, with I∗ and I∗∗ depending on r0 and S.

In order to prove I∗ ⊆ Ik ⊆ I∗∗ we first show that for any r 󰃍 r1, the probability
that we add E ∈

󰀃
[n]
k

󰀄
\ I∗∗ is at most O

󰀃
1

nM

󰀄
where M can be set to be any constant.

This means that Hr ⊆ I∗∗ for nω(1) steps; we handle the rest of the process in the next
subsection.

We say that an edge is open after r steps if it is in Hr or if it meets E1, E2, . . . , Er,
otherwise we say that it is closed, and let Or be the set of open edges at step r. By what
we showed in the first o(

√
log n) steps we have Hr1 ⊆ I∗∗ w.h.p. For r 󰃍 r1, all of I∗

remains open as long as we have Hr ⊆ I∗∗. If an edge E does not meet all of Hr1 then E
is already closed at step r1. Thus the only edges that concern us here are those edges E
that meet all of Hr1 but are not in I∗∗ because they are disjoint from some S ∈ S.

We first lower bound |I∗|. Let S ∈ S. Then S meets Er0 , . . . Er1 and also 2|S| of the
edges E1, . . . Er0−1. Thus to choose an edge E ∈ I∗, E ⊇ S we can choose one vertex
from each of the r0 − 1− 2|S| edges of Hr1 that are disjoint from S, and then there is no
restriction on the other k − r0 + 1 + |S| vertices of E. So, assuming that Hr ⊆ I∗∗, the
number of edges in I∗ at step r is at least

(k − r0)
r0−1−2|S|

󰀕
n− r0k

k − r0 + 1 + |S|

󰀖
∼ kr0−1−2|S|

󰀕
k

n

󰀖r0−1−|S| 󰀕
n

k

󰀖
= k−(r0−1+o(1))

󰀕
n

k

󰀖
.

(4)
Of course some (at most r) of the edges in I∗ are only open because they are already in
Hr, but if r 󰃑 nω(1) then this has a negligible effect on the above estimate.
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Now we upper bound the number of open edges E /∈ I∗∗ at some step r with r1 ≪
r ≪

√
log n. To determine the number of choices for E we first choose some subset T of

the vertices of Hr of degree at least two with T ∩S = ∅ for some S ∈ S. T will be the set
of vertices of degree at least two in Hr that belong to E. The number of choices for T is
at most 2r

2
= no(1). Once T is selected there is S ∈ S with T ∩ S = ∅. For ℓ = ℓ(r1, r2)

we have that χr(T ) 󰃑 r − r0 + 1− ℓ. Now for each q with r1 󰃑 q = o(
√
log n) we have at

least a 1

(1+c3)r
2
1
probability to take S to be the set selected from S for the good extension.

(The lower bound on probability is derived as in (3).) If r

(1+c3)r
2
1
→ ∞ then w.h.p. we

pick S at least ℓ times between steps r1 and r, and at these steps χr(T ) does not increase.
Thus at step r we have the number of sets E /∈ I∗∗ with T as the set of vertices of degree
at least two in E is at most

kr−er(T )

󰀕
n

k − (|T |+ r − er(T ))

󰀖
󰃑 k−(r0−1+ℓ+o(1))

󰀕
n

k

󰀖
. (5)

So at step r the number of open edges E /∈ I∗∗ is at most n−M
󰀃
n
k

󰀄
where M can be set as

any large constant with an appropriate choice of ℓ. However as long as Hr is contained
in I∗∗ all edges of I∗ remain open. For r 󰃑 o(

√
log n), by step r we have not yet selected

an edge not in I∗∗ and from then on the probability that we pick an edge outside of I∗∗

is at most n−ω(1). This follows from (4) and (5). Thus with high probability Hnω(1) ⊆ I∗∗.

2.3 From step nω(1) onward

In this section we handle the remainder of the process. We will show that for L sufficiently
large (depending on r0) OnL ⊆ I∗∗, which together with results in the previous subsection
implies that Ik ⊆ I∗∗, and that in turn implies that I∗ ⊆ Ik. Let L = r0+3. For E ∈

󰀃
[n]
k

󰀄

and knowing r0, r1, and S, let

D(E) = {F ∈ I∗ | F ∩ E = ∅}

Suppose E ′ ∈ OnL \ I∗∗, so that E ′ is disjoint with some set S ∈ S. We lower bound
|D(E ′)|. Quite crudely, there is at least one choice for some set of vertices S ∈ S that
is disjoint with E ′ and such that |S| 󰃑 r0, and from here we can pick from each edge
E1, · · · , Er0−1 not intersecting S a single vertex vj ∈ Ej \E ′. Such a choice always exists
since E ′ ∩ S = 0 and E ′ ∕= E1, · · · , Er0−1. So we count edges E ∈ D(E ′) to be at least

󰀕
n− k − 2r0
k − 2r0

󰀖
󰃍 1

k4r0+o(1)

󰀕
n

k

󰀖

If we pick a set from D(E ′) before we pick E ′ then E ′ can never be selected. For r 󰃑 nω(1)

the probability at each step that we pick a set in D(E ′) is at least

k−(3r0+1+o(1)).

This estimate again uses the estimate of k−r0+1+o(1)
󰀃
n
k

󰀄
for the total number of extensions.

Thus the probability that E ′ remains open at step nL is at most

(1− k−(3r0+1+o(1)))n
L 󰃑 exp

󰀋
−k3L−3r0+1+o(1)

󰀌
.
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Thus, the expected number of open edges E ′ /∈ I∗∗ at step nL is at most
󰀕
n

k

󰀖
exp

󰀋
−k3L−3r0+1+o(1)

󰀌
󰃑 exp

󰀋
3k log k − k3L−(3r0+1+o(1))

󰀌
= o(1),

since L = r0 + 3. This completes the proof of part (b) of Theorem 2.

2.4 The size of I∗ and I∗∗

Theorem 2 tells us that our final intersecting family Ik satisfies

I∗ ⊆ Ik ⊆ I∗∗.

