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Abstract

Extremal problem on cycles plays an important role in extremal graph theory.
Let ex(n, F ) and spex(n, F ) be the maximum size and spectral radius over all n-
vertex F -free graphs, respectively. In this paper, we shall pay attention to the study
of both ex(n, tCℓ) and spex(n, tCℓ). On the one hand, we determine ex(n, tC2ℓ+1)
and characterize the extremal graph for any integers t, ℓ and n  f(t, ℓ), where
f(t, ℓ) = O(tℓ2). This generalizes the result on ex(n, tC3) of Erdős [Arch. Math.
13 (1962) 222–227] as well as the research on ex(n,C2ℓ+1) of Füredi and Gunderson
[Combin. Probab. Comput. 24 (2015) 641–645]. On the other hand, motivated
by the spectral Turán-type problem proposed by Nikiforov, we obtain the extremal
spectral radius spex(n, tCℓ) for any fixed t, ℓ and large enough n. Our results extend
some classic spectral extremal results or conjectures on odd cycles and even cycles.
Our results also give some inspirations for general spectral Turán-type problem
spex(n, F ) on bipartite or non-partite F .

Mathematics Subject Classifications: 05C35; 05C50

1 Introduction

Given a graph F , a graph is said to be F -free if it does not contain a subgraph isomorphic
to F . The Turán number of F , denoted by ex(n, F ), is the maximum number of edges in
an n-vertex F -free graph. An F -free graph is said to be extremal with respect to ex(n, F ),
if it has n vertices and ex(n, F ) edges. Denote by Tn,r the complete r-partite graph on n
vertices in which all parts are as equal in size as possible. An interesting graph in Turán-
type problems is a cycle. In 2015, Füredi and Gunderson [14] determined ex(n,C2ℓ+1) for
all n and ℓ, and specially, Tn,2 is the unique extremal graph when n  4ℓ. However, up
to now the exact value of ex(n,C2ℓ) is still open. Given a graph F , we denote by tF the
disjoint union of t copies of F . The study of the Turán number of tCℓ can be dated back to
1962, Erdős [10] determined ex(n, tC3) for n > 400(t− 1)2, and characterized the unique
extremal graph Kt−1 + Tn−t+1,2, (that is, the join of Kt−1 and Tn−t+1,2, which is obtained
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by connecting each vertex of Kt−1 with all vertices of Tn−t+1,2). Subsequently, Moon [20]
proved that Erdős’s result is still valid whenever n > 9t−11

2
. In addition, Erdős and Pósa

[12] also showed that ex(n, tC) = (2t − 1)(n − t) for t  2 and n  24t, where tC is the
family of graphs consisting of t vertex-disjoint cycles without length restriction. In this
paper, we further determine the Turán number ex(n, tC2ℓ+1) by the following theorem. It
should be noted that if n is sufficiently large, our result is a special case of a theorem due
to Simonovits [29].

Theorem 1. Let t, ℓ, n be three integers with t, ℓ  2 and n 

(8tℓ+4ℓ+3t−6)2

4⌊ t
2
⌋


+8tℓ+4t+

4ℓ− 5. Then Kt−1 + Tn−t+1,2 is the unique extremal graph with respect to ex(n, tC2ℓ+1).

Let A(G) be the adjacency matrix of a graph G, and ρ(G) be its spectral radius.
The spectral extremal value of a given graph F , denoted by spex(n, F ), is the maximum
spectral radius over all n-vertex F -free graphs. An F -free graph on n vertices with
maximum spectral radius is called an extremal graph with respect to spex(n, F ). Note
that ρ(G)  2m

n
for each graph G with n vertices and m edges. Thus we always have

ex(n, F )  n
2
spex(n, F ), which sometimes presents a best upper bound on the Turán

number of F (see [27]).
In recent years, the investigation on spex(n, F ) has become very popular (see [5, 8, 9,

16, 17, 18, 19, 30, 31, 33, 35] ). In this paper, we are interested in studying spex(n, tF )
for some given F . Let Pk, Ck, Sk, Kk denote a path, a cycle, a star and a complete graph
of order k, respectively. Up to now, spex(n, tF ) and its corresponding extremal graphs
were studied for some special cases (see spex(n, tK2) [13], spex(n, tPℓ) [2], spex(n, tSℓ)
[3], spex(n, tKℓ) [21]).

In this paper, we consider that F is a cycle of given length. We first investigate
the case that F is an odd cycle. Note that Nikiforov [23] determined spex(n,C2ℓ+1) for
sufficiently large n. Using Theorem 1 and Nikiforov’s result on spex(n,C2ℓ+1), we prove
the following theorem.

Theorem 2. For any two given positive integers t, ℓ and sufficiently large n, Kt−1 +
Tn−t+1,2 is the unique extremal graph with respect to spex(n, tC2ℓ+1).

Next, we focus on an even cycle F . When t = 1, it can be reduced to a classic spectral
Turán-type problem spex(n,C2ℓ), which was initially investigated by Nikiforov [22, 26].
Denote by Sn,ℓ the join of an ℓ-clique with an independent set of size n− ℓ. Furthermore,
let S+

n,ℓ be the graph obtained from Sn,ℓ by adding an edge within its independent set,

and S++
n,ℓ be the graph obtained from Sn,ℓ by embedding a maximum matching within

its independent set. Nikiforov [22] and Zhai et al. [34] determined the unique extremal
graph S++

n,1 with respect to spex(n,C4) for odd and even n respectively. In 2010, Nikiforov
[26] gave a spectral even cycle conjecture as follows: S+

n,ℓ−1 is the unique extremal graph
with respect to spex(n,C2ℓ) for ℓ  3 and n large enough. In 2022, Cioabă, Desai and
Tait [6, 7] established a new spectral extremal method by which they completely solved
the above conjecture and a spectral Erdős-Sós conjecture which was also proposed by
Nikiforov [26]. In this paper, we develop Nikiforov’s conjecture by the following result.
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Theorem 3. Let t, ℓ be given positive integers and n be sufficiently large. Then
(i) S++

n,2t−1 is the unique extremal graph with respect to spex(n, tC4);
(ii) S+

n,ℓt−1 is the unique extremal graph with respect to spex(n, tC2ℓ) for ℓ  3.

In fact, Cioabă, Desai and Tait’s method is very powerful for spex(n, F ) when

ex(n, F ) = o(n
3
2 ) and the numbers of local edges are O(n) in F -free graphs, more pre-

cisely, there are only O(n) edges within N1(u) as well as between N1(u) and N2(u) for
every vertex u, where Ni(u) denotes the set of vertices at distance i from u. Unfortunately,

ex(n, tC4) = Θ(n
3
2 ) and the numbers of local edges are O(n1+ 1

ℓ ) in tC2ℓ-free graphs with
t  2. To this end, we prove an important structural property on the extremal graph G
with respect to spex(n, tC2ℓ), that is, G−{u} always contains exactly t−1 vertex-disjoint
2ℓ-cycles for each u ∈ V (G). Moreover, we show a special property on the maximum de-
gree of the extremal graph with respect to spex(n, tC4). These give two key approaches
to prove Theorem 3.

Theorems 2 and 3 also give some inspirations on studying spex(n, F ) for general F . To
be precise, if F is non-partite with χ(F ) = r+1, its spectral extremal graph maybe tend
to contain a complete r-partite graph or r-partite Turán graph as a spanning subgraph; if
F is bipartite with ex(n, F ) = o(n

3
2 ), its spectral extremal graph maybe tend to contain

a complete bipartite graph Kk,n−k as a spanning subgraph.
The remainder of this paper is organized as follows. In Section 2, some preliminary

lemmas are introduced. In Section 3, we use the Erdős-Moon theorem on ex(n, tC3) and
structural analysis to prove Theorem 1. In Section 4, we use Theorem 1 and a stability
method to show Theorem 2. In Section 5, we present the proof of Theorem 3 by a
combination of structural analysis, induction and the Cioabă-Desai-Tait method.

2 Preliminaries

Given a simple graph G, we use V (G) to denote the vertex set, E(G) the edge set, |G|
the number of vertices, e(G) the number of edges, ν(G) the matching number, ∆(G) the
maximum degree, δ(G) the minimum degree, respectively. For a vertex v ∈ V (G), we
denote by NG(v) its neighborhood and dG(v) its degree in G. Given two disjoint vertex
subsets S and T . Let G[S] be the subgraph induced by S, G−S be the subgraph induced
by V (G)\S, and G[S, T ] be the bipartite subgraph on the vertex set S∪T which consists
of all edges with one endpoint in S and the other in T . For short, we write e(S) = e(G[S])
and e(S, T ) = e(G[S, T ]). Let Kn1,...,nr be the complete r-partite graph with classes of
sizes n1, . . . , nr. If

r
i=1 ni = n and |ni − nj|  1 for any two integers i, j ∈ {1, . . . , r},

then Kn1,...,nr is exactly the n-vertex r-partite Turán graph Tn,r. Let F +H be the join
and F ∪ H be the union, of F and H, respectively. Particularly, we denote by tF the
disjoint union of t copies of F .

In this section, we introduce some lemmas which will be used in the proofs of Theorems
1, 2 and 3. The first one is due to Erdős [10] and Moon [20].
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Lemma 4. ([10, 20]) Let t, n be two positive integers with n  ⌊19t−9
2

⌋. Then

ex(n, tC3) =


t− 1

2


+ (t− 1)(n− t+ 1) +

(n− t+ 1)2

4


.

Furthermore, Kt−1 + Tn−t+1,2 is the unique extremal graph with respect to ex(n, tC3).

Given two integers ν and ∆, define f(ν,∆) = max{e(G) | ν(G)  ν,∆(G)  ∆}. In
1976, Chvátal and Hanson [4] obtained the following result.

Lemma 5. ([4]) For every two integers ν  1 and ∆  1, we have

f(ν,∆) = ∆ν +
∆
2

 ν

⌈∆
2
⌉


 ν(∆+ 1).

The following spectral version of the Erdős-Stone-Simonovits stability theorem was
given by Nikiforov [24].

Theorem 6. ([24]) Let r  2, 1
lnn

< c < r−8(r+21)(r+1), 0 < ε < 2−36r−24 and G be an
n-vertex graph. If ρ(G) > (1− 1

r
− ε)n, then one of the following holds:

(i) G contains a Kr+1(⌊c lnn⌋, . . . , ⌊c lnn⌋, ⌈n1−
√
c⌉);

(ii) G differs from Tn,r in fewer than (ε
1
4 + c

1
8r+8 )n2 edges.

From Theorem 6, Desai et al. [9] obtained the following stability result. Theorem 6 and
the following lemma present an efficient approach to study spectral extremal problems.

Lemma 7. ([9]) Let F be a graph with chromatic number χ(F ) = r + 1. For every
ε > 0, there exist δ > 0 and n0 such that if G is an F -free graph on n  n0 vertices with
ρ(G)  (1− 1

r
− δ)n, then G can be obtained from Tn,r by adding and deleting at most εn2

edges.

The following spectral extremal result on odd cycles is due to Nikiforov [23].

Lemma 8. ([23]) Let ℓ be a given positive integer and n be large enough. Then, Tn,2 is
the unique extremal graph with respect to spex(n,C2ℓ+1).

