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Abstract

It is well-known that the spectral radius of a connected uniform hypergraph is an
eigenvalue of the hypergraph. However, its algebraic multiplicity remains unknown.
In this paper, we use the Poisson Formula and the matching polynomials to give
the algebraic multiplicity of the spectral radius of a uniform hypertree.

Mathematics Subject Classifications: 05C50, 05C65

1 Introduction

From the Perron-Frobenius Theorem (for matrices), it is known that the spectral radius of
a connected graph is an eigenvalue of the graph with the algebraic multiplicity 1. Part of
the Perron-Frobenius Theorem has been generalized to tensors, in particular, it is known
that the spectral radius of a connected uniform hypergraph is one of its eigenvalues [2].
However, it is unknown what its algebraic multiplicity is. In this paper, we aim to give
the algebraic multiplicity of the spectral radius of a uniform hypertree.

The characteristic polynomial of a hypergraph is the characteristic polynomial of its
adjacency tensor. The Poisson Formula, given in [8, Chapter 3, Theorem 3.4], is a useful
method for computing the characteristic polynomials of hypergraphs, particularly hyper-
trees [1, 3, 7]. Cooper and Dutle [7] gave the characteristic polynomial of the (so-called)
“all-one” tensors and the 3-uniform hyperstar. Bao et al. [1] provided a method for
computing the characteristic polynomials of hypergraphs with cut vertices, and gave the
characteristic polynomial of the k-uniform hyperstar. The authors gave a reduction for-
mula for the characteristic polynomial of a uniform hypergraphs with pendant edges in [3].
And they used the reduction formula iteratively to derive the characteristic polynomial
of uniform loose hyperpaths [3].
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The algebraic multiplicity of an eigenvalue refers to the number of times it appears
as a root of the characteristic polynomial. The k-power hypergraph is the k-uniform
hypergraph that is obtained by adding k − 2 new vertices to each edge of a graph for
k 󰃍 3. The algebraic multiplicity of the spectral radius of a power hypergraph was given
by the spectral moments in [4]. This paper employs the matching polynomial to give the
algebraic multiplicity of the spectral radius of a uniform hypertree.

The matching polynomial of a tree coincides with its characteristic polynomial, as
shown in Corollary 2.1 of [10]. However, this correlation does not directly apply to k-
uniform hypertrees with k 󰃍 3. Zhang et al. showed that the set of roots of the matching
polynomial of a k-uniform hypertree is a sub-set of its spectrum [17]. Based on Zhang
et al.’s results, Clark and Cooper determined all eigenvalues (without multiplicity) of a
k-uniform hypertree T by roots of the matching polynomials of all sub-hypertrees of T
[5]. Su et al. used the matching polynomials to investigate a perturbation on the spectral
radius of k-uniform hypertrees [16]. Li et al. presented a complete demonstration of
the relationship between the characteristic polynomials and matching polynomials of a
k-uniform hypertree [13].

The rest of this paper is organized as follows: In Section 2, we present some notation
and lemmas about the Poisson Formula for resultants (Section 2.1), the characteristic
polynomial of a hypergraph (Section 2.2), and the matching polynomial of a hypergraph
(Section 2.3). In Section 3, we apply the Poisson Formula to give the algebraic multiplicity
of the spectral radius of a uniform hypertree.

2 Preliminaries

In this section, we present some basic notation and auxiliary lemmas regarding the Pois-
son Formula for resultants, the characteristic polynomial and matching polynomial of a
hypergraph.

2.1 Resultants

For a positive integer n, let [n] = {1, . . . , n}. Let F1, F2, . . . , Fn be homogeneous polyno-
mials over an algebraically closed field K in variables x1, . . . , xn, where the degree of Fi

is di for i ∈ [n]. Denote

Fi = Fi(x1, x2, . . . , xn−1) = Fi(x1, x2, . . . , xn−1, 0),

fi = fi(x1, x2, . . . , xn−1) = Fi(x1, x2, . . . , xn−1, 1).

Observe that Fi’s are still homogeneous, but fi’s are not homogeneous in general for
i ∈ [n].

