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Abstract

Extremal problem on cycles plays an important role in extremal graph theory.
Let ex(n, F') and spex(n, F') be the maximum size and spectral radius over all n-
vertex F-free graphs, respectively. In this paper, we shall pay attention to the study
of both ex(n,tCy) and spex(n,tCy). On the one hand, we determine ex(n,tCoy1)
and characterize the extremal graph for any integers ¢,¢ and n > f(t,¢), where
f(t,£) = O(tf?). This generalizes the result on ex(n,tC3) of Erdés [Arch. Math.
13 (1962) 222-227] as well as the research on ex(n, Cyp41) of Fiiredi and Gunderson
[Combin. Probab. Comput. 24 (2015) 641-645]. On the other hand, motivated
by the spectral Turan-type problem proposed by Nikiforov, we obtain the extremal
spectral radius spex(n, tCy) for any fixed ¢, ¢ and large enough n. Our results extend
some classic spectral extremal results or conjectures on odd cycles and even cycles.
Our results also give some inspirations for general spectral Turan-type problem
spex(n, F') on bipartite or non-partite F.

Mathematics Subject Classifications: 05C35; 05C50

1 Introduction

Given a graph I, a graph is said to be F'-free if it does not contain a subgraph isomorphic
to F. The Turdn number of F, denoted by ex(n, F'), is the maximum number of edges in
an n-vertex F-free graph. An F-free graph is said to be extremal with respect to ex(n, F'),
if it has n vertices and ex(n, F') edges. Denote by T}, , the complete r-partite graph on n
vertices in which all parts are as equal in size as possible. An interesting graph in Turan-
type problems is a cycle. In 2015, Fiiredi and Gunderson [14] determined ex(n, Cypyq) for
all n and /¢, and specially, T}, » is the unique extremal graph when n > 4¢. However, up
to now the exact value of ex(n,Cy) is still open. Given a graph F', we denote by tF' the
disjoint union of ¢ copies of F'. The study of the Turan number of tC'; can be dated back to
1962, Erdés [10] determined ex(n,tC3) for n > 400(t — 1)?, and characterized the unique
extremal graph K1 + 1,419, (that is, the join of K;_; and 7,441 9, which is obtained
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by connecting each vertex of K;_; with all vertices of T,,_;;12). Subsequently, Moon [20]
proved that Erdos’s result is still valid whenever n > th—u. In addition, Erd6és and Podsa
[12] also showed that ex(n,tC) = (2t — 1)(n —t) for t > 2 and n > 24t, where tC is the
family of graphs consisting of ¢ vertex-disjoint cycles without length restriction. In this
paper, we further determine the Turdn number ex(n,tCysy1) by the following theorem. It
should be noted that if n is sufficiently large, our result is a special case of a theorem due

to Simonovits [29].

Theorem 1. Let t,{,n be three integers with t,f > 2 and n > {WJ + 8tl+ 4t +
2

40 —5. Then Ky + Ty—411.2 is the unique extremal graph with respect to ex(n,tCopiy).

Let A(G) be the adjacency matrix of a graph G, and p(G) be its spectral radius.
The spectral extremal value of a given graph F', denoted by spex(n, F'), is the maximum
spectral radius over all n-vertex F-free graphs. An F-free graph on n vertices with
maximum spectral radius is called an extremal graph with respect to spex(n, F'). Note
that p(G) > 277” for each graph G with n vertices and m edges. Thus we always have
ex(n, F) < Fspex(n, F), which sometimes presents a best upper bound on the Turdn
number of F (see [27]).

In recent years, the investigation on spex(n, F') has become very popular (see [5, 8, 9,
16, 17, 18, 19, 30, 31, 33, 35] ). In this paper, we are interested in studying spexz(n,tF)
for some given F'. Let Py, Cy, Sk, Ki denote a path, a cycle, a star and a complete graph
of order k, respectively. Up to now, spex(n,tF') and its corresponding extremal graphs
were studied for some special cases (see spex(n,tKs) [13], spex(n,tP;) [2], spex(n,tSy)
3], spex(n,tK,) [21]).

In this paper, we consider that F' is a cycle of given length. We first investigate
the case that F' is an odd cycle. Note that Nikiforov [23] determined spex(n,Cayq) for
sufficiently large n. Using Theorem 1 and Nikiforov’s result on spex(n, Capy1), we prove
the following theorem.

Theorem 2. For any two given positive integers t,{ and sufficiently large n, K; 1 +
T—t412 18 the unique extremal graph with respect to spex(n,tCopiq).

Next, we focus on an even cycle F. When ¢t = 1, it can be reduced to a classic spectral
Turdn-type problem spex(n,Cy), which was initially investigated by Nikiforov [22, 26].
Denote by S, the join of an /-clique with an independent set of size n — ¢. Furthermore,
let S:[’ , be the graph obtained from S, , by adding an edge within its independent set,
and S;: J be the graph obtained from S,, by embedding a maximum matching within
its independent set. Nikiforov [22] and Zhai et al. [34] determined the unique extremal
graph S;{, | with respect to spex(n, Cy) for odd and even n respectively. In 2010, Nikiforov
[26] gave a spectral even cycle conjecture as follows: S:{, +—1 is the unique extremal graph
with respect to spex(n,Cq) for £ > 3 and n large enough. In 2022, Cioaba, Desai and
Tait [6, 7] established a new spectral extremal method by which they completely solved
the above conjecture and a spectral Erdos-Sos conjecture which was also proposed by
Nikiforov [26]. In this paper, we develop Nikiforov’s conjecture by the following result.

THE ELECTRONIC JOURNAL OF COMBINATORICS 31(4) (2024), #P4.17 2



Theorem 3. Let t,l be given positive integers and n be sufficiently large. Then
(i) S5 3i_1 is the unique extremal graph with respect to spex(n,tCy);
(1) S;:Zt_l is the unique extremal graph with respect to spex(n,tCyy) for £ > 3.

In fact, Cioaba, Desai and Tait’s method is very powerful for spex(n,F) when
ex(n, F) = o(n%) and the numbers of local edges are O(n) in F-free graphs, more pre-
cisely, there are only O(n) edges within N;(u) as well as between Nj(u) and Ny(u) for
every vertex u, where N;(u) denotes the set of vertices at distance i from w. Unfortunately,
ex(n,tCy) = @(n%) and the numbers of local edges are O(n'*7) in tCy-free graphs with
t > 2. To this end, we prove an important structural property on the extremal graph G
with respect to spex(n,tCy), that is, G —{u} always contains exactly ¢ — 1 vertex-disjoint
2(-cycles for each u € V(G). Moreover, we show a special property on the maximum de-
gree of the extremal graph with respect to spex(n,tCy). These give two key approaches
to prove Theorem 3.

Theorems 2 and 3 also give some inspirations on studying spex(n, F') for general F'. To
be precise, if F' is non-partite with x(F') = r + 1, its spectral extremal graph maybe tend
to contain a complete r-partite graph or r-partite Turan graph as a spanning subgraph; if
F' is bipartite with ex(n, F') = o(n%), its spectral extremal graph maybe tend to contain
a complete bipartite graph K}, as a spanning subgraph.

The remainder of this paper is organized as follows. In Section 2, some preliminary
lemmas are introduced. In Section 3, we use the Erd6s-Moon theorem on ex(n,tC3) and
structural analysis to prove Theorem 1. In Section 4, we use Theorem 1 and a stability
method to show Theorem 2. In Section 5, we present the proof of Theorem 3 by a
combination of structural analysis, induction and the Cioaba-Desai-Tait method.

2 Preliminaries

Given a simple graph G, we use V(G) to denote the vertex set, F(G) the edge set, |G|
the number of vertices, e(G) the number of edges, v(G) the matching number, A(G) the
maximum degree, §(G) the minimum degree, respectively. For a vertex v € V(G), we
denote by Ng(v) its neighborhood and dg(v) its degree in G. Given two disjoint vertex
subsets S and T'. Let G[S] be the subgraph induced by S, G — S be the subgraph induced
by V(G)\ S, and G[S, T be the bipartite subgraph on the vertex set SUT which consists
of all edges with one endpoint in S and the other in 7. For short, we write e(S) = e(G[S5])
and e(S,T) = e(G[S,T]). Let K,, ., be the complete r-partite graph with classes of
sizes ni,...,n,. If 3!, n; =n and |n; —n;| < 1 for any two integers 4,5 € {1,...,r},
then K, ., is exactly the n-vertex r-partite Turdn graph 7, ,. Let F' 4+ H be the join
and F'U H be the union, of F' and H, respectively. Particularly, we denote by tF' the
disjoint union of ¢ copies of F'.

In this section, we introduce some lemmas which will be used in the proofs of Theorems
1, 2 and 3. The first one is due to Erdés [10] and Moon [20].
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Lemma 4. ([10, 20]) Let t,n be two positive integers with n > |22 |. Then

t—1 n—t+1)2J

e:v(n,t03):< 5 )+(t—1)(n—t+1)+{( 1

Furthermore, K;_1 + Ty,—t112 is the unique extremal graph with respect to ex(n,tCs).

Given two integers v and A, define f(v,A) = max{e(G) | ¥(G) < v,A(G) < A}. In
1976, Chvatal and Hanson [4] obtained the following result.

Lemma 5. ([4]) For every two integers v > 1 and A > 1, we have

F, A) = Av + PJ M%J <v(A+1).

