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Abstract

Word-representable graphs were originally introduced by Kitaev and Pyatkin,
motivated by work of Kitaev and Seif in algebra. Since their introduction, however,
there has been a great deal of work in understanding their graph theoretical prop-
erties. In this paper, we introduce tools from partially ordered sets, Ramsey theory,
finite geometry, as well as probabilistic methods to study them. Through these,
we settle a number of open problems in the field, regarding both the existence and
length of word-representations for various classes of graphs.

Mathematics Subject Classifications: 05C62, 06A07, 05C20

1 Introduction

Motivated by the work of Kitaev and Seif from [24] studying algebraic problems aris-
ing from the Perkins semigroup, Kitaev and Pyatkin introduced the notion of word-
representable graphs in [22]. A (simple) graph G on vertex set V = {v1, . . . , vn} is said to
be word-representable if there exists a string S in characters v1, . . . , vn (with repetitions
allowed) so that vi ∼ vj in G if and only if the characters alternate in S.

While the motivation for introducing these objects arose in algebra, determining the
possible properties of word-representable graphs turns out to be a fascinating combina-
torial problem. As a window to their properties, in [16] Halldórson, Kitaev and Pyatkin
proved that a graph G being word-representable is equivalent to G admitting a certain
type of orientation, known as a semi-transitive orientation. An acyclic orientation of a
graph is semi-transitive if for any directed path u1 → u2 → · · · → ut with t > 2, either
there is no edge between u1 and ut, or all edges ui → uj exist for 1 6 i < j 6 t. In
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other words, if the edge u1 → ut exists, then the orientation on the subgraph induced by
u1, u2, . . . , ut is transitive.

Beyond the combinatorial properties of word-representable graphs, a natural direction
is to also study the minimum length of a word-representation of a graph. The represen-
tation number of a word-representable graph G is the smallest integer k so that there
is a k-uniform word (i.e. a word with each character appearing k times) representing G
(which is well defined by a result in [22] stating that any word-representable graph can be
represented by a uniform word). Beyond a characterization of graphs with representation
number 2, and a few specific examples (see, e.g. [21, 15]) relatively little is known about
what combinatorial properties force the representation number to be large.

In this paper we answer a number of open questions raised previously by Kitaev,
Lozin, Pyatkin and others. In order to do this, we highlight connections between word-
representability and other areas of combinatorics; notably, we apply ideas arising in the
study of partially ordered sets, Ramsey theory, probabilistic combinatorics, and finite
geometry. We use these connections to study both the (non-)word-representability of
graphs, and the representation number of graphs.

Some of our main results include the following:

• Using results from Ramsey theory, we construct graphs of arbitrarily high girth that
are not word-representable (cf. Theorem 6). We also construct, using a recent result
of Suk and Tomon, graphs of high girth and high chromatic number that are not
word-representable (cf. Theorem 32). These answer questions raised by Kitaev and
Pyatkin [23], that have been publicized in recent talks of Kitaev (e.g. [20]).

• We prove (cf. Theorem 4) that the random graph G(n, p) is not word-representable
when p = n−κ, for any 0 < κ < 1 asymptotically almost surely (i.e. with probability
→ 1 as n→∞). This, in a sense, strengthens the already known fact that G(n, p)
for any constant p ∈ (0, 1) is asymptotically almost surely not word-representable
(which, itself, is a slight strengthening of the fact that almost every graph contains
an induced wheel W5, which is not word-representable).

• Exploiting connections between partially ordered sets and word-representability, we
give an explicit way of building words representing the cover graph (Hasse diagram)
of graded posets (cf. Theorem 15) and general posets (cf. Theorem 17). This bounds
the representation number, depending on the dimension, and the combination of
width and dimension respectively.

• Utilizing these ideas, along with results of Chandran et al. [9] on the boxicity of the
hypercube and of Adiga, Bhowmick and Chandran [1] on the relation of boxicity
and dimension we prove (cf. Theorem 28) that the representation number of the n-
dimensional hypercube is O(log n/ log log n), answering negatively a question arising
from [7] asking if the representation number of the n-cube was n.

• Beyond the n-cube, we give explicit bounds on the representation number for several
classes of graphs including showing
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– bipartite graphs of maximum degree ∆ have representation number
O(∆ log(1+o(1)) ∆) (cf. Theorem 31), and

– triangle-free graphs of large chromatic number exist with representation num-
ber O(

√
n) (cf. Theorem 33).

• Finally, we prove two new lower bounds for the representation number of a graph;
first using a widely applicable (but weaker) counting argument (cf. Corollary 20),
and then a stronger (but more specialized) bound using the structure of orientations
(cf. Theorem 25).

• The crown graph Hn,n is Kn,n with a perfect matching removed. As a consequence
of our lower bound method, we also prove (cf. Theorem 26) a tight lower bound on
the order dimension of a poset having the crown graph Hn,n as a cover graph. Note
that Hn,n is well-known in poset theory as the comparability graph of the ‘standard
example,’ the first example of a poset whose dimension is n. This is the first result
we know of this type, and may be of independent interest. A number of recent
results on partially ordered sets have considered the related problem: how large can
the dimension of a poset be with a fixed (simple) cover graph?

As a reminder of asymptotic notation, for functions f(n) and g(n), we say f(n) =
O(g(n)) if there exists a constant C > 0 so that |f(n)| 6 C|g(n)| for n sufficiently
large. Meanwhile, f(n) = o(g(n)) means that f(n)/g(n) → 0 as n → ∞; in particular
if f(n) = o(1), then f(n) → 0. All logarithms in the paper are taken to be the base-2
logarithm, unless otherwise specified. (Typically, because logarithms are in O(·) notation,
the base of the logarithm seldom matters as changing the base only changes the implied
constant.)

The remainder of the paper is organized as follows. In Section 2, we introduce tools
from Ramsey Theory and prove results about graphs which are not word-representable.
In Section 3, we introduce results from the theory of partially ordered sets and give
a method of generating relatively short words representing graphs arising from posets.
Then, in Section 4 we develop lower bounds on the representation number for graphs.
Finally in Section 5, we give a number of applications of our results including to the
representation number of the hypercube.

2 Oriented Ramsey Theory and Semi-Transitive Orientations

Given a graph H, recall that a graph G is a Ramsey host for H (written G → H) if
whenever the edges of G are 2-colored there is a monochromatic copy of H in G. Standard
Ramsey theory considers the case where G = Kn and attempts to find the minimum n
so that Kn → H. However there has been a long-standing interest in finding hosts with
special properties; for instant, hosts that are relatively sparse, have no large cliques, or
have large girth.

For finding graphs without semi-transitive orientations, however, a stronger property
than the original Ramsey property is needed. Two related (but different) variants of
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standard Ramsey theory – namely ordered Ramsey theory and oriented Ramsey
theory – provide a window to finding graphs without semi-transitive orientations. We
briefly outline the two definitions and their relation to semi-transitive orientations of
graphs.

Oriented Ramsey theory is much what it sounds like – a graph G is an orientation
Ramsey host for a digraph ~H (written G→ ~H) if every orientation of G contains a copy

of ~H as a sub-digraph. Here, the connection to graphs with semi-transitive orientations is
almost immediate, as observed in the following. Let ~Ct be the orientation of a cycle on the
vertex set u1, . . . , ut with the oriented path u1 → u2 → · · · → ut and edge u1 → ut. We
also highlight that the typical way to show that an orientation is not semi-transitive is to
find a shortcutting edge – an edge from u1 → ut with an oriented path u1 → u2 → · · · → ut
where some edge ui → uj with 1 6 i < j 6 t is not present.