The following result is known as the Erdős-Gallai theorem.

Lemma 9. ([11]) Let n and ℓ be two integers with n  ℓ  2. Then ex(n, Pℓ)  (ℓ−2)n
2

,
with equality if and only if n = t(ℓ− 1) and G ∼= tKℓ−1.

We note that the best current bound for ex(n,C2ℓ) was given by He [15], who improved

on a bound ex(n,C2ℓ) 

80
√
ℓ log ℓ+o(1)


n1+ 1

ℓ of Bukh and Jiang [1] by reducing a factor
of

√
5 log ℓ. However, for our purposes the dependence of the multiplicative constant on ℓ

is not important. For convenience, we use the following version, which improves a known
bound of Verstraëte [32] by a factor 8 + o(1) when n ≫ k.

Lemma 10. ([28]) For all ℓ  2 and n  1, we have

ex(n,C2ℓ)  (ℓ− 1)n(n
1
ℓ + 16).
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3 Proof of Theorem 1

In this section, we give the proof of Theorem 1. More precisely, we will extend the Turán-
type result on vertex-disjoint triangles to the disjoint union of general odd cycles. First
of all, we shall prove two structural lemmas.

Lemma 11. Let t, ℓ, n be three positive integers with n  8tℓ + 4ℓ + 4t − 6. Let G be a
graph on n vertices with δ(G)  ⌊n

2
⌋, and S ⊆ V (G) with |S|  (t− 1)(2ℓ+ 1). If G− S

contains a triangle C∗, then G− S also contains a (2ℓ+ 1)-cycle.

Proof. The result holds trivially for ℓ = 1. Assume now that ℓ  2. Set G′ = G− S and
C∗ = u0v0w0u0. Note that δ(G)  ⌊n

2
⌋ and n  8tℓ+ 4ℓ+ 4t− 6. Then,

δ(G′)  δ(G)− |S| 
n
2


− (t− 1)(2ℓ+ 1) > 3ℓ.

Hence, there exist three vertices u1, v1, w1 such that u1 ∈ NG′(u0) \ V (C∗), v1 ∈ NG′(v0) \
(V (C∗) ∪ {u1}) and w1 ∈ NG′(w0) \ (V (C∗) ∪ {u1, v1}). Now let H0 = C∗. Moreover, we
define a subgraph H1 ⊆ G′ with V (H1) = V (H0) ∪ {u1, v1, w1} and E(H1) = E(H0) ∪
{u0u1, v0v1, w0w1}. If ℓ  3, then there exist three vertices u2, v2, w2 such that u2 ∈
NG′(u1) \ V (H1), v2 ∈ NG′(v1) \ (V (H1) ∪ {u2}) and w2 ∈ NG′(w1) \ (V (H1) ∪ {u2, v2}).
Repeat the above steps, we can obtain a sequence of subgraphs H0, · · · , Hℓ−1 such that
V (Hi) = V (Hi−1) ∪ {ui, vi, wi} and

E(Hi) = E(Hi−1) ∪ {ui−1ui, vi−1vi, wi−1wi}

for 1  i  ℓ − 1. Clearly, |Hi| = 3i + 3 for each i ∈ {0, . . . , ℓ − 1}. Then we can easily
check that n+3

4
 |S|+ |Hℓ−1|+ 1

4
. Furthermore, for each x ∈ {uℓ−1, vℓ−1, wℓ−1} ⊆ V (Hℓ−1)

we can see that

|NG′(x) \ V (Hℓ−1)|  dG′(x)− (|Hℓ−1|− 1)

 δ(G′)− |Hℓ−1|+ 1

 n− 1

2
− |S|− |Hℓ−1|+ 1

=
1

3


n− |S|− |Hℓ−1|


+

2

3

n+ 3

4
− |S|− |Hℓ−1|


.

Thus we have

3|NG′(x) \ V (Hℓ−1)| > n− |S|− |Hℓ−1| = |V (G′) \ V (Hℓ−1)|.

By the pigeonhole principle, there exists some y ∈ V (G′)\V (Hℓ−1) such that y is adjacent
to at least two vertices, say vℓ−1 and wℓ−1, of {uℓ−1, vℓ−1, wℓ−1}. Hence, the subgraph
G′[{y, v0, . . . , vℓ−1, w0, . . . , wℓ−1}] contains a cycle of length 2ℓ+1, as v0w0 ∈ E(H0). The
result follows.
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Lemma 12. Let t, k, n be three integers with t  2, k  ⌊19t−9
2

⌋ and n 


(k−t)2

4⌊ t+1
2

⌋


+(k+1).

If G is a graph of order n with e(G)  ex(n, tC3) and δ(G)  ⌊n
2
⌋−1, then there exists an

induced subgraph G′ ⊆ G on n′  k vertices with e(G′)  ex(n′, tC3)+1 and δ(G′)  ⌊n′

2
⌋.

Proof. By Lemma 4, for any integer n∗  ⌊19t−7
2

⌋ we have

ex(n∗, tC3)− ex(n∗ − 1, tC3) =
n∗ + t− 1

2


. (1)

Since δ(G)  ⌊n
2
⌋ − 1, there is a vertex u0 ∈ V (G) such that dG(u0)  ⌊n

2
⌋ − 1 = ⌊n−2

2
⌋.

Set G0 = G and G1 = G0 − {u0}. Combining e(G0)  ex(n, tC3), dG0(u0)  ⌊n−2
2
⌋ and

(1) gives

e(G1) = e(G0)− dG0(u0)  ex(n− 1, tC3) +
t+ 1

2


, (2)

as ⌊n+t−1
2

⌋ − ⌊n−2
2
⌋  ⌊ t+1

2
⌋. Now, if δ(G1)  ⌊n−1

2
⌋, then we define G′ = G1 and we are

done. Otherwise, there is a vertex u1 ∈ V (G1) such that dG1(u1)  ⌊n−3
2
⌋. Then, we set

G2 = G1 − {u1}. By (1) and (2), we obtain

e(G2) = e(G1)− dG1(u1)  ex(n− 2, tC3) + 2
t+ 1

2


,

as ⌊n+t−2
2

⌋ − ⌊n−3
2
⌋  ⌊ t+1

2
⌋. Repeating the above steps, we obtain either a Gi for some

i  n−k−1 such that it is a desired induced subgraph or a sequence of induced subgraphs
G0, G1, · · · , Gn−k such that |Gi| = n− i and

e(Gi)  ex(n− i, tC3) + i
t+ 1

2


(3)

for 1  i  n− k. Since n 


(k−t)2

4⌊ t+1
2

⌋


+ (k + 1), we have

(n− k)
t+ 1

2


>

(k − t)2

4



k − t+ 1

2


−

(k − t+ 1)2

4


. (4)

From Lemma 4 we know that

ex(k, tC3) =


t− 1

2


+ (t− 1)(k − t+ 1) +

(k − t+ 1)2

4


.

Combining the above equality with (3) and (4), we obtain

e(Gn−k)  ex(k, tC3) + (n− k)
t+ 1

2



>


t− 1

2


+ (t− 1)(k − t+ 1) +


k − t+ 1

2


=


k

2


,

contradicting |Gn−k| = k. Hence, Gi is a desired induced subgraph for some integer
i  n− k − 1.
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Having Lemmas 11 and 12, we are now ready to give the proof of Theorem 1. Recall

that t  2, ℓ  2 and n 

(8tℓ+4ℓ+3t−6)2

4⌊ t
2
⌋


+ 8tℓ+ 4t+ 4ℓ− 5. For convenience, we denote

G∗ = Kt−1 + Tn−t+1,2.

Proof. By Lemma 4, we have e(G∗) = ex(n, tC3) for t  2 and n  ⌊19t−9
2

⌋. Moreover,
we can easily check that G∗ contains at most t − 1 vertex-disjoint copies of C2ℓ+1 for
each positive integer ℓ, as every odd cycle in G∗ must occupy at least one vertex in the
(t− 1)-clique. Let G be an extremal graph with respect to ex(n, tC2ℓ+1). Then

e(G) = ex(n, tC2ℓ+1)  e(G∗) = ex(n, tC3).

Set k = 8tℓ + 4ℓ + 4t − 6. Since ℓ  2, we have k 

19t−9

2


. Suppose now that

δ(G)  ⌊n
2
⌋ − 1. Then by Lemma 12, there exists an induced subgraph G′ ⊆ G on n′  k

vertices such that e(G′)  ex(n′, tC3) + 1 and δ(G′)  ⌊n′

2
⌋. Furthermore, by Lemma 4,

G′ contains t vertex-disjoint triangles C1, C2, . . . , Ct.
Let S1 = ∪t

i=2V (C i). Then |S1| = 3(t − 1)  (t − 1)(2ℓ + 1), and G′ − S1 contains
a triangle C1. By Lemma 11, G′ − S1 also contains a (2ℓ + 1)-cycle C1∗. Let S2 =
V (C1∗) ∪ (∪t

i=3V (C i)). Then |S2| = (2ℓ + 1) + 3(t − 2)  (t − 1)(2ℓ + 1), and G′ − S2

contains a triangle C2. Again by Lemma 11, G′ − S2 also contains a (2ℓ+ 1)-cycle C2∗.
Repeating the above steps, we obtain a sequence of subsets S1, · · · , St such that

Sj =

∪j−1

i=1 V (C i∗)

∪

∪t

i=j+1 V (C i)


and G′ − Sj contains a (2ℓ + 1)-cycle Cj∗ for 2  j  t. Hence, G′ contains t vertex-
disjoint (2ℓ+1)-cycles C1∗, . . . , Ct∗, contradicting the fact that G is tC2ℓ+1-free. Therefore,
δ(G)  ⌊n

2
⌋.

Recall that e(G)  ex(n, tC3). Then by Lemma 4, if G ∕∼= G∗, then G contains t
vertex-disjoint triangles. Furthermore, by Lemma 11 and a similar way as above to G′,
we can find t vertex-disjoint (2ℓ + 1)-cycles in G, a contradiction. Therefore, G ∼= G∗.
This completes the proof of Theorem 1.

4 Proof of Theorem 2

In this section, we give the proof of Theorem 2. By Lemma 8, it holds directly for
t = 1. In the following, assume that t  2 and G is an extremal graph with respect to
spex(n, tC2ℓ+1). We first prove that G is connected. Suppose to the contrary, then we can
select two distinct components G1 and G2 of G with ρ(G1) = ρ(G). Let G′ be a graph
obtained from G by adding a new edge between G1 and G2. Then G′ is tC2ℓ+1-free and
ρ(G′) > ρ(G), which contradicts the choice of G. By the Perron-Frobenius theorem, there
exists a positive unit eigenvector X = (x1, . . . , xn)

T corresponding to ρ(G). Assume that
u∗ ∈ V (G) with xu∗ = max{xi | i ∈ V (G)}. We also choose a positive constant η < 1

75
,

which will be frequently used in the proof. Let G∗ = Kt−1+Tn−t+1,2, where G
∗ = Tn,2 for

t = 1. We shall prove G ∼= G∗ for n sufficiently large.
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Lemma 13. ρ(G)  n
2
+ (t− 1)− t2

2n
.