Let I = 〈f1, . . . , fn−1〉 ⊂ K[x1, . . . , xn] be the ideal generated by fi for i = 1, . . . , n−1.
It implies that the set of solutions of the system f1 = f2 = · · · = fn−1 = 0 is the variety
V(I). Given a polynomial f ∈ K[x1, . . . , xn], define a linear map mf from K[x1, . . . , xn]/I
to itself using the multiplication. More precisely, the polynomial f gives the coset [f ] ∈
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K[x1, . . . , xn]/I, and the linear map mf is defined by the rules: if [g] ∈ K[x1, . . . , xn]/I,
then

mf ([g]) = [f ] · [g] = [fg] ∈ K[x1, . . . , xn]/I.

The ensuing statement of the Poisson Formula for resultants follows from [8, Chapter 3,
Theorem 3.4], which is different from the original one in [11, Proposition 2.7].

Lemma 1. [8, Poisson Formula for resultants] If Res(F1, . . . , Fn−1) ∕= 0, then the quotient
ring A = K[x1, . . . , xn]/〈f1, . . . , fn−1〉 has dimension d1 · · · dn−1 as a vector space over K,
and

Res(F1, . . . , Fn) = Res(F1, . . . , Fn−1)
dn det(mfn : A → A), (1)

where mfn : A → A is the linear map given by multiplication by fn.

The characteristic polynomial of the linear map mf can be expressed in terms of the
points of V(I) as follows.

Proposition 2. [8, Chapter 4, Proposition 2.7] Let K be an algebraically closed field and
let I be a zero-dimensional ideal in K[x1, . . . , xn]. If f ∈ K[x1, . . . , xn], then

det(λI −mf ) =
󰁜

p∈V(I)

(λ− f(p))m(p) ,

where m(p) is the multiplicity 1 of the point p ∈ V(I).

Proposition 2 implies that (1) can be rewritten as

Res(F1, . . . , Fn) = Res(F1, . . . , Fn−1)
dn

󰁜

p∈V

fn(p)
m(p), (2)

where V = V(f1, . . . , fn−1) is the affine variety defined by the polynomials fi for all
i ∈ [n−1]. The formula (2) is also named Poisson Formula for resultants in the monograph
[9, Chapter 13, Theorem 1.3].

2.2 The characteristic polynomial of a hypergraph

A hypergraph H = (V,E) is called k-uniform if each edge of H contains exactly k vertices.
Similar to the relation between graphs and matrices, there is a natural correspondence
between uniform hypergraphs and tensors. For a k-uniform hypergraph H with n vertices,
its (normalized) adjacency tensor AH = (ai1i2...ik) is a k-order n-dimensional tensor [6],
where

ai1i2...ik =

󰀝 1
(k−1)!

, if {i1, i2, . . . , ik} ∈ E,

0, otherwise.

When k = 2, AH is the usual adjacency matrix of the graph H.

1The multiplicity is sometimes called the local intersection multiplicity, and its definition can be found
in [8, Chapter 4, §2].
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Let H = (V,E) be a k-uniform hypergraph with V = [n]. Given a hyperedge e ∈ E,
and a vector x = (x1, x2, . . . , xn)

⊤ ∈ Cn, let xe =
󰁔
v∈e

xv. Let Ev = {e ∈ E : v ∈ e} denote

the set of hyperedges containing the vertex v. If there exists a nonzero vector x such that
for each i ∈ [n],

λxk−1
i =

n󰁛

i2,...,ik=1

aii2···ikxi2 · · · xik ,

or equivalently, for each v ∈ V ,

λxk−1
v =

󰁛

e∈Ev

xe\{v},

then λ is called an eigenvalue of H and x is an eigenvector of H corresponding to λ
([14, 15]).

For each v ∈ V , define

Fv = Fv(x1, x2, . . . , xn) = λxk−1
v −

󰁛

e∈Ev

xe\{v}.

The polynomial
φH(λ) ≡ Res(Fv : v ∈ V )

in the indeterminant λ is called the characteristic polynomial of H. For a fixed vertex
u ∈ V , let

fv = Fv|xu=1 = Fv(xw : w ∈ V, xu = 1).

Let V = V(fv : v ∈ V \ {u}) be the affine variety defined by the polynomials fv for all
v ∈ V \ {u}. Let H − u denote the hypergraph obtained from H by removing the vertex
u and all hyperedges containing u. Applying the Poisson Formula to the characteristic
polynomial φH(λ), a reduction formula for φH(λ) is derived as follows.

