Some locally Kneser graphs

Andries E. Brouwer

Submitted: Dec 9, 2023; Accepted: Jun 23, 2024; Published: Oct 18, 2024 © The author. Released under the CC BY license (International 4.0).

To Jon Hall, on the occasion of his 75th birthday

Abstract

The Kneser graph K(n,d) is the graph on the d-subsets of an n-set, adjacent when disjoint. Clearly, K(n+d,d) is locally K(n,d). Hall showed for $n \geq 3d+1$ that there are no further examples. Here we give other examples of locally K(n,d) graphs for n=3d, and some further sporadic examples. It follows that Hall's bound is best possible.

Mathematics Subject Classifications: 05C75, 05C99, 05C10, 20Exx

1 Locally something graphs

A graph Γ is called *locally* Δ when for each vertex of Γ the subgraph induced on the set of its neighbors is isomorphic to Δ . The Trahtenbrot-Zykov problem [31] asks whether given a finite graph Δ there exists a graph Γ that is locally Δ . In general, this question is undecidable (Bulitko [14]). It is unknown whether the problem restricted to finite Γ is also undecidable.

More generally, one wants to classify all such graphs Γ . Hall [19] determines the possible Γ for all graphs Δ on at most 6 vertices. For some Δ a graph Γ that is locally Δ is necessarily infinite.

Weetman [28, 29] constructs infinite locally Δ graphs for Δ of girth at least 6, and proves a diameter bound in certain other cases.

There is a large literature, see e.g. [1–15, 18–30].

2 Locally Kneser graphs

The Kneser graph K(n,d) (where $0 \le d \le n$) is the graph on the d-subsets of an n-set, adjacent when disjoint.

Hall [20] shows that for $n \ge 3d + 1$ any connected locally K(n, d) graph is isomorphic to K(n + d, d), and wonders whether this bound can be improved.

Brouwer-Mortensen Institute for Retired Mathematicians and Artists (aeb@cwi.nl).

In fact there are further examples for n = 3d: The graph on the 2^{n-1} even weight binary vectors of length n, adjacent when their difference has weight 2d is locally K(n, d) and different from K(n + d, d) (for d > 1). It follows that Hall's bound is best possible.

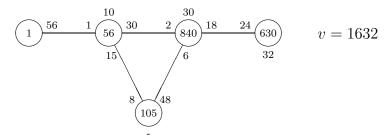
For n = 2d+1, $d \ge 3$, the graph K(n, d) has girth 6, so that there exist infinite locally K(n, d) graphs by Weetman [28].

There are three locally K(5,2) graphs, on 21, 63, and 65 vertices (Hall [18]). Note that K(5,2) is the Petersen graph.

There are three locally K(6,2) graphs, on 28, 32, and 36 vertices (Buekenhout & Hubaut [10]). Note that K(6,2) is the collinearity graph of the generalized quadrangle of order 2.

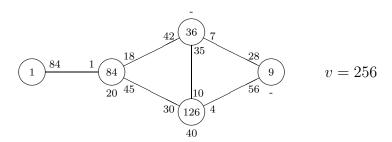
As we saw, there are infinite locally K(7,3) graphs. (Question: Are there also finite examples?)

The graph on the elliptic lines in the $O_8^-(2)$ geometry, adjacent when orthogonal, is locally K(8,3). The automorphism group is $O_8^-(2):2$, with point stabilizer $S_3 \times S_8$. Diagram:



See also [16].

As we saw, the graph on the 256 binary even weight vectors of length 9, adjacent when they have distance 6, is locally K(9,3). Diagram:



It can be shown using the arguments from [29] that a locally K(9,3) graph is necessarily finite. (Question: Is the same true for all locally K(3d,d) graphs?)

The bimonster G = M wr 2 (where M is the monster) contains a S_5 -subgroup S whose centralizer is a subgroup S_{12} in which a 7-point stabilizer is conjugate to S, see [17]. Let Γ be the graph on the S_5 -subgroups of G conjugate to S, adjacent when they commute. Then Γ is locally K(12,5).