Proposition 1. Suppose G is a graph of girth at least 4 so that G→ ~Ct for some t > 4.
Then G has no semi-transitive orientation.

Proof. Fix an orientation of G. By the Ramsey property, that orientation contains a
~Ct. But since the graph has girth 4 this cycle includes a shortcutting edge. Since the
orientation is arbitrary, the result follows.

Thus it suffices, for the point of view of finding graphs of large girth without semi-
transitive orientations, to find Orientation Ramsey hosts for some ~Ct of arbitrarily large
girth. Fortunately, a recent result of Barros, Calavar, Kohayakawa and Naia from [4],
along with an observation dating back to the classic paper [27] of Rödl and Rucinski, will
provide exactly this.

We also mention ordered Ramsey theory – as studied in [11], for instance – as this
provides another potential source of other non semi-transitively orientable graphs. Now
consider a graph G on vertex set [n] (where [n] = {1, 2, . . . , n}), and a graph H on vertex
set [t]. An ordered copy of H in G is an isomorphic copy of H in G where the inclusion
ϕ : [t] → [n] is ordered: that is, ϕ(i) < ϕ(j) for all i < j. Then G is an ordered Ramsey
host for H (written G→< H) if for every red-blue coloring of the edges of G, G contains
a monochromatic ordered copy of H.

Proposition 2. Suppose G is a graph of girth at least 4 so that G→< Ct for some t > 4.
Then G has no semi-transitive orientation.

Proof. Fix an orientation of G. We construct a red-blue coloring of the edges of G as
follows: if the edge is ordered in an increasing way (i.e. from a lower indexed vertex
to a higher) color it red, otherwise color it blue. By the Ramsey property, this coloring
contains a monochromatic ordered Ct. But then this easily seen to be a cycle with a
shortcutting edge, regardless of whether it is red or blue.

The key to showing existence of non-semi transitively oriented graphs of large girth is
the result of Barros, Cavalar, Kohayakawa, and Naia we now present.

We recall the Erdős-Renyi G(n, p) model of random graphs: G(n, p) is a probabil-
ity distribution on n vertex labeled graphs, where edges are present independently with
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probability p (and missing with probability 1 − p. Following [4], we recall that p ~H is a

threshold for G(n, p)→ ~H if for a G in G(n, p),

P(G→ ~H)→

{
0 p = p(n)� p ~H
1 p = p(n)� p ~H

where here a� b (resp. �) means limn→∞ an/bn = 0 (resp. limn→∞ an/bn =∞).
The key proposition is the following, specialized to the cases we are concerned with

(cf. Theorem 2 from [4])

Proposition 3 (Special case of Theorem 2 from [4]). For any t > 4,

p ~Ct
(n) = n−

t−2
t−1

is the threshold for G→ ~Ct.

We remark that the upper bound for the threshold – that is, the fact that there exists

a constant C = C(t) so that if p = p(n) > Cn−
t−2
t−1 then P(G → ~Ct) → 1 – appears in

the masters thesis of Cavalar [8]; this is actually the most important direction for our
purposes. As mentioned in [4] there are some other, more classical, ways of deriving
this threshold via graph regularity – Cavalar uses more modern machinery, namely graph
containers, to achieve the result. We also note, for the convenience of the reader referring
to the statement in [4], that the quantity in the exponent, − t−2

t−1 , is the 2-density of Ct;
where the 2-density of a graph H is

m2(H) = max
F⊆H
v(F )>3

e(F )− 1

v(F )− 2
.

This quantity is well-known to occur as a threshold function for Ramsey properties dating
back to the work of Rödl and Ruciński in [27].

An almost immediate consequence of Proposition 3 is the following:

Theorem 4. Suppose 0 < κ < 1, and G is a G(n, n−κ) random graph. Then

P(G is word-representable)→ 0.

Proof. Fix a t = t(κ) > 4 large enough so that

κ <
t− 2

t− 1
and κ >

2

t− 1
.

As κ < t−2
t−1 , Proposition 3 implies that G(n, n−κ) → ~Ct with probability tending to one.

On the other hand, the expected number of Kts in G(n, n−κ) is at most(
n

t

)
n−κ(

t
2) < nt−κ

t(t−1)
2 .
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As κ > 2
t−1 , this exponent is negative, and hence the expected number of Kts is o(1).

These combine to imply that a random graph G ∈ G(n, n−κ) has no semi-transitive
orientation with probability tending to 1: With probability tending to 1, any orientation
of G must contain ~Ct, but since (again, with probability tending to 1) G does not contain
a Kt this subgraph induced by these t vertices cannot be complete, so the orientation is
not semi-transitive.

Remark 5. So long as p� n−3/5 and 1−p� n−1 then G(n, p) will have (with probability
tending to 1) induced copies of the (non semi-transitively orientable) wheel W5, and hence
is non semi-transitively orientable. Hence this is of most interest for small κ. Also, taking
p = n−κ is really for simplicity here; so long as p = p(n) with

lim sup − log(p)

log n
< 1 and lim inf − log(p)

log n
> 0,

the argument works with minor modification.

Finally we prove the main theorem of the section.

Theorem 6. For any k, there exist graphs of girth k that have no semi-transitive orien-
tation, and hence are not word-representable.

Per Proposition 1 it suffices to find an orientation Ramsey host for ~Ck of girth k.
Proposition 3 implies that a random graph for an appropriate edge density will be such
an orientation Ramsey host for ~Ck, but a typical graph of that edge density will have girth
smaller than k. That said, already dating back to the seminal work of Rödl and Rucinski
on sparse Ramsey hosts in [27] it has been known how to take appropriate threshold
results (like Proposition 3) and turn them into existence results for Ramsey hosts of large
girth.

Though this is not explicitly done by Barros et al. in [4], the method to do so is
well-known. Indeed, the existence of the necessary Ramsey hosts is implicit in the thesis
of Cavalar, [8]. The explicit probabilities needed to prove Theorem 6 are computed,
although the theorem itself does not seem to be stated explicitly. Cavalar instead proves
the existence of Ramsey hosts of girth k for a slightly different ‘isometric oriented’ Ramsey
property. Due to Cavalar’s work, [4] is more interested in finding the other end of the
threshold. The methods are slightly different than those of Rödl and Rucinski [27], though
a proof in the vein of Rödl and Rucinski should be possible (see discussion in [8, 4]). We
collect, for convenience, the necessary ingredients. We note that key to the proof is
the FKG inequality from [13]. In the specialization we need, cf. Theorem 6.3.2 of The
Probabilstic Method of Alon and Spencer [2], it states

Lemma 7. Suppose Q1, Q2 are monotonically decreasing graph properties – that is if G
has property Qi then every subgraph of G has property Qi. Then if G is a G(n, p) random
graph.

P(G has property Q1 ∩Q2) > P(G has property Q1)P(G has property Q2).
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Proof of Theorem 6. For a fixed k and p = p(n), let Ak,p be the event that a graph in

G(n, p) is an orientation Ramsey host for ~Ck and Bk,p be the event that a graph in G(n, p)
has girth at least k. It suffices to prove that

P(Ak,p ∩ Bk,p) > 0.

