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Abstract

We construct a new family
󰀓
η
(q)
α

󰀔

α∈Comp
of quasisymmetric functions for each

element q of the base ring. We call them the “enriched q-monomial quasisymmetric
functions”. When r := q + 1 is invertible, this family is a basis of QSym. It
generalizes Hoffman’s “essential quasi-symmetric functions” (obtained for q = 0)
and Hsiao’s “monomial peak functions” (obtained for q = 1), but also includes the
monomial quasisymmetric functions as a limiting case.

We describe these functions η
(q)
α by several formulas, and compute their products,

coproducts and antipodes. The product expansion is given by an exotic variant of
the shuffle product which we call the “stufufuffle product” due to its ability to pick
several consecutive entries from each composition. This “stufufuffle product” has
previously appeared in recent work by Bouillot, Novelli and Thibon, generalizing
the “block shuffle product” from the theory of multizeta values.

Keywords: quasisymmetric functions, peak algebra, shuffles, combinatorial Hopf
algebras, noncommutative symmetric functions.

Mathematics Subject Classifications: 05E05, 05A30, 11M32

Contents

1 Introduction 2
1.1 Structure of the paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Quasisymmetric functions 5
2.1 Formal power series and quasisymmetry . . . . . . . . . . . . . . . . . . . 5
2.2 Compositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 The monomial and fundamental bases of QSym . . . . . . . . . . . . . . . 7

aDepartment of Mathematics, Drexel University, Philadelphia, U.S.A. (darijgrinberg@gmail.com)
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1 Introduction

Among the combinatorial Hopf algebras that consist of power series in commuting indeter-
minates, one of the largest and most all-embracing is that of the quasisymmetric functions,
called QSym. Originally introduced by Gessel in 1984 [Gessel84], it has since found appli-
cations (e.g.) to enumerative combinatorics ([Sagan20, Chapter 8], [Stanle24, §7.19–7.23],
[GesZhu18]), multizeta values (e.g., [Hoffma15]), algebraic geometry ([Oesing18]) and the
representation theory of 0-Hecke algebras ([Meliot17, §6.2]).

It was observed by Ehrenborg ([Ehrenb96, Lemma 4.2]; see [Biller10, §3.3] for a survey)
that quasisymmetric functions can also be used to encode the “flag f -vector” of a finite
graded poset – i.e., essentially, the number of chains over a given sequence of ranks, for
each possible sequence of ranks. Soon after, work of Bergeron, Mykytiuk, Sottile and van
Willigenburg ([BMSW00, Example 5.3], but see [Biller10, §3.4] for an explicit statement)
showed that if the graded poset is Eulerian (a property shared by face posets of polytopes
and simplicial spheres), then the resulting quasisymmetric function is not arbitrary but
rather belongs to a certain subalgebra of QSym called Stembridge’s Hopf algebra or the
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peak algebra or the odd subalgebra Π− of QSym. It was initially defined by Stembridge
[Stembr97, §3] in order to find a fundamental expansion of the Schur P - and Q-functions,
and has since been studied by others for related and unrelated reasons ([AgBeSo06, §6,
particularly Proposition 6.5], [BMSW99], [BMSW00, §5], [Hsiao07] etc.); among other
properties, it is a Hopf subalgebra of QSym.

Almost all bases of QSym constructed so far are indexed by compositions (i.e., tuples
of positive integers), and their structure constants are often governed by versions of shuffle
products and deconcatenation coproducts. The peak algebra is smaller, and its bases are
often indexed by odd compositions, i.e., compositions whose entries are all odd. One of
its simplest bases is defined as follows (for the sake of simplicity, we use Q as a base ring
here): If n ∈ N and if α = (α1,α2, . . . ,αℓ) is a composition of n (that is, a tuple of positive
integers with α1 + α2 + · · ·+ αℓ = n), then we define the formal power series

ηα =
󰁛

1󰃑g1󰃑g2󰃑···󰃑gn;
gi=gi+1 for each i∈E(α)

2|{g1,g2,...,gn}|xg1xg2 · · · xgn (1)

∈ Q [[x1, x2, x3, . . .]] ,

where E (α) denotes the set {1, 2, . . . , n− 1} \ {α1 + α2 + · · ·+ αi | 0 < i < ℓ}. This ηα
belongs to the Q-algebra QSym of quasisymmetric functions over Q. If we let α range
over all odd compositions (i.e., compositions (α1,α2, . . . ,αℓ) whose entries αi are all odd),
then the ηα form a basis of the peak algebra over Q.

In this form, the power series ηα have been introduced by Hsiao ([Hsiao07, Proposition
2.1], although his ηα differ from ours by a sign), who called them the monomial peak
functions. Hsiao computed their products, coproducts (in the sense of Hopf algebra) and
antipodes, and obtained some structural results for the peak algebra.

In this paper, we generalize the ηα by replacing the power of 2 in (1) by a power of an
arbitrary element r of the base ring. We furthermore study the resulting quasisymmetric
functions for all compositions α (not only for the odd ones). Thus we obtain a new family󰀓
η
(q)
α

󰀔

α is a composition
of quasisymmetric functions for each element q of the base ring. When

r := q+1 is invertible, this family is a basis of QSym. It generalizes Hoffman’s “essential
quasi-symmetric functions” (obtained for q = 0) and Hsiao’s monomial peak functions
(obtained for q = 1), but also includes the monomial quasisymmetric functions as a
limiting case.

We call our functions η
(q)
α the enriched q-monomial quasisymmetric functions. We de-

scribe them by several formulas, and compute their products, coproducts and antipodes
(generalizing Hsiao’s results). The product expansion is the most interesting one, as it is
given by an exotic variant of the shuffle product which we call the “stufufuffle product”
due to its ability to pick several consecutive entries from each composition. This “stufu-
fuffle product” has previously appeared in recent work by Bouillot, Novelli and Thibon
[BoNoTh22, (1)], where it was proposed as a generalization of the “block shuffle product”
from the theory of multizeta values ([HirSat22]). While the authors of [BoNoTh22] have
already found a basis of QSym that multiplies according to this product, ours is simpler
and more natural. The coproduct and antipode formulas for η

(q)
α are fairly simple (the
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coproduct is given by deconcatenation, whereas the antipode involves the parameter q be-
ing replaced by its reciprocal 1/q and the composition α being reversed). We also express

the functions η
(q)
α in terms of the monomial and fundamental bases of QSym and vice

versa. Finally, we discuss how Hopf subalgebras of QSym can be constructed by picking
a subset of the set of all compositions. (This generalizes the peak subalgebra.)

This paper is the first of (at least) two. The next shall extend the theory of extended
P -partitions to incorporate the parameter q, which will shed a new light onto the enriched
q-monomial quasisymmetric functions η

(q)
α while also leading to a new basis of QSym.

Several results in this paper have appeared (without proof) in the extended abstracts
[GriVas21] and [GriVas22].

1.1 Structure of the paper

This paper is organized as follows:
We begin by recalling the definition of quasisymmetric functions (and some concomi-

tant notions) in Section 2.

Then, in Section 3, we define the quasisymmetric functions η
(q)
α and prove their sim-

plest properties (conversion formulas to the M - and L-bases, formulas for antipode and

coproduct). In particular, we show that the family of these functions η
(q)
α (where α ranges

over all compositions) forms a basis of QSym if and only if r := q + 1 is invertible in the
base ring.

Consequently, in Section 4, we introduce and study the basis of NSym dual to this
basis of QSym.

In Section 5, we use this to express the product η
(q)
δ η

(q)
ε in three equivalent ways.

Finally, we discuss some applications in Section 6, and establish one last formula for
η
(q)
α in Section A.

Remark 1. This paper (in its present version) is written with an expert reader in mind;
folklore results and well-known shortcuts are used without proof. Some simple proofs
are omitted; others are sketched and/or relegated to an appendix. A more elementary
version, which includes such arguments in detail, can be found at [GriVas23a] (and an
even more detailed version as an ancillary file to [GriVas23a]). The sheer number of

different formulas surrounding the functions η
(q)
α renders even the present version fairly

long; we hope that the structure can serve as a guide.
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2 Quasisymmetric functions

2.1 Formal power series and quasisymmetry

We will use some of the standard notations from [GriRei20, Chapter 5]. Namely:

• We let N = {0, 1, 2, . . .}.

• We fix a commutative ring k.

• We consider the ring k [[x1, x2, x3, . . .]] of formal power series in countably many
commuting variables x1, x2, x3, . . .. A monomial shall mean a formal expression of
the form xα1

1 xα2
2 xα3

3 · · · , where α = (α1,α2,α3, . . .) ∈ N∞ is a sequence of nonnega-
tive integers such that only finitely many αi are positive. Formal power series are
formal infinite k-linear combinations of such monomials.

• Each monomial xα1
1 xα2

2 xα3
3 · · · has degree α1 + α2 + α3 + · · · .

• A formal power series f ∈ k [[x1, x2, x3, . . .]] is said to be of bounded degree if there
exists some d ∈ N such that each monomial in f has degree 󰃑 d (that is, each
monomial of degree > d has coefficient 0 in f).

We now recall the definition of the quasisymmetric functions:

Definition 2. (a) Two monomials m and n are said to be pack-equivalent if they can
be written in the forms

m = xa1
i1
xa2
i2
· · · xaℓ

iℓ
and n = xa1

j1
xa2
j2
· · · xaℓ

jℓ

for some ℓ ∈ N, some positive integers a1, a2, . . . , aℓ and two strictly increasing
ℓ-tuples (i1 < i2 < · · · < iℓ) and (j1 < j2 < · · · < jℓ) of positive integers. (For exam-
ple, the monomials x4

1x
7
3x4x

2
9 and x4

3x
7
4x10x

2
16 are pack-equivalent.)

(b) A formal power series f ∈ k [[x1, x2, x3, . . .]] is said to be quasisymmetric if it has
the property that any two pack-equivalent monomials have the same coefficient in
f (that is: if m and n are two pack-equivalent monomials, then the coefficient of m
in f equals the coefficient of n in f).

(c) A quasisymmetric function means a formal power series f ∈ k [[x1, x2, x3, . . .]] that
is quasisymmetric and of bounded degree.
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Quasisymmetric functions have been introduced by Gessel in [Gessel84] (for k = Z at
least, but the general case is not much different). Introductions to their theory can be
found in [GriRei20, Chapters 5–6], [Stanle24, §7.19], [Sagan20, Chapter 8], [Malven93, §4]
and various other texts.

It is known (see [Malven93, Corollaire 4.7] or [GriRei20, Proposition 5.1.3]) that the
set of all quasisymmetric functions is a k-subalgebra of k [[x1, x2, x3, . . .]]. It is denoted
by QSym and called the ring of quasisymmetric functions. It has several bases (as a
k-module), most of which are indexed by compositions.

2.2 Compositions

A composition means a finite list (α1,α2, . . . ,αk) of positive integers. The set of all
compositions is denoted by Comp. The empty composition ∅ is the composition (),
which is a 0-tuple.