While in general we do not have a complete description of Ik, we do have enough to
conclude that following

Lemma 10. Conditional on the process having reached step r1 with stable family Sr1 = S,
we have w.h.p.

|Ik|󰀃
n
k

󰀄 = (1 + o(1))

󰁓
S∈S c

3(r0−1−|S|)

kr0−1
as n → ∞.

Proof. It suffices to find a lower bound on I∗ and an upper bound on I∗∗. Both approxi-
mations are based largely on the fact that in the growing regime every S ∈ Sr, r 󰃑 r0 − 1
has χr(S) = 0 and in the diminishing regime and stable regime every S ∈ Sr, r0 󰃑 r has
χr(S) = r − r0 + 1. Thus χr1(S) = r1 − r0 + 1. We now bound |I∗∗|. For any set T of
vertices of degree at least two in Hr1 we have χr1(T ) 󰃑 r1−r0+1 with χr1(T ) = r1−r0+1
if and only if T ∈ S. For each choice of T the number of hyperedges of I∗∗ so that T is
the set of vertices of degree at least two in Hr1 belonging to the hyperedge is at most

kr1−e(T )

󰀕
n

k − (|T |+ r1 − er1(T ))

󰀖
.

We sum this over the at most 2r
2
choices for T , but the largest order terms come from

T ∈ S, so we have

|I∗∗| 󰃑 (1 + o(1))
󰁛

S∈S

c3(r1−(er1 (S)−|S|))

kr1−(er1 (S)−2|S|))

󰀕
n

k

󰀖

= (1 + o(1))
󰁛

S∈S

c3(r0−1−|S|))

kr0−1

󰀕
n

k

󰀖
,

after using χr1(S) = r1 − r0 + 1.
On the other hand we have that for any fixed S ∈ S the number of sets that contain

S and meet all other sets in Hr1 in a vertex of degree one is at least

(k − (r1)
2)r1−e(S)

󰀕
n− kr1

k − (|S|+ r1 − er1(S))

󰀖
= (1− o(1))

cr0−1−|S|

kr0−1

󰀕
n

k

󰀖
.

We can sum this over all choices of S ∈ S to arrive at the conclusion.
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This completes the proof of part (c) of Theorem 2.
We finally consider part (d). The distribution of r0 can be recovered from the following

generating function.

Theorem 11. Consider the random intersecting process with k =
󰀇
cn1/3

󰀈
where c > 0 is

a constant and let X be the random variable counting the number of steps until a vertex
of degree three appears, then for n → ∞ the following sequence

󰀝
limn→∞ P(X = r + 1 | X > r)

limn→∞ P(X > r + 1 | X > r)

󰀞

r󰃍0

has exponential generating function

ex(ex
2/(2c3) − 1).

Proof. By Lemma 5 we have that if r = o(
√
log n) then w.h.p. either Hr has a vertex

of degree at least three or it is a simple hypergraph. Let SIMPLE(r) denote the event
that Hr is simple. We first verify the following lemma.

Lemma 12.
P(X = r + 1 | X > r)

P(X > r + 1 | X > r)
(6)

is asymptotically equal to

P(X = r + 1 | X > r, SIMPLE(r))

P(X > r + 1 | X > r, SIMPLE(r))
. (7)

Proof. The ratio of the expressions in (6), (7) is

P(X = r + 1, X > r, SIMPLE(r))

P(X = r + 1, X > r)
× P(X > r + 1)

P(X > r + 1, SIMPLE(r))
. (8)

Now we bound the probability pr that X > r holds but that SIMPLE(r) fails to hold.
Clearly

p1 = P(X > 1,¬SIMPLE(1)) 󰃑 P(¬SIMPLE(1)) = 0.

For 1 < r = o(
√
log n) we have

pr = P(X > r,¬SIMPLE(r))

= P(X > r,¬SIMPLE(r), SIMPLE(r − 1)) + P(X > r,¬SIMPLE(r − 1))

󰃑 P(¬SIMPLE(r) | X > r − 1, SIMPLE(r − 1)) + P(X > r − 1,¬SIMPLE(r − 1))

󰃑 1

k1−o(1)
+ pr−1,

after using Lemma 5 to bound the first summand. Thus pr = O(
√
log n/k1−o(1)) =

O(1/k1−o(1)).
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Going back to (8),

1− P(X > r,¬SIMPLE(r))

P(X = r + 1, X > r)
󰃑 P(X = r + 1, X > r, SIMPLE(r))

P(X = r + 1, X > r)
󰃑 1.

Now clearly,

P(X = r + 1, X > r) = P(X = r + 1) 󰃍 P(X = r + 1, SIMPLE(r)).

Moreover the rest of the proof of Theorem 11 shows that if Hr is simple then the number
of simple extensions and the number of almost simple extensions that add vertices of
degree three have the same order of magnitude, so for fixed r if Hr is simple there is a
positive probability that Hr+1 is simple as well, so inducitively we have that for r fixed,

P(X = r + 1, SIMPLE(r)) = ζr

where ζr is some positive constant. So with our estimate on pr we have that

P(X = r + 1, X > r, SIMPLE(r))

P(X = r + 1, X > r)
= 1−O(k−(1−o(1))).

A similar argument deals with the second quotient in (8).

If Hr is a simple k-uniform intersecting hypergraph with maximum degree two then
each pair of edges of Hr intersect in a unique vertex of degree two. In this case Hr+1 will
have vertices of degree three if and only if we select a nonempty set S of the vertices of
degree two of Hr to belong to the new edge. The event that S is not an independent set
of vertices of degree two is negligible as is the event that the extension of Hr to Hr+1 is
not almost simple by Lemma 9. Thus the number of almost simple extensions that do
not add a vertex of degree three is

(1 + o(1))kr

󰀕
n

k − r

󰀖
∼ kr

󰀕
c3

k2

󰀖r 󰀕
n

k

󰀖
. (9)

On the other hand to count the number of almost simple extensions that do add a vertex
of degree three we have a choice of how many vertices of degree three we add. To add m
vertices of degree three we must (with high probability) select an independent set of m
vertices of degree two in Hr.