As P(Ak,p ∩ Bk,p) > P(Bk,p)− P(Ack,p), it suffices to prove that

P(Ack,p) < P(Bk,p)

for appropriate choice of p.
Both of these estimates are in [8] – one of which is a completely standard estimate on

the probability that a random graph has large girth.
Claim 1: There exist positive constants C,C ′, C ′′ so that if

p > Cn−
k−2
k−1 ,

then
P(Ac) 6 exp

(
−C ′n2p

)
= exp

(
−C ′′n1+ 1

k−1

)
. (1)

Claim 1 is Theorem 4.1 in [8], specialized to the cycle ~Ck with the estimate (1) from
the proof.

Claim 2: If p = Cn−
k−2
k−1 , then

p(B) > exp(−O(n)).

Claim 2 is a rather standard application of the FKG inequality from [13]; we present
a slightly streamlined version of the argument from [8] without trying to optimize any
constants. Let Z be the random variable counting the number of cycles of length less
than k in a random G from G(n, p). Let C consist of the collection of potential cycles in
G of length less than k. Here, C can be thought of as cyclically ordered tuples of t distinct
vertices. Note that there are fewer than nt potential cycles of length t in C.

E[Z] =
∑
C∈C

p|C| <

k−1∑
t=3

ptnt < k(pn)k−1 = O((pn)k−1) = O(n).

As containment of different cycles is positively correlated in G – if C1 is a cycle and C2 is
a different cycle then containing C1 only can make C2 more likely; strictly if they share
edges – and since a single given cycle is present the FKG inequality implies that

P(Bk,c) = P(Z = 0) >
∏
C∈C

(1− p|C|) > exp

(
−
∑
C∈C

(
p|C|

1− p|C|

))
= exp(−O(E[Z])) = exp(−O(n)).
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Here, we note that the first inequality is the FKG inequality specialized as in Lemma
7, applied to the Qi being non-containment of various cycles indexed by C. The second
follows from the real number inequality 1 − x > e−x/(1−x). Finally we note that the
(1−p|C|)−1 is at most 1

2
for n sufficiently large (as p < 1

2
) which is absorbed in the implied

constant in the O(E[Z]) term.

Thus setting p = Cn−
k−2
k−1 for an appropriately large C and n, P(Ack,p) < P(Bk,p) so

that P(Ak,p ∩ Bk,p) > 0 completing the proof as the Ramsey host of large girth is exactly
the graph needed.

3 Partial Orders and Semi-Transitive Orientations

Recall that a (strict) partial order is a setX along with a relation≺ onX that is irreflexive,
transitive and antisymmetric. The comparability graph of a partially ordered set
(X,≺) is a graph on vertex set X, so that a, b ∈ X are connected if either a ≺ b or
b ≺ a – that is, if a and b are comparable.

Acyclic orientations, including semi-transitive orientations, of a graph naturally give
rise to a partial order on a graph, so that if x, y ∈ V (G), x ≺ y if there is a directed path
from x to y. Acyclicity, then, precludes the possibility that x ≺ y and y ≺ x and hence
ensures anti-symmetry of the relation.

Thus every semi-transitive orientaton of a graph gives rise to a partial order. In this
section we are interested in the reverse direction: in what ways can partial orders give
rise to word-representable graphs.

In a partial order, a is said to cover b if b ≺ a but there does not exist a c so that
b ≺ c ≺ a. The cover graph of (X,≺) is a graph on X where a is connected to b if
a covers b, or b covers a. A particular representation of the cover graph, known as a
Hasse diagram, is an arrangement of the vertices of the cover graph so that elements are
arranged on the plane so that lower elements of the poset appear below elements that
cover them.

There are close relations between these graphs associated with posets, and
word-representable graphs. The starting point of this section is the following simple
observation:

Proposition 8. If P = (X,≺) is a partial order on a set X then both the comparability
graph and cover graph of P are semi-transitive.

On the other hand, it is shown in [21] that

Proposition 9. If G is semi-transitive and triangle-free, then it is the Hasse diagram of
some poset.

While a simple observation, this already gives a source of word-representable graphs
with interesting properties. For instance, one of the motivating questions of this paper
was the existence of graphs of large girth and even larger chromatic number that are
word-representable. The chromatic number of Hasse diagrams of girth k can actually be
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as large as n
1

2k−3
−o(1), by a recent result of Suk and Tomon [30]. These graphs, combined

with our observations imply

Theorem 10. There exist word-representable graphs of girth k with chromatic number

n
1

2k−3
−o(1).

Later (cf. Theorem 32) we show that these graphs are not only word-representable,
but provide a bound on the length of the word-representations of these graphs.

3.1 Poset Dimension, Realizers, and Shuffling

As partially ordered sets are a natural source of word-representable graphs, it is natural
to study the words themselves.

Recall that a linear extension of a poset P = (X,≺) is a total ordering of the
elements of X that respects the partial order (that is, if a ≺ b in P then a < b in the total
ordering.) A linear extension can be thought of as a string of characters, representing the
elements in their order. A realizer is a set of linear extensions {r1, r2, . . . , rt} with the
property that whenever a and b are incomparable in P , then a < b in some extension ri
and b < a in another extension rj. The dimension of a poset is the smallest such t.

A chain in a poset is a subset C of P where any two elements of C are comparable
and an antichain is a subset A of P where no two elements of A are comparable. The
height of a poset is the size of the largest chain and the width of the poset is the size of
the largest antichain.

We begin with the following simple observation, which is essentially Theorem 3.4.3 of
[21]; for completeness, we provide a short proof as we build on the main idea in Lemma
12 below.

Lemma 11. Let P = (X,≺) be a poset. For any realizer R = {r1, . . . , rt} of P the string
that is the concatenation of r1, . . . , rt is a word-representation of the comparability graph
of P .

Proof. Consider the graph G represented by the concatenation r1r2 . . . rt; the vertex set of
G is X. Fix a, b ∈ G. If a and b are comparable in P – without loss of generality, assume
a ≺ b so in each ri, a occurs before b – then a and b alternate, with the ith occurrence
of each character coming from ri. If a and b are incomparable, then a occurs before b in
one element of the realizer, and b before a in another – that is, a and b do not alternate
in the string. Thus G is precisely the comparability graph.

A word is a uniform word if each vertex appears the same number of times. In
particular, a word is k-uniform if each vertex in the graph appears exactly k times in
the word. A graph is called k-representable if there is a k-uniform word that represents
that graph. The smallest k such that G is k-representable is called the representation
number of G, denoted R(G).

Slightly more information is actually gained from the proof of Lemma 11. Given a
uniform word w representing a graph G, it naturally induces a semi-transitive orientation
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of G which we call the canonical orientation, where the edge ab is oriented from a to b
if a appears first in w. An orientation of a graph is k-representable if there is a k-uniform
word which gives the same orientation. One can thus also define the representation
number of an orientation of a graph as the smallest k so that a k-uniform word yields that
orientation. The representation number of the graph is then the minimum representation
number of a semi-transitive orientation of the graph.

Lemma 12. Let w1 and w2 be uniform words representing G1 and G2, respectively, that
share a vertex set, and G be the graph represented by the concatenation w1w2. Then an
edge ab is in G if and only if ab is in both G1 and G2 and the canonical orientation of ab
is the same in both.