2 S

The following spectral version of the Erdds-Stone-Simonovits stability theorem was
given by Nikiforov [24].

Theorem 6. ([24]) Let r > 2, = < ¢ < r 800D 0 < ¢ < 273724 gnd G be an
n-vertex graph. If p(G) > (1 — £ —&)n, then one of the following holds:
(i) G contains a K,1(|clnn],..., |clnn], [n'=Ve]);

(ii) G differs from T, in fewer than (e + CTIHB)n2 edges.

From Theorem 6, Desai et al. [9] obtained the following stability result. Theorem 6 and
the following lemma present an efficient approach to study spectral extremal problems.

Lemma 7. ([9]) Let F be a graph with chromatic number x(F) = r + 1. For every
e > 0, there exist 6 > 0 and ng such that if G is an F-free graph on n > ng vertices with
p(G) = (1— % —0)n, then G can be obtained from T, , by adding and deleting at most en?
edges.

The following spectral extremal result on odd cycles is due to Nikiforov [23].

Lemma 8. ([23]) Let ¢ be a given positive integer and n be large enough. Then, T, 5 is
the unique extremal graph with respect to spex(n,Copiq).

The following result is known as the Erdés-Gallai theorem.

Lemma 9. ([11]) Let n and ¢ be two integers with n > € > 2. Then ex(n, P;) < (6_22)”,

with equality if and only if n =t({ — 1) and G = tK,_;.

We note that the best current bound for exz(n, Cyy) was given by He [15], who improved
on a bound ex(n, Ca) < (80v/71og ﬁ—i—o(l))nH% of Bukh and Jiang [1] by reducing a factor
of v/5log £. However, for our purposes the dependence of the multiplicative constant on ¢
is not important. For convenience, we use the following version, which improves a known
bound of Verstraéte [32] by a factor 8 + o(1) when n > k.

Lemma 10. ([28]) For all { > 2 and n > 1, we have
ex(n, Ca) < (£ — 1)n(n? + 16).
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3 Proof of Theorem 1

In this section, we give the proof of Theorem 1. More precisely, we will extend the Turan-
type result on vertex-disjoint triangles to the disjoint union of general odd cycles. First
of all, we shall prove two structural lemmas.

Lemma 11. Let t,{,n be three positive integers with n > 8t0 + 40 + 4t — 6. Let G be a
graph on n vertices with 6(G) > [§], and S C V(G) with |S| < (t —=1)(2(+1). If G- S
contains a triangle C*, then G — S also contains a (20 + 1)-cycle.

Proof. The result holds trivially for £ = 1. Assume now that ¢ > 2. Set G' = G — S and
C* = uouowoug. Note that 6(G) > [5] and n > 8t + 4¢ + 4t — 6. Then,

5(G) > 0(G) — 18] = | 5] - = 1)@e+1) >3

Hence, there exist three vertices wuy, vy, w; such that uy € Negr(ug) \ V(C*), v1 € Ngr(vg) \
(V(C*)U{u}) and wy € Ng(wp) \ (V(C*) U{uy,v1}). Now let Hy = C*. Moreover, we
define a subgraph Hy C G’ with V(H;) = V(Hy) U {u1,v1,w;} and E(H;) = E(Hy) U
{upuy, vov1, wow1 }. If € > 3, then there exist three vertices ug, vo, ws such that uy €
NG/(ul) \ V(Hl), Vo € Ngl(Ul) \ (V(H1> U {UQ}> and wq € NG/(wl) \ (V(Hl) U {UQ,UQ}).
Repeat the above steps, we can obtain a sequence of subgraphs Hy,--- , Hy,_1 such that
V(Hl) = V(Hz_l) U {Ui, vi,wi} and

E(H;) = E(H;—1) U{ui—1u;, vio1v;, wi-w; }
for 1 <i < ¢—1. Clearly, |H;| = 3i + 3 for each i € {0,...,¢ — 1}. Then we can easily

check that ”T*?’ > |S| —|—‘Hg_1|+i. Furthermore, for each x € {us_1,v—1,we—1} C V(Hyp_1)
we can see that

|Ner(2) \V(He—1)| = de(x) — (|Hea| — 1)
> 6(G") —|Heq|+1
n—1
> —|S] = [He—a| +1

S (r =151 1) 42 (2 8] ).

Thus we have
3|Ngi () \ V(Hy-1)| > n — [S] — [Hya| = [V(G)\ V(He-1)l-

By the pigeonhole principle, there exists some y € V(G')\ V(H,—1) such that y is adjacent
to at least two vertices, say vy_; and wy_1, of {us_1,v,_1,we_1}. Hence, the subgraph
G'[{y,vo, ..., ve_1,Wo, ..., w,_1}] contains a cycle of length 20+ 1, as vowy € E(Hy). The
result follows. O
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Lemma 12. Lett, k,n be three integers with t > > |22 andn > b’fﬁ” +(k+1).
2
If G is a graph of order n with e(G) > ex(n, th) and 6(G) < [ 5] —1, then there exists an

induced subgraph G' C G onn' > k vertices with e(G') > ex(n',tC3) +1 and 6(G') > | % |.

Proof. By Lemma 4, for any integer n* > ng’;_q we have
fit—1
ex(n*,tC3) — ex(n* — 1,tC3) = {%J (1)
Since 0(G) < [5] — 1, there is a vertex up € V(G) such that dg(ug) < [2] — 1 = [%2].
Set Gy = G and G = — {up}. Combining e(Ggy) = ex(n,tCs), dg,(ug) < L"T_ﬂ and
(1) gives
t+1
e(Gh) = e(Go) = gy (o) > ea(n —1,1Cs) + | == |, 2)

as =] — |252] > [, Now, if 6(Gy) > [“5], then we define G’ = Gy and we are
done. Otherwise, there is a vertex u; € V(Gy) such that dg, (u;) < |%52]. Then, we set
Gy = G1 — {u1}. By (1) and (2), we obtain

t+1
e(Gs) = e(Gh) — dg, (u)) > ex(n — 2,tC5) + 2{ . J
as |MH=2] — %3] > [21]. Repeating the above steps, we obtain either a G; for some

1 < n—k—1such that it is a desired induced subgraph or a sequence of induced subgraphs
Go, Gy, -+ ,Gp_y such that |G;| =n — i and

t+1
e(Go) > ex(n — i,1Cs) +i ; J (3)
for1 <i<n-—k. Sincen > L(T‘LJJ (k + 1), we have
t+1 (k —t)? k—t+1 (k—t+1)?
_ > S SO
(n kﬂ 2 J> i 7 2 { 4 J‘ ()
From Lemma 4 we know that
t—1 k—t+1)°
eﬂhﬂ%yz( )—%@—1ﬂk—t+1%&“———i—LJ
2 4
Combining the above equality with (3) and (4), we obtain
t+1
e(Gry) > ek, tCs)+ (n— k) L%J
t—1 kE—t+1 k
t—1)(k—t+1 =
> (5 ) e+ () - ()
contradicting |G,,_r| = k. Hence, G; is a desired induced subgraph for some integer
1 <n—k—1. O
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Having Lemmas 11 and 12, we are now ready to give the proof of Theorem 1. Recall
that t > 2,4 >2andn > {WJ + 8t¢ + 4t + 4¢ — 5. For convenience, we denote
2
G =K1+ Tt

Proof. By Lemma 4, we have ¢(G*) = ex(n,tC3) for t > 2 and n > [152]. Moreover,
we can easily check that G* contains at most ¢ — 1 vertex-disjoint copies of Cysy; for
each positive integer ¢, as every odd cycle in G* must occupy at least one vertex in the
(t — 1)-clique. Let G be an extremal graph with respect to ex(n,tCs11). Then

e(G) = ex(n,tCyy1) = e(G*) = ex(n, tCs).

Set k = 8t/ + 40 + 4t — 6. Since ¢ > 2, we have k > ngg—_gj. Suppose now that
§(G) < | 5] — 1. Then by Lemma 12, there exists an induced subgraph G’ C G on n’ > k
vertices such that e(G") > ex(n’,tCs) + 1 and 6(G’) > |%]. Furthermore, by Lemma 4,
G’ contains t vertex-disjoint triangles C*',C?, ..., C".

Let S; = UL, V(C"). Then |S;] = 3(t —1) < (t —1)(2¢ + 1), and G' — S; contains
a triangle C*'. By Lemma 11, G’ — S; also contains a (2¢ + 1)-cycle C'". Let Sy =
V(CY) U (U_V(CY). Then |Sy| = (20 4+ 1) +3(t —2) < (t —1)(20 + 1), and G’ — S,
contains a triangle C2. Again by Lemma 11, G’ — S, also contains a (2 + 1)-cycle C?.

Repeating the above steps, we obtain a sequence of subsets Sy, --- ,S; such that

;= (U2 V(CT)) U (Ui V(CY)

and G’ — S; contains a (2¢ + 1)-cycle C7" for 2 < j < t. Hence, G’ contains t vertex-
disjoint (20+1)-cycles C*", ..., C*", contradicting the fact that G is tCoy, 1-free. Therefore,
5(G) > 4.