Applying Lemma 6 we see that the number of almost simple extensions of Hr that
create vertices of degree three is

(1 + o(1))

⌊r/2⌋󰁛

m=1

r!

(r − 2m)!m!2m
kr−2m

󰀕
n

k − (r − 2m)−m

󰀖

∼
⌊r/2⌋󰁛

m=1

r!

c3m(r − 2m)!m!2m
kr

󰀕
c3

k2

󰀖r 󰀕
n

k

󰀖
. (10)
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Thus from (9) and (10), we have for each r = o(
√
log n),

P(X = r + 1 | X > r)

P(X > r + 1 | X > r)
∼

⌊r/2⌋󰁛

m=1

r(r − 1) · · · (r − 2m+ 1)

m!(2c3)m
∼

∞󰁛

m=1

r(r − 1) · · · (r − 2m+ 1)

m!(2c3)m

as r → ∞.
Now we just verify the exponential generating function is what we claimed:

∞󰁛

r=0

∞󰁛

m=1

r(r − 1) · · · (r − 2m+ 1)

r!m!(2c3)m
xr =

∞󰁛

m=1

∞󰁛

r=2m

xr

(r − 2m)!m!(2c3)m

=
∞󰁛

m=1

(x2/(2c3))m

m!

∞󰁛

r=2m

xr−2m

(r − 2m)!

=
∞󰁛

m=1

(x2/(2c3))m

m!

∞󰁛

s=0

xs

s!

=
󰀃
exp

󰀋
x2/(2c3)

󰀌
− 1

󰀄
ex.

Example 13. Using this generating function and Theorem 2 we can recover two previous
results. Using the generating function we have that P(r0 = 3) = 1

1+c3
. In the case that

r0 = 3 we see that S is consists of just a singleton set and it stabilizes at the third step of
the process, so r1 = 3. In this case I∗ = I∗∗ and is the star centered at that first vertex
of degree three. So this recovers the cn → c case of Theorem 1.

Moreover we can also recover the Hilton–Milner-type statement of Patkós from our
methods. If r0 = 4 then at the fourth step of the process we have three edges that all
contain a single common vertex and there is a fourth edge not containing that vertex but
meeting all three edges. In this case I∗ = I∗∗ and is a Hilton–Milner type system. We
have

P(r0 = 4) = P(r0 = 4 | r0 > 3)P(r0 > 3) = P(r0 = 4 | r0 > 3)P(r0 ∕= 3).

Using the generating function

P(r0 = 4) =

󰀕
3

c3 + 3

󰀖󰀕
c3

1 + c3

󰀖
,

and so we recover Corollary 1.6 of [14].

Naively we might expect that r0 determines S which determines the final intersecting
family. This however is only the case when r0 happens to be small. When r0 󰃑 6 it
isn’t too difficult to see that S must stabilize to be a star, i.e. it will stabilize as all
independent sets of vertices of degree two in Hr0−1 that contain some fixed vertex. If
r0 = 7 however, we see that we can get a S that is not a star. If r0 = 7 it is possible
that S = {{u, v}, {v, w}, {u, w}, {u, w, v}} for {u, v, w} an independent set of vertices of
degree two in H6.

This completes the proof of Theorem 2.
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3 Proof of Theorem 4 when k = Θ(n)

In this section we assume k = cn where c = c(n) such that ζ 󰃑 c 󰃑 1
2
− ζ for some

constant ζ > 0. Let G = K(n, k) be the Kneser graph. Recall that G has vertex set󰀓
vS : S ∈

󰀃
[n]
k

󰀄󰀔
, and vS is adjacent to v′S when S ∩ S ′ = ∅.

Let g(x) := x log(x) for x > 0 and let g(0) = 0. Stirling’s formula gives us that for
a 󰃍 b = Ω(1) we have

󰀕
an

bn

󰀖
= exp{[g(a)− g(b)− g(a− b)]n+O(log n)}. (11)

Thus G has N vertices and is d-regular for

N =

󰀕
n

cn

󰀖
= epN (c)n+O(logn) where pN(c) = −g(c)− g(1− c),

d =

󰀕
n− cn

cn

󰀖
= epd(c)n+O(logn) where pd(c) = g(1− c)− g(c)− g(1− 2c).

We claim that
N ε1 < d < N1−ε1 (12)

for some ε1 = ε1(ζ) > 0. Indeed, first note that both pd(c), pN(c) are continuous and
positive for c ∈ (0, 1/2), and so pd(c), pN(c) = Θ(1) for c ∈ (ζ, 1/2 − ζ). Now observe
that 0 < pd(c) < pN(c) for all c ∈ (0, 1/2). Indeed, pd(0) = pN(0) = 0, and since
g′(x) = 1 + log x we have

d

dc
(pN(c)− pd(c)) =

d

dc
(−2g(1− c) + g(1− 2c)) = 2 log(1− c)− 2 log(1− 2c) > 0.

Thus pN(c) = pd(c) + Ω(1) for c ∈ (ζ, 1/2− ζ). Now since

log d

logN
=

pd(c)n+O(log n)

pN(c)n+O(log n)
∼ pd(c)

pN(c)
∈
󰀓
Ω(1), 1− Ω(1)

󰀔

we see that (12) holds.
Now we claim that

each vertex has codegree at most dN−ε2 with all

but at most dN−ε2 vertices, for some ε2 = ε2(ζ). (13)

Indeed, suppose |S ∩ S ′| 󰃑 (c− δ)n for some δ > 0. Then |S ∪ S ′| 󰃍 (c+ δ)n, and so the
number of sets S ′′ that are disjoint with both S and S ′ (i.e. the codegree of vS, vS′) is at
most
󰀕
n− (c+ δ)n

cn

󰀖
= ep1(c,δ)n+O(logn) where p1(c, δ) = g(1− c− δ)− g(c)− g(1− 2c− δ)]n.