We remark that the representation given by Lemma 11 need not be the shortest repre-
sentation of a comparability graph. That is, the representation number of a comparability
graph need not be its dimension. For instance, the crown graph H4,4 is the comparability
graph of a dimension 4 poset while, as a graph, it is a 3-dimensional cube which has
representation number 3 [21]. Indeed, there is even a 3-uniform word representing H4,4

whose canonical orientation is the standard orientation of H4,4 as a dimension 4 poset. If
the vertices of H4,4 are labeled with x1, x2, x3, x4, y1, y2, y3, y4 so that the edges are exactly
between xi and yj when i 6= j, then a 3-uniform word representing H4,4 with the desired
canonical orientation is x1x2x3y4x4y1y2x3y3x4x2y1x1y3y4x2y2x4x3x1y3y2y1y4.

This subtlety has actually led to a small amount of confusion in the literature. For
instance, the statement of Theorem 5.4.7 in Kitaev and Lozin’s book [21] has a minor
inaccuracy due to this issue. They define a subset X of the set of vertices V of a graph G
to be a module if all members of X have the same set of neighbors among vertices not
in X. Then the accurate statement of their Theorem 5.4.7 is

Proposition 13. Suppose that G is a word-representable graph and x ∈ V (G). Let G′ be
obtained from G by replacing x with a module M , where M is any comparability graph (in
particular, any clique). Then G′ is also word-representable. Moreover, if R(G) = k1 and
k2 is the order dimension of a poset for which M is a comparability graph then R(G′) = k,
where k = max{k1, k2}.

It should be noted that this gives a well defined value for k2 by a result [31] of Trotter,
Moore, and Sumner that says that any two partial orders with the same comparability
graph have the same order dimension. In the original statement, k2 was defined to be the
representation number of M . The reason for this modification to the statement is that in
the proof, the facts that M can be represented by a concatenation of k2 linear extensions,
and that the concatenation of no fewer than k2 linear extensions represents M are both
reliant on properties of the dimension of a poset rather than just the representation
number of M . A small example highlighting the need for order dimension to be considered
is that replacing one of the vertices of K2 with the crown graph H4,4 yields a graph that
has representation number 4 (by Theorem 4.2.6 of [21]) yet the representation number of
K2 is 1 and the representation number of H4,4 is 3.
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A graded poset is a partially ordered set P paired with a rank function ϕ : P → N
in which, for x, y ∈ P , if x ≺ y in the ordering of P then ϕ(x) < ϕ(y) and if y covers x
then ϕ(y) = ϕ(x) + 1.

For two linear extensions t1 and t2 of a poset P , we define the string shuffle(t1, t2)
as follows:

Algorithm: A letter t in t2 is said to be a legal letter if it has not been printed and:

1. All x ≺t2 t have been printed from t2.

2. t and all elements that cover t in P have been printed from t1.

shuffle(t1, t2) is generated as follows: Letters are printed iteratively from t1 and t2 from
left to right. In each iteration, if there is a legal letter from t2, it is printed. Otherwise,
the next unprinted letter from t1 is printed.

To clarify, we consider a small example.
Example: Consider the following Hasse diagram on elements a, b, c, d, e, f .

f

b c e

a d

We consider shuffle(t1, t2) on the linear extensions of P given by t1 = dabecf and
t2 = adbcef . The first letter of t2, a, does not become legal in t2 until those elements
covering it have been printed. Thus shuffle(t1, t2) begins as dabec. At this point, a is
legal in t2. So a is printed from t2. Then d is also legal, so d is printed. Since the next
letter in t2 is b, which is covered by f in P , there is no legal letter in t2. So f is printed
from t1. At this point, no letters from t1 remain, and thus the rest of t2 is printed in
order. This yields the string

shuffle(t1, t2) = dabecadfbcef.

Lemma 14. Suppose C is the cover graph of a poset P , and t1 and t2 are linear extensions
of P . Then C is a subgraph of the graph represented by the word shuffle(t1, t2).

Proof. Let ab be a directed edge in C. By definition, a must come before b in both t1 and
t2. By definition, a must be printed before b in both linear extensions. The only way edge
ab will be deleted from the resulting word is if vertex a from t2 is printed before vertex b
from t1. However, the second criteria of the shuffle algorithm states that before vertex
a from t2 can be printed, all vertices dominating a, particularly vertex b, must have been
printed from t1. Therefore, the edge ab is in the graph represented.
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Theorem 15. Suppose P is a graded poset, and R = {r1, . . . , rn} is a realizer of P . Let
t be a linear extension of P defined by enumerating vertices in non-decreasing order by
their rank. Then the word obtained by concatenating shuffle(t, t), r1, . . . , rn is a word-
representation of the cover graph, G, of P .

Proof. By Lemma 11, we know the concatenation of r1 . . . rn eliminates all edges between
non-comparable elements of P in G. By Lemma 14, shuffle(t, t) maintains all edges
present in G.

Applications of Lemma 12 imply the concatenation of shuffle(t, t) and r1 . . . rn will
not delete edges from G.

The only edges remaining that need to be addressed are those between comparable
elements with a difference in rank larger than 1, which we show are all deleted. Let x < z
be in P where ϕ(x) + 1 < ϕ(z). Since edges are only between elements whose ranks
differ by 1, there must exist y ∈ P such that ϕ(y) = ϕ(x) + 1 and x < y < z. Then x
must come before y which must come before z in t, and ϕ(x) < ϕ(y) < ϕ(z). Applying
shuffle(t, t) would ensure x from the second copy of t is printed before z from the first
copy of t because all elements of rank ϕ(x) + 1 would have been printed before z from the
first copy of t making all elements of rank ϕ(x) legal to be printed from the second copy
of t, deleting the directed edge xz.

Lemma 16. Suppose P is a poset, and X = (x1, . . . , xk) is a chain in P . Then there
exists a 2-uniform word representing a graph G with the properties that

1. G contains the cover graph of P as a subgraph.

2. For all 1 6 i 6 k: if x ≺ xi ≺ y in P , then G does not contain the edge xy.

3. The canonical orientation of G agrees with P : if x ≺ y in P and there is an edge
from x to y, then the canonical orientation goes from x to y.

Proof. For 1 6 i 6 k define the set Bi = {y ∈ P | xi 6≺ y} and define Bk+1 = V (G).
Define Di = {y ∈ P | y ≺ xi} and define Dk+1 = V (G). By definition we have that
B1 ⊆ B2 ⊆ · · · ⊆ Bk ⊆ Bk+1 and D1 ⊆ D2 ⊆ · · · ⊆ Dk ⊆ Dk+1. Note that no element
of Bi can be preceded by an element not in Bi and no element of Di can be preceded
by an element not in Di. Thus we may order the elements of B1, B2 \ B1, . . . , Bk+1 \ Bk

such that the concatenation of the orders of B1, B2 \ B1, . . . , Bk+1 \ Bk give us a linear
extension of P that we call b. This can be done by taking a linear extension on the poset
induced by Bi+1 \Bi. In a similar way, we can make a linear extension d using the Di. We
consider the word W = shuffle(b, d). Note that this word is 2-uniform and by Lemma
14 we have that the graph based on this word contains all the edges in the cover graph
of P .

For 1 6 i 6 k, when the shuffle algorithm is about to print an element z of Bi+1 \ Bi

from b, all the previous elements in b, which come from either B1 or Bj+1 \ Bj where
1 6 j 6 i− 1, have been printed. This means that all of Bi has been printed. z is greater
than xi. Since all elements from Di are less than xi, z does not cover them. Thus every
element of Di is legal to print in d, so these must have been printed before z can.

the electronic journal of combinatorics 31(4) (2024), #P4.2 12



Thus every element less than xi is printed twice before any element greater than xi is
printed for the first time so W has no edges from a vertex that precedes xi to a vertex
that is preceded by xi for all 1 6 x 6 k.