The length ℓ (α) of a composition α = (α1,α2, . . . ,αk) is defined to be the number k.
If α = (α1,α2, . . . ,αk) is a composition, then the nonnegative integer α1+α2+ · · ·+αk

is called the size of α and is denoted by |α|. For any n ∈ N, we define a composition
of n to be a composition that has size n. We let Compn be the set of all compositions
of n (for given n ∈ N). For example, (1, 5, 2, 1) is a composition with size 9 (since
|(1, 5, 2, 1)| = 1 + 5 + 2 + 1 = 9), so that (1, 5, 2, 1) ∈ Comp9.

For any n ∈ Z, we let [n] denote the set {1, 2, . . . , n}. This set is empty whenever
n 󰃑 0, and otherwise has size n.

It is well-known that any positive integer n has exactly 2n−1 compositions. This has a
standard bijective proof (“stars and bars”) which is worth recalling, as the bijection itself
will be used a lot:

Definition 3. Let n ∈ N. Let P ([n− 1]) be the powerset of [n− 1] (that is, the set of
all subsets of [n− 1]).

We define a map D : Compn → P ([n− 1]) by

D (α1,α2, . . . ,αk) = {α1 + α2 + · · ·+ αi | i ∈ [k − 1]}
= {α1, α1 + α2, α1 + α2 + α3, . . . , α1 + α2 + · · ·+ αk−1} .

This map D is well-known to be a bijection. (See, e.g., [Grinbe15, detailed version,
Proposition 10.17] for a detailed proof of this.)

For example, for n = 8, we have D (2, 1, 3, 2) = {2, 2 + 1, 2 + 1 + 3} = {2, 3, 6}. The
notation D presumably originates in the word “descent”, but the connection between D
and actual descents is indirect and rather misleading. We prefer to call D the “partial
sum map” (as D (α) consists of the partial sums of the composition α). Note that Stanley,
in [Stanle24, §7.19], writes Sα for D (α) when α ∈ Compn, and writes co (I) for D−1 (I)
when I ∈ P ([n− 1]).

Note that every composition α of size |α| > 0 satisfies |D (α)| = ℓ (α) − 1, so that
|D (α)| + 1 = ℓ (α). But this fails if α is the empty composition ∅ = () (since D () = ∅
and ℓ () = 0).
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2.3 The monomial and fundamental bases of QSym

We will only need two bases of QSym: the monomial basis and the fundamental basis.
If α = (α1,α2, . . . ,αℓ) is a composition, then we define the monomial quasisymmetric

function Mα ∈ QSym by

Mα =
󰁛

i1<i2<···<iℓ

xα1
i1
xα2
i2

· · · xαℓ
iℓ

=
󰁛

m is a monomial
pack-equivalent

to x
α1
1 x

α2
2 ···xαℓ

ℓ

m. (2)

For example,

M(2,1) =
󰁛

i<j

x2
ixj = x2

1x2 + x2
1x3 + x2

2x3 + x2
1x4 + x2

2x4 + x2
3x4 + · · · .

The family (Mα)α∈Comp is a basis of the k-module QSym, and is known as themonomial
basis of QSym.

For any composition α, we define the fundamental quasisymmetric function Lα ∈
QSym by

Lα =
󰁛

β∈Compn;
D(β)⊇D(α)

Mβ, (3)

where n = |α| (so that α ∈ Compn). It is not hard to rewrite this as

Lα =
󰁛

i1󰃑i2󰃑···󰃑in;
ij<ij+1 whenever j∈D(α)

xi1xi2 · · · xin (again with n = |α|) .

This quasisymmetric function Lα was originally called Fα in Gessel’s paper [Gessel84]
(and in some later work such as [Malven93]), but the notation Lα has since spread more
widely.

The family (Lα)α∈Comp is a basis of the k-module QSym, and is known as the funda-
mental basis of QSym.

3 The enriched q-monomial functions

3.1 Definition and restatements

Convention 1. From now on, we fix an element q of the base ring k. We set

r := q + 1.

We shall now introduce a new family of quasisymmetric functions depending on q:
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Definition 4. For any n ∈ N and any composition α ∈ Compn, we define a quasisym-

metric function η
(q)
α ∈ QSym by

η(q)α =
󰁛

β∈Compn;
D(β)⊆D(α)

rℓ(β)Mβ. (4)

We shall refer to η
(q)
α as the enriched q-monomial function corresponding to α.

Example 5.

(a) Setting n = 5 and α = (1, 3, 1) in (4), we obtain

η
(q)
(1,3,1) =

󰁛

β∈Comp5;
D(β)⊆{1,4}

rℓ(β)Mβ (since D (1, 3, 1) = {1, 4})

= rℓ(5)M(5) + rℓ(1,4)M(1,4) + rℓ(4,1)M(4,1) + rℓ(1,3,1)M(1,3,1)

(since the compositions β ∈ Comp5 satisfying D (β) ⊆ {1, 4} are (5), (1, 4), (4, 1)
and (1, 3, 1)). This simplifies to

η
(q)
(1,3,1) = rM(5) + r2M(1,4) + r2M(4,1) + r3M(1,3,1).

(b) For any positive integer n, we have

η
(q)
(n) = rM(n),

because the only composition β ∈ Compn satisfying D (β) ⊆ D (n) is the composi-
tion (n) itself (since D (n) is the empty set ∅) and has length ℓ (n) = 1. Likewise,
the empty composition ∅ = () satisfies

η
(q)
∅ = M∅ = 1.

The quasisymmetric function η
(q)
α generalizes several known power series. For q = 0,

the series η
(q)
α = η

(0)
α is the “essential quasi-symmetric function” EI (for I = D (α)) defined

in [Hoffma15, (8)]. When α is an odd composition (i.e., all entries of α are odd) and q = 1,

the series η
(q)
α = η

(1)
α is precisely the ηα defined in [AgBeSo06, (6.1)], and differs only in

sign from the ηα given in [Hsiao07, (2.1)] (because of [Hsiao07, Proposition 2.1]). (This

is the reason for the notation η
(q)
α .) Finally, in an appropriate sense, we can view Mα as

the “q → ∞ limit” of η
(q)
α ; to be precise, this is saying that when η

(q)
α is considered as a

polynomial in q (over QSym), its leading term is qℓ(α)Mα (which is obvious from (4) and
r = q + 1).

The following two propositions are essentially restatements of (4) (see the Appendix
for proofs):
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Proposition 6. Let n ∈ N and α ∈ Compn. Then,

η(q)α =
󰁛

g1󰃑g2󰃑···󰃑gn;
gi=gi+1 for each i∈[n−1]\D(α)

r|{g1,g2,...,gn}|xg1xg2 · · · xgn , (5)

where the sum is over all weakly increasing n-tuples (g1 󰃑 g2 󰃑 · · · 󰃑 gn) of positive inte-
gers that satisfy (gi = gi+1 for each i ∈ [n− 1] \D (α)).

Proposition 7. Let α = (α1,α2, . . . ,αℓ) ∈ Comp. Then,

η(q)α =
󰁛

i1󰃑i2󰃑···󰃑iℓ

r|{i1,i2,...,iℓ}|xα1
i1
xα2
i2

· · · xαℓ
iℓ
, (6)

where the sum is over all weakly increasing ℓ-tuples (i1 󰃑 i2 󰃑 · · · 󰃑 iℓ) of positive integers.

3.2 The η(q)
α as a basis

The equality (4) writes each enriched q-monomial function η
(q)
α as a k-linear combination

of Mβ’s. Conversely, we can expand each monomial quasisymmetric function Mβ as a

k-linear combination of η
(q)
α ’s, at least after multiplying it by rℓ(β):

Proposition 8. Let n ∈ N. Let β ∈ Compn be a composition. Then,

rℓ(β)Mβ =
󰁛

α∈Compn;
D(α)⊆D(β)

(−1)ℓ(β)−ℓ(α) η(q)α .

For the proof of this proposition (and some later ones as well), we will need the Iverson
bracket notation:

Convention 2. If A is a logical statement, then [A] shall denote the truth value of A (that
is, the number 1 if A is true, and the number 0 if A is false).

For example, [2 + 2 = 4] = 1 and [2 + 2 = 5] = 0.
The following lemma is a classical elementary property of finite sets:

Lemma 9. Let S and T be two finite sets. Then,

󰁛

I⊆S;
T⊆I

(−1)|S|−|I| = [S = T ] .

Proof. See [GriVas23a]. (In a nutshell: If S = T or T ∕⊆ S, then this is obvious. Otherwise,
fix some element g ∈ S \ T and pair up the addends on the left hand side so that any
pair cancels each other out. Specifically, pair the addend corresponding to a subset I = J
with the addend corresponding to the subset I = J △ {g}, where the symbol △ means
“symmetric difference”.)
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We will also use the following near-trivial property of compositions ([GriVas23b, Corol-
laries 2.6 and 2.7]):

Lemma 10. Let n ∈ N. Then:

(a) We have ℓ (δ) = |D (δ)|+ [n ∕= 0] for each δ ∈ Compn.

(b) We have ℓ (β)− ℓ (α) = |D (β)|− |D (α)| for any α ∈ Compn and β ∈ Compn.

Proof of Proposition 8. We have

󰁛

α∈Compn;
D(α)⊆D(β)

(−1)ℓ(β)−ℓ(α) η(q)α

=
󰁛

α∈Compn;
D(α)⊆D(β)

(−1)ℓ(β)−ℓ(α)
󰁛

γ∈Compn;
D(γ)⊆D(α)

rℓ(γ)Mγ (by (4), with β renamed as γ)

=
󰁛

γ∈Compn

rℓ(γ)Mγ

󰁛

α∈Compn;
D(γ)⊆D(α)⊆D(β)

(−1)ℓ(β)−ℓ(α) . (7)

However, for each γ ∈ Compn, we have

󰁛

α∈Compn;
D(γ)⊆D(α)⊆D(β)

(−1)ℓ(β)−ℓ(α)

󰁿 󰁾󰁽 󰂀
=(−1)|D(β)|−|D(α)|

(by Lemma 10 (b))

=
󰁛

α∈Compn;
D(γ)⊆D(α)⊆D(β)

(−1)|D(β)|−|D(α)| =
󰁛

I⊆[n−1];
D(γ)⊆I⊆D(β)

(−1)|D(β)|−|I|

󰀕
here, we have substituted I for D (α) in the sum,

since the map D : Compn → P ([n− 1]) is a bijection

󰀖

=
󰁛

I⊆D(β);
D(γ)⊆I

(−1)|D(β)|−|I|
󰀕

since D (β) ⊆ [n− 1] , so that each subset I
of D (β) is also a subset of [n− 1]

󰀖

= [D (β) = D (γ)] (by Lemma 9, applied to S = D (β) and T = D (γ))

= [β = γ] (since the map D is a bijection) .