Recall that e(G) > ex(n,tC3). Then by Lemma 4, if G % G*, then G contains ¢
vertex-disjoint triangles. Furthermore, by Lemma 11 and a similar way as above to G’,
we can find t vertex-disjoint (2¢ + 1)-cycles in G, a contradiction. Therefore, G = G*.
This completes the proof of Theorem 1. O

4 Proof of Theorem 2

In this section, we give the proof of Theorem 2. By Lemma 8, it holds directly for
t = 1. In the following, assume that ¢ > 2 and G is an extremal graph with respect to
spex(n,tCapy1). We first prove that G is connected. Suppose to the contrary, then we can
select two distinct components G and G of G with p(Gy) = p(G). Let G’ be a graph
obtained from G by adding a new edge between G; and G5. Then G’ is tCoy1-free and
p(G") > p(G), which contradicts the choice of G. By the Perron-Frobenius theorem, there
exists a positive unit eigenvector X = (z1,...,2,)T corresponding to p(G). Assume that
u* € V(G) with z,« = max{z; | i € V(G)}. We also choose a positive constant 1 < =,
which will be frequently used in the proof. Let G* = K;_1 + T,,_¢41,2, where G* =T, 5 for
t = 1. We shall prove G = G* for n sufficiently large.
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Lemma 13. p(G) > 5+ (t —1) — %
Proof. By Theorem 1, G* is an extremal graph with respect to ex(n,tCypyq). Since

e(Thty12) = [(n_tfl)zj > (n_tzl)Q_l, we have

1 t—1
€(G*) = e(Kt—l) + e(Tn—t-i-l,?) + (t — 1)(n —t+ 1) 2 Z 2 + T — Z
Using the Rayleigh quotient gives
1TAG)1  2e(G*) _n t?
as desired. 0

Lemma 14. For n sufficiently large, e(G) > (i — %772)712. Furthermore, G admits a
partition V(G) = Vi U Vs such that e(Vi,Va) is mazimal, e(Vy) + e(Va) < 3n°n? and
Vil = 2| < mn fori € {1,2}.

Proof. Note that x(tCy11) = 3 and G is tCypyq-free. Moreover, by Lemma 13, p(G) >
54+ (t—1) - % Let € be a positive constant with e < in*. Then by Lemma 7,
e(@) = in® — in*n?, and there exists a bipartition V(G) = Uy UU, such that | 2] < |U;| <
[Us| < [2] and e(Ur) + e(Uz) < $n*n®. We now select a new bipartition V(G) = Vi UV,
such that e(V4,V5) is maximal. Then e(V;) + e(V5) is minimal, and

e(Vi) +e(Va) < e(Uy) + e(Us) < 177277,2.

2
On the other hand, assume that |V;| = § — a, then V3| = § + a. Thus,
1 1
6(G) < IVAIIVa] + (Vi) + (V3) < Sn® a4 Syt
Combining e(G) > in® — 3n°n? gives a*> < n*n?, and so |a| < nn. O

In the following, we shall define two vertex subsets U and W of G.
Lemma 15. Let U = {v € V(G) | da(v) < (5 — 4n)n}. Then we have |U| < nn.

Proof. Suppose to the contrary that |U| > nn, then there exists U C U with |U’| = [nn].
Moreover, by Lemma 14, we have e(G) > (1 — +n*)n?. Now set n’ = |G —U’| = n— [nn].
Then n’ — 1 < (1 —n)n. Thus,

e(G-U") = e(@)— ) da(v)

velU’
1 2 1
> ()G
1
= Z(1—=2n+ 14n*)n?
(1= 20+ dr)n
1
> Z(n'—1+t)2
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for sufficiently large n. We can further check that i(n’ +t—1) > e(Ki1 + T—t112)-
Hence, e(G —U’) > e(K;—1 + Tyv—t412). By Theorem 1, G — U’ contains ¢ vertex-disjoint
(2¢ + 1)-cycles, contradicting the fact that G is tCyyy-free. O

Lemma 16. Let W = Wy U Wy, where W;

= {v € Vi | dy,(v) = 2nn} and dy,(v) =
|Ne(v) N V| fori € {1,2}. Then we have |W| <

Proof. For i € {1,2},
(Vi) =D du(v) = Y d(v) = Wi - 2im.
veV; veW;
Combining Lemma 14, we have

1
S 2 e(Vi) +e(Va) = ([Wh] + [Wal)nn = [Wnn.

Therefore, [W| < 3nn. O

In the following three lemmas, we focus on constructing (2¢ 4 1)-cycles in distinct
induced subgraphs of the spectral extremal graph G.

Lemma 17. For arbitrary R C V(G) with |R| < t(20 + 1), if there exists an edge within
Vi\(UUW UR) for some i€ {1,2}, then G — (UUW U R) contains a (2¢ + 1)-cycle.

Proof. Let V' = V{ UVy, where V/ =V;\ (UUW UR) for i € {1,2}. Moreover, we may
assume that i € {1,2} \ {i}. We first claim that for each vertex u € V/,

[N ()] > [Nz (w)] > £ o)

where Ny/(u) = Ng(u) N'V’. Since u ¢ U U W, we know that dy,(u) < 2nn and dg(u) >
(3 — 4n)n. Recall that V; UV} is a bipartition of V(G). Thus dy.(u) = da(u) — dy,(u) >
(% — 6n)n. Combining Lemmas 15 and 16 gives

1 3 2
[Nz (@)] > [N ()] = (U] + W]+ |RI) > (5 = 6n)n = S — t(2¢ + 1) > =,
as the constant 7 < 7—15 and n is sufficiently large. Thus, (5) follows.

Now let ugug be an arbitrary edge within V. From (5) we know that both | Ny (ug)| >
2n and |Ny:(vg)| > 2n. Moreover, by Lemma 14, V| < |V;] < § +nn. Thus,

3
|Nvl’u,g)valU0| |NV/’U,()‘+|NVlU0|—‘V|>—’I’L—’I’]TL>0

and hence there exists a vertex wo € Nyz(ug) N Nyz(vg). Since wg € V, it follows from
(5) that [Ny (wp)| > [Ny (u)| > 2n.
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Let Hy = G[{ug, vo, wo}]. Then Hy = C5 and Hy C G—(UUWUR). If ¢ = 1, then Hy is
a desired (20+1)-cycle. Assume now that £ > 2. Since [Ny (u)| > 2n for each u € V(Hy),
there exist uy, v, w; € V' such that u; € Ny (ug) \ V(Hp), v1 € Ny (vg) \ (V(Ho) U{u1})
and w; € Ny (wg) \ (V(Hp) U {us,v1}). Then, we define a subgraph H; C G with
V(Hy) = V(Hy) U {uy, vy, w1} and E(H,) = E(Hp) U {uguy, vovy, wowy }. If £ > 3, then
there exist wug,ve,ws such that us € Nyi(uy) \ V(Hy), va € Nyi(vy) \ (V(Hy) U {us})
and wy € Ny (wy) \ (V(H;p) U {ug,v2}). Repeating the above steps, we obtain a sequence
of subgraphs Hy, Hy,--- , H;—; such that V(H;) = V(H;_1) U {u;,v;,w;} and E(H;) =
E(Hj_l) U {uj_luj,vj_lvj,wj_le} for 1 < j < 0 —1. Then, |Hg_1| = 3¢ and Hg_l Q
G—-—(UUWUR). Set V" = V'\ V(H,_). For each u € {us_1,vp_1,we_1}, we have
’NV//(U)‘ > |NV/(U)’ — |Hg_1‘ +1> %n — 30+ 1, and thus

[Ny (utem)| + [Ny wes)| + [Ny ()] > n > [V

for n sufficiently large. This implies that there exists w € V" such that w is adjacent to
at least two vertices, say uy_1 and vy_q, of {us_1,v_1,we_1}. Therefore, G — (UUW UR)
contains a (2¢ 4 1)-cycle ug . .. ug_1wvp_q . .. voug. The proof is completed. d

Lemma 18. For arbitrary R C V(G) with |R| < t(2¢ + 1), if there exists a vertex
up € W\ U, then G — (UUW UR)\ {uo}) contains a (20 + 1)-cycle.

Proof. Since V(G) = V4 U Va, we may assume without loss of generality that uy € V3.
Then by the definitions of U and W, we have

1
dg(ug) > (5 - 477)71 and  dy, (ug) = 2nn.
Moreover, by Lemmas 15 and 16, |U| < nn and [W| < inn. Thus,
1
| Nvivwowu ()| = dvi (uo) = (IU]+ W+ [R|) > gnn — #(20+1) > 0.

Then, there exists a vertex vy in Ny, (ug) \ (U U W U R). Again by the definitions of U
and W, we can see that dg(ve) > (3 — 4n)n and dy, (vo) < 2nn. It follows that

v, (v0) = der(v0) — dys (v0) > (% ~6n)n. (6)

Recall that V(G) = V;UV4 is a bipartition of V' (G) such that e(V}, V3) is maximal. Hence,
dy; (ug) < 3de(ug). Since da(ug) > (5 — 4n)n, we get that

v, (t0) = de (o) — dy (ug) > %dg(ug) . (i ~29)n. (7)

Furthermore, Lemma 14 gives |V5| < § + nn. Combining with (6) and (7), we obtain

1
[Ny (1) 1 N (w0)] 2 [Nvg (o) + | Vi ()| = [Val > (5 = 9m) .
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Note that n < % and n is sufficiently large. It follows that

1
[ (N 000) 1 Ny ) \ (U UW U R)| > (5 = 9n)n = S — 1(20 1) > 0.
Hence, there exists wo € (Ny,(uo) N Ny, (v9)) \ (UUW U R). Let Hy = G[{uo, vy, wo}].
Then Hy = C3 and Hy C G — (UUW UR)\{uo}). For £ =1, Hy is a (24 1)-cycle. For
¢ > 2, using the same method as in the proof of Lemma 17, we can find a (2¢ + 1)-cycle
in G— (UUWUR)\ {up}). O

Lemma 19. Letv =Y., v(GIV;\ (UUW)]). Thenv < t—1. Moreover, G—(UUW)
contains at least v vertex-disjoint (2¢ + 1)-cycles.