Theorem 17. Suppose G is the cover graph of a poset P . Let l be the width of P , and d
be the dimension of P . Then G is word-representable by a (2l + d)-uniform word.

Proof. Per Lemma 11, there is a d-uniform word w representing the comparability graph
of P . By construction, the canonical orientation of this graph is determined by P ; that
is, the edge goes from a to b if a � b in P .

By Dilworth’s theorem [12], there is a chain decomposition of P consisting of l chains
C1, C2 . . . , Cl. For each of these chains, Ci, Lemma 16 provides a 2-uniform word wi which
represents a graph including the cover graph, but not including edges from below some
element x ∈ Ci to above that x in the partial order P . The canonical orientation of all
these words also agrees with P .

Concatenating these words ww1w2 . . . wl yields the desired 2l + d uniform word by
Lemma 12. Indeed, the cover graph is represented by all (and canonically oriented ac-
cording to P ), but all other edges of the comparability graph are killed by one of the
words wi. This is as any non-cover edge xy has some x ≺ z ≺ y, and z lies in some chain
Ci, so that xy does not occur in the graph represented by wi.

As the dimension is at most the width for cover graphs (see [17]), we obtain

Corollary 18. Suppose G is the cover graph of a poset P . Let w be the width of P . Then
G has representation number at most 3w.

4 Lower Bounds for Representation Numbers

In this section, we illustrate two methods for getting lower bounds on representation
numbers. The first is an extremely general, but simple, counting argument. Its main
benefit is that it makes essentially no assumptions on the graph where it is applied.
It yields, however, comparatively weaker lower bounds than the second method, which
exploits the structure of possible semi-transitive orientations to prove strong lower bounds
when it applies. It applies, for instance, to the crown graph and yields an independent
proof of the (sharp) lower bound for these graphs in [15], but also applies to a larger class
of graphs and yields a linear lower bound on the representation number in these cases.

4.1 General Lower Bound of Finite Graphs

We begin by giving a general lower bound on the representation number of a finite graph.
To introduce the lemma, we first require a brief definition. Given a graph G, and

X ⊂ V (G), let
NX = {S ⊆ X : ∃v ∈ (V \X) s.t. S = N(v) ∩X}

denote the subsets of X that are the neighborhood of some vertex v restricted to X.
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A priori, NX can be as large as 2|X| – this would happen if there were vertices with
every possible neighborhood within X. However, we observe the following

Theorem 19. Suppose G is a graph with a k-uniform word-representation. Then

|NX | = O(|X|k).

Proof. Suppose G is a graph with a k-uniform word-representation w. Fix X ⊆ V (G)
with X = {v1, . . . , vt}. Then the occurrences of the symbols v1, v2, . . . , vt in w divide w
into tk + 1 intervals. Note that for any v ∈ V \ X the adjacencies between v and the
vertices in X are determined by the intervals that the k repetitions of v fall in. Moreover,
if any two v’s fall into the same interval, then v is adjacent to none of the vertices in X.
Thus

|NX | 6
(
tk + 1

k

)
+ 1 6

(
e(tk + 1)

k

)k
+ 1 = O(tk)

as desired.

An immediate consequence, since |NX | 6 (2et)k, is:

Corollary 20. Suppose G is a word-representable graph, and there exists a set X ⊆ V
with |V | = t, and |NX | = s. Then

R(G) >
log s

log(2et)
.

In Kitaev and Lozin’s book, [21], the question of whether all bipartite graphs have
representation number 3 is raised. The example of the crown graphs Hn,n, which were
shown in [15] to have representation number dn/2e for n > 5, show this is not true. We
remark, however, that Corollary 20 gives, in some sense, a stronger negative answer to
this question.

Indeed, it is easy to see that almost every (sufficiently large) bipartite graph gives a
negative answer to the question.

Theorem 21. Suppose G is a uniformly random chosen bipartite graph on (X, Y ) where
|X| = |Y | = n. Then

P
(
G is k-representable for some k < logn

log(6e logn)

)
→ 0

as n→∞.

That is, the smallest k such that G is k representable is at least (1 − o(1)) logn
log logn

for
almost every bipartite graph where both parts have the same size.
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Proof. A uniformly random bipartite graph amounts to taking each potential edge be-
tween x ∈ X and y ∈ Y independently with probability 1

2
. Fix S ⊆ X with |S| = t =

b3 log nc.
For x, y ∈ Y ,

P(N(x) ∩ S = N(y) ∩ S) = 2−t 6 2n−3.

Thus if Z is the number of such pairs,

E[Z] 6

(
n

2

)
(2n−3) 6 n−1.

By Markov’s inequality P(Z > 0) 6 E[Z]→ 0, so that P(Z = 0)→ 1. But if Z = 0 then
|NS| = n, while |S| = t 6 3 log(n). The theorem then follows immediately from Corollary
20.

4.2 Lower Bounds from Orientations

In this section we illustrate how semi-transitive orientations can sometimes be character-
ized, and this characterization can be used to lower bound the representation number. In
particular, we give a lower bound on the representation number for a particular class of
bipartite graphs. This class includes crown graphs, and specializing the method gives an
alternate proof of the representation numbers of crown graphs, as found in [15].

We remark this method also yields, as a bonus, the minimum order dimension of a
poset whose cover graph is the crown graph Hn,n. This ties to a large stream of fairly
recent results in partially ordered sets, which seek to maximize the dimension of posets
whose cover graphs are reasonably simple. See, e.g. [29, 5, 18, 19]. This, however, is the
first theorem we know of that looks at the opposite question: how small can the dimension
of a fairly dense and complicated cover graph be?

We define the bipartite complement G∗ of a bipartite graph G with parts U, V as
the bipartite graph with parts U, V where uivj ∈ E(G∗) if and only if uivj /∈ E(G) for
each ui ∈ U and vj ∈ V . A bipartition is balanced if the sizes of the two parts differ by
at most 1.

We begin by making some observations on the structure of semi-transitive orientations
for a class of bipartite graphs, which we can then leverage into a lower bound for the
representation number (and order dimension).

Proposition 22. In a semi-transitive orientation of a C4 on vertex set {a, b, c, d}, if ab
and bc are oriented edges, then the remaining edges are oriented as ad and dc.

Proof. If cd is an oriented edge, then either orientation of the edge between a and d results
in either an oriented cycle or shortcutting edge. The case for da follows similarly.

Lemma 23. Let G be a balanced (n− k-regular bipartite graph on 2n vertices.
Then for any semi-transitive orientation of G there exists an induced subgraph on

vertex sets (X, Y, Z) satisfying the following:

• |X|+ |Z| > n− k
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• |Y | > n− 2k

• Every vertex in X is a source.

• Every vertex in Z is a sink.

Proof. Let A and B denote the bipartition of G. Fix a semi-transitive orientation of G.
If every vertex in A were either a source or a sink, then we let X consist of the sources

in A, Z consist of the sinks, and Y = B.
Hence we can assume there is a vertex y ∈ A such that y is neither a source nor a

sink. Let X denote the set of in-neighbors of y, and Z consist of the out neighbors. Then
|X|+ |Z| = n− k.

Since y is neither a source nor sink, X and Z are both non-empty. Fix x ∈ X and
z ∈ Z, and let Y ⊆ A be the common neighborhood of x and z; note that |Y | > n− 2k.