Lemma 3. [3, Formula (1)] Let H = (V,E) be a k-uniform hypergraph with the vertex
u. Then the characteristic polynomial

φH(λ) = φH−u(λ)
k−1

󰁜

p∈V

(λ−
󰁛

e∈Eu

pe\{u})
m(p),

where m(p) is the multiplicity of p in V = V(fv : v ∈ V \ {u}).

The following is the definition of cut vertices of hypergraphs from [1].

Definition 4. [1] Let k 󰃍 3, and let H = (V,E) be a k-uniform connected hypergraph
and u ∈ V . Denote E󰁨u = {e\{u} : e ∈ Eu}, and note that the hyperedge 󰁨e = e\{u} ∈ E󰁨u
has k − 1 vertices. Deleting the vertex u and changing e to 󰁨e for every e ∈ Eu, it can
get a non-uniform hypergraph 󰁨H = (󰁨V , 󰁨E) with 󰁨V = V \ u and 󰁨E = (E \ Eu) ∪ E󰁨u. The

vertex u is called a cut vertex if 󰁨H is not connected.
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Even if H − u is not connected, the vertex u may not necessarily be a cut vertex of a
connected hypergraph H. For instance, when k 󰃍 3, the vertex u with degree one is not
a cut vertex in a k-uniform hypertree T , even if T − u is not connected. Suppose that
󰁨H1 = (󰁨V1, 󰁨E1), . . . , 󰁨Hn = (󰁨Vn, 󰁨En) are connected components of 󰁨H defined in Definition

4. For each i ∈ [n], denote the induced sub-hypergraph of H on 󰁨Vi ∪ {u} by 󰁥Hi, then we

call 󰁥Hi a branch of H associated with u. It implies that H can be obtained by coalescing
󰁥H1, . . . , 󰁥Hn to the vertex u. Recall that the variety V(H) = V(fv : v ∈ V \ {u}) is defined
by the polynomials

fv = λxk−1
v −

󰁛

e∈Ev(H)

xe\{v}|xu=1

for all v ∈ V \ {u}. It is shown that if u is a cut vertex of H, then

V(H) = V(fv : v ∈ V \ {u})

=
n󰁐

i=1

V(fv : v ∈ V ( 󰁥Hi) \ {u})

=
n󰁐

i=1

V( 󰁥Hi)

in [1]. Bao et al. subsequently gave a reduction formula for the characteristic polynomials
of hypergraphs with cut vertices in terms of the linear map [1, Corollary 3.2]. For the
convenience of use in Section 3, we restate their formula following a similar approach as
the reformulation of (1) to (2).

Lemma 5. [1, Corollary 3.2] Let H be a k-uniform hypergraph with a cut vertex u

and branches 󰁥H1, · · · , 󰁥Hn. Denote V (i) = V( 󰁥Hi) = V(fv : v ∈ V \ {u}) and E
(i)
u =

Eu( 󰁥Hi)
󰁗

Eu(H). Then

φH(λ) = φH−u(λ)
k−1

󰁜

i∈[n]

q(i)∈V(i)

(λ−
n󰁛

i=1

󰁛

e∈E(i)
u

q
(i)
e\{u})

󰁔n
i=1 m(q(i)),

where m(q(i)) is the multiplicity of q(i) in V (i) for each i ∈ [n].

When one of the branches is the one-edge hypergraph, it implies that H has a pendant
edge incident to u. A more explicit reduction formula for hypergraphs with pendant edges
is shown as follows.

Lemma 6. [3, Theorem 3.2] Let H be a k-uniform hypergraph with a pendant edge inci-

dent to the non-pendent vertex u, and we define 󰁥H as the k-uniform hypergraph obtained
by removing the pendant edge and pendent vertices on it from H. Then

φH(λ) =

φH−u(λ)
k−1

󰁜

p∈V( 󰁥H)

(λ−
󰁛

e∈Eu( 󰁥H)

pe\{u})
m(p)K1

󰁜

p∈V( 󰁥H)

(λ− 1

λk−1
−

󰁛

e∈Eu( 󰁥H)

pe\{u})
m(p)K2 ,

where K1 = (k − 1)k−1 − kk−2 and K2 = kk−2.
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2.3 The matching polynomial of a hypergraph

The matching of a k-uniform hypergraph H = (V,E) is a set of the pairwise non-adjacent
edges in E. The t-matching is a matching consisting of t edges and the number of t-
matching of H is denoted by mt(H). Set m0(H) = 1. The matching polynomial of H is
defined in [16] as

ϕH(λ) =
󰁛

t󰃍0

(−1)tmt(H)x|V |−tk.