Proof. By Theorem 1, G∗ is an extremal graph with respect to ex(n, tC2ℓ+1). Since

e(Tn−t+1,2) =

(n−t+1)2

4


 (n−t+1)2−1

4
, we have

e(G∗) = e(Kt−1) + e(Tn−t+1,2) + (t− 1)(n− t+ 1)  1

4
n2 +

t− 1

2
n− t2

4
.

Using the Rayleigh quotient gives

ρ(G)  ρ(G∗)  1TA(G∗)1

1T1
=

2e(G∗)

n
 n

2
+ (t− 1)− t2

2n
,

as desired.

Lemma 14. For n sufficiently large, e(G) 

1
4
− 1

2
η2

n2. Furthermore, G admits a

partition V (G) = V1 ∪ V2 such that e(V1, V2) is maximal, e(V1) + e(V2)  1
2
η2n2 and|Vi|− n

2

  ηn for i ∈ {1, 2}.

Proof. Note that χ(tC2ℓ+1) = 3 and G is tC2ℓ+1-free. Moreover, by Lemma 13, ρ(G) 
n
2
+ (t − 1) − t2

2n
. Let ε be a positive constant with ε < 1

2
η2. Then by Lemma 7,

e(G)  1
4
n2− 1

2
η2n2, and there exists a bipartition V (G) = U1∪U2 such that ⌊n

2
⌋  |U1| 

|U2|  ⌈n
2
⌉ and e(U1) + e(U2)  1

2
η2n2. We now select a new bipartition V (G) = V1 ∪ V2

such that e(V1, V2) is maximal. Then e(V1) + e(V2) is minimal, and

e(V1) + e(V2)  e(U1) + e(U2) 
1

2
η2n2.

On the other hand, assume that |V1| = n
2
− a, then |V2| = n

2
+ a. Thus,

e(G)  |V1||V2|+ e(V1) + e(V2) 
1

4
n2 − a2 +

1

2
η2n2.

Combining e(G)  1
4
n2 − 1

2
η2n2 gives a2  η2n2, and so |a|  ηn.

In the following, we shall define two vertex subsets U and W of G.

Lemma 15. Let U = {v ∈ V (G) | dG(v) 

1
2
− 4η


n}. Then we have |U |  ηn.

Proof. Suppose to the contrary that |U | > ηn, then there exists U ′ ⊆ U with |U ′| = ⌊ηn⌋.
Moreover, by Lemma 14, we have e(G) 


1
4
− 1

2
η2

n2. Now set n′ = |G−U ′| = n−⌊ηn⌋.

Then n′ − 1 <

1− η)n. Thus,

e(G− U ′)  e(G)−


v∈U ′

dG(v)


1
4
− η2

2


n2 − ηn

1
2
− 4η


n

=
1

4


1− 2η + 14η2


n2

>
1

4


n′ − 1 + t

2
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for sufficiently large n. We can further check that 1
4
(n′ + t − 1)2 > e(Kt−1 + Tn′−t+1,2).

Hence, e(G− U ′) > e(Kt−1 + Tn′−t+1,2). By Theorem 1, G− U ′ contains t vertex-disjoint
(2ℓ+ 1)-cycles, contradicting the fact that G is tC2ℓ+1-free.

Lemma 16. Let W = W1 ∪ W2, where Wi = {v ∈ Vi | dVi
(v)  2ηn} and dVi

(v) =
|NG(v) ∩ Vi| for i ∈ {1, 2}. Then we have |W |  1

2
ηn.

Proof. For i ∈ {1, 2},

2e(Vi) =


v∈Vi

dVi
(v) 



v∈Wi

dVi
(v)  |Wi| · 2ηn.

Combining Lemma 14, we have

1

2
η2n2  e(V1) + e(V2) 


|W1|+ |W2|


ηn = |W |ηn.

Therefore, |W |  1
2
ηn.

In the following three lemmas, we focus on constructing (2ℓ + 1)-cycles in distinct
induced subgraphs of the spectral extremal graph G.

Lemma 17. For arbitrary R ⊆ V (G) with |R|  t(2ℓ+ 1), if there exists an edge within
Vi \ (U ∪W ∪R) for some i ∈ {1, 2}, then G− (U ∪W ∪R) contains a (2ℓ+ 1)-cycle.

Proof. Let V ′ = V ′
1 ∪ V ′

2 , where V ′
i = Vi \ (U ∪W ∪ R) for i ∈ {1, 2}. Moreover, we may

assume that i ∈ {1, 2} \ {i}. We first claim that for each vertex u ∈ V ′
i ,

|NV ′(u)|  |NV ′
i
(u)| > 2

5
n, (5)

where NV ′(u) = NG(u) ∩ V ′. Since u /∈ U ∪W , we know that dVi
(u) < 2ηn and dG(u) >

(1
2
− 4η)n. Recall that V1 ∪ V2 is a bipartition of V (G). Thus dVi(u) = dG(u)− dVi

(u) >

(1
2
− 6η)n. Combining Lemmas 15 and 16 gives

|NV ′
i
(u)|  |NVi

(u)|−

|U |+ |W |+ |R|


>

1
2
− 6η


n− 3

2
ηn− t(2ℓ+ 1) >

2

5
n,

as the constant η < 1
75

and n is sufficiently large. Thus, (5) follows.
Now let u0v0 be an arbitrary edge within V ′

i . From (5) we know that both |NV ′
i
(u0)| >

2
5
n and |NV ′

i
(v0)| > 2

5
n. Moreover, by Lemma 14, |V ′

i |  |Vi|  n
2
+ ηn. Thus,

NV ′
i
(u0) ∩NV ′

i
(v0)

 
NV ′

i
(u0)

+
NV ′

i
(v0)

−
V ′

i

 > 3

10
n− ηn > 0,

and hence there exists a vertex w0 ∈ NV ′
i
(u0) ∩ NV ′

i
(v0). Since w0 ∈ V ′

i , it follows from

(5) that |NV ′(w0)|  |NV ′
i
(u)| > 2

5
n.
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LetH0 = G[{u0, v0, w0}]. ThenH0
∼= C3 andH0 ⊆ G−(U∪W∪R). If ℓ = 1, thenH0 is

a desired (2ℓ+1)-cycle. Assume now that ℓ  2. Since |NV ′(u)| > 2
5
n for each u ∈ V (H0),

there exist u1, v1, w1 ∈ V ′ such that u1 ∈ NV ′(u0) \ V (H0), v1 ∈ NV ′(v0) \ (V (H0)∪ {u1})
and w1 ∈ NV ′(w0) \ (V (H0) ∪ {u1, v1}). Then, we define a subgraph H1 ⊆ G with
V (H1) = V (H0) ∪ {u1, v1, w1} and E(H1) = E(H0) ∪ {u0u1, v0v1, w0w1}. If ℓ  3, then
there exist u2, v2, w2 such that u2 ∈ NV ′(u1) \ V (H1), v2 ∈ NV ′(v1) \ (V (H1) ∪ {u2})
and w2 ∈ NV ′(w1) \ (V (H1) ∪ {u2, v2}). Repeating the above steps, we obtain a sequence
of subgraphs H0, H1, · · · , Hℓ−1 such that V (Hj) = V (Hj−1) ∪ {uj, vj, wj} and E(Hj) =
E(Hj−1) ∪ {uj−1uj, vj−1vj, wj−1wj} for 1  j  ℓ − 1. Then, |Hℓ−1| = 3ℓ and Hℓ−1 ⊆
G − (U ∪ W ∪ R). Set V ′′ = V ′ \ V (Hℓ−1). For each u ∈ {uℓ−1, vℓ−1, wℓ−1}, we have
|NV ′′(u)|  |NV ′(u)|− |Hℓ−1|+ 1 > 2

5
n− 3ℓ+ 1, and thus

|NV ′′(uℓ−1)|+ |NV ′′(vℓ−1)|+ |NV ′′(wℓ−1)| > n > |V ′′|

for n sufficiently large. This implies that there exists w ∈ V ′′ such that w is adjacent to
at least two vertices, say uℓ−1 and vℓ−1, of {uℓ−1, vℓ−1, wℓ−1}. Therefore, G− (U ∪W ∪R)
contains a (2ℓ+ 1)-cycle u0 . . . uℓ−1wvℓ−1 . . . v0u0. The proof is completed.

Lemma 18. For arbitrary R ⊆ V (G) with |R|  t(2ℓ + 1), if there exists a vertex
u0 ∈ W \ U , then G−


(U ∪W ∪R) \ {u0}


contains a (2ℓ+ 1)-cycle.

Proof. Since V (G) = V1 ∪ V2, we may assume without loss of generality that u0 ∈ V1.
Then by the definitions of U and W , we have

dG(u0) >
1
2
− 4η


n and dV1(u0)  2ηn.

Moreover, by Lemmas 15 and 16, |U |  ηn and |W |  1
2
ηn. Thus,

NV1\(U∪W∪R)(u0)
  dV1(u0)− (|U |+ |W |+ |R|)  1

2
ηn− t(2ℓ+ 1) > 0.

Then, there exists a vertex v0 in NV1(u0) \ (U ∪W ∪ R). Again by the definitions of U
and W , we can see that dG(v0) > (1

2
− 4η)n and dV1(v0) < 2ηn. It follows that

dV2(v0) = dG(v0)− dV1(v0) >
1
2
− 6η


n. (6)

Recall that V (G) = V1∪V2 is a bipartition of V (G) such that e(V1, V2) is maximal. Hence,
dV1(u0)  1

2
dG(u0). Since dG(u0) > (1

2
− 4η)n, we get that

dV2(u0) = dG(u0)− dV1(u0) 
1

2
dG(u0) >

1
4
− 2η


n. (7)

Furthermore, Lemma 14 gives |V2|  n
2
+ ηn. Combining with (6) and (7), we obtain

|NV2(u0) ∩NV2(v0)|  |NV2(u0)|+ |NV2(v0)|− |V2| 
1
4
− 9η


n.
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Note that η < 1
75

and n is sufficiently large. It follows that



NV2(u0) ∩NV2(v0)


\ (U ∪W ∪R)

 
1
4
− 9η


n− 3

2
ηn− t(2ℓ+ 1) > 0.

Hence, there exists w0 ∈

NV2(u0) ∩ NV2(v0)


\ (U ∪ W ∪ R). Let H0 = G[{u0, v0, w0}].

Then H0
∼= C3 and H0 ⊆ G−


(U ∪W ∪R) \ {u0}


. For ℓ = 1, H0 is a (2ℓ+1)-cycle. For

ℓ  2, using the same method as in the proof of Lemma 17, we can find a (2ℓ + 1)-cycle
in G−


(U ∪W ∪R) \ {u0}


.

Lemma 19. Let ν =
2

i=1 ν

G[Vi \ (U ∪W )]


. Then ν  t− 1. Moreover, G− (U ∪W )

contains at least ν vertex-disjoint (2ℓ+ 1)-cycles.