Proof. The case v = 0 is trivial. Now assume that v > 1, and let uqus, ..., us,_1us, be v
independent edges in G[V; \ (UU W) UG[V, \ (UUW)]. Then, we set Ry = {u; | j =
1,2,...,2A} and Ry = Ry \ {u1,u2}, where A = min{v,t}. Since ujuy is an edge within
Vi\ (UUW U Ry) for some i € {1,2}, Lemma 17 indicates that G — (U U W U Ry)
contains a (20 + 1)-cycle C*. Let Ry = (R; \ {us,us}) UV(C'). Again by Lemma 17,
G — (UUW U R,) contains a (2¢+1)-cycle C?, as uguy is an edge within V; \ (UUW U R,)
for some i € {1,2}.

Repeating the above steps, we obtain a sequence of vertex subsets Ri,---, Ry such
that R; = (Rj_1\ {ugj_1,uz;}) U (Ui} V(C*)) and G — (UUW UR;) contains a (20 +1)-
cycle CY for each j € {2,...,A}. Clearly, |R;| < (A—1)(20+1) for 1 < j < \; moreover,
Ct, 02, ..., C* are vertex-disjoint cycles in G — (U UW). Since G is tCy-free, we have
A < t—1. Combining A\ = min{v, ¢} gives v = A < t — 1, and thus C*,C? ..., C" are
vertex-disjoint (2¢ + 1)-cycles in G — (U U W). O

In the following two lemmas, we shall give two local structural properties of G.
Lemma 20. Fori € {1,2}, we have A(G[V; \ (UUW)]) < ¢(2¢+ 1).

Proof. Our proof is by contradiction. Without loss of generality, suppose that there exists
a vertex ug € Vi \ (U U W) such that dy,\wuw)(uo) = t(2¢ 4 1). Since ug ¢ W, we get
dy, (ug) < 2nn by the definition of W. On the other hand, by Lemma 14, |Vi| > § — nn,
and so

1 5
VA (UUW)| = W] = U] = W] > (5 = 5n)n.

Hence, [Vi \ (U UW)| > dy,(ug), as n < =. This implies that there exist vertices in
Vi \ (U U W) which are not adjacent to ug. Let G’ be the graph obtained from G by
adding all possible edges from wuy to Vi \ (U U W). Then p(G') > p(G). Since G is
extremal with respect to spex(n,tCsy1), G' must contain a subgraph H isomorphic to
tCo11. From the construction of G’, we can further see that uy € V(C') for some (2¢+ 1)-
cycle C'in H. Set H' = H — V(C). Then H' C (. Since dy,\wuw)(uo) = t(2¢ + 1) while
|H'| = (t —1)(2¢0+ 1), there exists a vertex vy with vy € Ny;\wuw)(uo) and vy ¢ V(H’) in
G.
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Now setting R = V(H’) in Lemma 17, and noticing that wuyvy is an edge within
Vi\ (UUW U R), we obtain that G — (U UW U R) contains a (2¢ 4+ 1)-cycle C’. Clearly,
V(C")NV(H") = @. Therefore, C" U H' is a copy of tCy11 in G, which contradicts the
fact that G is tCy -free. ]

Lemma 21. Fori € {1,2}, G[V; \ (UUW)] contains an independent set I; with |I;| >
Vi\ (UUW)| —2(t —1)t(20 + 1).

Proof. Assume that v; = v(G[V; \ (UUW)]) for i € {1,2}. If v; =0, then V; \ (UUW)
is a desired independent set. Now assume that v; > 1, and let ujus, ..., u2,_1u9, be v;
independent edges in G[V; \ (U U W)]. Let

L= (Vi\ (UUW))\ (U Ny wow) (1))

Then, every vertex in I; is not adjacent to any vertex in {uy,us, ..., us, }. Now, if G[I;]
contains an edge, then v(G[V; \ (UUW)]) > v; + 1, a contradiction. Therefore, J; is an
independent set.

From Lemma 20 we know that A(G[V;\(UUW)]) < ¢(2¢+1). Moreover, v; < v < t—1
by Lemma 19. Thus, we can see that

Vi\ (UUW)| = L] = | U2, Nypwow) ()] < 20A(GV; \ (UUW)]) < 2(t — 1)t(20+1).
The result follows. U

In the following three lemmas, we will give exact characterizations of U and . Recall
that X = (z1,...,2,)7 is a positive unit eigenvector of G, and z,~ = max{z; | i €
V(G)}. Since [W| < snyn < n by Lemma 16, we may choose a vertex v* such that
Ty = max{z, | v € V(G)\ W}. We will see that v* ¢ U. Then

= D mt Y w <D mt Yz < Wzt (n— W)z

vENw (u*) VENG_w (u*) veW veV(G)\W
Moreover, p(G) > 4 by Lemma 13. It follows that

p(G) W] plG) = W]

1

Loy* 2

Since n < we have z,+ > %xu*. On the other hand,

75’
P = Y et > 2y < W + da(v*)ae.
vENwy (v*) vENG_w (v*)

n

Combining with z,+ > 2z, p(G) > % and [W| < 3nn, we obtain

1 5

> p(@)~ oIW| > (5~ 2n)n.

Loy

dg(v*) = p(G) —

Loy*
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Recall that U = {v € V(G) | da(v) < (3 —4n)n}. Then v* ¢ U, and so v* € V(G)\ (U U
Assume now that v* € Vi \ (U U W) for some i* € {1,2}, and set i* € {1,2} \ {i*}.
Then by Lemma 20, |Ny,. (v*) \ (UUW)| < t(2(+ 1). Thus,

p(G)ry = Z Ty + Z Ty + Z Ty

vENyuw (v*) vENy,, (vF)\(UUW) vENy (v)\(UUW)
< (|Wlays + |Ulzy) + (20 + 1)z + > Tyt Y @y
veVE\(UUWUIz) vElz
< (IWlzes + |Ulz) + (2t — DERE+ Ve + Y 1,
vel+

where I is an independent set of G[Vz \ (U U W)] such that |Vz \ (UUW U Iz)| <
2(t — 1)t(20 + 1) (see Lemma 21). Subsequently,

D x> (p(G) = |U| = (2t = DE(20 + 1)) e — (W] (9)

UEI{;
Lemma 22. We have U = &.

Proof. Suppose to the contrary that there exists ug € U. Let G’ be the graph obtained
from G by deleting edges incident to 4y and joining all possible edges from Iz to uy.

We claim that G’ is tCyyq-free. Otherwise, G’ contains a subgraph H isomorphic to
tCypy1. From the construction of G’; we can see that H must contain a (2¢ + 1)-cycle C’
with ug € V(C"). Set H' = H — V(C"). Then H' C G. Assume that N (ug) = {uq, us},
then uy, us € I by the definition of G’. Since Iz C Vi \ (UUW), we have uq,uy ¢ UUW.
By the definitions of U and W, we know that dg(u;) > (3 — 4n)n and dy..(u;) < 2nn for
j € {1,2}. Hence, [Ny, (u1)| = dg(u1) — dv(w1) > (3 — 6n)n. Similarly, | Ny, (ug)| >
< 5 +nn by Lemma 14. It follows that

(% — 677)n. Moreover, |V;«

1
> <2 1377>n.
Now, note that [H| = ¢(2¢ 4+ 1). Then |Ny. (u1) N Ny. (ug)| > |H|, and hence we can
find a vertex u € (Ny,. (u1) N Ny,. (u2)) \ V/(H). This implies that G — V(H’) contains a
(2¢ + 1)-cycle C”, which is obtained from C” by replacing {uouy, ugus} with {uuy, uus}.
Hence, C"UH' is a copy of tCy,1 in G, a contradiction. Therefore, the above claim holds.

Now, dg(uo) < (3 — 4n)n by the definition of U. Recall that p(G) > % and |U| < nn.
Then

|Nv,.. (u1) O Ny,. (u2)| = [Ny, (u1)] + [Ny, (u2)| = [Vis

p(G) = da(uo) — U] > 3nn. (10)

Moreover,

Z Ty = Z Ty + Z Ty < W ay + de(ug) - (11)

vENG (uo) vENw (up) vENG_w (uo)
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Recall that z,« > 2x,- and |W| < 3nn. Combining (9), (10) and (11), we get that

Z Toy— Z Ty = Z Ty — (|W]a;u + dg(u0)$v*)

UGIZ‘; vENG(uo) UEIZ’,‘;

> (p(G)—da(uo)—|U|— (2t — 1)t(20 + 1)) 2y —2|W |2»

2
> (3nn— (2t — 1)t(20+ 1))5xu* — NNT

> 1—077nxu*

for n sufficiently large. Thus,

p(G) = p(G) > XT(A(G") — A(G)) X = 2%( DY :c) >0,

’UEI{; vENG(uo)
contradicting the fact that G is extremal with respect to spex(n,tCopiq). O
Lemma 23. For each v € V(G), we have x, > 21,

Proof. Recall that p(G) > % and |[W| < 3nn. Then [W| < np(G). Moreover, U = & by
Lemma 22. Combining (9), we obtain that

Z Ty > (p(G) = (2t — 1)t(20 + 1)) 2yy — 1p(G) .