(14)
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We claim that p1(c, δ) < pd(c) for any δ > 0 such that p1(c, δ) is defined. Indeed, we have
p1(c, 0) = pd(c) and

∂p1
∂δ

(c, 0) = − log(1− c) + log(1− 2c) < 0.

Thus the codegree bound on line (14) is at most dN−ε2 for some ε2 = ε2(ζ).
Now for a fixed set S, the number of S ′ such that |S ∩ S ′| > (c− δ)n is at most

󰀕
cn

(c− δ)n

󰀖󰀕
n

δn

󰀖
= ep2(c,δ)n+O(logn) where p2(c, δ) = g(c)−g(c−δ)−2g(δ)−g(1−δ).

We claim that for some sufficiently small δ we have p2(c, δ) < pd(c). This follows from
the fact that pd(c) > 0, p2(c, 0) = 0 and p2 is continuous in δ. This verifies (13).

We let ε = min {ε1, ε2} for the remainder of Section 3. Both of (12) and (13) remain
true with ε1 and ε2 replaced by ε respectively.

3.1 The good event

Let G be any d-regular graph on N vertices where N ε < d < N1−ε. Assume that for each
vertex v, there are at most dN−ε vertices u whose codegree with v is at least dN−ε. We
run the random greedy independent set process on G: initially I(0) = ∅. After r steps,
let I(r) = {v1, . . . , vr} be the set of vertices in the independent set constructed so far. Let
V (r) be the set of available vertices (i.e. the vertices not adjacent to any vertex in I(r)).
We choose a random vertex v ∈ V (r) and put vr+1 = v.

Let Dv(r) be the set of available neighbors of v, for v ∈ V (r). Let B(r) be the set of
vertices w (available or not) such that some vertex u ∈ I(r) has codegree with w at least
dN−ε. Note that B(r) is nondecreasing in r. Let Cv(r) := Dv(r) ∩B(r). Let

t = t(r) =
dr

N
.

Define the error function
f(t) := N−ε/20e10t. (15)

Let the good event Er be the event that the following inequalities (16), (17) and (18) all
hold for all r′ 󰃑 r and where t′ = t(r′):

󰀏󰀏󰀏|V (r′)|−Ne−t′
󰀏󰀏󰀏 󰃑 Nf(t′) (16)

󰀏󰀏󰀏|Dv(r
′)|− de−t′

󰀏󰀏󰀏 󰃑 df(t′) for all v ∈ V (r′) \B(r′) (17)

|Cv(r
′)| 󰃑 dN−ε/10 for all v ∈ V (r′). (18)

We will show that w.h.p. the good event Erend
holds where

rend :=
ε

1000

N logN

d
.
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In particular this will imply that w.h.p. the process lasts to at least step rend, proving
the lower bound on |Ik| in Theorem 4 for the case of k = cn. Indeed,

et 󰃑 N ε/1000 implying that f(t) 󰃑 min
󰀋
e−t, N−ε/25

󰀌
= o(1).

for all r 󰃑 rend, inequalities (16) and (17) imply that for all r 󰃑 rend we have

|V (r)| = (1 + o(1))Ne−t, |Dv(r)| = (1 + o(1))de−t for all v ∈ V (r) \B(r).

In particular |V (rend)| is positive and so the process lasts to step rend. The upper bound
in Theorem 4 comes from the upper bound on |V (rend)| implied by (16). Indeed, (16)
gives

|V (rend)| 󰃑 Ne−t(rend) +Nf(t(rend)) 󰃑 N1−ε/1000 +N1−ε/25.

We will sometimes use the bounds (which hold for all r 󰃑 rend in the good event Er)

|V (r)| 󰃍 N1−ε/10, |B(r)| 󰃑 N1−ε/2. (19)

The first bound follows from our estimate of V (rend). The second bound follows since
|B(rend)| 󰃑 renddN

−ε.

3.2 Dynamic concentration of V (r)

Here we bound the probability that Erend
fails due to condition (16). We define variables

V + and V − as follows.

V ± = V ±(r) :=

󰀫
|V (r)|−N(e−t ± f(t)) if Er−1 holds,

V ±(r − 1) otherwise.
(20)

For r = 0 above, we interpret E−1 as the trivial event that always holds. Note that if
Erend

fails due to condition (16) then we either have that V +(rend) > 0 or V −(rend) < 0.
To show that those events are unlikely we will establish V + is a supermartingale, i.e.
E[∆(|V +(r)|) |I(r)] 󰃑 0, where we use the notation ∆(|V +(r)|) = |V +(r + 1)|− |V +(r)|.
Similarly we will show that V − is a submartingale.

First we show E[∆|V +(r)| |I(r)] 󰃑 0. If Er fails then ∆V +(r) = 0 by definition, so we
assume Er holds. We have

E[∆|V (r)| |I(r), Er] = − 1

|V (r)|
󰁛

v∈V (r)

(1 +Dv(r)) (21)

󰃑 − 1

|V (r)| (|V (r)|− |B(r)|)
󰀃
de−t − df(t)

󰀄

󰃑 −
󰀕
1− N1−ε/2

N1−ε/10

󰀖󰀃
de−t − df(t)

󰀄

󰃑 −d
󰀃
e−t − f(t)

󰀄
+O

󰀃
dN−ε/3

󰀄
.

We turn to bounding the one-step change in N(e−t+f(t)) (the deterministic part of V +).
We use Taylor’s theorem:
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Theorem 14. Let g : R → R be a function twice differentiable on the closed interval
[a, b]. Then, there exists a number τ between a and b such that

g(b)− g(a) = g′(a)(b− a) +
g′′(τ)

2
(b− a)2. (22)

Since ∆t(r) = d
N
, we have for some τ ∈ (t(r), t(r + 1)) that

∆N(e−t ± f(t)) = N(−e−t ± f ′(t)) · d

N
+

1

2
N(e−τ ± f ′′(τ)) · d2

N2

= d(−e−t ± f ′(t)) +O

󰀕
d2

N

󰀖
.