3 Locally $\lambda = 1$ graphs

Let Δ be a graph in which every edge is in a unique triangle (so that Δ is the collinearity graph of a partial linear space with lines of size 3). The Kneser graphs K(3d, d) are examples of such graphs. We study locally Δ graphs. The special case where Δ is the line graph of the Petersen graph was studied in [6].

Given a partial linear space (X, L) with lines of size 3, let G be the group

$$G = \langle X \mid x^2 = 1 = xyz \text{ for all } x \in X \text{ and } \{x, y, z\} \in L \rangle.$$

Suppose A, B are two disjoint hyperplane complements in (X, L), so that each line meets A and B in 0 or 2 points. Then the map that sends the elements of $A, B, X \setminus (A \cup B)$ to a, b, and 1, respectively, is a map from G onto the infinite group $\langle a, b \mid a^2 = b^2 = 1 \rangle$, so that G is infinite.

Given a subgroup H of G, let $\Gamma = \Gamma(G, H, X)$ be the graph that has as vertices the cosets gH for $g \in G$, and adjacencies $g_1H \sim g_2H$ when $g_2^{-1}g_1 \in HXH$. Assume that H is normal in G. Now the neighbours of gH are the vertices gxH for $x \in X$. The group G acts vertex transitively on Γ . The local graph induced on the set of neighbours of the vertex H of Γ has vertex set $\{xH \mid x \in X\}$, and if $\{x, y, z\}$ is a line, then xy = z in G, so that $xH \sim yH$. It follows that $x \mapsto xH$ is a homomorphism from the collinearity graph Δ of (X, L) onto the Γ -neighbourhood of H.

Is this map injective? Suppose H is contained in the commutator subgroup G' of G. Then $\Gamma(G, H, X)$ has quotient $\Gamma(G, G', X)$ and the latter can be identified with the Cayley graph with difference set X in the \mathbb{F}_2 -vector space $\langle X \mid x+y+z=0$ for $\{x,y,z\} \in L\rangle$. If N is the point-line incidence matrix of (X, L), then this is $\langle X \rangle / N \langle L \rangle$, where cosets at Hamming distance 1 are adjacent. Two points remain distinct in the quotient if the column space of N does not contain vectors of weight 2. No additional adjacencies are introduced if the columns of N are the only vectors of weight 3 in the column space of N.

For these latter two conditions to hold, it suffices that for any two distinct points, and for any three pairwise noncollinear points, (X, L) has a geometric hyperplane missing precisely one of these points.

If these conditions hold, Γ is locally Δ .

Examples

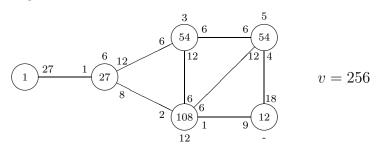
We construct $\Gamma = \Gamma(G, G', X)$ for a number of spaces (X, L) with lines of size 3. Note that V = G/G' is a binary vector space. In all cases except d), the graph Γ is locally Δ , where Δ is the collinearity graph of (X, L).