UEIF

From (8) we know that z,« > %(1 — 77) Zy+. Thus, for n sufficiently large,

Z Ty > (% — 2n)p(G)xu*.

UEIZ’.;;

Now, suppose to the contrary that there exists ug € V(G) such that z,, < %xu Let
G’ be the graph obtained from G by deleting edges incident to ug and joining all edges
from Iz to uy. By a similar discussion as in the proof of Lemma 22, we claim that G’ is
tCop,1-free. However,

Z Ty— Z Ty = Z Ty — p<G)xuo > (% —2n - g) p(G)ZEu* > 0,

’UGI;; vENG(uo) UEI{;

which implies that

p(G) = p(G) > XT(A(G") — A(G)) X = 2%( DY x) >0,

velz vENG(uo)

contradicting the fact that G is extremal with respect to spex(n,tCopiq). O

THE ELECTRONIC JOURNAL OF COMBINATORICS 31(4) (2024), #P4.17 14



Lemma 24. [W|=t—1 and v = 0.

Proof. Note that U = @. By Lemma 19, v = v(UL,G[V; \ W]) <t —1; and if v > 1,
then G — W contains v vertex-disjoint (2¢ + 1)-cycles C',C?, ..., C".

We first claim that |W| < t—1—v. Otherwise, |W| > t—v. Let Ry = {uy,ug,...,u—,}
be a subset of W. Furthermore, we define Ry = Ry \ {u1} if v = 0; and Ry = (Ro \ {u1})U
(UL, V(C") if v > 1. Then |Ry| < (t —1)(2¢+1). By Lemma 18, G — (W U Ry) \ {u1})
contains a (2¢+ 1)-cycle C**!, where V(C*"*) N Ry C {u1}. If t — v > 2, then we further
define Ry = (R; \ {uz}) UV(C" ™). Clearly, |Ro| < (t — 1)(2¢ + 1). Again by Lemma
18, G — ((W U Ry) \ {u2}) contains a (2¢ + 1)-cycle C**2, where V(C**?) N Ry C {uo}.
Repeating the above steps, we obtain a sequence of vertex subsets Ry, Rs, ..., R;_, with
Rj = (Rj1 \ {u;}) U (UZL V(C"™)) and |R;| < (t — 1)(2¢ + 1) such that G — (WU
R;) \ {u;}) contains a (2¢ + 1)-cycle C**7 for each j € {1,...,¢t — v}. Furthermore,
V(C")N Ry C {u;} for 1 < j <t —v. Thus we can observe that C*,C?,... C! are
vertex-disjoint, which contradicts the fact that G is tCyy;-free.

Now define H = U7 | G[V; \ W]. Then v(H) = v. We further claim that

e(H) < (t—1)(2t0 +t +1). (12)

The case v = 0 is trivial. Assume that v > 1. By Lemma 20, A(H) < t(2¢ + 1). Recall
that f(v,A) = max{e(G) | ¥(G) < v,A(G) < A}, and by Lemma 5 f(v,A) < v(A+1).
Thus,

e(H)< f(v(H),AH)) < f(r,t(20+ 1)) < v - (2t + T+ 1).
Note that v < t — 1. Therefore, (12) holds.

Note that |W| < t—1—v < t—1. It suffices to prove [W| = t—1, as it implies that v = 0.
Suppose to the contrary that |W| < t—2. Take S C Vi\W with |S| = t—1—|W|, and let G’
be the graph obtained from G by deleting all edges in F(H) and adding all possible edges
from S to Vi \ (W US). Clearly, G’ is a spanning subgraph of Kwus) + K\ (wus)|,jve\w|-
Since [W U S| =t — 1, G’ contains at most ¢t — 1 vertex-disjoint odd cycles, and so G’ is
tCopy-free.

Recall that |V;| > $n—nn, and by Lemma 23, z,, > 2z, for each v € V(G). Combining
(12), we have

p(G") —p(G) > XT(AG) - AG)X > > 2w, - Y 2w,
ueSweVi\(WUS) weE(H)
> |9 (g —nn—t+1) %xi —(t — 1)(2t0+t+1)222.
> 0,
contradicting the fact that G is an extremal graph with respect to spex(n, tCapyq). O

In the following, we complete the proof of Theorem 2.

Proof. Recall that G* = K;_1 + T,,_4+12 and we shall prove G = G*. We first look for a
(t — 1)-clique in which each vertex is adjacent to all other vertices of G. By Lemma 24,
we know that |[W| =t — 1. It suffices to show that dg(u) =n — 1 for each u € W.
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Suppose to the contrary that there exists a vertex v € W with d(u) < n — 1. Then
we can select a non-neighbor v of v in G. Let G’ = G + {uv}. Then p(G’) > p(G). Since
G is extremal with respect to spex(n,tCs1), G' contains a subgraph H isomorphic to
tCo. 1, where uv € E(H). More precisely, H contains a (2¢+ 1)-cycle C' with uv € V(C).
Set H' = H—V/(C). Then H' C G, and by Lemma 18, G — (W UV (H)) \ {u}) contains
a (20 + 1)-cycle C". Since u ¢ V(H'), H U (" is a copy of tCy; in G, a contradiction.
Therefore, dg(u) =n — 1 for each u € W.

Let |V; \ W| = n; for i € {1,2}. Assume without loss of generality that n; > ny. By
Lemma 24, v = v(UL,G[V; \ W]) = 0, and thus G — W C K, ,,. Since G is extremal,
we have G — W = K, ,,. To show G = G, it suffices to show G — W = T, 1, or
equivalently, n; — ny < 1.

Suppose to the contrary that n; > ns + 2. By symmetry, we may assume x, = x; for
each uw € V;\ W and i € {1,2}. Moreover, let z,, = z3 for each u € W. Thus,

p(G)xy = nows + (t — 1)z, p(G)xy = nixy + (¢t — 1)xs,
and p(G)xs = nyxy + naxs + (t — 2)xs. It follows that

p(G) +1
p(G) +m

p(G)+1

oG+ (13)

= r3 and 9 =

Select ug € V3 \ W. Let G” be the graph obtained from G by deleting edges from wug to
Vo \ W and adding all edges from ug to V3 \ (W U {up}). Then G" = K;_1 + Ky, —1.ny+1,
and thus G” is still tCy,1-free. Moreover,

p(G") = p(G) > Z 204y Ty — Z 2Ly, Ty = 2x1((n1 — 1)y — n2x2).

veVI\(WU{uo}) veVL\W
In view of (13), we have

(p(G) +1) (. =1z = Dp(G) — 1)
(p(G) +n1)(p(G) +12)

since n; = ny + 2 and p(G) > § > ny. It follows that p(G") > p(G), a contradiction.

Therefore, ny —ng <1 and G = K;_1 + 1T,,_44+1,2. This completes the proof. O

(ng — 1)y — noxy = x3 >0,

5 Proof of Theorem 3

In this section, we will often assume that n is sufficiently large without saying so explicitly.
We first give the lower and upper bounds of p(S;,) and p(S,7).

Lemma 25. For fixed ¢ and sufficiently large n, we have

| B e |
(Z)p(S:j) p(S;d?e 1+4/(L ;) +40( £)>\/%Zf£>2;

>
(it) p(S; ) <A/ (C+ ) if € > 1.
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Proof. (i) From [26, p. 2246] we obtain p(S, ) = Elty (67;)%45(”%). Since S, C S, C
Sy, the inequality holds obviously for £ > 2.

(ii) By the Perron-Frobenius theorem, there exists a positive unit eigenvector X =
(x1,...,7,)T corresponding to p, where p = p(S,7). Let W be the set of dominating
vertices in S/, and W = V(S )\W. Choose ug € W and vy € W with 2, = max,cw o
and z,, = max, . Z,. Note that |W| = ¢. Then, pz,, < ({ — 1)zy, + (n — {)x,, and
Py, < Ly, + x,,. Combining these two inequalities, we obtain

(p—C+1)(p—1)< (n—0)L.

If p> \/((+3)n, then (p — L+ 1)(p — 1) > (n — £)¢, a contradiction. Thus, p <

\/(€-|—4—1£)n. O

Recall that ¢ > 2 in Theorem 3. We shall proceed the proof by induction on ¢. When
t = 1, the result holds immediately by [6, 22, 34]. In the following, we assume that ¢ > 2.

For convenience, set A = ¢t — 1, then A > 2¢ — 1. Let G be an extremal graph with
respect to spex(n,tCy). Clearly, G is connected. By the Perron-Frobenius theorem,
there exists a positive unit eigenvector X = (z1,...,z,)? corresponding to p(G). Choose
u* € V(G) with z,» = max{xz; | i = 1,2,...,n}. For a vertex u and a positive integer 1,
let NV;(u) denote the set of vertices at distance ¢ from v in G. By the induction hypothesis,
we obtain that for n’ sufficiently large,

/ P S;+_ if ¢ = 2,
spea(n', (£ = 1)Car) = { pESﬁ’i 3 it 0> 3. (14)

We then show that for each u € V(G), G — {u} contains ¢t — 1 vertex-disjoint copies of
Cy through Lemmas 26 and 27. This will be used to bound p(G) in Lemma 29, to bound
0V (G) d%(v) in Lemma 30 and to prove a key property in Lemma 31.