We claim that (X, Y, Z) satisfies the conclusion of the lemma. The fact that every
vertex in X is a source is observed as follows. Fix adjacent x′ ∈ X, y′ ∈ Y . Note that,
by construction x′y and yz are oriented edges. Furthermore y′ and z are connected by an
edge. But then, by Lemma 22, the edges are oriented as x′y′ and y′z. Since this is true
for every y′ ∈ Y , every vertex x′ ∈ X is a source to Y . That every vertex in Z is a sink
follows similarly, interchanging the role of x and z.

Given a r-uniform word w, we define how to unshuffle w into r 1-uniform words
(i.e. permutations) w1, w2, . . . , wr: the i-th word, wi in the unshuffle of w is the substring
consisting of the i-th occurrence of each letter. We denote the i-th occurrence of x in w
by xi, and say that xi < yj if xi occurs before yj in w.

Lemma 24. Suppose G is a graph represented by a r-uniform word w, oriented according
to its canonical orientation. Let (P,�) be the partial order on V (G) defined so that v � u
if there is a directed path from v to u. Then the k words obtained from unshuffling w are
linear extensions of (P,�).

Proof. It suffices to show that whenever u is adjacent to v in (P,�) with v � u that
vi < ui for all i. This is immediate from the fact that u and v alternate in w. Now if
v � u (with u not necessarily adjacent to v) the fact that vi < ui follows by considering
the cover relations along a directed path from vi to ui.

Theorem 25. Let G be a balanced bipartite graph on 2n vertices whose bipartite comple-
ment is both k-regular and does not contain C4 as a subgraph. Then

R(G) >

⌈
k(n− 3k)

4k − 2

⌉
= n

(
k

4k − 2

)
+O(k) = |V (G)|

(
k

8k − 4

)
+O(k).

Proof. We denote the bipartite complement of G by G∗.
Let w be a r-uniform word representing G. We restrict ourselves to a subgraph H

as guaranteed by Lemma 23. The restriction of w to the subword whose letters are the
vertices in H is a r-uniform word representing H. Let w′ be this restriction of w; we
consider its unshuffling w1, . . . , wr as defined above.
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Let X be the set of sources and let Z the set of sinks as defined in Lemma 23. We let
H∗ to be the induced subgraph of G∗ restricted to the vertices of H.

For a y ∈ Y and i ∈ [r], let

P (y, i) = {x ∈ X : xi+1 < yi} ∪ {z ∈ Z : zi < yi}
S(y, i) = {x ∈ X : xi > yi} ∪ {z ∈ Z : zi−1 > yi}.

We proceed with a sequence of four simple claims.
Claim 1: The edge {u, y} is in H∗ if and only if u ∈ P (y, i) or u ∈ S(y, i) for some i.

If u 6∈ P (y, i) or S(y, i) for any i then either ui < yi < ui+1 for all i or yi+1 > ui > yi

for all i depending on if u ∈ X or u ∈ Z, respectively. In other words, u and y alternate
and so that u and y are adjacent in H, and hence {u, y} is not in H∗. This proves the
forward direction.

Conversely, assume {u, y} is an edge in H, and hence not in H∗. Let u = x ∈ X. Then
xi < yi by the definition and thus u 6∈ S(y, i). Fix the minimal i for which u ∈ P (y, i).
Then w contains a subword xixi+1yi – a contradiction. The case u = z ∈ Z is similar. �

Let yij denote the j-th vertex of Y to appear in word wi, and let t = |Y |, so that yit is
the last element of Y to appear in word wi.

Claim 2: For all 1 6 i 6 r, |S(yi1, i)| 6 k and |P (yit, i)| 6 k. �
By Claim 1, if u ∈ S(yi1, i) then u and yi1 are not adjacent in H. But y is not adjacent

to at most k vertices in X ∪ Y as G∗ is k-regular. The bound on |P (yit, i)| proceeds
similarly. �

Claim 3: For all 1 6 i 6 r and j > 2, |S(yij, i)| 6 1 and |P (yit−j+1, i)| 6 1.
Note that by construction S(yij, i) ⊆ S(yi1, i). If u, u′ ∈ S(yj, i), then neither of u or u′

would be adjacent to yij or yi1 in H by Claim 1. But this would be a C4 in G∗, which is
C4-free. The bound for the |P (yit−j+1, i)| follows similarly. �

Claim 4: For all 1 6 i 6 r and j > k + 1, |S(yij, i)| = |P (yit+1−j, i)| = 0.
As S(yij, i) ⊆ S(yij′ , i) if j′ < j, then u ∈ S(yij, i) implies that u is not adjacent to

si1, s
i
2, . . . , s

i
j in H. But as G∗ is k-regular, u can be non-adjacent to at most k vertices in

H. The bound for the |P (yit−j+1, i)| follows similarly. �

Now we combine the claims to yield the result. Claim 1 immediately implies that

∑
y∈Y

r∑
i

(|P (y, i)|+ |S(y, i)|) > |E(H∗)| (2)

On the other hand for a fixed 1 6 i 6 r, Claims 2, 3 and 4 combine to show that∑
y∈Y

(|P (y, i)|+ |S(y, i)|) 6 4k − 2.
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Finally, we note that |E(H∗)| > k(|X|+ |Z|)− k(n− |Y |) > k(n− 3k). Inserting into (2),
we obtain that

r(4k − 2) > k(n− 3k),

and the result follows.

Corollary 26. Let G be a bipartite graph on 2n vertices whose bipartite complement is
k-regular and does not contain C4 as a subgraph. Then the minimum order dimension

among posets for which G is a cover graph is bounded below by
⌈
k(n−3k)
4k−2

⌉
.

Proof. Since G is bipartite, it is triangle-free, and so any poset for which G is a cover
graph gives a semi-transitive orientation of G. Every semi-transitive orientation of such
a G is considered in the previous proof, and when considering a set of linear extensions
rather than an unshuffling of a word, the P (y, i) and S(y, i) sets for order dimension are
subsets of those for representation number.

Recall, the crown graph on 2n vertices - denoted Hn,n - is a complete bipartite graph
with a perfect matching deleted. In other words, it could be thought of as two independent
sets A = {a1, . . . , an} and B = {b1, . . . , bn} where the edge aibi does not exist for each
pair but all other edges between the sets do.

The same strategy as in the proof of Theorem 25 can be used as an alternate way to
prove a 2016 result of Glen, Kitaev, and Pyatkin from [15] that the representation number
of Hn,n is

⌈
n
2

⌉
for n > 5. The details can be inferred from the slight strengthening of a

result analogous to Corollary 26:

Theorem 27. Let n > 4. The minimum order dimension among posets for which Hn,n

is a cover graph is
⌈
n
2

⌉
.

Proof. Given a poset, orienting every edge of its cover graph from covered element to
covering element yields a semi-transitive orientation, so we can consider semi-transitive
orientations of Hn,n.

Fix an arbitrary semi-transitive orientation. To prove the theorem, we slightly strengthen
Lemma 23 in the case where the balanced bipartite graph in question is Hn,n. Let the
partite sets of Hn,n be denoted by A and B.

If each element of A is a source (or each a sink), then the poset is oriented as a standard
example and has dimension n.

As in the proof of Lemma 23 we fix a y ∈ A which is neither a source nor sink, let X
denote its in-neighbors, and Z denote the out neighbors, so that |X| + |Z| = n − 1. If
|X| = 1 (or |Z| = 1) we proceed precisely as in Lemma 23 – let Y denote the common
neighborhood of the x ∈ X and z ∈ Z. Assuming |X| = 1, then |Z| = n − 2 and after
applying Lemma 22 we note that (Y, Z) is a standard example Hn−2,n−2.