Plugging this into (7), we find

󰁛

α∈Compn;
D(α)⊆D(β)

(−1)ℓ(β)−ℓ(α) η(q)α =
󰁛

γ∈Compn

rℓ(γ)Mγ [β = γ] = rℓ(β)Mβ

(since the factor [β = γ] in the sum ensures that the only nonzero addend in the sum is
the addend for γ = β). This proves Proposition 8.
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Proposition 8 shows that the quasisymmetric functions rℓ(β)Mβ for all β ∈ Comp are

k-linear combinations of the enriched q-monomial quasisymmetric functions η
(q)
α . If r is

invertible in k, then it follows that the monomial quasisymmetric functions Mβ are such

combinations as well, and thus the family
󰀓
η
(q)
α

󰀔

α∈Comp
spans the k-module QSym in this

case. But we can actually say more:

Theorem 11. Assume that r is invertible in k. Then:

(a) The family
󰀓
η
(q)
α

󰀔

α∈Comp
is a basis of the k-module QSym.

(b) Let n ∈ N. Consider the n-th graded component QSymn of the graded k-module

QSym. Then, the family
󰀓
η
(q)
α

󰀔

α∈Compn

is a basis of the k-module QSymn.

Proof. (b) Order all compositions of n by increasing length (breaking up ties arbitrarily).

Then, (4) shows that each η
(q)
α (for α ∈ Compn) can be expanded as a linear combination of

theMβ (with β ∈ Compn). Moreover, all the compositions β that appear in this expansion
with nonzero coefficient satisfy D (β) ⊆ D (α), and therefore have smaller length than α
unless they are equal to α (since β ∕= α entails D (β) ∕= D (α), so that D (β) is a proper
subset of D (α), and thus Lemma 10 (b) yields ℓ (β) − ℓ (α) = |D (β)| − |D (α)| < 0).
Thus, if we collect the coefficients of these expansions in a matrix, then this matrix is
lower-triangular. Moreover, the diagonal entries of this matrix are rℓ(α), thus invertible
(since r is invertible). Hence, the matrix itself is invertible.

So we have shown that the η
(q)
α can be expanded as linear combinations of the Mβ, and

the coefficients of these expansions form an invertible matrix. Consequently, the family󰀓
η
(q)
α

󰀔

α∈Compn

is a basis of the k-module QSymn. (since the family (Mα)α∈Compn
is a basis

of the k-module QSymn). This proves Theorem 11 (b).

(a) Part (a) follows from part (b), since
󰁉
n∈N

Compn = Comp and
󰁏
n∈N

QSymn =

QSym.

Theorem 11 (a) has a converse: If the family
󰀓
η
(q)
α

󰀔

α∈Comp
is a basis of QSym, then r is

invertible. (This is already clear from considering its unique degree-1 entry η
(q)
(1) = rM(1).)

3.3 Relation to the fundamental basis

We can also expand the η
(q)
α in the fundamental basis and vice versa:

Proposition 12. Let n be a positive integer. Let α ∈ Compn. Then,

η(q)α = r
󰁛

γ∈Compn

(−1)|D(γ)\D(α)| q|D(γ)∩D(α)|Lγ.
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Proposition 13. Let n be a positive integer. Let γ ∈ Compn. Then,

rnLγ =
󰁛

α∈Compn

(−1)|D(γ)\D(α)| q|[n−1]\(D(γ)∪D(α))|η(q)α .

Note that Proposition 12 generalizes [Hsiao07, Proposition 2.2].
Both propositions can be proved by the help of a rather simple identity:1

Lemma 14. Let S and T be two finite sets. Then,
󰁛

I⊆S

(−1)|I\T | q|I∩T | = [S ⊆ T ] · r|S|.

Proof of Lemma 14. This is again an exercise in elementary combinatorics, so we refer to
[GriVas23a] for a detailed proof. (The two cases to be considered are S ⊆ T and S ∕⊆ T .
In the former case, the left hand side simplifies to

󰁓
I⊆S

q|I|, which by a simple argument

equals (q + 1)|S| = r|S|. In the latter case, pick an s ∈ S \ T and break up the left hand
side into pairs as follows: For each subset J ⊆ S, the addend for I = J is paired up with
the addend for I = J △ {s}, where the symbol △ means “symmetric difference”. In each
pair, the two partners cancel each other out, and thus the sum is 0.)

Proof of Proposition 12. We begin by observing that

|D (β)|+ 1 = ℓ (β) (8)

for every β ∈ Compn (an easy consequence of Lemma 10 (a), since n > 0).
Let T := D (α). Thus, D (α) = T , so that

r
󰁛

γ∈Compn

(−1)|D(γ)\D(α)| q|D(γ)∩D(α)|Lγ

= r
󰁛

γ∈Compn

(−1)|D(γ)\T | q|D(γ)∩T | Lγ󰁿󰁾󰁽󰂀
=

󰁓

β∈Compn;
D(β)⊇D(γ)

Mβ

(by the definition of Lγ)

= r
󰁛

γ∈Compn

(−1)|D(γ)\T | q|D(γ)∩T |
󰁛

β∈Compn;
D(β)⊇D(γ)

Mβ

= r
󰁛

β∈Compn

󰁛

γ∈Compn;
D(β)⊇D(γ)

(−1)|D(γ)\T | q|D(γ)∩T |Mβ.

However, every β ∈ Compn satisfies
󰁛

γ∈Compn;
D(β)⊇D(γ)

(−1)|D(γ)\T | q|D(γ)∩T |

1We will use Convention 2.
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=
󰁛

I⊆[n−1];
D(β)⊇I

(−1)|I\T | q|I∩T |

󰀳

󰁃
here, we have substituted I for D (γ) in the sum,

since the map D : Compn → P ([n− 1])
is a bijection

󰀴

󰁄

=
󰁛

I⊆D(β)

(−1)|I\T | q|I∩T | (since D (β) ⊆ [n− 1])

= [D (β) ⊆ T ] · r|D(β)|

(by Lemma 14, applied to S = D (β)). Hence, this becomes

r
󰁛

γ∈Compn

(−1)|D(γ)\D(α)| q|D(γ)∩D(α)|Lγ

= r
󰁛

β∈Compn

󰁛

γ∈Compn;
D(β)⊇D(γ)

(−1)|D(γ)\T | q|D(γ)∩T |

󰁿 󰁾󰁽 󰂀
=[D(β)⊆T ]·r|D(β)|

Mβ

= r
󰁛

β∈Compn

[D (β) ⊆ T ] · r|D(β)|Mβ = r
󰁛

β∈Compn;
D(β)⊆T

r|D(β)|Mβ =
󰁛

β∈Compn;
D(β)⊆T

r|D(β)|+1
󰁿 󰁾󰁽 󰂀

=rℓ(β)
(by (8))

Mβ

=
󰁛

β∈Compn;
D(β)⊆T

rℓ(β)Mβ =
󰁛

β∈Compn;
D(β)⊆D(α)

rℓ(β)Mβ (since T = D (α))

= η(q)α

󰀃
by the definition of η(q)α

󰀄
.

This proves Proposition 12.

Proof of Proposition 13. For each subset J of [n− 1], we let J denote its complement
[n− 1] \ J . Its size is clearly

󰀏󰀏J
󰀏󰀏 = (n− 1)− |J | (since n− 1 ∈ N entails that [n− 1] has

size n− 1). Thus, every β ∈ Compn satisfies
󰀏󰀏󰀏D (β)

󰀏󰀏󰀏 = (n− 1)− |D (β)| = n− (|D (β)|+ 1)󰁿 󰁾󰁽 󰂀
=ℓ(β)
(by (8))

= n− ℓ (β)

and therefore
r|D(β)|rℓ(β) = rn−ℓ(β)rℓ(β) = rn. (9)

Let T := D (γ). Thus, D (γ) = T , so that
󰁛

α∈Compn

(−1)|D(γ)\D(α)| q|[n−1]\(D(γ)∪D(α))|η(q)α

=
󰁛

α∈Compn

(−1)|T\D(α)| q|[n−1]\(T∪D(α))|η(q)α
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=
󰁛

α∈Compn

(−1)|T\D(α)| q|[n−1]\(T∪D(α))| 󰁛

β∈Compn;
D(β)⊆D(α)

rℓ(β)Mβ (by (4))

=
󰁛

β∈Compn

󰁛

α∈Compn;
D(β)⊆D(α)

(−1)|T\D(α)| q|[n−1]\(T∪D(α))|rℓ(β)Mβ.

However, every β ∈ Compn satisfies

󰁛

α∈Compn;
D(β)⊆D(α)

(−1)|T\D(α)| q|[n−1]\(T∪D(α))|

=
󰁛

K⊆[n−1];
D(β)⊆K

(−1)|T\K| q|[n−1]\(T∪K)|

󰀕
here, we have substituted K for D (α) in the sum,

since the map D : Compn → P ([n− 1]) is a bijection

󰀖

=
󰁛

I⊆[n−1];

D(β)⊆I󰁿 󰁾󰁽 󰂀
=

󰁓

I⊆D(β)

(since the subsets I of [n−1]

satisfying D(β)⊆I are precisely

the subsets of D(β))

(−1)|T\I|
󰁿 󰁾󰁽 󰂀
=(−1)|I\T |

(since T\I=I\T )

q|[n−1]\(T∪I)|
󰁿 󰁾󰁽 󰂀

=q|I∩T |

(since we have

[n−1]\(T∪I)=T∪I=I∪T=I∩T
by de Morgan’s laws)

󰀳

󰁃
here, we have substituted I for K in the sum, since
the map P ([n− 1]) → P ([n− 1]) that sends each

subset I to its complement I is a bijection

󰀴

󰁄

=
󰁛

I⊆D(β)

(−1)|I\T | q|I∩T | =
󰁫
D (β) ⊆ T

󰁬
· r|D(β)|

(by Lemma 14, applied to S = D (β)). Hence, this becomes

󰁛

α∈Compn

(−1)|D(γ)\D(α)| q|[n−1]\(D(γ)∪D(α))|η(q)α

=
󰁛

β∈Compn

󰁛

α∈Compn;
D(β)⊆D(α)

(−1)|T\D(α)| q|[n−1]\(T∪D(α))|

󰁿 󰁾󰁽 󰂀
=[D(β)⊆T ]·r|D(β)|

rℓ(β)Mβ

=
󰁛

β∈Compn

󰁫
D (β) ⊆ T

󰁬
· r|D(β)|rℓ(β)Mβ =

󰁛

β∈Compn;

D(β)⊆T

r|D(β)|rℓ(β)󰁿 󰁾󰁽 󰂀
=rn

(by (9))

Mβ
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= rn
󰁛

β∈Compn;

D(β)⊆T

Mβ = rn
󰁛

β∈Compn;

D(β)⊆D(γ)

Mβ

󰀓
since T = D (γ)

󰀔

= rn
󰁛

β∈Compn;
D(β)⊇D(γ)

Mβ

󰁿 󰁾󰁽 󰂀
=Lγ

(by (3), applied to α=γ)

󰀳

󰁃
since the condition “D (β) ⊆ D (γ)” on a
composition β ∈ Compn is equivalent
to the condition “D (β) ⊇ D (γ) ”

󰀴

󰁄

= rnLγ.

This proves Proposition 13.