Lemma 26. Let H be a graph on n — 1 vertices. Then p(H) > p(K; + H) — p(Knl—_J:H).

Proof. Let V(H)U{u} be the vertex set of K;+ H. Set p:= p(K;+ H) and let Y = (y,,)
be an eigenvector to p. Using the Rayleigh quotient gives

2 ZuveE(Kl—',-H) YulYo 2 ZuveE(H) Yulo + 2 ZueV(H) Yu

= (15)
D eV (ki +H) Yn Yo+ D uevam Ya

p:

. — _ 2
Since Bya = 3 v () Yur We have ya 3o, v Yu = Y2 = 3 ( ey Yu) - Thus by (15),
we obtain

2 Vo =P Y, Ve—DYe=D Y yi—i( > yu)2-
(1) y P

wekl ueV(H) ueV(H ueV (H)
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By the Cauchy-Schwarz inequality we have (ZueV(H) yu)2 < (=12 cvm y: Tt
follows that

2 ZuveE yuyv _ n—1

p(H) > ZP— =
Zuev(H) ya P

as desired. O

)

Lemma 27. For every vertex u € V(G), G —{u} contains t — 1 vertez-disjoint 2(-cycles.

Proof. Suppose to the contrary that there exists a vertex u such that G—{u} is (t—1)Cq-
free. Then p(G — {u}) < spex(n — 1, (t — 1)Cy). It follows from (14) that

p(G —{u}) < p(SH, 1), (16)

as P(Sn 1A— ) < P(S:—Jﬁ,,\—e)-
Recall that ¢,/ > 2 and A > 2/ — 1 > 3. We can easily check that V=

\/A = €+ 15~ By Lemma 25 (ii), we further have

(A LV C DRV LR

On the one hand, u is a dominating vertex of G. Otherwise, there exists a vertex v
not adjacent to u. Let G* be the graph obtained from G by adding the edge uv. Since
G* —{u} = G — {u}, G* —{u} is also (t — 1)Cy-free, and thus G* is tCy-free. However,
G C G* indicates that p(G) < p(G*), contradicting the fact that G is extremal with
respect to spex(n, tCyy).

On the other hand, notice that Sy, is tCy-free, then p(G) = p(S; ), and so p(G) >
v An by Lemma 25 (i). Since u is a dominating vertex of G, one can see G' 2 K, +(G—{u}).
Combining p(G) > vAn and (17) with Lemma 26, we have

3|
v

PG = (1)) > 9(6) = s > V= = > (S0,

which contradicts (16). Therefore, the lemma holds.

Lemma 28. For every vertexu € V(G) and every subset Wy C V(G), we have e(Ny(u)) <
(2X = $)INi(u)] and e(N1(u), Na(u) N Wo) < (2A = 3)(IN1(u)] + [N2(u) N Wol).

Proof. By Lemma 27, G — {u} contains t — 1 vertex-disjoint 2¢-cycles, say C*,... C*1.
Let V/ = UZ]V(CY) and G = G — V' Then G’ is Cyp-free. Set Nj(u) = N;(u) \ V' for
i € {1,2}. Clearly, G'[N{(u)] is Ps_1-free. By Lemma 9, e(N{(u)) < (¢ — 2)|N{(u)| <
(0 — 2)|Ni(u)| and so

e(Ni(w) < e(Ni(w)) + M) VN ()] < (£ 5 + 200~ 1) [Na(w)]

< (2= )M,
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as ¢ > 2 and A = (t—1. Clearly, the bipartite subgraph G'[N7(u), Nj(u) W] is Pay1-free
(otherwise, we can find a Py, with both endpoints in V] (u) and thus a Cy in G’). By
Lemma 9, e(Ny(u), Nj(u) N Wo) < (€ — 3)(|N1(w)] + [ No(u) N Wy|). Since Ny(u) \ Ni(u)
and (No(u) N Wy) \ (Ni(u) N Wy) are two subsets of V', we have

e(N1(u), Na(u) " Wo) - < e(Nj(w), Ny(u) N Wa) + [V'[(IN1(u)] + [Na(u) 0 W)
< (-3 L T 1)) (1N ()] + [ Na(u) 1 We))
< (2/\——>(|N1( )| + | Na(u) N W),
completing the proof. 0

Lemma 29. vAn < p(G) < V6An.

Proof. Recall that S;; ) 18 tOy-free and G is a spectral extremal graph. Then p(G) >
p(Sy,), and the lower bound follows from Lemma 25 (i). We then prove the upper
bound. Note that

= > > @y < Ni(u)|aus + 2e(N1(u))zor + (N (1), Na(u*)) e

uw€N7 (u*) weN7 (u)
Setting u = u* and Wy = Na(u*) in Lemma 28, we obtain p*(G) < (6A — 2)n < 6An. O

In [25], Nikiforov studied an extremal problem on degree power, which is an extension
of Turdn’s problem. Nikiforov showed that 3=,y gy dir(u) < 2(¢—1)e(H) + (¢ —1)(|H| -
1)|H| for every Cyp-free graph H. Inspired by this result, we obtain the following one on
tCy-free graphs.

Lemma 30. We have e(G) < (n'*t and 3 d%,(v) < 2\n?.

Proof. From the above definition of G’, we know that |G'| = n — 2{(t — 1) and G’ is
Cye-free. By Lemma 10, we have

e(G') < ex(n — 26(t — 1), Cy) < (£ —1)(n — 20(t — 1))**7 +16(¢ — 1)n.

veV (G

It follows that
e(G) < e(G) + Y da(v) < e(G) + 20(t — 1)n < (n'F7. (18)

veV’

Hence, the first statement holds. For an arbitrary vertex u € V(G),

D da(v) = |Ni(w)] + 2e(Ni(u)) + e(Ni(u), Na(u)).

’UENl )
Combining this with Lemma 28, where W) is chosen as Ny(u), we get that
1
3 do(v) < (47 - 2)|Ny(u )|+(2)\—§>n.
vEN] (u)
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Summing the above inequality over all vertices u € V(G) and using (18), we obtain

YooY delv) < (AA-2) > dG(u)+(2)\—%)n2

u€V(G) veNy(u) ueV(G)

— (8\ —4)e(G) + (2)\ - %)nz

< 2\n2

Observe that >_ ¢y ) dz(v) = > uev(@) 2oven (u) dc(v). Hence, the second statement
follows. O

Choose a positive constant 1 < zoors, and define W = {u € V(G) | z, > na,}.
We shall give an upper bound for |IW| and a lower bound for degrees of vertices in W
(see Lemmas 33 and 34). However, we are in trouble when ¢ = 2 as ex(n, tCy) = O(n?2).
Hence, we prove a special structural property as follows.

Lemma 31. For { =2, we have A(G) > (1 — &

VAR

Proof. Set o = 1 — ;& and suppose to the contrary that A(G) < an. Specially, we
have dg(u*) < an. By Lemma 27, G — {u*} contains ¢t — 1 vertex-disjoint quadrilaterals
Cl,...,C"'. Given an arbitrary i € {1,2,...,t — 1}, we assume that V(C*) = {u;; | j =
1,2,3,4}. We then define M; = {u;j,,u;j, } if there exist two distinct vertices w;j,, u;j, €
V(C") with | Nq(ugj,) N Ni(uizy)| = (1 — a)n, and M; = V(C") otherwise. Furthermore,
set M = U'Z] M.

If M; = {uj,,u;j,} for some w,, uzj, € V(C?), then e(M;, V(G — M)) < dg(ug,) +
da(uij,) < 2am. If M; = V(C"), then

€(Mi, V(G— M)) < ’ U?:l Nl(uij) + ‘Nl(uijl) le(uijg) < n+6(1 — a)n < 20[71,
1<j1<ga<4
where the last inequality follows from a =1 — ;75 > £. Hence, we always have
t—1
e(M, V(G- M) =Y e(M;, V(G- M)) < 2(t — 1)an. (19)
i=1

Now, we will see that G — M is Cy-free. Otherwise, let C'! be a 4- cyclein G — M. If
M, = V(C"), then we define a 4-cycle C* = C, where V(C') N V(C") = & obviously. If
My = {wyjy, uj, } for some uijy, urj, € V(CY), then |Ny(uyj,) N Ny(ugjy)| = (1= a)n, and
thus there exists a 4-cycle Cl = U1y VLU j WU, such that vy, w; ¢ M U V(Ct) Similarly,
if M, = V(C?), then we define C? = C% otherwise, My = {us;,,us;,}, then we can
find a 4d-cycle C% = uyj, vatin;, watiaj, such that vy, wy ¢ M UV(CY) U V(C"). Repeating
the above steps, we obtain a sequence of vertex-disjoint 4-cycles 51, e ,5t_1 such that
V(CH)NV(CY) = @ for 1 <i <t— 1. Consequently, we obtain ¢ vertex-disjoint 4-cycles
in GG, a contradiction. Therefore, G — M is Cy-free.
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We know that

PG = 3 pGre= 3 3 s (20)

vENT (u*) vENT (u*) wEN] (v)

In the following, we have to distinguish (20) into three cases. Let N;(v) be the set of
vertices at distance i from a vertex v in G— M. Then u* € V(G—M) and N;(u*) C N;(u*)
for i € {1,2}.