Thus we have

E[∆V +(r) |I(r), Er] 󰃑 −d
󰀃
e−t − f(t)

󰀄
− d(−e−t + f ′(t)) +O

󰀃
dN−ε/3

󰀄
(23)

= d(f(t)− f ′(t)) +O
󰀃
dN−ε/3

󰀄

= −Ω
󰀃
dN−ε/20

󰀄
.

Thus V + is a supermartingale. Now we will show that V − is a submartingale. From (21)
we have

E[∆|V (r)| |I(r), Er] = − 1

|V (r)|
󰁛

v∈V (r)

(1 +Dv(r))

󰃍 −1− 1

|V (r)|

󰀥
(|V (r)|− |B(r)|)

󰀃
de−t + df(t)

󰀄
+ |B(r)|d

󰀦

󰃍 −
󰀃
de−t + df(t)

󰀄
− N1−ε/2

N1−ε/10
d− 1

󰃍 −
󰀃
de−t + df(t)

󰀄
+O

󰀃
dN−ε/3

󰀄
.

Thus, similar to (23), we have

E[∆V −(r) |I(r), Er] 󰃍 −d
󰀃
e−t + f(t)

󰀄
− d(−e−t − f ′(t)) +O

󰀃
dN−ε/3

󰀄

= Ω
󰀃
dN−ε/20

󰀄
.

We use the following concentration inequality of Freedman [10].

Theorem 15 (Freedman). Suppose Y0, Y1, . . . is a supermartingale such that ∆Yj 󰃑 C

for all j, and let Wm =
󰁛

r󰃑m

Var[∆Yr|Fr]. Then, for all m and positive real λ,

P(Wm 󰃑 b and Ym − Y0 󰃍 λ) 󰃑 exp

󰀕
− λ2

2(b+ Cλ)

󰀖
. (24)
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We apply Freedman’s theorem to the supermartingale V +. In particular we want to
bound the probability that it is positive at step rend. We have at step 0 that V +(0) =
−Nf(0) = −N1−ε/20. If V +(rend) is positive then V +(rend) − V +(0) > N1−ε/20. Thus
we will use λ = N1−ε/20. We bound the one-step change to determine C. We have
|∆|V (r)|| 󰃑 d and |∆N(e−t + f(t))| 󰃑 2d so we can use C = 3d. Note that we have

Var[∆V ±(r)|Fr, Er] = Var[∆|V (r)| |Fr, Er] 󰃑 E[∆|V (r)|2|Fr, Er] 󰃑 d2.

Thus we have Wrend
󰃑 rend · d2 = O(Nd logN) and we can take b = O(Nd logN).

Freedman’s theorem gives us that the probability that V +(rend) is positive is at most

exp

󰀕
− λ2

2(b+ Cλ)

󰀖
= exp

󰀕
−Ω

󰀕
N2−ε/10

Nd logN + dN1−ε/20

󰀖󰀖
= o(1).

Similarly one can apply Freedman’s theorem to the submartingale −V − using the same
values of λ, C, b to show that w.h.p. −V −(rend) is not positive. Thus we have w.h.p. that
Erend

does not fail due to condition (16).

3.3 Dynamic concentration of Dv(r)

Here we bound the probability that Erend
fails due to condition (17). We define variables

D+
v and D−

v as follows.

D±
v = D±

v (r) :=

󰀫
|Dv(r)|− d(e−t ± f(t)) if Er−1 holds and v /∈ B(r),

D±
v (r − 1) otherwise.

(25)

If Erend
fails due to condition (17) then we either have that D+

v (rend) > 0 or D−
v (rend) < 0

for some v. Similarly to the last subsection, we will show these events are unlikely using
Freedman’s theorem. First we verify that D+

v is a supermartingale. We can assume Er
holds, since otherwise∆D+

v (r) = 0. Of course if v ∈ B(r+1) we will also have∆D+
v (r) = 0

by definition (25). Thus we just need the expected one-step change in |Dv(r)| in the case
when v /∈ B(r + 1). We have

E[1v/∈B(r+1) ·∆|Dv(r)| |I(r), Er] = −
󰁛

u∈Dv(r)

P(u /∈ V (r + 1) and v /∈ B(r + 1))

󰃑 −
󰁛

u∈Dv(r)

Du(r)− dN−ε

|V (r)|

󰃑 −(de−t − df(t)− dN−ε/10)2

Ne−t +Nf(t)

= −d2

N
e−t · (1− etf(t)− etN−ε/10)2

1 + etf(t)

= −d2

N
e−t ·

󰀃
1− 3etf(t)

󰀄
+O

󰀃
d2N−1−ε/15

󰀄
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Meanwhile the one-step change in d(e−t + f(t)) is

d2

N
(−e−t + f ′(t)) +O

󰀃
d3N−2

󰀄

by Taylor’s theorem. Thus we have

E[∆D+
v (r) |I(r), Er] 󰃑 −d2

N
e−t ·

󰀃
1− 3etf(t)

󰀄
− d2

N
(−e−t + f ′(t)) +O

󰀃
d2N−1−ε/15

󰀄

=
d2

N
(3f(t)− f ′(t)) +O

󰀃
d2N−1−ε/15

󰀄

= −Ω
󰀃
d2N−1−ε/20

󰀄

Thus D+
v is a supermartingale, and similarly D−

v is a submartingale. Now we apply
Freedman’s theorem. As in the last section, bounding the probability that −D−

v (rend) > 0
is entirely similar to bounding the probability that D+

v (rend) > 0, so from here we will
only show the work for the latter. Recall that |∆D+

v (r)| = 0 unless v /∈ B(r+1), in which
case we have |∆|Dv(r)|| 󰃑 1 + dN−ε. We have

|∆D+
v (r)| 󰃑 |∆|Dv(r)||+ |∆de−t|+ |∆df(t)|

󰃑 1 + dN−ε +O(d2/N)

󰃑 2dN−ε.