3.4 The antipode of η(q)
α

The antipode of QSym is a certain k-linear map S : QSym → QSym that can be defined in
terms of the Hopf algebra structure of QSym, which we have not defined so far. But there
are various formulas for its values on certain quasisymmetric functions that can be used as
alternative definitions. For example, for any n ∈ N and any α = (α1,α2, . . . ,αℓ) ∈ Compn,
we have

S (Mα) = (−1)ℓ
󰁛

γ∈Compn;
D(γ)⊆D(αℓ,αℓ−1,...,α1)

Mγ. (10)

This formula (which appears, e.g., in [Malven93, (4.26)]2 and in [GriRei20, Theorem
5.1.11]3 or in [Grinbe15, detailed version, Proposition 10.70]) can be used to define S (since

S is to be k-linear). Also, for each composition α, we have S (Lα) = (−1)|α| Lω(α), where
ω (α) is a certain composition known as the conjugate of α. See [Malven93, Corollaire
4.20] or [GriRei20, Theorem 5.1.11 and Proposition 5.2.15] for details and proofs. It is
well-known (see, e.g., [GriRei20, Proposition 1.4.10 and Corollary 1.4.12]) that S is a
k-algebra homomorphism and an involution (that is, S2 = id).

We will prove two formulas for the antipode of η
(q)
α . Both rely on the following notation:

Definition 15. If α = (α1,α2, . . . ,αℓ) is a composition, then the reversal of α is defined
to be the composition (αℓ,αℓ−1, . . . ,α1). It is denoted by revα.

We are now ready to state our first formula for the antipode of η
(q)
α in the case when

q is invertible:

Theorem 16. Let p ∈ k be such that pq = 1. Let α ∈ Comp, and let n = |α|. Then, the
antipode S of QSym satisfies

S
󰀃
η(q)α

󰀄
= (−q)ℓ(α) η(p)revα.

2The proof given in [Malven93] requires k to be a Q-algebra, but it is easy to see that the truth of (10)
for k = Q implies the truth of (10) for every commutative ring k.

3Note that [GriRei20, Theorem 5.1.11] uses the notation revα for the composition (αℓ,αℓ−1, . . . ,α1),
and writes “γ coarsens revα” for what we call “γ ∈ Compn and D (γ) ⊆ D (revα)”.
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Proof. From pq = 1, we obtain p = q−1 and

r󰁿󰁾󰁽󰂀
=q+1
=1+q

p = (1 + q) p = p+ qp󰁿󰁾󰁽󰂀
=pq=1

= p+ 1. (11)

We shall need a few more features of compositions. For any composition γ ∈ Compn,
we let ω (γ) denote the unique composition of n satisfying

D (ω (γ)) = [n− 1] \D (rev γ) . (12)

(This ω (γ) is indeed unique, since the map D is a bijection.) Then, a classical formula
([Malven93, (4.27)] or [GriRei20, (5.2.7)]) says that each γ ∈ Compn satisfies

S (Lγ) = (−1)n Lω(γ). (13)

It is also easy to prove (see, e.g., [GriVas23b, Proposition 4.3 (d)]) that

ω (ω (γ)) = γ for any γ ∈ Compn . (14)

Thus, the map ω : Compn → Compn (which sends each γ ∈ Compn to ω (γ)) is a bijection.
We WLOG assume that n ∕= 0 (since the claim of Theorem 16 is easily checked by

hand in the case when n = 0).
From n = |α|, we obtain α ∈ Compn.
Now, we make the following combinatorial observation:

Observation 1: Let γ ∈ Compn. Then,

|D (ω (γ)) ∩D (α)| = ℓ (α)− 1− |D (γ) ∩D (revα)| (15)

and
|D (ω (γ)) \D (α)| = n− ℓ (α)− |D (γ) \D (revα)| . (16)

The proof of Observation 1 is laborious but fairly straightforward, and can be found
in [GriVas23b, Proposition 4.4].

Now, Proposition 12 (applied to revα, p and p+ 1 instead of α, q and r) yields

η(p)revα = (p+ 1)
󰁛

γ∈Compn

(−1)|D(γ)\D(revα)| p|D(γ)∩D(revα)|Lγ. (17)

On the other hand, Proposition 12 yields

η(q)α = r
󰁛

γ∈Compn

(−1)|D(γ)\D(α)| q|D(γ)∩D(α)|Lγ.

Applying the k-linear map S to both sides of this equality, we obtain

S
󰀃
η(q)α

󰀄
= r

󰁛

γ∈Compn

(−1)|D(γ)\D(α)| q|D(γ)∩D(α)| S (Lγ)󰁿 󰁾󰁽 󰂀
=(−1)nLω(γ)

(by (13))
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= r
󰁛

γ∈Compn

(−1)|D(γ)\D(α)| q|D(γ)∩D(α)| (−1)n Lω(γ)

= r
󰁛

γ∈Compn

(−1)|D(ω(γ))\D(α)|
󰁿 󰁾󰁽 󰂀

=(−1)n−ℓ(α)−|D(γ)\D(revα)|

(by (16))

q|D(ω(γ))∩D(α)|
󰁿 󰁾󰁽 󰂀

=qℓ(α)−1−|D(γ)∩D(revα)|

(by (15))

(−1)n Lω(ω(γ))󰁿 󰁾󰁽 󰂀
=Lγ

(by (14))
󰀕

here, we have substituted ω (γ) for γ in the sum,
since the map ω : Compn → Compn is a bijection

󰀖

= r
󰁛

γ∈Compn

(−1)n−ℓ(α)−|D(γ)\D(revα)|
󰁿 󰁾󰁽 󰂀

=(−1)n(−1)ℓ(α)(−1)|D(γ)\D(revα)|

qℓ(α)−1−|D(γ)∩D(revα)|
󰁿 󰁾󰁽 󰂀

=qℓ(α)q−1(q−1)
|D(γ)∩D(revα)|

=qℓ(α)pp|D(γ)∩D(revα)|

(since q−1=p)

(−1)n Lγ

= rp󰁿󰁾󰁽󰂀
=p+1

(by (11))

(−1)n (−1)n󰁿 󰁾󰁽 󰂀
=1

(−1)ℓ(α) qℓ(α)󰁿 󰁾󰁽 󰂀
=(−q)ℓ(α)

󰁛

γ∈Compn

(−1)|D(γ)\D(revα)| p|D(γ)∩D(revα)|Lγ

= (p+ 1) (−q)ℓ(α)
󰁛

γ∈Compn

(−1)|D(γ)\D(revα)| p|D(γ)∩D(revα)|Lγ

= (−q)ℓ(α) (p+ 1)
󰁛

γ∈Compn

(−1)|D(γ)\D(revα)| p|D(γ)∩D(revα)|Lγ

󰁿 󰁾󰁽 󰂀
=η

(p)
revα

(by (17))

= (−q)ℓ(α) η(p)revα.

This proves Theorem 16.

Theorem 16 generalizes [Hsiao07, Proposition 2.9].

Our second formula for the antipode of η
(q)
α needs no requirement on q, but involves a

sum:

Theorem 17. Let n ∈ N. Let α ∈ Compn. Then, the antipode S of QSym satisfies

S
󰀃
η(q)α

󰀄
= (−1)ℓ(α)

󰁛

β∈Compn;
D(β)⊆D(revα)

(q − 1)ℓ(α)−ℓ(β) η
(q)
β .

We will prove this theorem using the following summation lemma:

Lemma 18. Let n ∈ N. Let α ∈ Compn and γ ∈ Compn be such that D (γ) ⊆ D (α).
Then:

(a) For any u, v ∈ k, we have

󰁛

β∈Compn;
D(γ)⊆D(β)⊆D(α)

uℓ(β)−ℓ(γ)vℓ(α)−ℓ(β) = (u+ v)ℓ(α)−ℓ(γ) .
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(b) For any u ∈ k, we have

󰁛

β∈Compn;
D(γ)⊆D(β)⊆D(α)

uℓ(β) = (u+ 1)ℓ(α)−ℓ(γ) uℓ(γ).

(c) For any v ∈ k, we have

󰁛

β∈Compn;
D(γ)⊆D(β)⊆D(α)

vℓ(α)−ℓ(β) = (1 + v)ℓ(α)−ℓ(γ) .

Proof of Lemma 18. (a) This is an easy exercise in combinatorial sums, so we shall be
brief; details can be found in [GriVas23a].

Let u, v ∈ k. Set A := D (α) and C := D (γ), so that C ⊆ A ⊆ [n− 1].
Recall that the map D : Compn → P ([n− 1]) is a bijection. Using this bijection

(and Lemma 10 (b)), we can translate the claim of Lemma 18 (a) from the language of
compositions into the language of sets. In the latter language, it says that

󰁛

B⊆[n−1];
C⊆B⊆A

u|B|−|C|v|A|−|B| = (u+ v)|A|−|C| .

But this can be shown easily either using the binomial formula (rewriting the left hand
side as a sum over all subsets of A\C, then filtering it according to the size of the subset)
or using a bijection (the choice of a subset B ⊆ [n− 1] satisfying C ⊆ B ⊆ A can be
reframed as a sequence of choices, one for each element a ∈ A \ C, whether the subset
should contain a or not contain a). In either case, Lemma 18 (a) follows.

(b) This follows by applying part (a) to v = 1 and then multiplying both sides by
uℓ(γ).

(c) This follows by applying part (a) to u = 1.

Proof of Theorem 17. We replace α by revα. Thus, α and revα become revα and α,
respectively, while the length ℓ (α) stays unchanged. Hence, the claim we must prove
becomes

S
󰀃
η(q)revα

󰀄
= (−1)ℓ(α)

󰁛

β∈Compn;
D(β)⊆D(α)

(q − 1)ℓ(α)−ℓ(β) η
(q)
β . (18)

It is this equality that we will be proving.
First, we observe that every β ∈ Compn satisfies

S (Mβ) = (−1)ℓ(β)
󰁛

γ∈Compn;
D(γ)⊆D(rev β)

Mγ. (19)
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(Indeed, this is just the formula (10), applied to β instead of α and restated using Defi-
nition 15.) Substituting rev β for β in (19), we obtain the following: Every β ∈ Compn

satisfies

S (Mrev β) = (−1)ℓ(rev β)
󰁛

γ∈Compn;
D(γ)⊆D(rev(rev β))

Mγ (since rev β ∈ Compn)

= (−1)ℓ(β)
󰁛

γ∈Compn;
D(γ)⊆D(β)

Mγ (20)

(since rev (rev β) = β and ℓ (rev β) = ℓ (β)).
Next, we recall a simple fact ([GriVas23b, Proposition 3.11]), which says that if β ∈

Compn is arbitrary, then we have the logical equivalence

(D (rev β) ⊆ D (revα)) ⇐⇒ (D (β) ⊆ D (α)) . (21)

The definition of η
(q)
revα yields

η(q)revα =
󰁛

β∈Compn;
D(β)⊆D(revα)

rℓ(β)Mβ =
󰁛

β∈Compn;
D(rev β)⊆D(revα)󰁿 󰁾󰁽 󰂀

=
󰁓

β∈Compn;
D(β)⊆D(α)

(by the equivalence (21))

rℓ(rev β)
󰁿 󰁾󰁽 󰂀
=rℓ(β)

(since ℓ(rev β)=ℓ(β))

Mrev β

󰀳

󰁃
here, we have substituted rev β for β in the sum,

since the map Compn → Compn, δ 󰀁→ rev δ
is a bijection

󰀴

󰁄

=
󰁛

β∈Compn;
D(β)⊆D(α)

rℓ(β)Mrev β.