Case (i) We have w € M. We shall evaluate 3 cn () D wen, (w)nm Tuw- Note that

Ny(u*)\ M = Ny (u*). On the one hand, D oe Ny (W \M DweN; (o) Lw S e(ﬁl(u*),M)xu*.
On the other hand,

M
Z Z Ty < 26(M)zys < 2(‘ 9 ‘)xu < (1 — a)na,s,
vEN1 (u*)NM we Ny (v)NM

as |[M| < 4(t — 1). Thus we have
Z Z Ty < (e(ﬁl(u*), M)+ (1- a)n)xu*. (21)

vEN (u*) weN (v)NM
Case (ii) Both w and v belong to G—M. We shall evaluate 3 5, () 2 we i, (o) Lu-
Clearly, Ny (v) C {u*}UN;(u*)UNy(u*) for v € ]A\?l(u*);vSince G — M is Cy-free, vertices in

Ni(v*) have mno common neighbors in  Ny(u*),  which implies that
e(Ni(u*), Na(u*)) = [Ny(u*)|. Hence,
> > w < e(Ni(u), No(u))zyr = [Na(u")|z,s.
vEN] (u*) wEN] (v)ﬂﬁg(u*)
Since G — M is Cy-free, there also exits no Py within N; (u*). Thus,
Y Y ae Y oa< Y n-dom
’Ueﬁl( ) weﬁﬂv)ﬂﬁl(u*) veﬁl(u*) vEN7 (u*)
Observe that ZweN = Ty + Zweﬁl (0)N N (ur) Tw + Zweﬁh(v)ﬂf&(u*) 2, for each v €
Ny (u *). Combining above two inequalities, we obtain
SN w < (M) + [No(u)] + p(G)) 2w < (n— |M|+ p(G)) 7. (22)
’UGNl( )wENl(v)

Case (iii) w belongs to G — M but v € M. We shall calculate the term

observe that

Z Z Ty = Z (:vu*+ Z Ty + Z xw>

vENL (u*)NM weN1 (v)\M vEN (u*)NM wENT (v)NN1 (u*)  WENT(V)NNy (u*)

< Z(xu*+2mw+ Z xw>

veM wEN1(u*)  weN,; (u*)
< IM|(1+ p(G)) @y + e(Nos (u*), M) - (23)
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Summing (21), (22) and (23) into (20), we obtain
P*(G) < (IM|+1)p(G) + (2 — a)n+e(V(G— M), M).

Note that |M| < 4(t — 1), and by Lemma 29, p(G) < v6An. Thus, (|M|+ 1)p(G) <
(4t—3)V6An < (1—a)n. Moreover, e(V(G—M), M) < 2(t—1)an by (19). Consequently,
P*(G) < (3+ (2t —4)a)n < (2t — 1)n,

ast>2and a = 1 — gk < 1. However, by Lemma 29 we have p*(G) > An = ({t — 1)n >
(2t — 1)n, a contradiction, Therefore, A(G) > an, completing the proof. O

Lemma 32. Let W' = {u € V(G) | 4 = Lxy-}. Then [W'| < 5kn

Proof. We first consider the case ¢ > 3. By Lemma 29, p(G) > v An. Hence,
vV A 5.’Eu* VA .’Eu NS Z 371) X xu*

’UENl )

for each u € W’. Summing this inequality over all vertices u € W’ we obtain

|W'|v)\ngxu* < E de(u)x, < Z do(u) s < 2e(G)xys. (24)

ueWw’ ueV (G

141
Combining (18) and (24), we get |W’| < % < g5 for n large enough.

Now, there remains the case ¢ = 2. By Lemma 31, there exists a vertex v* € V(G)

with dg(v*) = (1 — ;& )n. Hence,

(WA Ni(07)] < [V(G) \ Ni(v7)] = n = da(v”) < %n-

Let W* = {v € N;(v*) | 2, > V6 n""%z,.}. Note that p(G) < V6 n by Lemma 29.

Thus
|W*|\/6/\n_0‘4xu* < Z Ty = p(G) Ty < VOANL s,
vEN7 (v*)
yielding [W*| < n® < jhn. Since L, > V6An "4z, we have W’ NNy (v*) € W*, and
so [W' N Ny(v*)| < [W*| < gn. Combining [W'\ Ny(v*)] < g5n gives [W'] < zg/\n as
claimed. ]

Lemma 33. |[W| < 128’\3.

Proof. We first prove that dg(u) > gkn for each u € W. Suppose to the contrary that
there exists a vertex u € W with dg(u) < gkn. Then 3 > nr,~ asu € W, and by Lemma
29 p(G) = v An. Thus we have

NANT, < p2(Gag = | Ny (T)|za + Z dn, @) (W) 2y + Z dn, @) ) (25)

u€N1 (%) u€ N2 (u)
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By Lemma 28, we have e(N; (@) < (2X — 2)[Ny(w)|. Note that [N ()| < gkn. Thus,
- - - - 1
N @z + D dan (w2 < (V@) + 26Ny (@) 2 < (42 = 2) [Ny (@) e < Gt
uGNl(ﬁ)
Combining the above inequality with (25), we obtain
1
Z dny @) (), = (X — 5)77”$u*~ (26)
uw€Na (1)

Now, setting u = u and W, = W' in Lemma 28, we have
(N (@), Nao(@) N W') < (2) — —)(|N1( )+ | Na(@) W) < 2X(| N1 (@)] + [W7]).

Since | Ny (u)| < gkn, and |[W’'| < gxn by Lemma 32, it follows that

| ~ 20)\
7
> dy@ W < e(Ni(@), Nao(@) N W) ze < g (27)
w€Na (u)NW’

Note that z, < Zx,- for each u € V(G) \ W'. Setting u = u and Wy = V(G) \ W' in
Lemma 28, we get e(N1(w), No(w) \ W) < (2X — 1)n. Consequently,

~ ~ 1
Z dn, @) (w)z, < e(Nl(u), No(u) \ W’) gxu* < (2N — i)ngxu*
u€ Nz (u)\W’

Combining (27) gives

7 4x-—1 1
d u < <_ —) u* A=z u*
Z @) (w)x 50 + g )M < ( Q)Unx
u€ N2 (u)
as A =(t —1 > 2, contradicting (26). Therefore, dg(u) > s for each uw € W. It follows

that 3,cy (g d&(u) > zuew A2, (u) > |W|(%n)2. Moreover, " ,cy ) d4(u) < 2An? by
Lemma 30. Thus, |W| < 12 O

Lemma 34. For each u € W, we have dg(u) > (£= — 20n)n.

Proof. Let u be an arbitrary vertex in W. For convenience, we use W; and W; instead of
Ni(u) "W and N;(u) \ W, respectively. By Lemma 28, max{e(Ny(u)), e(N1(u), Na(u))} <
2 n. Since W; UW,; = N;(u) for i € {1,2}, we can see that

max{e(W,), e(Wy, Wy), e(Wy1, Wa), e(Wi, Wa)} < 2)n. (28)
Recall that p(G) > v An. We also have

Mz, < p*(G)r, = Z Z Ty = | N7 (u)|zy + Z Z Ty (29)

vEN] (u) wEN] (v) vENT (u) weN1 (v)\{u}
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Note that Ny(u) = W; U W, and for any v € Ny(u),
Ni() \ {u} = Ni(v) N (N1 (w) U No(u)) = Ni(v) N (W3 U U W U Wh).

We now calculate the term Y-, v () 2 owen, (o) fuy Tw i (29). We first consider the

case v € W;. Note that z, < 2, for w € Wy U W, and z,, < 1y for w € Wy U W,
Thus,

S < (2e(Wh) + (Wi, Wa)) s + (e(Wh, Wh) + e(Wy, Wa) ).

veWq w€N1(v)\{u}
On the one hand, |W| < 12:—2)‘3 by Lemma 33. Note that W3 U W,y C W. Thus, 2e(WW;) +
e(Wy, Ws) < 2(|W|) < nAn. On the other hand, we have e(Wy, W1) + (W, W) < 4 \n by

2
Z Z Ty < DANNT . (30)

(28). Therefore,
veW1 weN; (v)\{u}

Now, we consider the case v € W;. We can see that

DOEED DI DD SN RS S SR

veW; wEN1 (v)\{u} veW WEN1 (v)N(W1UW?) vEWT wEN1 (v)N(W1UW2)
e(W1, Wi U Wy)z, + (Ze(WI) + e(Wh, m))nxu

<
< €(Wl, W1 U WQ).’L’u* + 6)\7777,.’1,’“*, (31)

where the last inequality follows from (28).

In the following, we shall evaluate e(Wl, Wi U Ws,). Let Wll be the subset of W in
which each vertex has at least A neighbors in W; U Wg If [WyuUWy| < A—1, then
|W1/| = 0. If W3 UWs| > A, then we claim that |W1 | < A+ 1)(|W1UW2‘). Otherwise,
since there are only (‘WI;J%") options for all vertices in W1 to choose a set of A neighbors
from W, U W,, we can find A\ vertices in W, U W5 with at least |W1/|/(|W1L;W2|) >A+1
common neighbors in Wll. Moreover, note that u ¢ W; U Wy and Wll C W, C Ni(u).
Hence, G contains a copy of K41 x+1, and thus ¢ vertex-disjoint 2¢-cycles, a contradiction.
Therefore, we always have [W; | < (A + 1)(|W15\JW2‘) <(A+1) ('Vf\”).