Thus we can use C = 2dN−ε. If D+
v (rend) > 0 then D+

v (rend)−D+
v (0) > df(0) = dN−ε/20

and so we use λ = dN−ε/20. Note that

Var[∆D+
v (r)|Fr, Er] 󰃑 E[(∆|D+

v (r)|)2|Fr, Er]
󰃑 CE[ |∆D+

v (r)| |Fr, Er]
󰃑 CE[ |∆|Dv(r)| | |Fr, Er] + C|∆de−t|+ C|∆df(t)|
= O(d3N−1−ε),

where the second line follows since we always have |∆D+
v (r)| 󰃑 C, and the third line

follows from the triangle inequality. Thus we can take b = O(rend·d3N−1−ε) = O(d2N−ε/2).
Freedman’s theorem gives us a failure probability of at most

exp

󰀝
− λ2

2(b+ Cλ)

󰀞
= exp

󰀝
−Ω

󰀕
d2N−ε/10

d2N−ε/2 + dN−ε · dN−ε/20

󰀖󰀞
= o

󰀕
1

N

󰀖
.

This probability is small enough to beat a union bound over N choices of v. Thus we
have w.h.p. that Erend

does not fail due to condition (17).

3.4 The upper bound on Cv

We now bound the probability that Erend
fails due to condition (18). We define variables

C+
v as follows.

C+
v = C+

v (r) :=

󰀫
|Cv(r)|− d2N−1−ε/2r if Er−1 holds,

C+
v (r − 1) otherwise.

(26)
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We show that C+
v is a supermartingale. We have

E[∆|Cv(r)| |I(r), Er] 󰃑
d · dN−ε

|V (r)| 󰃑 d2N−ε

N1−ε/10
󰃑 d2N−1−ε/2

and so E[∆|C+
v (r)| |I(r), Er] 󰃑 d2N−1−ε/2 − d2N−1−ε/2 = 0. We apply Freedman’s the-

orem. We have ∆C+
v (r) 󰃑 ∆Cv(r) 󰃑 dN−ε and so we use C = dN−ε. Note that we

have

Var[∆C+
v (r)|Fr, Er] = Var[∆Cv(r)|Fr, Er] 󰃑 E[∆Cv(r)

2|Fr, Er]
󰃑 dN−εE[|∆Cv(r)||Fr, Er]
󰃑 dN−ε · d2N−1−ε/2

󰃑 d3N−1−3ε/2

Thus we haveWrend
󰃑 rend·d3N−1−3ε/2 = O(d2N−ε) and we can take b = O(d2N−ε). Using

λ = dN−ε/4, Freedman’s theorem gives us that the probability we ever have C+
v (r) > λ is

at most

exp

󰀕
− λ2

2(b+ Cλ)

󰀖
= exp

󰀕
−Ω

󰀕
d2N−ε/2

d2N−ε + dN−ε · dN−ε/4

󰀖󰀖
= o(1/N),

which is small enough to beat the union bound over the N choices for v. Thus w.h.p. we
have for each v that C+

v (r) 󰃑 λ and so

Cv(r) 󰃑 d2N−1−ε/2rend + λ < dN−ε/10.

Thus w.h.p. Erend
does not fail due to condition (18). This completes our proof of Theorem

4 for the case when k = Θ(n).

4 Proof of Theorem 4 when k = o(n)

In this section we assume ζ−1n1/2 log1/2 n 󰃑 k 󰃑 ζn for a sufficiently small constant ζ > 0.
We use the same notation as in Section 3, so k = cn.

For say |x| 󰃑 1/2, we have g(1− x) = −x+ x2

2
+O(x3) and so we can write

pN(c) = −g(c) + c− 1

2
c2 +O(c3),

pd(c) = −g(c) + c− 3

2
c2 +O(c3).

pN(c)− pd(c) = c2 +O(c3).

Thus, we have that
d = Ne−(c2+O(c3))n.

the electronic journal of combinatorics 31(4) (2024), #P4.12 21



With p1, p2 as in Section 3, we now have

p1(c, δ)− pd(c) = −cδ +O(c3).

p2(c, δ) = δ log
󰀓 c

δ2

󰀔
+ 2δ − δ2

c
+O(δ2).

Let δ = 0.9c, and

γ :=
d

N
= exp{−c2n+O(c3n)}

α := d exp
󰀋
−cδn+O(c3n)

󰀌
= d exp{−0.9c2n+O(c3n)}

β := exp

󰀝󰀕
δ log

󰀓 c

δ2

󰀔
+ 2δ − δ2

c

󰀖
n+O(δ2n)

󰀞
= exp {−0.9(c log c)n+O(cn)}

Arguing as in Section 3, we see that for each vertex v, there are at most α vertices u
whose codegree with v is at least β.

We assume that
γ 󰃑 log−100 N

which holds when c is at least some large constant times n−1/2 log1/2 n (i.e. for ζ small
enough).

4.1 The good event

Let t = t(r) = γr. Define the error function

f(t) := γ0.1e10t. (27)

Note that this is different from our error function f(t) from Section 3.1. Let the good
event Er be the event that the following inequalities (28), (29) and (30) all hold for all
r′ 󰃑 r:

󰀏󰀏󰀏|V (r′)|−Ne−t′
󰀏󰀏󰀏 󰃑 Nf(t′) (28)

󰀏󰀏󰀏|Dv(r
′)|− de−t′

󰀏󰀏󰀏 󰃑 df(t′) for all v ∈ V (r′) \B(r′) (29)

|Cv(r
′)| 󰃑 γ−0.1α for all v ∈ V (r′). (30)

We will show that w.h.p. the good event Erend
holds where

rend := 0.001γ−1 log γ−1 = Ω

󰀕
N

d
log

N

d

󰀖
.