Applying the k-linear map S to both sides of this equality, we obtain

S
󰀃
η(q)revα

󰀄
=

󰁛

β∈Compn;
D(β)⊆D(α)

rℓ(β)S (Mrev β)

=
󰁛

β∈Compn;
D(β)⊆D(α)

rℓ(β) (−1)ℓ(β)
󰁛

γ∈Compn;
D(γ)⊆D(β)

Mγ (by (20))

=
󰁛

γ∈Compn;
D(γ)⊆D(α)

󰁛

β∈Compn;
D(γ)⊆D(β)⊆D(α)

rℓ(β) (−1)ℓ(β)󰁿 󰁾󰁽 󰂀
=(−r)ℓ(β)

Mγ

=
󰁛

γ∈Compn;
D(γ)⊆D(α)

󰁛

β∈Compn;
D(γ)⊆D(β)⊆D(α)

(−r)ℓ(β)

󰁿 󰁾󰁽 󰂀
=(−r+1)ℓ(α)−ℓ(γ)(−r)ℓ(γ)

(by Lemma 18 (b))

Mγ
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=
󰁛

γ∈Compn;
D(γ)⊆D(α)

(−r + 1)ℓ(α)−ℓ(γ) (−r)ℓ(γ) Mγ

=
󰁛

γ∈Compn;
D(γ)⊆D(α)

(−q)ℓ(α)−ℓ(γ) (−r)ℓ(γ)󰁿 󰁾󰁽 󰂀
=(−1)ℓ(α)qℓ(α)−ℓ(γ)rℓ(γ)

Mγ

󰀳

󰁃since − r󰁿󰁾󰁽󰂀
=q+1

+1 = −q

󰀴

󰁄

= (−1)ℓ(α)
󰁛

γ∈Compn;
D(γ)⊆D(α)

qℓ(α)−ℓ(γ)rℓ(γ)Mγ.

In view of

󰁛

β∈Compn;
D(β)⊆D(α)

(q − 1)ℓ(α)−ℓ(β) η
(q)
β󰁿󰁾󰁽󰂀

=
󰁓

γ∈Compn;
D(γ)⊆D(β)

rℓ(γ)Mγ

(by (4))

=
󰁛

β∈Compn;
D(β)⊆D(α)

(q − 1)ℓ(α)−ℓ(β)
󰁛

γ∈Compn;
D(γ)⊆D(β)

rℓ(γ)Mγ

=
󰁛

β∈Compn;
D(β)⊆D(α)

󰁛

γ∈Compn;
D(γ)⊆D(β)

(q − 1)ℓ(α)−ℓ(β) rℓ(γ)Mγ

=
󰁛

γ∈Compn;
D(γ)⊆D(α)

󰁛

β∈Compn;
D(γ)⊆D(β)⊆D(α)

(q − 1)ℓ(α)−ℓ(β)

󰁿 󰁾󰁽 󰂀
=(1+(q−1))ℓ(α)−ℓ(γ)

(by Lemma 18 (c))

rℓ(γ)Mγ

=
󰁛

γ∈Compn;
D(γ)⊆D(α)

󰀳

󰁃1 + (q − 1)󰁿 󰁾󰁽 󰂀
=q

󰀴

󰁄
ℓ(α)−ℓ(γ)

rℓ(γ)Mγ =
󰁛

γ∈Compn;
D(γ)⊆D(α)

qℓ(α)−ℓ(γ)rℓ(γ)Mγ,

we can rewrite this as

S
󰀃
η(q)revα

󰀄
= (−1)ℓ(α)

󰁛

β∈Compn;
D(β)⊆D(α)

(q − 1)ℓ(α)−ℓ(β) η
(q)
β .

Thus, (18) is proved. As we explained, this proves Theorem 17.

3.5 The coproduct of η(q)
α

We begin with a definition that we will use several times:
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Definition 19. If α = (α1,α2, . . . ,αℓ) and β = (β1, β2, . . . , βk) are two compositions,
then the composition αβ is defined by

αβ = (α1,α2, . . . ,αℓ, β1, β2, . . . , βk) .

This composition αβ is called the concatenation of α and β. The operation of concate-
nation (sending any two compositions α and β to αβ) is associative, and the empty
composition ∅ is a neutral element for it; thus, the set of all compositions is a monoid
under this operation.

The coproduct of the Hopf algebra QSym is a k-linear map

∆ : QSym → QSym⊗QSym

that can be described by the formula

∆ (Mα) =
󰁛

β,γ∈Comp;
α=βγ

Mβ ⊗Mγ, (22)

which holds for all α ∈ Comp. (See [GriRei20, §5.1] for the definition of ∆, and see
[GriRei20, Proposition 5.1.7] for a proof of (22).)

We claim the following simple formula for ∆
󰀓
η
(q)
α

󰀔
(analogous to (22)):

Theorem 20. Let α ∈ Comp. Then,

∆
󰀃
η(q)α

󰀄
=

󰁛

β,γ∈Comp;
α=βγ

η
(q)
β ⊗ η(q)γ .

This theorem generalizes [Hsiao07, Corollary 2.7]. We shall prove it using the following
notion:

Definition 21. Let α be a composition. Then, C (α) shall denote the set of all compo-
sitions β ∈ Comp|α| satisfying D (β) ⊆ D (α). (The compositions belonging to C (α) are
often called the coarsenings of α.)

For instance, C (2, 1, 3) = {(2, 1, 3) , (3, 3) , (2, 4) , (6)}.
Using the notion of C (α), we can restate (4) as follows: For any α ∈ Comp, we have

η(q)α =
󰁛

β∈C(α)

rℓ(β)Mβ. (23)

We shall also use a simple summation formula ([GriVas23b, Proposition 5.17]) that
relies on the combinatorics of compositions and their coarsenings:
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Proposition 22. Let (A,+, 0) be an abelian group. Let uµ,ν be an element of A for each
pair (µ, ν) ∈ Comp×Comp of two compositions. Let α ∈ Comp. Then,

󰁛

µ,ν∈Comp;
µν∈C(α)

uµ,ν =
󰁛

β,γ∈Comp;
βγ=α

󰁛

µ∈C(β)

󰁛

ν∈C(γ)

uµ,ν .

We are now ready to prove Theorem 20:

Proof of Theorem 20. From (23), we obtain

η(q)α =
󰁛

β∈C(α)

rℓ(β)Mβ =
󰁛

λ∈C(α)

rℓ(λ)Mλ.

Applying the k-linear map ∆ to both sides of this equality, we find

∆
󰀃
η(q)α

󰀄
=

󰁛

λ∈C(α)

rℓ(λ) ∆ (Mλ)󰁿 󰁾󰁽 󰂀
=

󰁓

µ,ν∈Comp;
λ=µν

Mµ⊗Mν

(by (22))

=
󰁛

λ∈C(α)

󰁛

µ,ν∈Comp;
λ=µν󰁿 󰁾󰁽 󰂀

=
󰁓

µ,ν∈Comp;
µν∈C(α)

rℓ(λ)󰁿󰁾󰁽󰂀
=rℓ(µν)

(since λ=µν)

Mµ ⊗Mν

=
󰁛

µ,ν∈Comp;
µν∈C(α)

rℓ(µν)Mµ ⊗Mν

=
󰁛

β,γ∈Comp;
βγ=α

󰁛

µ∈C(β)

󰁛

ν∈C(γ)

rℓ(µν)Mµ ⊗Mν (24)

(by Proposition 22, applied to A = QSym⊗QSym and uµ,ν = rℓ(µν)Mµ ⊗Mν).
Now,

󰁛

β,γ∈Comp;
α=βγ󰁿 󰁾󰁽 󰂀

=
󰁓

β,γ∈Comp;
βγ=α

η
(q)
β󰁿󰁾󰁽󰂀

=
󰁓

µ∈C(β)

rℓ(µ)Mµ

(by (23))

⊗ η(q)γ󰁿󰁾󰁽󰂀
=

󰁓

ν∈C(γ)

rℓ(ν)Mν

(by (23))

=
󰁛

β,γ∈Comp;
βγ=α

󰀳

󰁃
󰁛

µ∈C(β)

rℓ(µ)Mµ

󰀴

󰁄⊗

󰀳

󰁃
󰁛

ν∈C(γ)

rℓ(ν)Mν

󰀴

󰁄

=
󰁛

β,γ∈Comp;
βγ=α

󰁛

µ∈C(β)

󰁛

ν∈C(γ)

rℓ(µ)rℓ(ν)󰁿 󰁾󰁽 󰂀
=rℓ(µ)+ℓ(ν)=rℓ(µν)

(since the definition
of concatenation

yields ℓ(µ)+ℓ(ν)=ℓ(µν))

Mµ ⊗Mν

=
󰁛

β,γ∈Comp;
βγ=α

󰁛

µ∈C(β)

󰁛

ν∈C(γ)

rℓ(µν)Mµ ⊗Mν = ∆
󰀃
η(q)α

󰀄

(by (24)). This proves Theorem 20.
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Another proof of Theorem 20 can be found in [GriVas23a, Section 3.7].

3.6 The coalgebra morphism Tr

We define a k-linear map Tr : QSym → QSym by setting

Tr (Mα) = rℓ(α)Mα for each α ∈ Comp .

This definition is legitimate, since (Mα)α∈Comp is a basis of the k-module QSym. The map
Tr is usually not a k-algebra homomorphism, but always a k-coalgebra homomorphism:

Proposition 23. The map Tr : QSym → QSym is a k-coalgebra homomorphism.

Proof of Proposition 23. Easy consequence of (22); see [GriVas23a] for details.

To us, the map Tr becomes useful thanks to the following slick expression for η
(q)
α that

it allows:

Theorem 24. Let S : QSym → QSym be the antipode of the Hopf algebra QSym. Let
α ∈ Comp. Then,

η(q)α = (−1)ℓ(α) Tr (S (Mrevα)) .

Proof of Theorem 24. Follows readily from (10); see [GriVas23a] for details.

4 The dual eta basis of NSym

4.1 NSym and the duality pairing

Let NSym denote the free k-algebra with generators H1, H2, H3, . . . (that is, the tensor
algebra of the free k-module with basis (H1, H2, H3, . . .)). This k-algebra NSym is known
as the ring of noncommutative symmetric functions over k. We refer to [GriRei20, §5.4],
[GKLLRT94] and [Meliot17, §6.1] for more about this k-algebra4; we will only need a few
basic properties.

We set H0 := 1 ∈ NSym. Thus, an element Hn of NSym is defined for each n ∈ N.
For any composition α = (α1,α2, . . . ,αk) ∈ Comp, we set

Hα := Hα1Hα2 · · ·Hαk
∈ NSym .

The family (Hα)α∈Comp is then a basis of the k-module NSym. (Note that H(n) = Hn for
each n > 0.)