By Lemma 33, |[W| is constant. Now |W;'| is also constant. Thus, [W; ||[W; U Wa| <
9\nn. Moreover, from the definition of Wy we know e(W; \ Wy, Wy UWa) < (A—1)|[W7 \
Wi'|. Thus

e(W1, W1 UWa) < e(W7, Wy UWa) + e(Wi \ W', Wy UWa) < 9\pn + (A — 1)| Ny (w)].  (32)

Back to (31), we obtain 37 cpr > e ny () fu) Lo < (15 nn+(A—=1)| N1 (u)]) #+. Combining
this with (29) and (30), we get that

Mz, < | Ni(u)|zy + 20Ana,s + (A — 1)|Ni(u) |z < (20Anm 4+ ANy (u)|) 2y,
which yields [Ny (u)| > (£ — 20n)n, as desired. O
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Now, we define W” = {u € V(G) | z, > 5000\*nz,-}. Recall that n < 555 and
W ={ueV(G) | x, = nz,}. Clearly, u* € W” and W” C W.

Ty and dg(v) > (1 — —t5)n.

1003

Lemma 35. For every v € W, we have z,, > (1 — 55553)

Moreover, we have |[W"| = A.

Proof. Suppose to the contrary that there exists vg € W” with x,, < (1 — 200/\3) . We
use W; and W; to denote N;(u*) N W and N;(u*) \ W, respectively. We first prove that
|W1 N Ni(vg)| = 4000\ nn. By Lemma 34, we have

IN1(u*)| = (1 —20m)n and  |Ni(vo)| = (5000\*n — 20n)n,

1283
772

as Ty, = H000\*nnz, . Moreover, by Lemma 33, we have |W| < < 10nmn. Hence,

Wi = [N1(u*) \ W] > (1 = 30m)n, and so
Wi N Ni(vo)| = [WA| + | Ni(vo)| — n = (5000X"n — 50n)n > 4000\ nn. (33)

In view of (33), vp has neighbors in Wj. Then vy is of distance at most two from u*,
that is, vg € Ny(u*) U Na(u*). Note that vg € W” C W. Thus, vy € Wi UWs,. Recall that
Ty < (1 — 5505 ) Tur- Now, setting u = u* in (29)-(31), we can observe that

Mz < Ny(u)|zgs + 1A, + e(Wr, (W1 U W) \ {vo}) @y + (W7, {vo})xvo

|N1<’U,*)|£Eu* + 11)\7’]71.1,’“* + Q(Wh (Wl U WQ)) u* e(Wb {UO}> 200)\3a

where e(Wy, W1 UW,) < 9Ann + (A — 1)| Ny (u*)| by (32). Thus,
G(Wb {UO}) e(Wla {UO})
20073 2003

Consequently, B(Wl, {vg}) < 4000\*nn, contradicting (33). Thus z, > (1 —
vew”.
Recall that n <

n < ANy (u*)| 4+ 20 Ann — < An+20Ann —

1
300%F )+ for

soo0o55- Then by Lemma 34, we can see that for each v € W”,

Ly

. 1
do(v) > (1 = 200)n > (1= 55555 = 20n)n > (1= 55 )

It remains to show |W” | = A. We first suppose that |[W”| > XA 4+ 1. Note that every

v € W"” has at most 55 non-neighbors. It follows that any A + 1 vertices in W" have

at least n — (1\3;\ > A+ 1 common neighbors. Thus, G contains K41 x+1 as a subgraph.

Recall that A = ¢t — 1. Thus G also contains tCy, a contradiction. Therefore, [W”| < A.

Next, suppose that [W”| < A — 1. Since u* € W\ (W; UWs), we have |W” N WU
Wa)| < XA =2, and so e(Wy, (W, U W) NW” < (A —2)n. On the other hand, setting
u=u* and Wy = Ny(u*) in Lemma 28, we get e(Ny(u*))+e(Ny(u*), Na(u*)) < (41 —2)n,
and thus

e(Wh, WhUWo) \W") < e(Wy, Wh) + e(Wy, Ws)
< e(Ni(u)) + e(Ny(u*), No(u™)) < (4N — 2)n.
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Recall that x,, > 5000 \*nz,- if and only if w € W”. Now, setting u = u*, 1, < Ty
for w € (W, UW,) NW” and x,, < 5000\*nz,~ for w € (W, U W) \ W” in (29)-(31), we
obtain

Ay < <|N1(u*)|+11/\nn+e(W1, (WhUWL)NW") +e (W7, (W1UW2)\W")5000)\477)%*

< <n F11Mm 4 (A — 2)n + 5000\ (4) — 2) )
< ATy,
as 1 < gooa5x5- Lhis gives a contradiction. Therefore, [W”]| = A, O

In the following, we complete the proof of Theorem 3.

Proof. By Lemma 35, we see that |[W”| = XA = £t — 1 and every vertex in W” has at most
Tooxe non-neighbors. Now, let U be the subset of V(G)\ W in which every vertex is a non-
neighbor of some vertex in W” and U’' = V(G) \ (W"UU). Then, GIW",U’| = Ky v/
Note that |U| < [W”|55658 = 1052, and thus [U'| > n — A — 5652 = 5.

We will see that U = @&. Suppose to the contrary that U # &. Given u € U arbitrarily.
We first prove that v has at most one neighbor in U’. Otherwise, u has two neighbors
ur,up € U'. Assume that {uj, us,...,u} C U and {wy,ws,...,we_1} € W”. By the
definition of U’, we can see that

1. __
C" = uulawWiUs . . . Up_1Wy—_oUpWyp_1 Uy

is a 2(-cycle in G. Clearly, [W”\ V(C")| = (t —1)¢ and |[U'\V(C)|=|U'| =€ > (t — 1)¢
as n is sufficiently large. This implies that G[W” \ V(C'), U’ \ V(C')] contains a copy
of K(t—1)et—1y¢, and hence contains t — 1 vertex-disjoint 2¢-cycles, say C?,...,C". Thus,
G contains t vertex-disjoint 2¢-cycles O, C?, ..., C*, which gives a contradiction. Hence,
u has at most one neighbor in U’. Moreover, by the definition of U, |Ni(u) N W”| <
|[W”| —1=X—1. It follows that

Z Loy = Z Ty + Z — 1)@y + 5000\ Nz, (34)

weN1 (u)N(W"UU") weN (u)NW" uEAﬁ()ﬁU’

We now claim that p(G)z, > (A — 55053 )Zu-. Otherwise, let G* be the graph obtained
from G by deleting all edges incident to w and joining u to all vertices in W”. Note that
\U'| = % and Ng-(u) € Ng-(v) for any v € U'. Then G* is tCy-free (otherwise, G* — {u}
contains tCyy, and thus G — {u} too, a contradiction). Moreover,

p(G*) = p(G) = XT(A(G") — A(G))X = 2%( DETEEDY xw>.

weW?” wEN7 (u)
Note that >, cyn Tw = [W[(1 = 35055)%ur = (A — 35057 )T+ by Lemma 35, but
Z Loy = uw < (A — ! )Ty
20072

w€N1 )
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by assumption. Thus, p(G*) > p(G), a contradiction.
Now we have

(r- 20(1»2)3’“* <PGru= D, wut Z T

weN1 (u)N(W"UU") weN (u)NU

Combining (34) gives

Ywemwov o _ (A= ggirp)tur — (A = 14 5000X' )z 4
p(G)r, 7 (A = 03 ) T gy

1 1 (1 1 1 4
as 1 < s550005 < Fo005T (5 — 02 T z0%8): LS, D uen, v Tw = 55P(G)Tu

Now consider the matrix A" = A(G[U]) and the vector X’ = X|y (the restriction of
X to U). We can observe that

AX)= Y 2w> —p(G)aa

weN1 (u)NU

for each u € U. Since X is a positive unit eigenvector of G, X’ is a positive vector and
thus A’X’ > 5p(G)X’ entrywise. Moreover, p(G) > v/An by Lemma 29. Hence,

XTAX' 4 4 In
>= 20 5 2 > /=
p(G[U]) > XTx' ~ 5AP(G) = 5\/:7

which also implies that |U| = (\/_) Since G[U] is tCyp-free, we have p(G[U]) < /6A|U|
by Lemma 29. Recall that |U| < It follows that

100)\2

6A\n 4 In
< /" = ]Z
U </ Tooxe < 5\&’

a contradiction. Therefore, U = @.

u1 U2 u3 W 1Up Uy

Figure 1: A special 2¢-cycle in G.

Now we have V(G) = W”UU' and GIW",U'] 2 K ,—». In the following, we consider
two cases of Theorem 3.

(i) £ = 2. Recall that Py denotes a path of order k. Since |W"|=X=/0t —1 =2t —1,
we can see that G[U'] is Ps-free (otherwise, we can find tC, in G). Thus, G[U’] consists of
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independent edges and isolated vertices. Since G is extremal with respect to spex(n,tCy),
we know that G is edge-maximal, which implies that W” is a (2t — 1)-clique and G =

++
Sn,2t—1 .

(ii) ¢ > 3. Since |W"| = A = 0t — 1, we will see that e(U’) < 1. Otherwise, whether
G[U’] contains a P3 or two independent edges, we can always find ¢ vertex-disjoint copies
of Cy, which consist of t — 1 2¢-cycles in G[W",U’], and a special 2¢-cycle (see Figure 1).
Since G is edge-maximal, we similarly have G = S, ;.

This completes the proof. O
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