In particular this will imply that w.h.p. the process lasts to at least step rend, proving
the lower bound in Theorem 4 for the case cn = o(1). Indeed, we have e10t 󰃑 γ−0.01 and
so e−t 󰃍 γ0.001 and f(t) 󰃑 γ0.09 for all r 󰃑 rend. Now lines (28) and (29) imply that for
all r 󰃑 rend we have

|V (r)| = (1 + o(1))Ne−t, |Dv(r)| = (1 + o(1))de−t for all v ∈ V (r) \B(r).
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In particular |V (rend)| is positive and so the process lasts to step rend. The upper bound
in Theorem 4 comes from the bound on |V (rend)| implied by (28).

We will sometimes use the bounds (which hold for all r 󰃑 rend in the good event Er)

|V (r)| 󰃍 1

2
Ne−γrend =

1

2
γ0.001N, |B(r)| 󰃑 αrend = 0.001αγ−1 log γ−1. (31)

4.2 Dynamic concentration of V (r)

Here we bound the probability that Erend
fails due to condition (28). We define variables

V + and V − exactly as in (20) (but now f(t) is as in (27)). We now establish that V + is
a supermartingale.

First we show E[∆|V +(r)| |I(r)] 󰃑 0. If Er fails then ∆V +(r) = 0 by definition, so we
assume Er holds. Also, as before we only need the expected one-step change in |Dv(r)| in
the case when v /∈ B(r + 1). We have

E[1v/∈B(r+1) ·∆|Dv(r)| |I(r), Er] = − 1

|V (r)|
󰁛

v∈V (r)

(1 +Dv(r))

󰃑 − 1

|V (r)| (|V (r)|− |B(r)|)
󰀃
de−t − df(t)

󰀄

󰃑 −
󰀕
1− 0.001αγ−1 log γ−1

1
2
γ0.001N

󰀖󰀃
de−t − df(t)

󰀄

󰃑 −d
󰀃
e−t − f(t)

󰀄
+O

󰀃
αγ−0.001 log γ−1

󰀄
.

We turn to bounding the one-step change in N(e−t+ f(t)). Since ∆t(r) = d
N
, we have for

some τ ∈ (t(r), t(r + 1)) that

∆N(e−t + f(t)) = N(−e−t + f ′(t)) · d

N
+

1

2
N(e−τ + f ′′(τ)) · d2

N2

= d(−e−t + f ′(t)) +O
󰀃
d2N−1

󰀄
.

Thus we have

E[∆V +(r) |I(r), Er] 󰃑 −d
󰀃
e−t − f(t)

󰀄
− d(−e−t + f ′(t)) +O

󰀃
αγ−0.001 log γ−1

󰀄
(32)

= d(f(t)− f ′(t)) +O
󰀃
αγ−0.001 log γ−1

󰀄

= −Ω
󰀃
dγ0.1

󰀄
, since α/d 󰃑 γ0.8.

Thus V + is a supermartingale. To see that V − is a submartingale, we replace (32) by

E[∆V −(r) |I(r), Er] 󰃍 −d
󰀃
e−t − f(t)

󰀄
−d(−e−t−f ′(t))+O

󰀃
αγ−0.001 log γ−1

󰀄
= Ω

󰀃
dγ0.1

󰀄
.

We apply Freedman’s theorem to the supermartingales V + and −V − to show w.h.p.
neither of them becomes positive. The calculations for −V − is entirely similar to V + so
we only show the latter. If V +(rend) > 0 then V +(rend)− V +(0) > Nf(0) = Nγ0.1. Thus

the electronic journal of combinatorics 31(4) (2024), #P4.12 23



we use λ = Nγ0.1. We bound the one-step change to determine C. We have |∆|V (r)|| 󰃑 d
and |∆N(e−t + f(t))| 󰃑 2d so we can use C = 3d. Note that we have

Var[∆V +(r)|Fr, Er] = Var[∆|V (r)| |Fr, Er] 󰃑 E[∆|V (r)|2|Fr, Er] 󰃑 d2.

Thus we have Wrend
󰃑 d2rend and we can take b = d2rend = O (d2γ−1 log γ−1). Freedman’s

theorem gives us a failure probability of at most

exp

󰀝
− λ2

2(b+ Cλ)

󰀞
= exp

󰀝
−Ω

󰀝
N2γ0.2

d2γ−1 log γ−1 +Ndγ0.1

󰀞󰀞
= o(1).

Thus we have w.h.p. that Erend
does not fail due to condition (28).

4.3 Dynamic concentration of Dv(r)

Here we bound the probability that Erend
fails due to condition (29). We define variables

D+
v and D−

v as in (25). We verify that D+
v is a supermartingale. As before we can assume

Er holds. We have

E[∆|Dv(r)| |I(r), Er] 󰃑 −
󰁛

u∈Dv(r)

P(u /∈ V (r + 1) and v /∈ B(r + 1))

󰃑 −
󰁛

u∈Dv(r)

Du(r)− α

|V (r)|

󰃑 −(de−t − df(t)− γ−0.1α)2

Ne−t +Nf(t)

= −d2

N
e−t · (1− etf(t)− etγ−0.1αd−1)2

1 + etf(t)

= −d2

N
e−t ·

󰀃
1− 3etf(t) +O

󰀃
etγ−0.1αd−1

󰀄󰀄

= −d2

N
e−t ·

󰀃
1− 3etf(t)

󰀄
+O

󰀃
γ0.9α

󰀄

Meanwhile the one-step change in d(e−t + f(t)) is

d2

N
(−e−t + f ′(t)) +O

󰀃
d3N−2

󰀄

by Taylor’s theorem. Thus we have

E[∆D+
v (r) |I(r), Er] 󰃑 −d2

N
e−t ·

󰀃
1− 3etf(t)

󰀄
− d2

N
(−e−t + f ′(t)) +O

󰀃
γ0.9α

󰀄

=
d2

N
(3f(t)− f ′(t)) +O

󰀃
γ0.9α

󰀄

= −Ω
󰀃
γ1.1d

󰀄
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Thus D+
v is a supermartingale, and similarly D−

v is a submartingale.
Now we apply Freedman’s theorem. We have

|∆D±
v (r)| 󰃑 |∆Dv(r)|+ |∆de−t|+ |∆df(t)|

󰃑 β +O(dγ)

󰃑 O(dγ), (33)

where on the second line we used that ∆e−t = O(γe−t) = O(γ) and ∆f(t) = O(γf ′(t)) =
O(γ1.1e10t) = O(γ1.09). Thus we can use C = O(dγ). If D+

v (rend) > 0 then D+
v (rend) −

D+
v (0) > df(0) = dγ0.1 and so we use λ = dγ0.1. Note that by (33) we have

Var[∆D+
v (r)|Fr, Er] = Var[∆|Dv(r)| |Fr, Er] 󰃑 E[(∆|Dv(r)|)2|Fr, Er]

= O(d2γ2).