Some classical results on the matching polynomials of a graph are extended to the
hypergraph case as follows.

Lemma 7. [16, Theorem 7] Let H = (V,E) and G be two k-uniform hypergraphs. We
use H +G to denote the disjoint union of H and G, and use H − e to denote the induced
sub-hypergraph of H on the V \ e for e ∈ E. Then

1. ϕH+G(λ) = ϕH(λ)ϕG(λ).

2. ϕH(λ) = λϕH−u(λ)−
󰁓

e∈Eu
ϕH−e(λ).

Zhang et al. [17] showed that the set of roots of the matching polynomial of a k-
uniform hypertree is a sub-set of its spectrum. And this result was extended by Clark
and Cooper [5] as follows.

Lemma 8. 2[5, Theorem 2] Let T be a k-uniform hypertree for k 󰃍 3. Then λ is an

eigenvalue of T if and only if there exists a sub-tree 󰁥T of T such that λ is a root of the
matching polynomial ϕ 󰁥T (λ).

Lemma 9. [16, Proposition 8] Let k 󰃍 3, and let T be a k-uniform hypertree. Then the
spectral radius ρ(T ) of T is a simple root of the matching polynomial ϕT (λ).

3 Main results

The algebraic multiplicity of the spectral radius of a k-uniform hypertree T is determined
in this section.

For a hypergraph H = (V,E) with the vertex u, recall that Fv = λxk−1
v −

󰁓
e∈Ev

xe\{v}
and fv = Fv|xu=1 for all v ∈ V . Let Vu(H) = V(fv : v ∈ V \ {u}) be the affine variety
defined by the polynomials fv for all v ∈ V \ {u}.

Lemma 10. Let T = (V,E) be a uniform hypertree with the vertex u. If p is a point in
Vu(T ) = V(fv : v ∈ V \ {u}) with all coordinates nonzero, then

pe\{u} =
ϕT−e(λ)

ϕT−u(λ)

2The definition of the matching polynomial of a hypergraph varies between [5] and [16]. However, as
shown in [16], Lemma 8 is also applicable to the definition in [16].
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for each e ∈ Eu. Moreover, we have

λ−
󰁛

e∈Eu

pe\{u} =
ϕT (λ)

ϕT−u(λ)
.

Proof. We prove the result by the induction on |E|.
When |E| = 1, it is shown that pe\{u} = 1

λk−1 in the [3, Equation (5)], which implies
that

pe\{u} =
ϕT−e(λ)

ϕT−u(λ)
,

so the assertion holds.
Assuming the statement holds for any |E| 󰃑 m, we consider the case |E| = m+ 1.
When u is a cut vertex of T . Note that there are du (= |Eu|) branches of the hypertree

T associated with u, and each e ∈ Eu belongs to a distinct branch. Suppose that 󰁥Ti are
branches of T with ei ∈ Eu for all i ∈ [du]. Let q(i) be a point in Vu(󰁥Ti) = V(fv : v ∈
V (󰁥Ti)\{u}) with all coordinates nonzero. Since |E(󰁥Ti)| 󰃑 m, by the induction hypothesis,
we have

q
(i)
ei\{u} =

ϕ 󰁥Ti−ei
(λ)

ϕ 󰁥Ti−u(λ)

=
ϕ 󰁥Ti−ei

(λ)
󰁔

j∈[du]
i ∕=j

ϕ 󰁥Tj−u(λ)
󰁔

j∈[du] ϕ 󰁥Tj−u(λ)
. (3)

Observe that T − ei is the disjoint union of 󰁥Ti − ei and 󰁥Tj − u for all i ∕= j, and T − u is

the disjoint union of 󰁥Tj − u for all j ∈ [du]. From Lemma 7 (1), we have

ϕT−ei(λ) = ϕ 󰁥Ti−ei
(λ)

󰁜

j∈[du]
i ∕=j

ϕ 󰁥Tj−u(λ)

and

ϕT−u(λ) =
󰁜

j∈[du]

ϕ 󰁥Tj−u(λ),

which implies that q
(i)
ei\{u} =

ϕT−ei
(λ)

ϕT−u(λ)
. For p ∈ Vu(T ), note that pei\{u} = q

(i)
ei\{u}, then we

get

pei\{u} =
ϕT−ei(λ)

ϕT−u(λ)
.