Proof. The case ν = 0 is trivial. Now assume that ν  1, and let u1u2, . . . , u2ν−1u2ν be ν
independent edges in G[V1 \ (U ∪W )] ∪ G[V2 \ (U ∪W )]. Then, we set R0 = {uj | j =
1, 2, . . . , 2λ} and R1 = R0 \ {u1, u2}, where λ = min{ν, t}. Since u1u2 is an edge within
Vi \ (U ∪ W ∪ R1) for some i ∈ {1, 2}, Lemma 17 indicates that G − (U ∪ W ∪ R1)
contains a (2ℓ + 1)-cycle C1. Let R2 =


R1 \ {u3, u4}


∪ V (C1). Again by Lemma 17,

G− (U ∪W ∪R2) contains a (2ℓ+1)-cycle C2, as u3u4 is an edge within Vi \ (U ∪W ∪R2)
for some i ∈ {1, 2}.

Repeating the above steps, we obtain a sequence of vertex subsets R1, · · · , Rλ such
that Rj =


Rj−1 \{u2j−1, u2j}


∪

∪j−1

k=1 V (Ck)

and G− (U ∪W ∪Rj) contains a (2ℓ+1)-

cycle Cj for each j ∈ {2, . . . ,λ}. Clearly, |Rj|  (λ− 1)(2ℓ+ 1) for 1  j  λ; moreover,
C1, C2, . . . , Cλ are vertex-disjoint cycles in G− (U ∪W ). Since G is tC2ℓ+1-free, we have
λ  t − 1. Combining λ = min{ν, t} gives ν = λ  t − 1, and thus C1, C2, . . . , Cν are
vertex-disjoint (2ℓ+ 1)-cycles in G− (U ∪W ).

In the following two lemmas, we shall give two local structural properties of G.

Lemma 20. For i ∈ {1, 2}, we have ∆

G[Vi \ (U ∪W )]


< t(2ℓ+ 1).

Proof. Our proof is by contradiction. Without loss of generality, suppose that there exists
a vertex u0 ∈ V1 \ (U ∪ W ) such that dV1\(U∪W )(u0)  t(2ℓ + 1). Since u0 /∈ W , we get
dV1(u0) < 2ηn by the definition of W . On the other hand, by Lemma 14, |V1|  n

2
− ηn,

and so

|V1 \ (U ∪W )|  |V1|− |U |− |W | 
1
2
− 5

2
η

n.

Hence, |V1 \ (U ∪ W )| > dV1(u0), as η < 1
75
. This implies that there exist vertices in

V1 \ (U ∪ W ) which are not adjacent to u0. Let G′ be the graph obtained from G by
adding all possible edges from u0 to V1 \ (U ∪ W ). Then ρ(G′) > ρ(G). Since G is
extremal with respect to spex(n, tC2ℓ+1), G

′ must contain a subgraph H isomorphic to
tC2ℓ+1. From the construction of G′, we can further see that u0 ∈ V (C) for some (2ℓ+1)-
cycle C in H. Set H ′ = H − V (C). Then H ′ ⊆ G. Since dV1\(U∪W )(u0)  t(2ℓ+ 1) while
|H ′| = (t− 1)(2ℓ+1), there exists a vertex v0 with v0 ∈ NV1\(U∪W )(u0) and v0 /∈ V (H ′) in
G.
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Now setting R = V (H ′) in Lemma 17, and noticing that u0v0 is an edge within
V1 \ (U ∪W ∪R), we obtain that G− (U ∪W ∪R) contains a (2ℓ+ 1)-cycle C ′. Clearly,
V (C ′) ∩ V (H ′) = ∅. Therefore, C ′ ∪ H ′ is a copy of tC2ℓ+1 in G, which contradicts the
fact that G is tC2ℓ+1-free.

Lemma 21. For i ∈ {1, 2}, G[Vi \ (U ∪ W )] contains an independent set Ii with |Ii| >
|Vi \ (U ∪W )|− 2(t− 1)t(2ℓ+ 1).

Proof. Assume that νi = ν

G[Vi \ (U ∪W )]


for i ∈ {1, 2}. If νi = 0, then Vi \ (U ∪W )

is a desired independent set. Now assume that νi  1, and let u1u2, . . . , u2νi−1u2νi be νi
independent edges in G[Vi \ (U ∪W )]. Let

Ii =

Vi \ (U ∪W )


\

∪2νi

j=1 NVi\(U∪W )(uj)

.

Then, every vertex in Ii is not adjacent to any vertex in {u1, u2, . . . , u2νi}. Now, if G[Ii]
contains an edge, then ν


G[Vi \ (U ∪W )]


 νi + 1, a contradiction. Therefore, Ii is an

independent set.
From Lemma 20 we know that ∆


G[Vi\(U∪W )]


< t(2ℓ+1). Moreover, νi  ν  t−1

by Lemma 19. Thus, we can see that

|Vi \ (U ∪W )|− |Ii| = |∪2νi
j=1 NVi\(U∪W )(uj)|  2νi∆


G[Vi \ (U ∪W )]


< 2(t− 1)t(2ℓ+ 1).

The result follows.

In the following three lemmas, we will give exact characterizations of U and W . Recall
that X = (x1, . . . , xn)

T is a positive unit eigenvector of G, and xu∗ = max{xi | i ∈
V (G)}. Since |W |  1

2
ηn < n by Lemma 16, we may choose a vertex v∗ such that

xv∗ = max{xv | v ∈ V (G) \W}. We will see that v∗ /∈ U . Then

ρ(G)xu∗ =


v∈NW (u∗)

xv+


v∈NG−W (u∗)

xv 


v∈W

xv+


v∈V (G)\W

xv  |W |xu∗+(n− |W |)xv∗ .

Moreover, ρ(G) > n
2
by Lemma 13. It follows that

xv∗ 
ρ(G)− |W |
n− |W | xu∗  ρ(G)− |W |

n
xu∗ >

1

2


1− η


xu∗ . (8)

Since η < 1
75
, we have xv∗ >

2
5
xu∗ . On the other hand,

ρ(G)xv∗ =


v∈NW (v∗)

xv +


v∈NG−W (v∗)

xv  |W |xu∗ + dG(v
∗)xv∗ .

Combining with xv∗ >
2
5
xu∗ , ρ(G) > n

2
and |W |  1

2
ηn, we obtain

dG(v
∗)  ρ(G)− xu∗

xv∗
|W |  ρ(G)− 5

2
|W | >

1
2
− 5

4
η

n.
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Recall that U = {v ∈ V (G) | dG(v) 

1
2
− 4η


n}. Then v∗ /∈ U , and so v∗ ∈ V (G) \ (U ∪

W ).
Assume now that v∗ ∈ Vi∗ \ (U ∪W ) for some i∗ ∈ {1, 2}, and set i∗ ∈ {1, 2} \ {i∗}.

Then by Lemma 20, |NVi∗ (v
∗) \ (U ∪W )| < t(2ℓ+ 1). Thus,

ρ(G)xv∗ =


v∈NU∪W (v∗)

xv +


v∈NVi∗ (v
∗)\(U∪W )

xv +


v∈NVi∗
(v∗)\(U∪W )

xv

<

|W |xu∗ + |U |xv∗


+ t(2ℓ+ 1)xv∗ +



v∈Vi∗\(U∪W∪Ii∗ )

xv +


v∈Ii∗

xv



|W |xu∗ + |U |xv∗


+ (2t− 1)t(2ℓ+ 1)xv∗ +



v∈Ii∗

xv,

where Ii∗ is an independent set of G[Vi∗ \ (U ∪ W )] such that
Vi∗ \ (U ∪ W ∪ Ii∗)

 <
2(t− 1)t(2ℓ+ 1) (see Lemma 21). Subsequently,



v∈Ii∗

xv >

ρ(G)− |U |− (2t− 1)t(2ℓ+ 1)


xv∗ − |W |xu∗ . (9)

Lemma 22. We have U = ∅.

Proof. Suppose to the contrary that there exists u0 ∈ U . Let G′ be the graph obtained
from G by deleting edges incident to u0 and joining all possible edges from Ii∗ to u0.

We claim that G′ is tC2ℓ+1-free. Otherwise, G′ contains a subgraph H isomorphic to
tC2ℓ+1. From the construction of G′, we can see that H must contain a (2ℓ+ 1)-cycle C ′

with u0 ∈ V (C ′). Set H ′ = H − V (C ′). Then H ′ ⊆ G. Assume that NC′(u0) = {u1, u2},
then u1, u2 ∈ Ii∗ by the definition of G′. Since Ii∗ ⊆ Vi∗ \(U∪W ), we have u1, u2 /∈ U∪W .
By the definitions of U and W , we know that dG(uj) >


1
2
− 4η


n and dVi∗

(uj) < 2ηn for

j ∈ {1, 2}. Hence, |NVi∗ (u1)| = dG(u1) − dVi∗
(u1) >


1
2
− 6η


n. Similarly, |NVi∗ (u2)| >

1
2
− 6η


n. Moreover, |Vi∗ |  n

2
+ ηn by Lemma 14. It follows that

|NVi∗ (u1) ∩NVi∗ (u2)|  |NVi∗ (u1)|+ |NVi∗ (u2)|− |Vi∗ | >
1
2
− 13η


n.

Now, note that |H| = t(2ℓ + 1). Then |NVi∗ (u1) ∩ NVi∗ (u2)| > |H|, and hence we can
find a vertex u ∈


NVi∗ (u1) ∩NVi∗ (u2)


\ V (H). This implies that G− V (H ′) contains a

(2ℓ + 1)-cycle C ′′, which is obtained from C ′ by replacing {u0u1, u0u2} with {uu1, uu2}.
Hence, C ′′∪H ′ is a copy of tC2ℓ+1 in G, a contradiction. Therefore, the above claim holds.

Now, dG(u0)  (1
2
− 4η)n by the definition of U . Recall that ρ(G) > n

2
and |U |  ηn.

Then

ρ(G)− dG(u0)− |U | > 3ηn. (10)

Moreover,


v∈NG(u0)

xv =


v∈NW (u0)

xv +


v∈NG−W (u0)

xv  |W |xu∗ + dG(u0)xv∗ . (11)
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Recall that xv∗ >
2
5
xu∗ and |W |  1

2
ηn. Combining (9), (10) and (11), we get that



v∈Ii∗

xv−


v∈NG(u0)

xv 


v∈Ii∗

xv −

|W |xu∗ + dG(u0)xv∗



>

ρ(G)−dG(u0)−|U |−(2t− 1)t(2ℓ+ 1)


xv∗−2|W |xu∗

>

3ηn− (2t− 1)t(2ℓ+ 1)

2
5
xu∗ − ηnxu∗

>
1

10
ηnxu∗

for n sufficiently large. Thus,

ρ(G′)− ρ(G)  XT

A(G′)− A(G)


X = 2xu0

 

v∈Ii∗

xv −


v∈NG(u0)

xv


> 0,

contradicting the fact that G is extremal with respect to spex(n, tC2ℓ+1).

Lemma 23. For each v ∈ V (G), we have xv >
2
5
xu∗.

Proof. Recall that ρ(G) > n
2
and |W |  1

2
ηn. Then |W | < ηρ(G). Moreover, U = ∅ by

Lemma 22. Combining (9), we obtain that



v∈Ii∗

xv >

ρ(G)− (2t− 1)t(2ℓ+ 1)


xv0 − ηρ(G)xu∗ .

From (8) we know that xv∗ >
1
2


1− η


xu∗ . Thus, for n sufficiently large,



v∈Ii∗

xv >
1
2
− 2η


ρ(G)xu∗ .