	Δ	parameters	G	$\dim V$	v	k	d	rk	$\operatorname{Aut}\Gamma$
a)	GQ(2,1)	srg(9, 4, 1, 2)	16	4	16	9	2	3	$[2^7.3^2]$
b)	GQ(2, 2)	srg(15, 6, 1, 3)	32	5	32	15	3	4	$2^5:S_6$
c)	GQ(2,4)	srg(27, 10, 1, 5)	64	6	64	27	2	3	$2^6:O_6^-(2)$
d)	$VO_{4}^{-}(3)$	srg(81, 20, 1, 6)	1	0	-				
e)	L(K(5,2))	$\{4, 2, 1; 1, 1, 4\}$	∞	6	64	15	3	6	$2^6:S_5$
f)	GH(2,1)	${4,2,2;1,1,2}$	∞	8	256	21	3	7	$2^8:PGL(3,2)$
g)	GH(2,2)	$\{6,4,4;1,1,1\}$	∞	14	16384	63	4	15	$2^{14}:G_2(2)$
g')	GH(2,2)	$\{6,4,4;1,1,1\}$	∞	14	16384	63	6	26	$2^{14}:G_2(2)$
h)	3^3	$\{6,4,2;1,2,3\}$	512	8	256	27	3	6	$[2^{12}.3^4]$
i)	3^4	$\{8, 6, 4, 2; 1, 2, 3, 4\}$		16	65536	81	6	30	$[2^{23}.3^5]$
j)	GO(2,1)	${4,2,2,2;1,1,1,2}$	∞	16	65536	45	6	93	$2^{16}:M_{10}$
k)	$3S_6$	$\{6,4,2,1;1,1,4,6\}$	∞	11	2048	45	5	16	$2^5:(2^6:3.S_6)$
1)	K(9, 3)	$(v,k)_{\Delta} = (84,20)$	256	8	256	84	3	5	$2^8:S_9$
m)	K(12, 4)	$(v,k)_{\Delta} = (495,70)$	2048	11	2048	495	3	7	$2^{11}:S_{12}$

We give the parameters for a strongly regular graph as $\operatorname{srg}(v, k, \lambda, \mu)$, and for a distance-regular graph of diameter at least 3 as $\{b_0, \ldots, b_{d-1}; c_1, \ldots, c_d\}$ (cf. [5]). In cases a), b), the graphs Δ are 3^2 and K(6,2). In cases a), b), and c), the graphs Γ are $VO_4^+(2)$, $T\Delta$, and $VO_6^-(2)$ (with notation as in [7]).

Cases g) and g') are the dual Cayley and the Cayley generalized hexagon, respectively. For the former Γ has diameter 4 and Aut Γ has trivial center, for the latter Γ is antipodal of diameter 6 and Aut Γ has a center of order 2 that interchanges antipodes.

In case h) the diagram is



Cases b), l), and m) suggest that for K(3d, d) the group G is elementary abelian of order 2^{3d-1} , and this is indeed easy to prove. Thus, for each d this approach yields only a single graph Γ that is locally K(3d, d) (namely the graph constructed at the start of Section 2).

Denote multiplication in G by *, and let juxtaposition denote disjoint union in the underlying 3d-set Z. We show A*B=B*A. Let A=ER, B=ES, where $E=A\cap B$. Let Z=EFGRST, with |E|=|F|=|G|=e and |R|=|S|=|T|=d-e. Then A*B=ER*ES=FS*FR=GR*GS=ES*ER=B*A, where ER*ES=FS*FR since ER*ES=FS*GT*GT*FR=FS*FR, and similarly for the other two equalities.