The k-algebra NSym is graded, with each generator Hn being homogeneous of degree
n (and thus each basis element Hα being homogeneous of degree |α|). It becomes a
connected graded k-bialgebra if we define its coproduct ∆ : NSym → NSym⊗NSym and
its counit ε : NSym → k as follows:

4We note some notational differences: What we call Hα is called Sα in [GKLLRT94] and in [Meliot17].
Furthermore, the algebra NSym is denoted by NCSym in [Meliot17] (unfortunately, since NCSym also
has a different meaning).
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• The coproduct ∆ : NSym → NSym⊗NSym is the k-algebra homomorphism that

sends each generator Hn to
n󰁓

i=0

Hi ⊗Hn−i.

• The counit ε : NSym → k is the k-algebra homomorphism that sends each generator
Hn (with n > 0) to 0.

Therefore, NSym becomes a Hopf algebra (since any connected graded k-bialgebra is
a Hopf algebra). Its antipode S is described in [GriRei20, (5.4.12)].

Most importantly to us, the Hopf algebra NSym is isomorphic to the graded dual
of QSym. Specifically, we can define a k-bilinear form 〈·, ·〉 : NSym×QSym → k by
requiring that

〈Hα,Mβ〉 = [α = β] (25)

for all α, β ∈ Comp (where we are using Convention 2)5. It can be seen that this k-bilinear
form produces a canonical isomorphism

NSym → QSymo,

f 󰀁→ 〈f, ·〉

of graded Hopf algebras, where QSymo is the graded dual of the Hopf algebra QSym. Thus,
we can identify NSym with the graded dual of the Hopf algebra QSym. (In [GriRei20,
§5.4], this is used as a definition of NSym, while the properties that we used to define
NSym above are stated as [GriRei20, Theorem 5.4.2].)

4.2 The dual eta basis

We shall now construct a basis of NSym that is dual to the basis
󰀓
η
(q)
α

󰀔

α∈Comp
of QSym.

This requires the assumption that r is invertible (since this assumption ensures that󰀓
η
(q)
α

󰀔

α∈Comp
is a basis of QSym in the first place6). Thus, we make the following conven-

tion:

Convention 3. For the rest of Section 4, we assume that r is invertible in k.

Definition 25. For each n ∈ N and each composition α of n, we define an element

η∗(q)α :=
󰁛

β∈Compn;
D(α)⊆D(β)

1

rℓ(β)
(−1)ℓ(β)−ℓ(α) Hβ ∈ NSym .

Example 26. We have

η
∗(q)
() = H() = 1NSym;

5This bilinear form 〈·, ·〉 is denoted by (·, ·) in [GriRei20, §5.4].
6by Theorem 11
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η
∗(q)
(1) =

1

r
H(1);

η
∗(q)
(2) =

1

r
H(2) −

1

r2
H(1,1);

η
∗(q)
(1,1) =

1

r2
H(1,1).

We now claim the following:

Proposition 27.

(a) The family
󰀓
η
∗(q)
α

󰀔

α∈Comp
is the basis of NSym dual to the basis

󰀓
η
(q)
α

󰀔

α∈Comp
of

QSym with respect to the bilinear form 〈·, ·〉.
Here, the notion of a “dual basis” should be understood in the graded sense, as

explained in [GriRei20, §1.6]. Concretely, our claim is saying that
󰀓
η
∗(q)
α

󰀔

α∈Comp
is

a graded basis of NSym and satisfies
󰁇
η∗(q)α , η

(q)
β

󰁈
= [α = β] (26)

for all α, β ∈ Comp.

(b) Let n ∈ N. Consider the n-th graded components QSymn and NSymn of the graded

k-modules QSym and NSym. Then, the family
󰀓
η
∗(q)
α

󰀔

α∈Compn

is the basis of NSymn

dual to the basis
󰀓
η
(q)
α

󰀔

α∈Compn

of QSymn with respect to the bilinear form 〈·, ·〉.

Proof of Proposition 27. (See [GriVas23a] for details.)

(b) Proposition 8 (divided by rℓ(β)) shows that

Mβ =
󰁛

α∈Compn;
D(α)⊆D(β)

1

rℓ(β)
(−1)ℓ(β)−ℓ(α) η(q)α for each β ∈ Compn .

Definition 25 yields that

η∗(q)α =
󰁛

β∈Compn;
D(α)⊆D(β)

1

rℓ(β)
(−1)ℓ(β)−ℓ(α) Hβ for each α ∈ Compn .

Comparing these two equalities, we see that the coefficients in the expansion of η
∗(q)
α in

terms of the Hβ are precisely the coefficients in the expansion of Mβ in terms of the

η
(q)
α . In other words, the change-of-basis matrix from the basis (Mα)α∈Compn

of QSymn

to the basis
󰀓
η
(q)
α

󰀔

α∈Compn

is the transpose of the change-of-basis matrix from the al-

leged basis
󰀓
η
∗(q)
α

󰀔

α∈Compn

of NSymn to the basis (Hα)α∈Compn
. Thus, since the basis
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(Hα)α∈Compn
of NSymn is dual to the basis (Mα)α∈Compn

of QSymn, we conclude that the

family
󰀓
η
∗(q)
α

󰀔

α∈Compn

is dual to the basis
󰀓
η
(q)
α

󰀔

α∈Compn

of QSymn (and is itself a basis)7.

This proves Proposition 27 (b).
(a) This follows from part (b) by taking the direct sum over all n.

4.3 The dual eta basis: product

We shall now study the multiplicative structure of the dual eta basis
󰀓
η
∗(q)
α

󰀔

α∈Comp
. First,

we introduce a notation for the simplest entries of this basis:

Definition 28. For each positive integer n, we let

η∗(q)n := η
∗(q)
(n) =

󰁛

β∈Compn

1

rℓ(β)
(−1)ℓ(β)−1 Hβ (27)

∈ NSym .

(The second equality sign here follows from Definition 25, since ℓ ((n)) = 1 and since
D ((n)) = ∅ is a subset of every D (β).)

It turns out that we can easily express η
∗(q)
α for any composition α using these η

∗(q)
n :

Proposition 29. We have

η∗(q)α = η∗(q)α1
η∗(q)α2

· · · η∗(q)αk
for each composition α = (α1,α2, . . . ,αk) .

The main idea of the proof of Proposition 29 is to recognize that if n = |α|, then
the compositions β ∈ Compn satisfying D (α) ⊆ D (β) are precisely the compositions
obtained from α by breaking up each entry of α into pieces. A slicker way to formalize
this proof proceeds using the notion of concatenation (Definition 19).

First, let us show a proposition that says (in the jargon of combinatorial Hopf algebras)

that the basis
󰀓
η
∗(q)
α

󰀔

α∈Comp
of NSym is multiplicative:

Proposition 30. Let α and β be two compositions. Then,

η∗(q)α η
∗(q)
β = η

∗(q)
αβ .

Proof sketch. It is a folklore result in the theory of combinatorial Hopf algebras that the
dual basis to a multiplicative basis (i.e., a basis (fα)α∈Λ indexed by the elements of some
monoid Λ and satisfying fαfβ = fαβ for all α, β ∈ Λ) is a comultiplicative basis (i.e.,

7The underlying fact we are using here is a consequence of the classical linear-algebraic truism that the
dual of a linear map is represented by the transpose of the corresponding matrix. This truism entails
that when B and C are two bases of the same finite-dimensional vector space, then the change-of-basis
matrix between B and C is the transpose of the change-of-basis matrix between their dual bases C∗

and B∗ (not B∗ and C∗).
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a basis (gα)α∈Λ satisfying ∆ (gα) =
󰁓

β,γ∈Λ;
α=βγ

gβ ⊗ gλ for all α ∈ Λ). Conversely, the dual

basis to a comultiplicative basis is a multiplicative basis. Since Theorem 20 shows that

the basis
󰀓
η
(q)
α

󰀔

α∈Compn

of QSymn is comultiplicative, we can thus conclude that its dual

basis
󰀓
η
∗(q)
α

󰀔

α∈Compn

is multiplicative. That is, Proposition 30 holds. A more detailed

version of this proof, without reference to folklore, can be found in the Appendix.

Corollary 31. Let β1, β2, . . . , βk be finitely many compositions. Then,

η
∗(q)
β1

η
∗(q)
β2

· · · η∗(q)βk
= η

∗(q)
β1β2···βk

.

Proof. This follows by induction on k using Proposition 30. (The base case, k = 0, follows

from η
∗(q)
() = 1.)

Proof of Proposition 29. Let α = (α1,α2, . . . ,αk) be a composition. Then, applying
Corollary 31 to the 1-element compositions βi = (αi), we obtain

η
∗(q)
(α1)

η
∗(q)
(α2)

· · · η∗(q)(αk)
= η

∗(q)
(α1)(α2)···(αk)

= η∗(q)α .

Thus,
η∗(q)α = η

∗(q)
(α1)

η
∗(q)
(α2)

· · · η∗(q)(αk)
= η∗(q)α1

η∗(q)α2
· · · η∗(q)αk

(since η
∗(q)
(n) = η

∗(q)
n for each n > 0). This proves Proposition 29.

4.4 The dual eta basis: generating function

Following a classical method in the theory of symmetric functions, we shall now study
the generating functions

H (t) =
󰁛

n󰃍0

Hnt
n and G (t) =

󰁛

n󰃍1

η∗(q)n tn.

However, in order to avoid the technicalities surrounding tensor products of power series
rings, we shall not adjoin t as an indeterminate to the ring NSym, but rather assume
that t is a nilpotent element of our base ring k. This will ensure that all our infinite
sums have only finitely many nonzero addends, and thus can be treated like finite sums.
The downside of this trick is that we never obtain fully-fledged power series in this way;
however, we can still obtain anything we want from them (mainly: comparing coefficients)
by picking an appropriate t in an appropriate ring extension of k. (See [GriVas23a] for a
version of our argument that avoids this trick and uses “honest” power series instead.)

Definition 32. For any nilpotent element t ∈ k, we define the elements

H (t) :=
󰁛

n󰃍0

Hnt
n ∈ NSym and G (t) :=

󰁛

n󰃍1

η∗(q)n tn ∈ NSym .
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Now, it is easy to see the following:

Proposition 33. Let t ∈ k be a nilpotent element. Then,

G (t) = 1− 1

1 +
H (t)− 1

r

=
H (t)− 1

H (t) + q
.

In particular, H (t) + q is invertible.

Proof. We have

H (t) =
󰁛

n󰃍0

Hnt
n = H0󰁿󰁾󰁽󰂀

=1

t0󰁿󰁾󰁽󰂀
=1

+
󰁛

n󰃍1

Hnt
n = 1 +

󰁛

n󰃍1

Hnt
n.

Hence,

H (t)− 1 =
󰁛

n󰃍1

Hn tn󰁿󰁾󰁽󰂀
=ttn−1

= t
󰁛

n󰃍1

Hnt
n−1

is nilpotent (since t is nilpotent and commutes with everything in NSym). Thus,
H (t)− 1

r

is nilpotent as well, so that 1+
H (t)− 1

r
is invertible (since adding 1 to a nilpotent element

always yields an invertible element).