Thus we can take b = O(d2γ2rend) = O(d2γ log γ−1). Freedman’s theorem gives us a
failure probability of at most

exp

󰀕
− λ2

2(b+ Cλ)

󰀖
= exp

󰀕
−Ω

󰀕
d2γ0.2

d2γ log γ−1 + d2γ1.1

󰀖󰀖
= o(1/N).

This probability is small enough to beat a union bound over N choices of v. Thus we
have w.h.p. that Erend

does not fail due to condition (29).

4.4 The upper bound on Cv

Here we bound the probability that Erend
fails due to condition (30). We define variables

C+
v analogously to (26):

C+
v = C+

v (r) :=

󰀫
|Cv(r)|− 2αγ0.999r if Er−1 holds,

C+
v (r − 1) otherwise.

We show that C+
v is a supermartingale. We have

E[∆|Cv(r)| |I(r), Er] 󰃑
dα

|V (r)| 󰃑 2dαγ−0.001N−1 = 2αγ0.999

and so E[∆|C+
v (r)| |I(r), Er] 󰃑 0. We apply Freedman’s theorem. We have ∆C+

v (r) 󰃑
∆Cv(r) 󰃑 α and so we use C = α. Note that we have

Var[∆C+
v (r)|Fr, Er] = Var[∆Cv(r)|Fr, Er] 󰃑 E[∆Cv(r)

2|Fr, Er]
󰃑 αE[|∆Cv(r)||Fr, Er]
󰃑 2α2γ0.999

Thus we have Wrend
= O(α2γ−.001 log γ−1) and we can take b = O(α2γ−.001 log γ−1).

Freedman’s theorem gives us that the probability we ever have C+
v (r) > λ := 1

2
γ−0.1α is

at most

exp

󰀕
− λ2

2(b+ Cλ)

󰀖
= exp

󰀕
−Ω

󰀕
γ−0.2α2

α2γ−.001 log γ−1 + γ−0.1α2

󰀖󰀖
= o(1/N).
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Otherwise we have C+
v (r) 󰃑 1

2
γ−0.1α and so

Cv(r) 󰃑 2αγ0.999rend +
1

2
γ−0.1α

= O(αγ−.001 log γ−1) +
1

2
γ−0.1α

󰃑 γ−0.1α.

Thus w.h.p. Erend
does not fail due to condition (30). This completes the proof of Theorem

4.

5 Summary

We have proved some new results about the random intersecting family process. There
is still much to do. For example, can we say more about the structure of Ik in Theorem
2. Second, as far as Theorem 4, we say little about the structure of the final family and
there is a large gap between the upper and lower bounds on the family size.
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A Appendix: Describing S as a random matching process

In the proof of Theorem 2 we described the process of generating S and r0 which determine
I∗ and I∗∗. Here we isolate just this process away from the broader context to set up
an open problem that would have to be solved in order to fully describe the distribution
of Ik when k = cn1/3. Recall that at the beginning of the random intersecting process,
before vertices of degree three appear, Hr is a simple hypergraph in which every pair of
edges intersects in a unique vertex. If we represent the hyperedges as vertices then an
independent set of vertices of degree two in Hr corresponds to a matching in the complete
graph Kr. And moreover, once r0 is determined S corresponds to an intersecting family
M of matchings on Kr0−1. For k = cnn

1/3, and cn → c we can describe how S is generated
by Procedure 1 below. For a collection of finite sets N , randc(N ) refers to sampling a set
S from N with probability proportional to c|S|.

By the proof of Theorem 2 we can see that S is generated by Procedure 1 with input
equal to c−3 for k = cnn

1/3, cn → c. The situation that Procedure 1 outputs the single
edge on K2 corresponds to the case that the system is trivial. The case that Procedure 1
outputs a single-edge matching on K3 corresponds to the Hilton–Milner system described
by [14].

For Kt, t 󰃑 5 there is only one combinatorial type for a maximal family of intersecting
matching M on Kt, namely all matchings that contain some fixed edge (i.e. a star).
For t = 6, however, there are two: All matchings that contain some fixed edge and all
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Procedure 1: Random matching procedure

Input : c > 0
Output: A random number n and a family M of pairwise intersecting matchings

of the complete graph Kn

n ← 1;
G ← Kn;
N ← All matchings on G;
M ← ∅;
while M = ∅ do

M ← randc(N );
if M = ∅ then

n ← n+ 1;
G ← Kn;
N ← All matchings on G;

else
Add M to M;
N ← All matchings on G that intersect M ;

while M is not a maximal intersecting family of matchings on Kn do
M ← randc(N );
if M /∈ M then

Add M to M;
N ← All matchings on G that intersect every matching in M;

return M on Kn;
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matchings that contain at least two out of three edges of some perfect matching. For
t = r0 − 1 󰃑 5 we can therefore determine exactly what S will look like. When t = 6
and c = 1, a routine calculation shows that conditioned stopping at t = 6, there is a
123/128 chance of getting a star and a 5/128 chance of getting all matchings that contain
at least two out of three edges of a fixed perfect matching. As t gets larger these families
of matchings can become arbitrarily complicated, so a full description of the distribution
on S would be quite difficult to work out even though we do have a generating function
in part (d) of Theorem 2 that captures the distribution on t.
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