Now, suppose to the contrary that there exists u0 ∈ V (G) such that xu0  2
5
xu∗ . Let

G′ be the graph obtained from G by deleting edges incident to u0 and joining all edges
from Ii∗ to u0. By a similar discussion as in the proof of Lemma 22, we claim that G′ is
tC2ℓ+1-free. However,



v∈Ii∗

xv−


v∈NG(u0)

xv =


v∈Ii∗

xv − ρ(G)xu0 >


1

2
− 2η − 2

5


ρ(G)xu∗ > 0,

which implies that

ρ(G′)− ρ(G)  XT

A(G′)− A(G)


X = 2xu0

 

v∈Ii∗

xv −


v∈NG(u0)

xv


> 0,

contradicting the fact that G is extremal with respect to spex(n, tC2ℓ+1).
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Lemma 24. |W | = t− 1 and ν = 0.

Proof. Note that U = ∅. By Lemma 19, ν = ν(∪2
i=1G[Vi \ W ])  t − 1; and if ν  1,

then G−W contains ν vertex-disjoint (2ℓ+ 1)-cycles C1, C2, . . . , Cν .
We first claim that |W |  t−1−ν. Otherwise, |W |  t−ν. Let R0 = {u1, u2, . . . , ut−ν}

be a subset of W . Furthermore, we define R1 = R0 \{u1} if ν = 0; and R1 = (R0 \{u1})∪
(∪ν

i=1V (C i)) if ν  1. Then |R1|  (t− 1)(2ℓ+ 1). By Lemma 18, G−

(W ∪R1) \ {u1}



contains a (2ℓ+1)-cycle Cν+1, where V (Cν+1)∩R0 ⊆ {u1}. If t− ν  2, then we further
define R2 =


R1 \ {u2}


∪ V (Cν+1). Clearly, |R2|  (t − 1)(2ℓ + 1). Again by Lemma

18, G −

(W ∪ R2) \ {u2}


contains a (2ℓ + 1)-cycle Cν+2, where V (Cν+2) ∩ R0 ⊆ {u2}.

Repeating the above steps, we obtain a sequence of vertex subsets R1, R2, . . . , Rt−ν with
Rj =


Rj−1 \ {uj}


∪

∪j−1

k=1 V (Cν+k)

and |Rj|  (t − 1)(2ℓ + 1) such that G −


(W ∪

Rj) \ {uj}

contains a (2ℓ + 1)-cycle Cν+j for each j ∈ {1, . . . , t − ν}. Furthermore,

V (Cν+j) ∩ R0 ⊆ {uj} for 1  j  t − ν. Thus we can observe that C1, C2, . . . , Ct are
vertex-disjoint, which contradicts the fact that G is tC2ℓ+1-free.

Now define H = ∪2
i=1G[Vi \W ]. Then ν(H) = ν. We further claim that

e(H)  (t− 1)(2tℓ+ t+ 1). (12)

The case ν = 0 is trivial. Assume that ν  1. By Lemma 20, ∆(H) < t(2ℓ + 1). Recall
that f(ν,∆) = max{e(G) | ν(G)  ν,∆(G)  ∆}, and by Lemma 5 f(ν,∆)  ν(∆+ 1).
Thus,

e(H)  f

ν(H),∆(H)


 f(ν, t(2ℓ+ 1))  ν · (2tℓ+ t+ 1).

Note that ν  t− 1. Therefore, (12) holds.
Note that |W |  t−1−ν  t−1. It suffices to prove |W | = t−1, as it implies that ν = 0.

Suppose to the contrary that |W |  t−2. Take S ⊆ V1\W with |S| = t−1−|W |, and letG′

be the graph obtained from G by deleting all edges in E(H) and adding all possible edges
from S to V1 \ (W ∪S). Clearly, G′ is a spanning subgraph of K|W∪S| +K|V1\(W∪S)|,|V2\W |.
Since |W ∪ S| = t− 1, G′ contains at most t− 1 vertex-disjoint odd cycles, and so G′ is
tC2ℓ+1-free.

Recall that |V1|  1
2
n−ηn, and by Lemma 23, xv >

2
5
xu∗ for each v ∈ V (G). Combining

(12), we have

ρ(G′)− ρ(G)  XT

A(G′)− A(G)


X 



u∈S,v∈V1\(W∪S)

2xuxv −


uv∈E(H)

2xuxv

 |S|
n
2
−ηn−t+ 1

 8

25
x2
u∗−(t− 1)(2tℓ+t+1)2x2

u∗

> 0,

contradicting the fact that G is an extremal graph with respect to spex(n, tC2ℓ+1).

In the following, we complete the proof of Theorem 2.

Proof. Recall that G∗ = Kt−1 + Tn−t+1,2 and we shall prove G ∼= G∗. We first look for a
(t − 1)-clique in which each vertex is adjacent to all other vertices of G. By Lemma 24,
we know that |W | = t− 1. It suffices to show that dG(u) = n− 1 for each u ∈ W .
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Suppose to the contrary that there exists a vertex u ∈ W with d(u) < n − 1. Then
we can select a non-neighbor v of u in G. Let G′ = G+ {uv}. Then ρ(G′) > ρ(G). Since
G is extremal with respect to spex(n, tC2ℓ+1), G

′ contains a subgraph H isomorphic to
tC2ℓ+1, where uv ∈ E(H). More precisely, H contains a (2ℓ+1)-cycle C with uv ∈ V (C).
Set H ′ = H−V (C). Then H ′ ⊆ G, and by Lemma 18, G−


(W ∪V (H ′))\{u}


contains

a (2ℓ + 1)-cycle C ′. Since u /∈ V (H ′), H ′ ∪ C ′ is a copy of tC2ℓ+1 in G, a contradiction.
Therefore, dG(u) = n− 1 for each u ∈ W .

Let |Vi \W | = ni for i ∈ {1, 2}. Assume without loss of generality that n1  n2. By
Lemma 24, ν = ν(∪2

i=1G[Vi \W ]) = 0, and thus G −W ⊆ Kn1,n2 . Since G is extremal,
we have G − W ∼= Kn1,n2 . To show G ∼= G∗, it suffices to show G − W ∼= Tn−t+1,2, or
equivalently, n1 − n2  1.

Suppose to the contrary that n1  n2 + 2. By symmetry, we may assume xu = xi for
each u ∈ Vi \W and i ∈ {1, 2}. Moreover, let xu = x3 for each u ∈ W . Thus,

ρ(G)x1 = n2x2 + (t− 1)x3, ρ(G)x2 = n1x1 + (t− 1)x3,

and ρ(G)x3 = n1x1 + n2x2 + (t− 2)x3. It follows that

x1 =
ρ(G) + 1

ρ(G) + n1

x3 and x2 =
ρ(G) + 1

ρ(G) + n2

x3. (13)

Select u0 ∈ V1 \W . Let G′′ be the graph obtained from G by deleting edges from u0 to
V2 \W and adding all edges from u0 to V1 \ (W ∪ {u0}). Then G′′ ∼= Kt−1 +Kn1−1,n2+1,
and thus G′′ is still tC2ℓ+1-free. Moreover,

ρ(G′′)− ρ(G) 


v∈V1\(W∪{u0})

2xu0xv −


v∈V2\W

2xu0xv = 2x1


(n1 − 1)x1 − n2x2


.

In view of (13), we have

(n1 − 1)x1 − n2x2 =
(ρ(G) + 1) ((n1 − n2 − 1)ρ(G)− n2)

(ρ(G) + n1)(ρ(G) + n2)
x3 > 0,

since n1  n2 + 2 and ρ(G) > n
2
> n2. It follows that ρ(G′′) > ρ(G), a contradiction.

Therefore, n1 − n2  1 and G ∼= Kt−1 + Tn−t+1,2. This completes the proof.

5 Proof of Theorem 3

In this section, we will often assume that n is sufficiently large without saying so explicitly.
We first give the lower and upper bounds of ρ(S+

n,ℓ) and ρ(S++
n,ℓ ).

Lemma 25. For fixed ℓ and sufficiently large n, we have

(i) ρ(S++
n,ℓ )  ρ(S+

n,ℓ) 
ℓ−1+

√
(ℓ−1)2+4ℓ(n−ℓ)

2


√
ℓn if ℓ  2;

(ii) ρ(S++
n,ℓ ) 


ℓ+ 1

4ℓ


n if ℓ  1.
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Proof. (i) From [26, p. 2246] we obtain ρ(Sn,ℓ) =
ℓ−1+

√
(ℓ−1)2+4ℓ(n−ℓ)

2
. Since Sn,ℓ ⊆ S+

n,ℓ ⊆
S++
n,ℓ , the inequality holds obviously for ℓ  2.
(ii) By the Perron-Frobenius theorem, there exists a positive unit eigenvector X =

(x1, . . . , xn)
T corresponding to ρ, where ρ = ρ(S++

n,ℓ ). Let W be the set of dominating

vertices in S++
n,ℓ , andW = V (S++

n,ℓ )\W . Choose u0 ∈ W and v0 ∈ W with xu0 = maxu∈W xu

and xv0 = maxv∈W xv. Note that |W | = ℓ. Then, ρxu0  (ℓ − 1)xu0 + (n − ℓ)xv0 and
ρxv0  ℓxu0 + xv0 . Combining these two inequalities, we obtain

(ρ− ℓ+ 1)(ρ− 1)  (n− ℓ)ℓ.

If ρ >


ℓ+ 1
4ℓ


n, then (ρ − ℓ + 1)(ρ − 1) > (n − ℓ)ℓ, a contradiction. Thus, ρ 


ℓ+ 1

4ℓ


n.

Recall that ℓ  2 in Theorem 3. We shall proceed the proof by induction on t. When
t = 1, the result holds immediately by [6, 22, 34]. In the following, we assume that t  2.

For convenience, set λ = ℓt − 1, then λ  2ℓ − 1. Let G be an extremal graph with
respect to spex(n, tC2ℓ). Clearly, G is connected. By the Perron-Frobenius theorem,
there exists a positive unit eigenvector X = (x1, . . . , xn)

T corresponding to ρ(G). Choose
u∗ ∈ V (G) with xu∗ = max{xi | i = 1, 2, . . . , n}. For a vertex u and a positive integer i,
let Ni(u) denote the set of vertices at distance i from u in G. By the induction hypothesis,
we obtain that for n′ sufficiently large,

spex

n′, (t− 1)C2ℓ


=


ρ(S++

n′,λ−ℓ) if ℓ = 2,

ρ(S+
n′,λ−ℓ) if ℓ  3.

(14)

We then show that for each u ∈ V (G), G− {u} contains t− 1 vertex-disjoint copies of
C2ℓ through Lemmas 26 and 27. This will be used to bound ρ(G) in Lemma 29, to bound

v∈V (G) d
2
G(v) in Lemma 30 and to prove a key property in Lemma 31.

Lemma 26. Let H be a graph on n− 1 vertices. Then ρ(H)  ρ(K1 +H)− n−1
ρ(K1+H)

.