Otherwise, if |X| > 2 and |Z| > 2, we observe that we can take Y to be all of
A: Indeed, suppose w ∈ A, and suppose x ∈ X with w adjacent to x. Then w is also
adjacent to some z ∈ Z (as w is adjacent to all but at most one element of Z and |Z| > 2),
and applying Lemma 22 to {x, y, z, w} implies that xw is oriented from x to w. Similarly,
all edges from w are oriented to Z.
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Finally, we show that y′ – the vertex in B not adjacent to y – is either a source or
a sink. Otherwise, suppose u is an out-neighbor of y′ and v is an in-neighbor. Let t be
a common neighbor of u and v that is not y′ – such exists as n > 4, and u and v only
have one non-neighbor in B. Then Lemma 22 applied to {v, y′, u, t} would imply that t is
neither a source nor sink – contradicting what we have already observed. We hence can
add y′ to either X or Z.

Thus we have shown that the conclusion of Lemma 23 holds with |X| + |Z| = n and
|Y | = n. One of |X|, |Z| > dn

2
e. Taking the larger of these sets (say X) and their partners

in Y gives a standard example with dimension |X|.
We now construct a poset that meets this bound. Assume that n is even since the odd

case follows from the next largest even case. Let X = {x1, . . . , xn/2}, Y = {y1, . . . , yn},
and Z = {zn/2+1, . . . , zn} and P be the poset where yi covers xj if j 6= i and zi covers
yj if j 6= i. It can be seen that a realizer for this poset can be constructed by having
n
2

linear extensions that each list both some yi before xi and zn/2+1+i before yn/2+1+i.
The incomparabilities within X, Y , and Z are then simple to eliminate with these linear
extensions, and an explicit construction is more tedious than enlightening.

5 Applications and Examples

In this section we show a number of applications of the work above to study the word-
representations of graphs.

5.1 The n-Cube

The n-dimensional hypercube, denoted Qn, is obtained by taking the Cartesian product
of K2 with itself n-times. This graph can be viewed as the graph on the 2n length n words
in 0/1, with adjacencies between words differing in exactly one position. The weight of a
word is the number of ones in the word.

In [7] it was proved that Qn is n-representable. Based on this, and the fact the repre-
sentation number of Qn was n for n = 1, 2, 3, it was conjectured that the representation
number of Qn was n for all n. This, however, turns out not to be the case.

Theorem 28. R(Qn) = O
(

log(n)
log log(n)

)
.

In order to prove Theorem 28, we introduce the boxicity of a graph. Let a1 · · · an
and b1 · · · bn be elements of R. A k-box is defined as [a1, b1] × [a2, b2] × · · · × [ak, bk]. A
k-box representation of a graph G is a mapping of G into k-dimensional Euclidean space
such that two vertices are adjacent in G if and only if their corresponding k-boxes have
a non-empty intersection. The boxicity of G, denoted box(G), is the minimal d such that
G has a d-box representation [1].

Adiga et al. show in [1] that if P = (V, P ) is a height 2 poset and GP is its underlying
comparability graph then box(GP ) 6 dim(P ) 6 2 · box(GP ). In [9], Chandran et al. show
that the boxicity of the nth Cartesian product of any finite graph is O(log(n)/ log log(n))).
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Proof of Theorem 28. We combine the previous two results. Consider the height 2 partial
order and semi-transitive orientation constructed by viewing the hypercube as a bipartite
graph between the words of even weight and those of odd weight, and directing all edges
towards (say) the words of odd weight. (Note that this is not the standard order on the
boolean lattice/hypercube.)

The hypercube is the comparability graph of this order. Now we combine the above
results: This partial order has boxicityO( logn

log logn
), and hence dimensionO( logn

log logn
). Finally,

as Qn is the comparability graph of this poset, Lemma 11 implies that the representation
number is also O( logn

log logn
).

Interestingly, a similar O((log n)/(log log n)) bound holds for the nth power of any
bipartite graph by the same argument, as n → ∞. For instance, although the crown
graph Hk,k is known to have representation number dk/2e, an n-fold Cartesian product
of Hk still has representation number O((log n)/(log log n)) as n→∞.

Remark 29. While Theorem 28 implies that for n sufficiently large, R(Qn) is much smaller
than n, it is still interesting to find the lowest such n. In particular, is R(Q4) = 4?

5.2 General Bipartite Graphs

Building on the observations made above about the n-cube, we note the following result
of Scott and Wood from [28].

Proposition 30. Every poset whose comparibility graph has maximum degree at most ∆
has dimension at most

∆ log1+o(1) ∆.

Applying this to bipartite graphs, viewed as comparability graphs of height two posets,
we observe that

Theorem 31. If G is bipartite with maximum degree ∆, then R(G) 6 ∆ log1+o(1)) ∆.

5.3 Highly Chromatic Graphs of Large Girth

In [16], a general upper bound is shown for the representation number of graphs. It is
shown that every graph with clique number k has representation number at most 2(n−k).
For triangle-free graphs, k = 2 and this is a rather large upper bound. One, then, wonders,
how hard is it to represent fairly complicated triangle-free graphs.

To this end, we observe that graphs of high girth and high chromatic number – which
are well-known to be complicated to construct – can be represented fairly efficiently.

Theorem 32. There are graphs G of girth k and chromatic number n
1

2k−3
+o(1) with

R(G) 6 n
2k−4
2k−3

+o(1).

Proof. This follows from Corollary 18, via the construction of Suk and Tomon [30]. Indeed,
in Suk and Tomon’s construction, the chromatic number is bounded by bounding the size
of an independent set in the Hasse diagram. Since the independence number in the Hasse
diagram is an upper bound for the width, the result follows.
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In the case of triangle-free graphs, where the girth is 4, we can do slightly better.
In [10], Chen, Pach, Szegedy and Tardos show that the Hasse diagram, H, of n random
points in [0, 1]2 under the dominance order – that is, (a, b) � (c, d) if and only if a 6 c
and b 6 d – has independence number

α(H) = O

(
n(log log n)2

log n

)
= o(n),

with high probability. As explained in [10], this is well-known to be a partial order of
dimension 2.

On the other hand, antichains in the dominance order correspond to decreasing sub-
sequences in the random permutation represented by the points – the permutation from
the x order to the y order of the points. The longest decreasing subsequence – that is, the
width of the partial order – was famously shown to have a scaled Tracy–Widom distribu-
tion by Baik, Deift and Johansson in [3] with mean 2

√
n. From this, the width is O(

√
n)

with high probability. Thus, with probability tending to one, the obtained random Hasse
diagram has width O(

√
n), and independence number o(n) – so that χ(H) = ω(1). In all

we have obtained

Theorem 33. For any k ∈ N, there exist triangle-free word-representable graphs G on n
vertices, whose chromatic number is at least k, with R(G) = O(

√
n).

5.4 Point-Line (Non-)Incidence Graphs of Finite Projective Planes

The finite projective planes PG(2, q) are linear hypergraphs H = (P ,L) on q2 + q + 1
points, with the property that every point is contained in q + 1 hyperedges (lines) and
every line contains in q + 1 points; hence there are q2 + q + 1 lines as well.