When u is not a cut vertex of T . The degree of u is one and we set the hyperedge
containing u as e0 = {v1, v2, . . . , vk−1, vk = u}. Let T \ e0 denote the hypergraph with
V (T \ e0) = V and E(T \ e0) = E \ {e0}. We observe that T \ e0 has k connected

components and we use 󰁥T ∗
t = (󰁥V ∗

t , 󰁥E∗
t ) to denote the connected component containing vt

for each t ∈ [k].
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Recall that Fv = Fv(xw : w ∈ V ) = λxk−1
v −

󰁓
e∈Ev(T ) xe\{v} and fv = Fv|xu=1 for

v ∈ V . For all t ∈ [k − 1] and any v ∈ 󰁥V ∗
t \ {vt}, note that fv = fv(xw : w ∈ 󰁥V ∗

t ) is
homogeneous. If p = (pi) ∈ Vu(T ) has all coordinates nonzero, we have

fv(p) = fv(pw : w ∈ 󰁥V ∗
t ) = fv(pw/pvt : w ∈ 󰁥V ∗

t ) = 0. (4)

Fix a t ∈ [k − 1]. Let 󰁥F ∗
v = 󰁥F ∗

v (xw : w ∈ 󰁥V ∗
t ) = λxk−1

v −
󰁓

e∈Ev(󰁥T ∗
t )
xe\{v} and 󰁥f ∗

v =

󰁥F ∗
v |xvt=1. For all v ∈ 󰁥V ∗

t \{vt}, note that 󰁥F ∗
v = fv. Then we have 󰁥f ∗

v = 󰁥F ∗
v |xvt=1 = fv|xvt=1.

Set qw = pw/pvt for w ∈ 󰁥V ∗
t and note that qvt = 1. By (4), it follows that

󰁥f ∗
v (qw : w ∈ 󰁥V ∗

t ) = 󰁥F ∗
v (qw : w ∈ 󰁥V ∗

t )|qvt=1 = fv(qw : w ∈ 󰁥V ∗
t )|qvt=1 = 0

for all v ∈ 󰁥V ∗
t \{vt}. Let the vector q = (qw) for w ∈ 󰁥V ∗

t \{vt}. Indeed, q is a point in the

variety Vvt(󰁥T ∗
t ) defined by the polynomials 󰁥f ∗

v for all v ∈ 󰁥V ∗
t \ {vt}. From the induction

hypothesis, we have

qe\{vt} =
pe\{vt}

pk−1
vt

=
ϕ 󰁥T ∗

t −e(λ)

ϕ 󰁥T ∗
t −vt

(λ)
(5)

for each e ∈ Evt(󰁥T ∗
t ). By (5), it follows that

pe\{vt} =
ϕ 󰁥T ∗

t −e(λ)

ϕ 󰁥T ∗
t −vt

(λ)
pk−1
vt

for p ∈ Vu(T ) which only has non-zero coordinates. Since

fvt(p) = λpk−1
vt −

󰁛

e∈Evt (
󰁥T ∗
t )

pe\{vt} − pe0\{vt,u} = 0,

we have

pe0\{vt,u} =

󰀳

󰁃λ−
󰁛

e∈Evt (
󰁥T ∗
t )

ϕ 󰁥T ∗
t −e(λ)

ϕ 󰁥T ∗
t −vt

(λ)

󰀴

󰁄pk−1
vt

=
ϕ 󰁥T ∗

t
(λ)

ϕ 󰁥T ∗
t −vt

(λ)
pk−1
vt

from Lemma 7 (2).
Combining these equations for all t ∈ [k − 1], we get

k−1󰁜

t=1

pe0\{vt,u} =
k−1󰁜

t=1

ϕ 󰁥T ∗
t
(λ)

ϕ 󰁥T ∗
t −vt

(λ)
pk−1
vt ,

which implies that

pe0\{u} =
k−1󰁜

t=1

ϕ 󰁥T ∗
t −vt

(λ)

ϕ 󰁥T ∗
t
(λ)

.
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Note that T −e0 is the disjoint union of 󰁥T ∗
t − vt for all t ∈ [k−1], and T −u is the disjoint

union of 󰁥T ∗
t for all t ∈ [k − 1]. From Lemma 7 (1), we have pe0\{u} =

ϕT−e0
(λ)

ϕT−u(λ)
.