Proof. Let V (H)∪ {u} be the vertex set of K1+H. Set ρ := ρ(K1+H) and let Y = (yu)
be an eigenvector to ρ. Using the Rayleigh quotient gives

ρ =
2


uv∈E(K1+H) yuyv
u∈V (K1+H) y

2
u

=
2


uv∈E(H) yuyv + 2yu


u∈V (H) yu

y2u +


u∈V (H) y
2
u

. (15)

Since ρyu =


u∈V (H) yu, we have yu


u∈V (H) yu = ρy2u = 1
ρ


u∈V (H) yu

2
. Thus by (15),

we obtain

2


uv∈E(H)

yuyv = ρ


u∈V (H)

y2u − ρy2u = ρ


u∈V (H)

y2u −
1

ρ

 

u∈V (H)

yu

2

.
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By the Cauchy-Schwarz inequality we have


u∈V (H) yu
2  (n − 1)


u∈V (H) y

2
u. It

follows that

ρ(H) 
2


uv∈E(H) yuyv
u∈V (H) y

2
u

 ρ− n− 1

ρ
,

as desired.

Lemma 27. For every vertex u ∈ V (G), G− {u} contains t− 1 vertex-disjoint 2ℓ-cycles.

Proof. Suppose to the contrary that there exists a vertex u such that G−{u} is (t−1)C2ℓ-
free. Then ρ(G− {u})  spex


n− 1, (t− 1)C2ℓ


. It follows from (14) that

ρ

G− {u}


 ρ


S++
n−1,λ−ℓ


, (16)

as ρ(S+
n−1,λ−ℓ)  ρ(S++

n−1,λ−ℓ).

Recall that t, ℓ  2 and λ  2ℓ − 1  3. We can easily check that
√
λ − 1√

λ
>

λ− ℓ+ 1
4(λ−ℓ)

. By Lemma 25 (ii), we further have

√
λn− n√

λn
>


λ− ℓ+

1

4(λ− ℓ)


n  ρ(S++

n,λ−ℓ) > ρ(S++
n−1,λ−ℓ). (17)

On the one hand, u is a dominating vertex of G. Otherwise, there exists a vertex v
not adjacent to u. Let G∗ be the graph obtained from G by adding the edge uv. Since
G∗ − {u} = G− {u}, G∗ − {u} is also (t− 1)C2ℓ-free, and thus G∗ is tC2ℓ-free. However,
G ⊂ G∗ indicates that ρ(G) < ρ(G∗), contradicting the fact that G is extremal with
respect to spex(n, tC2ℓ).

On the other hand, notice that S+
n,λ is tC2ℓ-free, then ρ(G)  ρ(S+

n,λ), and so ρ(G) √
λn by Lemma 25 (i). Since u is a dominating vertex ofG, one can seeG ∼= K1+(G−{u}).

Combining ρ(G) 
√
λn and (17) with Lemma 26, we have

ρ

G− {u}


 ρ(G)− n− 1

ρ(G)


√
λn− n√

λn
> ρ


S++
n−1,λ−ℓ


,

which contradicts (16). Therefore, the lemma holds.

Lemma 28. For every vertex u ∈ V (G) and every subset W0 ⊆ V (G), we have e(N1(u)) 
(2λ− 3

2
)|N1(u)| and e(N1(u), N2(u) ∩W0)  (2λ− 1

2
)(|N1(u)|+ |N2(u) ∩W0|).

Proof. By Lemma 27, G− {u} contains t− 1 vertex-disjoint 2ℓ-cycles, say C1, . . . , Ct−1.
Let V ′ = ∪t−1

j=1V (Cj) and G′ = G − V ′. Then G′ is C2ℓ-free. Set N ′
i(u) = Ni(u) \ V ′ for

i ∈ {1, 2}. Clearly, G′[N ′
1(u)] is P2ℓ−1-free. By Lemma 9, e(N ′

1(u))  (ℓ − 3
2
)|N ′

1(u)| 
(ℓ− 3

2
)|N1(u)| and so

e

N1(u)


 e


N ′

1(u)

+ |N1(u) ∩ V ′||N1(u)| 


ℓ− 3

2
+ 2ℓ(t− 1)


|N1(u)|



2λ− 3

2


|N1(u)|,
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as ℓ  2 and λ = ℓt−1. Clearly, the bipartite subgraph G′[N ′
1(u), N

′
2(u)∩W0] is P2ℓ+1-free

(otherwise, we can find a P2ℓ−1 with both endpoints in N ′
1(u) and thus a C2ℓ in G′). By

Lemma 9, e(N ′
1(u), N

′
2(u) ∩W0)  (ℓ − 1

2
)(|N1(u)| + |N2(u) ∩W0|). Since N1(u) \ N ′

1(u)
and (N2(u) ∩W0) \ (N ′

2(u) ∩W0) are two subsets of V ′, we have

e

N1(u), N2(u) ∩W0


 e


N ′

1(u), N
′
2(u) ∩W0


+ |V ′|(|N1(u)|+ |N2(u) ∩W0|)



ℓ− 1

2
+ 2ℓ(t− 1)


(|N1(u)|+ |N2(u) ∩W0|)



2λ− 1

2


|N1(u)|+ |N2(u) ∩W0|


,

completing the proof.

Lemma 29.
√
λn  ρ(G) 

√
6λn.

Proof. Recall that S+
n,λ is tC2ℓ-free and G is a spectral extremal graph. Then ρ(G) 

ρ(S+
n,λ), and the lower bound follows from Lemma 25 (i). We then prove the upper

bound. Note that

ρ2(G)xu∗ =


u∈N1(u∗)



w∈N1(u)

xw  |N1(u
∗)|xu∗ + 2e


N1(u

∗)

xu∗ + e


N1(u

∗), N2(u
∗)

xu∗ .

Setting u = u∗ and W0 = N2(u
∗) in Lemma 28, we obtain ρ2(G) 


6λ− 5

2


n  6λn.

In [25], Nikiforov studied an extremal problem on degree power, which is an extension
of Turán’s problem. Nikiforov showed that


u∈V (H) d

2
H(u)  2(ℓ−1)e(H)+(ℓ−1)(|H|−

1)|H| for every C2ℓ-free graph H. Inspired by this result, we obtain the following one on
tC2ℓ-free graphs.

Lemma 30. We have e(G)  ℓn1+ 1
ℓ and


v∈V (G) d

2
G(v) < 2λn2.

Proof. From the above definition of G′, we know that |G′| = n − 2ℓ(t − 1) and G′ is
C2ℓ-free. By Lemma 10, we have

e(G′)  ex

n− 2ℓ(t− 1), C2ℓ


 (ℓ− 1)(n− 2ℓ(t− 1))1+

1
ℓ + 16(ℓ− 1)n.

It follows that

e(G)  e(G′) +


v∈V ′

dG(v)  e(G′) + 2ℓ(t− 1)n  ℓn1+ 1
ℓ . (18)

Hence, the first statement holds. For an arbitrary vertex u ∈ V (G),


v∈N1(u)

dG(v) = |N1(u)|+ 2e

N1(u)


+ e


N1(u), N2(u)


.

Combining this with Lemma 28, where W0 is chosen as N2(u), we get that



v∈N1(u)

dG(v) < (4λ− 2)|N1(u)|+

2λ− 1

2


n.
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Summing the above inequality over all vertices u ∈ V (G) and using (18), we obtain



u∈V (G)



v∈N1(u)

dG(v) < (4λ− 2)


u∈V (G)

dG(u) +

2λ− 1

2


n2

= (8λ− 4)e(G) +

2λ− 1

2


n2

< 2λn2.

Observe that


v∈V (G) d
2
G(v) =


u∈V (G)


v∈N1(u)

dG(v). Hence, the second statement
follows.

Choose a positive constant η < 1
20000λ5 , and define W = {u ∈ V (G) | xu  ηxu∗}.

We shall give an upper bound for |W | and a lower bound for degrees of vertices in W

(see Lemmas 33 and 34). However, we are in trouble when ℓ = 2 as ex(n, tC4) = Θ(n
3
2 ).

Hence, we prove a special structural property as follows.

Lemma 31. For ℓ = 2, we have ∆(G)  (1− η
40λ

)n.

Proof. Set α = 1 − η
40λ

and suppose to the contrary that ∆(G) < αn. Specially, we
have dG(u

∗) < αn. By Lemma 27, G− {u∗} contains t− 1 vertex-disjoint quadrilaterals
C1, . . . , Ct−1. Given an arbitrary i ∈ {1, 2, . . . , t− 1}, we assume that V (C i) = {uij | j =
1, 2, 3, 4}. We then define Mi = {uij1 , uij2} if there exist two distinct vertices uij1 , uij2 ∈
V (C i) with |N1(uij1) ∩ N1(uij2)|  (1 − α)n, and Mi = V (C i) otherwise. Furthermore,
set M := ∪t−1

i=1Mi.
If Mi = {uij1 , uij2} for some uij1 , uij2 ∈ V (C i), then e


Mi, V (G − M)


 dG(uij1) +

dG(uij2) < 2αn. If Mi = V (C i), then

e

Mi, V (G−M)




∪4
j=1N1(uij)

+


1j1<j24

N1(uij1)∩N1(uij2)
 < n+6(1−α)n < 2αn,

where the last inequality follows from a = 1− η
40λ

> 7
8
. Hence, we always have

e

M,V (G−M)


=

t−1

i=1

e

Mi, V (G−M)


< 2(t− 1)αn. (19)

Now, we will see that G−M is C4-free. Otherwise, let Ct be a 4-cycle in G−M . If
M1 = V (C1), then we define a 4-cycle C1 = C1, where V ( C1) ∩ V ( Ct) = ∅ obviously. If
M1 = {u1j1 , u1j2} for some u1j1 , u1j2 ∈ V (C1), then |N1(u1j1) ∩N1(u1j2)|  (1− α)n, and

thus there exists a 4-cycle C1 = u1j1v1u1j2w1u1j1 such that v1, w1 /∈ M ∪V ( Ct). Similarly,

if M2 = V (C2), then we define C2 = C2; otherwise, M2 = {u2j1 , u2j2}, then we can

find a 4-cycle C2 = u2j1v2u2j2w2u2j1 such that v2, w2 /∈ M ∪ V ( C1) ∪ V ( Ct). Repeating

the above steps, we obtain a sequence of vertex-disjoint 4-cycles C1, · · · , Ct−1 such that
V ( C i) ∩ V ( Ct) = ∅ for 1  i  t− 1. Consequently, we obtain t vertex-disjoint 4-cycles
in G, a contradiction. Therefore, G−M is C4-free.
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We know that

ρ2(G)xu∗ =


v∈N1(u∗)

ρ(G)xv =


v∈N1(u∗)



w∈N1(v)

xw. (20)

In the following, we have to distinguish (20) into three cases. Let Ni(v) be the set of

vertices at distance i from a vertex v in G−M . Then u∗ ∈ V (G−M) and Ni(u
∗) ⊆ Ni(u

∗)
for i ∈ {1, 2}.

Case (i) We have w ∈ M . We shall evaluate


v∈N1(u∗)


w∈N1(v)∩M xw. Note that

N1(u
∗) \M = N1(u

∗). On the one hand,


v∈N1(u∗)\M


w∈N1(v)∩M xw  e
 N1(u

∗),M

xu∗ .