If v ∈ NSym is a nilpotent element, then the geometric series formula yields
1

1− v
=

󰁓
k󰃍0

vk, from which we easily obtain

󰁛

k󰃍1

vk =
1

1− v
− 1. (28)

We shall use this result in a somewhat modified form: If u ∈ NSym is a nilpotent
element, then −u/r is also nilpotent, and we have

󰁛

k󰃍1

1

rk
(−1)k uk

󰁿 󰁾󰁽 󰂀
=(−u/r)k

=
󰁛

k󰃍1

(−u/r)k =
1

1− (−u/r)
− 1 (by (28) for v = −u/r)

=
1

1 + u/r
− 1.

Multiplying both sides of this equality by −1, we obtain

󰁛

k󰃍1

1

rk
(−1)k−1 uk = −

󰀕
1

1 + u/r
− 1

󰀖
= 1− 1

1 + u/r
. (29)

The definition of G (t) yields

G (t) =
󰁛

n󰃍1

η∗(q)n tn =
󰁛

n󰃍1

󰀳

󰁃
󰁛

β∈Compn

1

rℓ(β)
(−1)ℓ(β)−1 Hβ

󰀴

󰁄 tn (by (27))
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=
󰁛

n󰃍1

󰁛

β∈Compn

1

rℓ(β)
(−1)ℓ(β)−1 Hβt

n =
󰁛

β∈Comp;
β ∕=∅

1

rℓ(β)
(−1)ℓ(β)−1 Hβt

|β|

(here, we have folded the two summation signs into one)

=
󰁛

k󰃍1

󰁛

(n1,n2,...,nk)∈Comp󰁿 󰁾󰁽 󰂀
=

󰁓
n1,n2,...,nk󰃍1

1

rk
(−1)k−1 H(n1,n2,...,nk)t

n1+n2+···+nk

󰁿 󰁾󰁽 󰂀
=(Hn1Hn2 ···Hnk)(tn1 tn2 ···tnk )

=(Hn1 t
n1)(Hn2 t

n2)···(Hnk
tnk)

(here, we have renamed the composition β as (n1, n2, . . . , nk))

=
󰁛

k󰃍1

1

rk
(−1)k−1

󰁛

n1,n2,...,nk󰃍1

(Hn1t
n1) (Hn2t

n2) · · · (Hnk
tnk)

󰁿 󰁾󰁽 󰂀

=

󰀣
󰁓
n󰃍1

Hntn

󰀤k

(by the product rule)

=
󰁛

k󰃍1

1

rk
(−1)k−1

󰀳

󰁅󰁅󰁅󰁅󰁃

󰁛

n󰃍1

Hnt
n

󰁿 󰁾󰁽 󰂀
=H(t)−1

󰀴

󰁆󰁆󰁆󰁆󰁄

k

=
󰁛

k󰃍1

1

rk
(−1)k−1 (H (t)− 1)k

= 1− 1

1 + (H (t)− 1) /r
(by (29), applied to u = H (t)− 1)

= 1− r

H (t) + r − 1
=

H (t)− 1

H (t) + r − 1
=

H (t)− 1

H (t) + q

(since r − 1 = q (because r = q + 1)). The invertibility of H (t) + q has been shown
implicitly by the above computation. Thus, Proposition 33 is proved.

Proposition 34. Let t ∈ k be a nilpotent element. Let k ∈ N. Then,

G (t)k =
󰁛

β∈Comp;
ℓ(β)=k

η
∗(q)
β t|β|. (30)

Proof. From G (t) =
󰁓
n󰃍1

η
∗(q)
n tn, we obtain

G (t)k =

󰀣
󰁛

n󰃍1

η∗(q)n tn

󰀤k

=
󰁛

n1,n2,...,nk󰃍1

󰀃
η∗(q)n1

tn1
󰀄 󰀃

η∗(q)n2
tn2

󰀄
· · ·

󰀃
η∗(q)nk

tnk
󰀄

(by the product rule)

=
󰁛

n1,n2,...,nk󰃍1

η∗(q)n1
η∗(q)n2

· · · η∗(q)nk
tn1+n2+···+nk
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=
󰁛

β=(β1,β2,...,βk)∈Comp

η
∗(q)
β1

η
∗(q)
β2

· · · η∗(q)βk󰁿 󰁾󰁽 󰂀
=η

∗(q)
β

(by Proposition 29)

tβ1+β2+···+βk󰁿 󰁾󰁽 󰂀
=t|β|

(here, we have renamed n1, n2, . . . , nk as β1, β2, . . . , βk)

=
󰁛

β=(β1,β2,...,βk)∈Comp

η
∗(q)
β t|β| =

󰁛

β∈Comp;
ℓ(β)=k

η
∗(q)
β t|β|.

This proves Proposition 34.

4.5 The dual eta basis: coproduct

Consider the comultiplication ∆ : NSym → NSym⊗NSym of the Hopf algebra NSym.
We again recall the Iverson bracket notation (Convention 2).

Theorem 35. For any positive integer n, we have

∆
󰀃
η∗(q)n

󰀄
=

󰁛

β,γ∈Comp;
|β|+|γ|=n;

|ℓ(β)−ℓ(γ)|󰃑1

(−q)max{ℓ(β),ℓ(γ)}−1 (q − 1)[ℓ(β)=ℓ(γ)] η
∗(q)
β ⊗ η∗(q)γ .

Example 36. For n = 2, there are exactly three pairs (β, γ) of compositions β, γ ∈ Comp
satisfying |β| + |γ| = n and |ℓ (β)− ℓ (γ)| 󰃑 1: namely, the pairs (∅, (2)), ((1) , (1)) and
((2) ,∅). Hence, Theorem 35 (applied to n = 2) yields

∆
󰀓
η
∗(q)
2

󰀔
= (−q)1−1 (q − 1)0 η

∗(q)
∅ ⊗ η

∗(q)
(2) + (−q)1−1 (q − 1)1 η

∗(q)
(1) ⊗ η

∗(q)
(1)

+ (−q)1−1 (q − 1)0 η
∗(q)
(2) ⊗ η

∗(q)
∅

= η
∗(q)
∅ ⊗ η

∗(q)
(2) + (q − 1) η

∗(q)
(1) ⊗ η

∗(q)
(1) + η

∗(q)
(2) ⊗ η

∗(q)
∅

= 1⊗ η
∗(q)
2 + (q − 1) η

∗(q)
1 ⊗ η

∗(q)
1 + η

∗(q)
2 ⊗ 1

(since η
∗(q)
(2) = η2 and η

∗(q)
(1) = η1 and η

∗(q)
∅ = 1).

Similar computations show that

∆
󰀓
η
∗(q)
1

󰀔
= 1⊗ η

∗(q)
1 + η

∗(q)
1 ⊗ 1

and

∆
󰀓
η
∗(q)
3

󰀔
= 1⊗ η

∗(q)
3 + (q − 1) η

∗(q)
1 ⊗ η

∗(q)
2 − qη

∗(q)
1 ⊗

󰀓
η
∗(q)
1

󰀔2

− q
󰀓
η
∗(q)
1

󰀔2

⊗ η
∗(q)
1 + (q − 1) η

∗(q)
2 ⊗ η

∗(q)
1 + η

∗(q)
3 ⊗ 1

(since Proposition 29 yields η
∗(q)
(1,1) =

󰀓
η
∗(q)
1

󰀔2

).
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Proof of Theorem 35. Let t ∈ k be a nilpotent element. (We will later construct a specific
nilpotent element to which we will apply the following.)

Define the elements

G := G (t) ∈ NSym and H := H (t) ∈ NSym .

Proposition 33 then says that

G =
H− 1

H+ q
, (31)

and that H+ q is invertible.
Next, we observe the following:

Claim 1: We have
∆ (H) = H⊗H. (32)

[Proof of Claim 1: From H = H (t) =
󰁓
n∈N

Hnt
n, we obtain both

H⊗H =

󰀣
󰁛

i∈N

Hit
i

󰀤
⊗

󰀣
󰁛

j∈N

Hjt
j

󰀤
=

󰁛

i,j∈N

(Hi ⊗Hj) t
i+j

=
󰁛

n∈N

󰀳

󰁅󰁅󰁃
󰁛

i,j∈N;
i+j=n

Hi ⊗Hj

󰀴

󰁆󰁆󰁄 tn (33)

and

∆ (H) = ∆

󰀣
󰁛

n∈N

Hnt
n

󰀤
=

󰁛

n∈N

∆ (Hn) t
n. (34)

However, for each n ∈ N, we have ∆ (Hn) =
󰁓

i,j∈N;
i+j=n

Hi ⊗Hj (by [GriRei20, (5.4.2)]). Thus,

the right hand sides of the equalities (34) and (33) are equal. Therefore, so are their left
hand sides. This proves Claim 1.]

Since ∆ is a k-algebra homomorphism, the element ∆ (H+ q) is invertible (because
H+ q is invertible, but k-algebra homomorphisms preserve invertibility). However,

∆ (H+ q) = ∆ (H) + q (again since ∆ is a k-algebra homomorphism)

= H⊗H+ q (by Claim 1) .

Thus, we have shown that H⊗H+ q is invertible.
Define four elements h1, h2, g1 and g2 of NSym⊗NSym by

h1 = H⊗ 1 and h2 = 1⊗H and

g1 = G⊗ 1 and g2 = 1⊗G.
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The map

ι1 : NSym → NSym⊗NSym,

z 󰀁→ z ⊗ 1

is a k-algebra homomorphism. Applying it to both sides of (31), we find

ι1 (G) = ι1

󰀕
H− 1

H+ q

󰀖
=

ι1 (H)− 1

ι1 (H) + q

(since ι1 is a k-algebra homomorphism). Since ι1 (G) = G⊗1 = g1 and ι1 (H) = H⊗1 =
h1, we can rewrite this as

g1 =
h1 − 1

h1 + q
. (35)

Likewise we can obtain

g2 =
h2 − 1

h2 + q
. (36)

Implicitly, this also shows that the denominators h1 + q and h2 + q here are invertible.
Moreover,

h1󰁿󰁾󰁽󰂀
=H⊗1

h2󰁿󰁾󰁽󰂀
=1⊗H

= (H⊗ 1) (1⊗H) = H⊗H.

Recall that H ⊗ H + q is invertible. In other words, h1h2 + q is invertible (since
h1h2 = H⊗H).

The elements h1 = H ⊗ 1 and h2 = 1 ⊗ H clearly commute. The elements
1

h1 + q
,

1

h2 + q
and

1

h1h2 + q
(which are well-defined, since we have shown that the denominators

are invertible) are rational functions in these commuting elements h1 and h2, and therefore

also commute with them (and with each other). Thus, the five elements h1, h2,
1

h1 + q
,

1

h2 + q
and

1

h1h2 + q
generate a commutative k-subalgebra of NSym⊗NSym. Let us

denote this commutative k-subalgebra by H. Clearly, the elements h1 + q, h2 + q and
h1h2 + q are invertible in H. Also, the element q + 1 = r is invertible in H (since it is
invertible in k already).

The equalities (35) and (36) show that the elements g1 and g2 also belong to the
commutative k-algebra H. These two equalities also entail

1 + qg1g2 =
(q + 1) (h1h2 + q)

(h1 + q) (h2 + q)

(by some straightforward computations using the commutativity of H). Thus, 1 + qg1g2
is invertible in H (since q + 1, h1h2 + q, h1 + q and h2 + q are invertible in H).