By the induction, we have

pe\{u} =
ϕT−e(λ)

ϕT−u(λ)

for e ∈ Eu. Hence, we get

λ−
󰁛

e∈Eu(T )

pe\{u} =
ϕT (λ)

ϕT−u(λ)

from Lemma 7 (2).

The support of a vector p ∈ Vu(T ), denoted by supp(p), is the set of all indices for
nonzero components of p. Let the |supp(p)|-dimensional vector p∗ denote the non-zero
projection of p, i.e., p∗ is the vector constructed from all the nonzero components of
p. We use H[U ] to denote the induced sub-hypergraph of a hypergraph H = (V,E) on
U ⊆ V . It is seen that p∗ ∈ V(H[supp(p)∪{u}]) only has nonzero components. Applying
Lemma 10 to p∗, we can directly extend Lemma 10 to the following general case.

Corollary 11. Let T = (V,E) be a hypertree with the vertex u. For p ∈ Vu(T ), let

Tp = T [supp(p)∪{u}]. For e ∈ Eu(Tp), let 󰁥T be the connected component of Tp containing
e. Then we have

pe\{u} =
ϕ 󰁥T−e(λ)

ϕ 󰁥T−u(λ)
=

ϕTp−e(λ)

ϕTp−u(λ)

for each e ∈ Eu(Tp). Moreover, we have

λ−
󰁛

e∈Eu

pe\{u} =
ϕTp(λ)

ϕTp−u(λ)
.

We are now ready to give the algebraic multiplicity of the spectral radius of a uniform
hypertree.

Theorem 12. The algebraic multiplicity of the spectral radius of a k-uniform hypertree
with m edges is km(k−2).

Proof. From the Poisson Formula for hypergraphs and Corollary 11, we have

φT (λ) = φT−u(λ)
k−1

󰁜

p∈V

󰀕
ϕTp(λ)

ϕTp−u(λ)

󰀖m(p)

(6)

for a hypertree T = (V,E) and any u ∈ V .
Lemma 8 shows that the roots of the matching polynomials of sub-hypertrees of a

hypertree T are eigenvalues of T . For a connected hypergraph G and its proper sub-
graph G′, it is known that ρ(G′) < ρ(G) [12, Corollary 3.5]. It tells that ρ(G) is not
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an eigenvalue of any proper sub-graph of G. It implies that ρ(T ) is not a root of the
matching polynomials of any proper sub-graph of T . Then we know that the degree of
the factor λ − ρ(T ) in (6) is solely determined by ϕT (λ), and its degree in ϕT (λ) is one,
as confirmed by Lemma 9. Let am(T ) denote the algebraic multiplicity of the spectral
radius ρ(T ), and let V∗ = {p ∈ V : Tp = T}. By (6), we get

am(T ) =
󰁛

p∈V∗

m(p). (7)

Let 󰁨T denote the hypertree obtained from T adding a pendant edge at the vertex u.
From Lemma 6, we get

φ 󰁨T (λ) = φ 󰁨T−u(λ)
k−1

󰁜

p∈V

󰀕
ϕTp(λ)

ϕTp−u(λ)

󰀖m(p)(k−1)k−1−kk−2 󰁜

p∈V

󰀣
ϕ 󰁨Tp

(λ)

ϕ 󰁨Tp−u(λ)

󰀤m(p)kk−2

, (8)

where 󰁨Tp denotes the hypertree obtained from Tp by adding a pendant edge at the vertex
u. Employing a similar trick as used in obtaining (7) from (6), we derive the following
equation from (8):

am(󰁨T ) = kk−2
󰁛

p∈V∗

m(p) = kk−2am(T ).

It implies that the algebraic multiplicity of the spectral radius increases kk−2-fold when
a pendant edge is added to a hypertree. By starting with a hypertree with one edge, we
obtain that the algebraic multiplicity of the spectral radius of a k-uniform hypertree with
m edges is km(k−2).
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