On the other hand,


v∈N1(u∗)∩M



w∈N1(v)∩M

xw  2e(M)xu∗  2


|M |
2


xu∗ < (1− α)nxu∗ ,

as |M |  4(t− 1). Thus we have


v∈N1(u∗)



w∈N1(v)∩M

xw <

e
 N1(u

∗),M

+ (1− α)n


xu∗ . (21)

Case (ii) Both w and v belong to G−M . We shall evaluate


v∈ N1(u∗)


w∈ N1(v)

xw.

Clearly, N1(v) ⊆ {u∗}∪ N1(u
∗)∪ N2(u

∗) for v ∈ N1(u
∗). Since G−M is C4-free, vertices in

N1(u
∗) have no common neighbors in N2(u

∗), which implies that

e
 N1(u

∗), N2(u
∗)

= | N2(u

∗)|. Hence,


v∈ N1(u∗)



w∈ N1(v)∩ N2(u∗)

xw  e
 N1(u

∗), N2(u
∗)

xu∗ = | N2(u

∗)|xu∗ .

Since G−M is C4-free, there also exits no P3 within N1(u
∗). Thus,



v∈ N1(u∗)



w∈ N1(v)∩ N1(u∗)

xw 


v∈ N1(u∗)

xv 


v∈N1(u∗)

xv = ρ(G)xu∗ .

Observe that


w∈ N1(v)
xw = xu∗ +


w∈ N1(v)∩ N1(u∗) xw +


w∈ N1(v)∩ N2(u∗) xw for each v ∈

N1(u
∗). Combining above two inequalities, we obtain


v∈ N1(u∗)



w∈ N1(v)

xw 

| N1(u

∗)|+ | N2(u
∗)|+ ρ(G)


xu∗ <


n− |M |+ ρ(G)


xu∗ . (22)

Case (iii) w belongs to G − M but v ∈ M . We shall calculate the term
v∈N1(u∗)∩M


w∈N1(v)\M xw. Now set N2+(u

∗) := V (G − M) \

{u∗} ∪ N1(u

∗)

. We can

observe that


v∈N1(u∗)∩M



w∈N1(v)\M

xw =


v∈N1(u∗)∩M


xu∗ +



w∈N1(v)∩ N1(u∗)

xw +


w∈N1(v)∩ N2+ (u∗)

xw






v∈M


xu∗ +



w∈N1(u∗)

xw +


w∈ N2+ (u∗)

xw



 |M |

1 + ρ(G)


xu∗ + e

 N2+(u
∗),M


xu∗ . (23)
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Summing (21), (22) and (23) into (20), we obtain

ρ2(G) < (|M |+ 1)ρ(G) + (2− α)n+ e

V (G−M),M


.

Note that |M |  4(t − 1), and by Lemma 29, ρ(G) 
√
6λn. Thus, (|M | + 1)ρ(G) 

(4t−3)
√
6λn < (1−α)n. Moreover, e


V (G−M),M


< 2(t−1)αn by (19). Consequently,

ρ2(G) <

3 + (2t− 4)α


n  (2t− 1)n,

as t  2 and α = 1− η
40λ

< 1. However, by Lemma 29 we have ρ2(G)  λn = (ℓt− 1)n 
(2t− 1)n, a contradiction, Therefore, ∆(G)  αn, completing the proof.

Lemma 32. Let W ′ = {u ∈ V (G) | xu  η
5
xu∗}. Then |W ′|  η

20λ
n.

Proof. We first consider the case ℓ  3. By Lemma 29, ρ(G) 
√
λn. Hence,

√
λn

η

5
xu∗ 

√
λnxu  ρ(G)xu =



v∈N1(u)

xv  dG(u)xu∗

for each u ∈ W ′. Summing this inequality over all vertices u ∈ W ′, we obtain

|W ′|
√
λn

η

5
xu∗ 



u∈W ′

dG(u)xu∗ 


u∈V (G)

dG(u)xu∗  2e(G)xu∗ . (24)

Combining (18) and (24), we get |W ′|  10ℓn1+1
ℓ√

λnη
 η

20λ
n for n large enough.

Now, there remains the case ℓ = 2. By Lemma 31, there exists a vertex v∗ ∈ V (G)
with dG(v

∗)  (1− η
40λ

)n. Hence,

|W ′ \N1(v
∗)|  |V (G) \N1(v

∗)| = n− dG(v
∗)  η

40λ
n.

Let W ∗ = {v ∈ N1(v
∗) | xv 

√
6λn−0.4xu∗}. Note that ρ(G) 

√
6λn by Lemma 29.

Thus W ∗√6λn−0.4xu∗ 


v∈N1(v∗)

xv = ρ(G)xv∗ 
√
6λnxu∗ ,

yielding |W ∗|  n0.9  η
40λ

n. Since η
5
xu∗ >

√
6λn−0.4xu∗ , we have W ′ ∩N1(v

∗) ⊆ W ∗, and
so |W ′ ∩ N1(v

∗)|  |W ∗|  η
40λ

n. Combining |W ′ \ N1(v
∗)|  η

40λ
n gives |W ′|  η

20λ
n, as

claimed.

Lemma 33. |W |  128λ3

η2
.

Proof. We first prove that dG(u) >
η
8λ
n for each u ∈ W . Suppose to the contrary that

there exists a vertex u ∈ W with dG(u)  η
8λ
n. Then xu  ηxu∗ as u ∈ W , and by Lemma

29 ρ(G) 
√
λn. Thus we have

ηλnxu∗  ρ2(G)xu = |N1(u)|xu +


u∈N1(u)

dN1(u)(u)xu +


u∈N2(u)

dN1(u)(u)xu. (25)
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By Lemma 28, we have e(N1(u))  (2λ− 3
2
)|N1(u)|. Note that |N1(u)|  η

8λ
n. Thus,

|N1(u)|xu +


u∈N1(u)

dN1(u)(u)xu 

|N1(u)|+ 2e(N1(u))


xu∗  (4λ− 2)|N1(u)|xu∗  1

2
ηnxu∗ .

Combining the above inequality with (25), we obtain



u∈N2(u)

dN1(u)(u)xu  (λ− 1

2
)ηnxu∗ . (26)

Now, setting u = u and W0 = W ′ in Lemma 28, we have

e

N1(u), N2(u) ∩W ′ 


2λ− 1

2


|N1(u)|+ |N2(u) ∩W ′|


 2λ


|N1(u)|+ |W ′|


.

Since |N1(u)|  η
8λ
n, and |W ′|  η

20λ
n by Lemma 32, it follows that



u∈N2(u)∩W ′

dN1(u)(u)xu  e

N1(u), N2(u) ∩W ′xu∗  7

20
ηnxu∗ . (27)

Note that xu < η
5
xu∗ for each u ∈ V (G) \ W ′. Setting u = u and W0 = V (G) \ W ′ in

Lemma 28, we get e

N1(u), N2(u) \W ′  (2λ− 1

2
)n. Consequently,



u∈N2(u)\W ′

dN1(u)(u)xu  e

N1(u), N2(u) \W ′η

5
xu∗  (2λ− 1

2
)n

η

5
xu∗ .

Combining (27) gives



u∈N2(u)

dN1(u)(u)xu 
 7

20
+

4λ− 1

10


ηnxu∗ < (λ− 1

2
)ηnxu∗

as λ = ℓt− 1 > 5
4
, contradicting (26). Therefore, dG(u) >

η
8λ
n for each u ∈ W . It follows

that


u∈V (G) d
2
G(u) 


u∈W d2G(u)  |W |


η
8λ
n
2
. Moreover,


u∈V (G) d

2
G(u) < 2λn2 by

Lemma 30. Thus, |W |  128λ3

η2
, as claimed.

Lemma 34. For each u ∈ W , we have dG(u) 


xu

xu∗
− 20η


n.

Proof. Let u be an arbitrary vertex in W . For convenience, we use Wi and Wi instead of
Ni(u)∩W and Ni(u)\W , respectively. By Lemma 28, max{e(N1(u)), e(N1(u), N2(u))} 
2λn. Since Wi ∪Wi = Ni(u) for i ∈ {1, 2}, we can see that

max{e(W1), e(W1,W1), e(W1,W2), e(W1,W2)}  2λn. (28)

Recall that ρ(G) 
√
λn. We also have

λnxu  ρ2(G)xu =


v∈N1(u)



w∈N1(v)

xw = |N1(u)|xu +


v∈N1(u)



w∈N1(v)\{u}

xw. (29)
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Note that N1(u) = W1 ∪W1 and for any v ∈ N1(u),

N1(v) \ {u} = N1(v) ∩

N1(u) ∪N2(u)


= N1(v) ∩ (W1 ∪W1 ∪W2 ∪W2).

We now calculate the term


v∈N1(u)


w∈N1(v)\{u} xw in (29). We first consider the

case v ∈ W1. Note that xw  xu∗ for w ∈ W1 ∪ W2 and xw  ηxu∗ for w ∈ W1 ∪ W2.
Thus,



v∈W1



w∈N1(v)\{u}

xw 

2e(W1) + e(W1,W2)


xu∗ +


e(W1,W1) + e(W1,W2)


ηxu∗ .

On the one hand, |W | < 128λ3

η2
by Lemma 33. Note that W1 ∪W2 ⊆ W . Thus, 2e(W1) +

e(W1,W2)  2
|W |

2


 ηλn. On the other hand, we have e(W1,W1) + e(W1,W2)  4λn by

(28). Therefore,


v∈W1



w∈N1(v)\{u}

xw  5ληnxu∗ . (30)

Now, we consider the case v ∈ W1. We can see that


v∈W1



w∈N1(v)\{u}

xw 


v∈W1



w∈N1(v)∩(W1∪W2)

xw +


v∈W1



w∈N1(v)∩(W1∪W2)

xw

 e(W1,W1 ∪W2)xu∗ +

2e(W1) + e(W1,W2)


ηxu∗

 e(W1,W1 ∪W2)xu∗ + 6ληnxu∗ , (31)

where the last inequality follows from (28).

In the following, we shall evaluate e(W1,W1 ∪ W2). Let W1
′
be the subset of W1 in

which each vertex has at least λ neighbors in W1 ∪ W2. If |W1 ∪ W2|  λ − 1, then

|W1
′| = 0. If |W1 ∪ W2|  λ, then we claim that |W1

′| < (λ + 1)
|W1∪W2|

λ


. Otherwise,

since there are only
|W1∪W2|

λ


options for all vertices in W1

′
to choose a set of λ neighbors

from W1 ∪W2, we can find λ vertices in W1 ∪W2 with at least |W1
′|/

|W1∪W2|
λ


 λ + 1

common neighbors in W1
′
. Moreover, note that u /∈ W1 ∪ W2 and W1

′ ⊆ W1 ⊆ N1(u).
Hence, G contains a copy of Kλ+1,λ+1, and thus t vertex-disjoint 2ℓ-cycles, a contradiction.

Therefore, we always have |W1
′| < (λ+ 1)

|W1∪W2|
λ


 (λ+ 1)

|W |
λ


.