The point-line incidence graph, G∗q, of PG(2, q) is a bipartite graph on (P ,L) where
p ∼ ` if and only if p ∈ `. These graphs have many nice properties; for the point of view
of this example we highlight that G∗q is (q + 1)-regular, on 2(q2 + q + 1) vertices, and has
girth 6. G∗q is known to be an extremal C4-free bipartite graph (see [26]). Thus if Gq is
the bipartite complement of G∗q (i.e. a bipartite graph on (P ,L) where p ∼ ` if and only
if p 6∈ `) then, Theorem 25 implies the first part of

Theorem 34. If Gq is the point-line non-incidence graph of PG(2, q),

R(Gq) > (1− o(1))
q2 + q + 1

4
= (1− o(1))

|V (Gq)|
8

,

while the largest induced crown Ht,t in Gq has

t = O(q3/2) = O(|V (Gq)|3/4).
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To bound the size of the largest crown in Gq, we observe that a crown in Gq corresponds
to an induced matching in G∗q. For this, it suffices to (lower) bound the number of point-
line incidences in PG(2, q) for a set of points P ⊆ P and set of lines L ⊆ L where
|P | = |L|. If the number of incidences I(P,L) > |L|, then necessarily there can’t be an
induced matching between P and L, as this is the number of edges between the sets in
G∗q.

To this end, we apply an estimate proved by Vinh in [32] and made explicit – Vinh
technically stated only an upper bound for incidences – by Lund and Saraf in [25]. Lund
and Saraf (see Theorem 1 of [25]; we specialize to the case where r = q+ 1, λ = 1, |B| =
q2 + q + 1) prove that ∣∣∣∣I(P,L)− (q + 1)|P ||L|

q2 + q + 1

∣∣∣∣ <√q|P ||L|.

Now a simple computation shows that if |P | = |L| = 2q3/2, then |I(P,L)| > |P | for q
sufficiently large, and hence no induced matching exists of this size exists. This bound on
the largest induced matching in G∗q, which likewise bounds the size of the largest crown
in Gq, completes the proof of Theorem 34.

5.5 Dimension and Representation Numbers

Following Theorem 17, and the discussion above, two natural questions stand out. First,
is it possible to improve the bound from Theorem 17, perhaps even proving that the
representation number of a Hasse diagram is at most the dimension? Second – and perhaps
more temptingly – is the dimension of a poset a lower bound on the representation number
of a graph.

We now give examples ruling out these possibilities, at least in their strongest sense.
To make the discussion more precise, we give one more definition. Consider a word-

representable graph equipped with a semi-transitive orientation. We define the represen-
tation number of the orientation to be the minimum k so that there is a k-uniform
word yielding that orientation. The representation number, then, is the minimum over
all different semi-transitive orientations.

Proposition 35. There are graphs with semi-transitive orientations, so that the repre-
sentation number of the orientation is strictly smaller than the order dimension of the
underlying poset.

Proof. As remarked above, the crown graph Hn,n has this property. Indeed, there are
dn+1

2
e-representations of Hn,n whose canonical orientation agrees with that of the standard

example which has dimension n. For n = 4, the word

x1x2x3y4x4y1y2x3y3x4x2y1x1y3y4x2y2x4x3x1y3y2y1y4

yields a 3-representation of H4,4 whose orientation is the standard example.
To construct these words for n > 5, we construct t = d(n + 1)/2e permutations of

x1, . . . , xn and y1, . . . , yn that can be combined to yield the desired word. These permu-
tations have the following properties:
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• First,

π1 = x1x2 · · · xn σ1 = ynyn−2yn−3 · · · y1yn−1
π2 = xn−1xnxn−2xn−3 · · ·x1 σ2 = y1yn−1y2 · · · yn−3ynyn−2

These permutations appear in the words and have the effect of ensuring that the
only possible edges between the x’s is between xn−1 and xn and in the y’s between
y1 and yn−1 and yn and yn−2.

• π3 must start with xn−2, contain xnxn−1 in the middle in that order, and end with
x2.

Since π3 ends with x2, σ3 starts with y2, contains yn−1y1yn−2yn in the middle in that
order, and ends with a yi not previously appearing at the start or end of a word. If
n = 5, there is no such vertex but by construction σ3 = y2y4y1y3y5.

• For 4 6 s 6 t : If yj ends σi−1, then xj starts πs, and the final vertex of πs should not
have been the start or end of any previous πi. (This is always possible – 2(s−1) < n
vertices previously started or ended words as x1 appeared twice.) The order of the
rest does not matter.

If xj ends πs, then σs should start with yj. The last vertex of σs should also be
distinct from vertices starting/ending previous σi – if n is odd, however, this will
not be possible when s = t. Once s = t all letters have appeared as the start/end
of a permutation.

From these permutations the word is constructed by considering the permutations
π1, σ1, π2, σ2, . . . , πs, σs and interlacing the last vertex of πi with the first vertex of σi,
and the last vertex of σi with the first vertex of πi+1. Edges between xi and xj and yi
and yj are guaranteed to not exist by the construction of π1, π2, π3 and σ1, σ2 and σ3. The
missing edge between yj and xj is achieved by the fact that either xj will end one πi and
start σi or end a σi and start πi+1 for some i by construction.

Remark 36. As observed, the difference between the order dimension of the underlying
poset, and the representation number can be arbitrarily far apart. Still, the following is
of interest: For an integer t let f(t), if it exists, denote the largest dimension of a semi-
transitive orientation of a graph which has representation number t. What is the behavior
of f(t)? The standard example shows that f(t) > 2t if it exists. It would be interesting
to get an upper bound on f(t). It would be even more interesting to show that f(t) does
not exist for some t – that there is a family of (semi-transitive orientations of) graphs so
that the representation number is bounded, but the poset dimension unbounded.

Remark 37. As noted above, the graph Hn,n was shown in [15] to have representation
number dn

2
e for n > 5, while here we’ve shown that the orientation as a standard example

has a representation number of dn+1
2
e. The difference between these bounds can be seen

in the proof of Theorem 25: for the standard example orientation, one edge at a time can
be removed either as a transposition in a linear extension or as a ‘shuffle’. With t linear
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extensions, however, there are only t− 1 potential shuffles. Other orientations allow one
to remove two edges using transposition in a single linear extension and this can make up
for the missing ‘shuffle.’

Proposition 38. There are semi-transitively oriented graphs so that the representation
number of the orientation is strictly greater than the poset dimension.

Proof. The following orientated graph has representation number (for the given orienta-
tion) three, while the order dimension of the underlying poset is 2.

c f

e

b d

a

If it were possible to represent this orientation with a 2-uniform word, we may assume
without loss of generality that such a word begins with a. Then there are two ways for
ad to be a non-edge:

• If the pattern of a and d is aadd, then the pattern of a, d, and c must be aadcdc
and so f cannot be placed into this pattern to respect its edges in the graph (since
the first e must appear after the first d and the first f must appear after the first
e).

• If the pattern of a and d is adda, then the pattern of a, d, and c must be adcdca
and so b cannot be placed into this pattern to respect its edges in the graph.

Thus this orientation is not 2-representable. But it is represented by the 3-uniform
word
adbcedfeafbacbdcef , and it is the intersection of the linear orders a < b < d < c < e < f
and d < e < a < f < b < c.

Remark 39. Here, the underlying graph is a 6-cycle, which – as a graph – has repre-
sentation number two. It is an interesting problem to construct a graph – not just an
orientation – of representation number three, where there is an underlying poset of dimen-
sion two. It also would be of interest to construct examples where the difference between
the parameters is arbitrarily large.
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