References

- [1] A. Blass, F. Harary & Z. Miller, Which trees are link graphs?, J. Combin. Th. (B) 29 (1980) 277–292.
- [2] A. Blokhuis & A. E. Brouwer, *Locally 4-by-4 grid graphs*, J. Graph Theory **13** (1989) 229–244.
- [3] A. Blokhuis & A. E. Brouwer, Locally $K_{3,3}$ or Petersen graphs, Discr. Math. 106/107 (1992) 53–60.
- [4] A. Blokhuis, A. E. Brouwer, D. Buset & A. M. Cohen, *The locally icosahedral graphs*, pp. 19–22 in: Finite Geometries, Proc. Winnipeg 1984, C. A. Baker and L. M. Batten, eds., Lecture Notes in Pure and Applied Math. 103, Marcel Dekker, New York, 1985.
- [5] A. E. Brouwer, A. M. Cohen & A. Neumaier, *Distance-regular graphs*, Springer Verlag, Berlin, 1989.
- [6] A. E. Brouwer, J. H. Koolen & M. H. Klin, A root graph that is locally the line graph of the Petersen graph, Discr. Math. **264** (2003) 13–24.
- [7] A. E. Brouwer & H. Van Maldeghem, *Strongly Regular Graphs*, Cambridge Univ. Press, Cambridge, 2022.
- [8] M. Brown & R. Connelly, On graphs with a constant link, pp. 19–51 in: New Directions in the Theory of Graphs, Academic Press, New York, 1973.
- [9] M. Brown & R. Connelly, On graphs with a constant link, II, Discrete Math. 11 (1975) 199–232.
- [10] F. Buekenhout & X. Hubaut, Locally polar graphs and related rank 3 groups, J. Algebra 45 (1977) 391–434.
- [11] P. Bugata, On algorithmic solvability of Trahtenbrot-Zykov problem, KAM 90-167, May 1990.
- [12] P. Bugata, Trahtenbrot-Zykov problem and NP-completeness, Discr. Math. 108 (1992) 253–259.
- [13] V. K. Bulitko, On the problem of the finiteness of a graph with given vertex neighborhoods, pp. 76–83 in: General systems theory (Russian). Akad. Nauk Ukrain. SSR Inst. Kibernet., Kiev, 1972.
- [14] V. K. Bulitko, On graphs with given vertex-neighbourhoods (Russian), Trudy Mat. Inst. Im. Steklova 133 (1973) 78–94.
- [15] D. Buset, Graphs which are locally a cube, Discr. Math. 46 (1983) 221–226.
- [16] J. H. Conway, From hyperbolic reflections to finite groups, pp. 41–51 in: Groups and Computation (L. Finkelstein and W. M. Kantor, eds.), DIMACS Ser. in Discr. Math. Theor. Comp. Sci. 11, AMS, 1993.
- [17] J. H. Conway & A. D. Pritchard, Hyperbolic reflections for the Bimonster and 3Fi₂₄, pp. 24–45 in: Groups, Combinatorics & Geometry (Durham, 1990), LMS 165, 1992.
- [18] J. I. Hall, Locally Petersen graphs, J. Graph Th. 4 (1980) 173–187.

- [19] J. I. Hall, Graphs with constant link and small degree or order, J. Graph Th. 8 (1985) 419–444.
- [20] J. I. Hall, A local characterization of the Johnson scheme, Combinatorica 7 (1987) 77–85.
- [21] J. I. Hall & E. E. Shult, Locally cotriangular graphs, Geom. Dedic. 18 (1985) 113–159.
- [22] P. Hell, *Graphs with given neighborhoods I*, pp. 219–223 in: Problèmes combinatoires et théorie des graphes, Colloq. Internat. CNRS, Orsay, 1976, Colloq. Internat. CNRS **260**, Paris, 1978.
- [23] R. C. Laskar & H. M. Mulder, *Path-neighborhood graphs*, Discussiones Mathematicae Graph Theory **33** (2013) 731–745.
- [24] R. Nedela, Covering spaces of locally homogeneous graphs, Discr. Math. 121 (1993) 177–188.
- [25] M. A. Ronan, On the second homotopy group of certain simplicial complexes and some combinatorial applications, Quart. J. Math. Oxford Ser. (2) **32** (1981) 225–233.
- [26] P. Vanden Cruyce, A finite graph which is locally a dodecahedron, Discr. Math. **54** (1985) 343–346.
- [27] A. Vince, Locally homogeneous graphs from groups, J. Graph Theory 5 (1981) 417–422.
- [28] G. M. Weetman, A construction of locally homogeneous graphs, J. London Math. Soc. (2) **50** (1994) 68–86.
- [29] G. M. Weetman, Diameter bounds for graph extensions, J. London Math. Soc. (2) 50 (1994) 209–221.
- [30] Huijuan Yu & Baoyindureng Wu, Graphs in which G N[v] is a cycle for each vertex v, Discr. Math. **344** (2021) 112519.
- [31] A. A. Zykov, *Problem 30*, pp. 164–165 in: Theory of graphs and its applications, Proc. Symp. Smolenice 1963 (M. Fiedler, ed.), Academic Press, Prague 1964.