By Lemma 33, |W | is constant. Now |W1
′| is also constant. Thus, |W1

′||W1 ∪W2| 
9ληn. Moreover, from the definition of W1

′
we know e(W1 \W1

′
,W1∪W2)  (λ− 1)|W1 \

W1
′|. Thus

e(W1,W1 ∪W2)  e(W1
′
,W1 ∪W2) + e(W1 \W1

′
,W1 ∪W2)  9ληn+ (λ− 1)|N1(u)|. (32)

Back to (31), we obtain


v∈W1


w∈N1(v)\{u} xw 


15ληn+(λ−1)|N1(u)|


xu∗ . Combining

this with (29) and (30), we get that

λnxu  |N1(u)|xu + 20ληnxu∗ + (λ− 1)|N1(u)|xu∗ 

20ληn+ λ|N1(u)|


xu∗ ,

which yields |N1(u)| 


xu

xu∗
− 20η


n, as desired.
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Now, we define W ′′ = {u ∈ V (G) | xu  5000λ4ηxu∗}. Recall that η < 1
20000λ5 and

W = {u ∈ V (G) | xu  ηxu∗}. Clearly, u∗ ∈ W ′′ and W ′′ ⊆ W.

Lemma 35. For every v ∈ W ′′, we have xv  (1 − 1
200λ3 )xu∗ and dG(v)  (1 − 1

100λ3 )n.
Moreover, we have |W ′′| = λ.

Proof. Suppose to the contrary that there exists v0 ∈ W ′′ with xv0 < (1− 1
200λ3 )xu∗ . We

use Wi and Wi to denote Ni(u
∗) ∩W and Ni(u

∗) \W , respectively. We first prove that
|W1 ∩N1(v0)|  4000λ4ηn. By Lemma 34, we have

|N1(u
∗)|  (1− 20η)n and |N1(v0)|  (5000λ4η − 20η)n,

as xv0  5000λ4ηnxu∗ . Moreover, by Lemma 33, we have |W |  128λ3

η2
 10ηn. Hence,

|W1| = |N1(u
∗) \W |  (1− 30η)n, and so

W1 ∩N1(v0)
 

W1

+
N1(v0)

− n  (5000λ4η − 50η)n > 4000λ4ηn. (33)

In view of (33), v0 has neighbors in W1. Then v0 is of distance at most two from u∗,
that is, v0 ∈ N1(u

∗)∪N2(u
∗). Note that v0 ∈ W ′′ ⊆ W . Thus, v0 ∈ W1 ∪W2. Recall that

xv0 < (1− 1
200λ3 )xu∗ . Now, setting u = u∗ in (29)-(31), we can observe that

λnxu∗  |N1(u
∗)|xu∗ + 11ληnxu∗ + e


W1, (W1 ∪W2) \ {v0}


xu∗ + e


W1, {v0}


xv0

< |N1(u
∗)|xu∗ + 11ληnxu∗ + e


W1, (W1 ∪W2)


xu∗ − e


W1, {v0}

 xu∗

200λ3
,

where e(W1,W1 ∪W2)  9ληn+ (λ− 1)|N1(u
∗)| by (32). Thus,

λn  λ|N1(u
∗)|+ 20ληn−

e

W1, {v0}



200λ3
< λn+ 20ληn−

e

W1, {v0}



200λ3
.

Consequently, e

W1, {v0}


< 4000λ4ηn, contradicting (33). Thus xv  (1− 1

200λ3 )xu∗ for
v ∈ W ′′.

Recall that η < 1
20000λ5 . Then by Lemma 34, we can see that for each v ∈ W ′′,

dG(v) 
 xv

xu∗
− 20η


n 


1− 1

200λ3
− 20η


n 


1− 1

100λ3


n.

It remains to show |W ′′| = λ. We first suppose that |W ′′|  λ + 1. Note that every
v ∈ W ′′ has at most n

100λ3 non-neighbors. It follows that any λ + 1 vertices in W ′′ have

at least n− (λ+1)n
100λ3  λ+1 common neighbors. Thus, G contains Kλ+1,λ+1 as a subgraph.

Recall that λ = ℓt− 1. Thus G also contains tC2ℓ, a contradiction. Therefore, |W ′′|  λ.
Next, suppose that |W ′′|  λ− 1. Since u∗ ∈ W ′′ \ (W1 ∪W2), we have |W ′′ ∩ (W1 ∪

W2)|  λ − 2, and so e(W1, (W1 ∪ W2)) ∩ W ′′  (λ − 2)n. On the other hand, setting
u = u∗ and W0 = N2(u

∗) in Lemma 28, we get e(N1(u
∗))+e(N1(u

∗), N2(u
∗))  (4λ−2)n,

and thus

e

W1, (W1 ∪W2) \W ′′  e


W1,W1


+ e


W1,W2



 e(N1(u
∗)) + e(N1(u

∗), N2(u
∗))  (4λ− 2)n.
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Recall that xw  5000λ4ηxu∗ if and only if w ∈ W ′′. Now, setting u = u∗, xw  xu∗

for w ∈ (W1 ∪W2) ∩W ′′ and xw < 5000λ4ηxu∗ for w ∈ (W1 ∪W2) \W ′′ in (29)-(31), we
obtain

λnxu∗ 

|N1(u

∗)|+11ληn+e

W1, (W1∪W2)∩W ′′+e


W1, (W1∪W2)\W ′′5000λ4η


xu∗



n+ 11ληn+ (λ− 2)n+ 5000λ4η(4λ− 2)n


xu∗

 λnxu∗ ,

as η < 1
20000λ5 . This gives a contradiction. Therefore, |W ′′| = λ.

In the following, we complete the proof of Theorem 3.

Proof. By Lemma 35, we see that |W ′′| = λ = ℓt− 1 and every vertex in W ′′ has at most
n

100λ3 non-neighbors. Now, let U be the subset of V (G)\W ′′ in which every vertex is a non-
neighbor of some vertex in W ′′ and U ′ = V (G) \ (W ′′ ∪U). Then, G[W ′′, U ′] ∼= K|W ′′|,|U ′|.
Note that |U |  |W ′′| n

100λ3 = n
100λ2 , and thus |U ′|  n− λ− n

100λ2  n
2
.

We will see that U = ∅. Suppose to the contrary that U ∕= ∅. Given u ∈ U arbitrarily.
We first prove that u has at most one neighbor in U ′. Otherwise, u has two neighbors
u1, u2 ∈ U ′. Assume that {u1, u2, . . . , uℓ} ⊆ U ′ and {w1, w2, . . . , wℓ−1} ⊆ W ′′. By the
definition of U ′, we can see that

C1 := u1uu2w1u3 . . . uℓ−1wℓ−2uℓwℓ−1u1

is a 2ℓ-cycle in G. Clearly, |W ′′ \ V (C1)| = (t− 1)ℓ and |U ′ \ V (C1)| = |U ′|− ℓ  (t− 1)ℓ
as n is sufficiently large. This implies that G[W ′′ \ V (C1), U ′ \ V (C1)] contains a copy
of K(t−1)ℓ,(t−1)ℓ, and hence contains t − 1 vertex-disjoint 2ℓ-cycles, say C2, . . . , Ct. Thus,
G contains t vertex-disjoint 2ℓ-cycles C1, C2, . . . , Ct, which gives a contradiction. Hence,
u has at most one neighbor in U ′. Moreover, by the definition of U , |N1(u) ∩ W ′′| 
|W ′′|− 1 = λ− 1. It follows that



w∈N1(u)∩(W ′′∪U ′)

xw =


w∈N1(u)∩W ′′

xw +


w∈N1(u)∩U ′

xw  (λ− 1)xu∗ + 5000λ4ηxu∗ . (34)

We now claim that ρ(G)xu  (λ− 1
200λ2 )xu∗ . Otherwise, let G∗ be the graph obtained

from G by deleting all edges incident to u and joining u to all vertices in W ′′. Note that
|U ′|  n

2
and NG∗(u) ⊆ NG∗(v) for any v ∈ U ′. Then G∗ is tC2ℓ-free (otherwise, G

∗ − {u}
contains tC2ℓ, and thus G− {u} too, a contradiction). Moreover,

ρ(G∗)− ρ(G)  XT

A(G∗)− A(G)


X = 2xu

 

w∈W ′′

xw −


w∈N1(u)

xw


.

Note that


w∈W ′′ xw  |W ′′|(1− 1
200λ3 )xu∗ = (λ− 1

200λ2 )xu∗ by Lemma 35, but



w∈N1(u)

xw = ρ(G)xu < (λ− 1

200λ2
)xu∗
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by assumption. Thus, ρ(G∗) > ρ(G), a contradiction.
Now we have


λ− 1

200λ2


xu∗  ρ(G)xu =



w∈N1(u)∩(W ′′∪U ′)

xw +


w∈N1(u)∩U

xw.

Combining (34) gives


w∈N1(u)∩U xw

ρ(G)xu


(λ− 1

200λ2 )xu∗ − (λ− 1 + 5000λ4η)xu∗

(λ− 1
200λ2 )xu∗

 4

5λ
,

as η < 1
20000λ5 < 1

5000λ4 (
1
5
− 1

200λ2 +
1

250λ3 ). Thus,


w∈N1(u)∩U xw  4
5λ
ρ(G)xu.

Now consider the matrix A′ = A(G[U ]) and the vector X ′ = X|U (the restriction of
X to U). We can observe that

(A′X ′)u =


w∈N1(u)∩U

xw  4

5λ
ρ(G)xu

for each u ∈ U . Since X is a positive unit eigenvector of G, X ′ is a positive vector and
thus A′X ′  4

5λ
ρ(G)X ′ entrywise. Moreover, ρ(G) 

√
λn by Lemma 29. Hence,

ρ(G[U ])  X ′TA′X ′

X ′TX ′  4

5λ
ρ(G)  4

5


n

λ
,

which also implies that |U | = Ω(
√
n). Since G[U ] is tC2ℓ-free, we have ρ(G[U ]) 


6λ|U |

by Lemma 29. Recall that |U |  n
100λ2 . It follows that

ρ(G[U ]) 


6λn

100λ2
<

4

5


n

λ
,

a contradiction. Therefore, U = ∅.

w1 w2 wℓ−2wℓ−1

u1 u2 u3 u4 uℓ uℓ+1

w1 w2 wℓ−2wℓ−1

u1 u2 u3 uℓ−1uℓuℓ+1

W ′′

U ′

W ′′

U ′

Figure 1: A special 2ℓ-cycle in G.

Now we have V (G) = W ′′ ∪U ′ and G[W ′′, U ′] ∼= Kλ,n−λ. In the following, we consider
two cases of Theorem 3.

(i) ℓ = 2. Recall that Pk denotes a path of order k. Since |W ′′| = λ = ℓt− 1 = 2t− 1,
we can see that G[U ′] is P3-free (otherwise, we can find tC4 in G). Thus, G[U ′] consists of
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independent edges and isolated vertices. Since G is extremal with respect to spex(n, tC4),
we know that G is edge-maximal, which implies that W ′′ is a (2t − 1)-clique and G ∼=
S++
n,2t−1.
(ii) ℓ  3. Since |W ′′| = λ = ℓt − 1, we will see that e(U ′)  1. Otherwise, whether

G[U ′] contains a P3 or two independent edges, we can always find t vertex-disjoint copies
of C2ℓ, which consist of t− 1 2ℓ-cycles in G[W ′′, U ′], and a special 2ℓ-cycle (see Figure 1).
Since G is edge-maximal, we similarly have G ∼= S+

n,2t−1.
This completes the proof.
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