Recall that h1h2 = H⊗H. Comparing this with (32), we obtain

∆ (H) = h1h2. (37)
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Hence,

∆ (H)− 1

∆ (H) + q
=

h1h2 − 1

h1h2 + q

=
g1 + g2 + (q − 1) g1g2

1 + qg1g2
. (38)

(Indeed, the last equality sign can easily be verified by straightforward computations in
the commutative k-algebra H, using the equalities (35) and (36).)

From g1 = G⊗ 1 and g2 = 1⊗G, we obtain

g1g2 = (G⊗ 1) (1⊗G) = G⊗G. (39)

Note that this tensor is a multiple of t (since G = G (t) =
󰁓
n󰃍1

η
∗(q)
n tn󰁿󰁾󰁽󰂀

=ttn−1

= t
󰁓
n󰃍1

η
∗(q)
n tn−1

is a multiple of t), and thus is nilpotent. Hence, qg1g2 is nilpotent as well.
Applying the map ∆ to both sides of (31), we find

∆ (G) = ∆

󰀕
H− 1

H+ q

󰀖
=

∆ (H)− 1

∆ (H) + q
(since ∆ is a k-algebra homomorphism)

=
g1 + g2 + (q − 1) g1g2

1 + qg1g2
(by (38))

=
1

1 + qg1g2󰁿 󰁾󰁽 󰂀
=

󰁓
i∈N

(−qg1g2)
i

(by the geometric series formula)

· (g1 + g2 + (q − 1) g1g2)

=
󰁛

i∈N

(−qg1g2)
i

󰁿 󰁾󰁽 󰂀
=(−q)i(g1g2)

i

(g1 + g2 + (q − 1) g1g2)

=
󰁛

i∈N

(−q)i

󰀳

󰁅󰁅󰁅󰁃
g1g2󰁿󰁾󰁽󰂀
=G⊗G
(by (39))

󰀴

󰁆󰁆󰁆󰁄

i 󰀳

󰁅󰁅󰁅󰁃
g1󰁿󰁾󰁽󰂀

=G⊗1

+ g2󰁿󰁾󰁽󰂀
=1⊗G

+(q − 1) g1g2󰁿󰁾󰁽󰂀
=G⊗G
(by (39))

󰀴

󰁆󰁆󰁆󰁄

=
󰁛

i∈N

(−q)i (G⊗G)i (G⊗ 1 + 1⊗G+ (q − 1)G⊗G) .

In order to simplify the right hand side, we need two further claims:

Claim 2: Let u, v ∈ N. Then,

Gu ⊗Gv =
󰁛

β,γ∈Comp;
ℓ(β)=u and ℓ(γ)=v

󰀓
η
∗(q)
β ⊗ η∗(q)γ

󰀔
t|β|+|γ|.
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[Proof of Claim 2: From G = G (t), we obtain

Gu = G (t)u =
󰁛

β∈Comp;
ℓ(β)=u

η
∗(q)
β t|β| (by (30), applied to k = u)

and similarly

Gv =
󰁛

γ∈Comp;
ℓ(γ)=v

η∗(q)γ t|γ|.

Tensoring these two equalities together, we obtain

Gu ⊗Gv =

󰀳

󰁅󰁅󰁃
󰁛

β∈Comp;
ℓ(β)=u

η
∗(q)
β t|β|

󰀴

󰁆󰁆󰁄⊗

󰀳

󰁅󰁅󰁃
󰁛

γ∈Comp;
ℓ(γ)=v

η∗(q)γ t|γ|

󰀴

󰁆󰁆󰁄

=
󰁛

β,γ∈Comp;
ℓ(β)=u and ℓ(γ)=v

η
∗(q)
β t|β| ⊗ η∗(q)γ t|γ|
󰁿 󰁾󰁽 󰂀
=
󰀓
η
∗(q)
β ⊗η

∗(q)
γ

󰀔
t|β|+|γ|

=
󰁛

β,γ∈Comp;
ℓ(β)=u and ℓ(γ)=v

󰀓
η
∗(q)
β ⊗ η∗(q)γ

󰀔
t|β|+|γ|.

This proves Claim 2.]

Claim 3: Let i ∈ N. Then,

(G⊗G)i (G⊗ 1 + 1⊗G+ (q − 1)G⊗G)

=
󰁛

β,γ∈Comp;
|ℓ(β)−ℓ(γ)|󰃑1;

max{ℓ(β),ℓ(γ)}=i+1

(q − 1)[ℓ(β)=ℓ(γ)]
󰀓
η
∗(q)
β ⊗ η∗(q)γ

󰀔
t|β|+|γ|.

[Proof of Claim 3: From (G⊗G)i = Gi ⊗Gi, we obtain

(G⊗G)i (G⊗ 1 + 1⊗G+ (q − 1)G⊗G)

=
󰀃
Gi ⊗Gi

󰀄
(G⊗ 1 + 1⊗G+ (q − 1)G⊗G)

= Gi+1 ⊗Gi

󰁿 󰁾󰁽 󰂀
=

󰁓

β,γ∈Comp;
ℓ(β)=i+1 and ℓ(γ)=i

󰀓
η
∗(q)
β ⊗η

∗(q)
γ

󰀔
t|β|+|γ|

(by Claim 2)

+ Gi ⊗Gi+1

󰁿 󰁾󰁽 󰂀
=

󰁓

β,γ∈Comp;
ℓ(β)=i and ℓ(γ)=i+1

󰀓
η
∗(q)
β ⊗η

∗(q)
γ

󰀔
t|β|+|γ|

(by Claim 2)

+ (q − 1) Gi+1 ⊗Gi+1

󰁿 󰁾󰁽 󰂀
=

󰁓

β,γ∈Comp;
ℓ(β)=i+1 and ℓ(γ)=i+1

󰀓
η
∗(q)
β ⊗η

∗(q)
γ

󰀔
t|β|+|γ|

(by Claim 2)

=
󰁛

β,γ∈Comp;
ℓ(β)=i+1 and ℓ(γ)=i

󰀓
η
∗(q)
β ⊗ η∗(q)γ

󰀔
t|β|+|γ| +

󰁛

β,γ∈Comp;
ℓ(β)=i and ℓ(γ)=i+1

󰀓
η
∗(q)
β ⊗ η∗(q)γ

󰀔
t|β|+|γ|
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+ (q − 1)
󰁛

β,γ∈Comp;
ℓ(β)=i+1 and ℓ(γ)=i+1

󰀓
η
∗(q)
β ⊗ η∗(q)γ

󰀔
t|β|+|γ|. (40)

On the other hand, let us observe that two integers u and v satisfy the two conditions

|u− v| 󰃑 1 and max {u, v} = i+ 1

if and only if they satisfy one of the three mutually exclusive conditions

(u = i+ 1 and v = i) ,

(u = i and v = i+ 1) and

(u = i+ 1 and v = i+ 1) .

Hence, two compositions β, γ ∈ Comp satisfy the two conditions

|ℓ (β)− ℓ (γ)| 󰃑 1 and max {ℓ (β) , ℓ (γ)} = i+ 1

if and only if they satisfy one of the three mutually exclusive conditions

(ℓ (β) = i+ 1 and ℓ (γ) = i) ,

(ℓ (β) = i and ℓ (γ) = i+ 1) and

(ℓ (β) = i+ 1 and ℓ (γ) = i+ 1) .

Hence,

󰁛

β,γ∈Comp;
|ℓ(β)−ℓ(γ)|󰃑1;

max{ℓ(β),ℓ(γ)}=i+1

(q − 1)[ℓ(β)=ℓ(γ)]
󰀓
η
∗(q)
β ⊗ η∗(q)γ

󰀔
t|β|+|γ|

=
󰁛

β,γ∈Comp;
ℓ(β)=i+1 and ℓ(γ)=i

(q − 1)[ℓ(β)=ℓ(γ)]

󰁿 󰁾󰁽 󰂀
=1

(since ℓ(β)=i+1>i=ℓ(γ))

󰀓
η
∗(q)
β ⊗ η∗(q)γ

󰀔
t|β|+|γ|

+
󰁛

β,γ∈Comp;
ℓ(β)=i and ℓ(γ)=i+1

(q − 1)[ℓ(β)=ℓ(γ)]

󰁿 󰁾󰁽 󰂀
=1

(since ℓ(β)=i<i+1=ℓ(γ))

󰀓
η
∗(q)
β ⊗ η∗(q)γ

󰀔
t|β|+|γ|

+
󰁛

β,γ∈Comp;
ℓ(β)=i+1 and ℓ(γ)=i+1

(q − 1)[ℓ(β)=ℓ(γ)]

󰁿 󰁾󰁽 󰂀
=q−1

(since ℓ(β)=i+1=ℓ(γ))

󰀓
η
∗(q)
β ⊗ η∗(q)γ

󰀔
t|β|+|γ|

=
󰁛

β,γ∈Comp;
ℓ(β)=i+1 and ℓ(γ)=i

󰀓
η
∗(q)
β ⊗ η∗(q)γ

󰀔
t|β|+|γ| +

󰁛

β,γ∈Comp;
ℓ(β)=i and ℓ(γ)=i+1

󰀓
η
∗(q)
β ⊗ η∗(q)γ

󰀔
t|β|+|γ|

+ (q − 1)
󰁛

β,γ∈Comp;
ℓ(β)=i+1 and ℓ(γ)=i+1

󰀓
η
∗(q)
β ⊗ η∗(q)γ

󰀔
t|β|+|γ|.
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Comparing this with (40), we obtain

(G⊗G)i (G⊗ 1 + 1⊗G+ (q − 1)G⊗G)

=
󰁛

β,γ∈Comp;
|ℓ(β)−ℓ(γ)|󰃑1;

max{ℓ(β),ℓ(γ)}=i+1

(q − 1)[ℓ(β)=ℓ(γ)]
󰀓
η
∗(q)
β ⊗ η∗(q)γ

󰀔
t|β|+|γ|.

This proves Claim 3.]

Now, we can finish our computation of ∆ (G): As we know,

∆ (G) =
󰁛

i∈N

(−q)i (G⊗G)i (G⊗ 1 + 1⊗G+ (q − 1)G⊗G)󰁿 󰁾󰁽 󰂀
=

󰁓

β,γ∈Comp;
|ℓ(β)−ℓ(γ)|󰃑1;

max{ℓ(β),ℓ(γ)}=i+1

(q−1)[ℓ(β)=ℓ(γ)]
󰀓
η
∗(q)
β ⊗η

∗(q)
γ

󰀔
t|β|+|γ|

(by Claim 3)

=
󰁛

i∈N

󰁛

β,γ∈Comp;
|ℓ(β)−ℓ(γ)|󰃑1;

max{ℓ(β),ℓ(γ)}=i+1

(−q)i (q − 1)[ℓ(β)=ℓ(γ)]
󰀓
η
∗(q)
β ⊗ η∗(q)γ

󰀔
t|β|+|γ|

=
󰁛

j>0

󰁛

β,γ∈Comp;
|ℓ(β)−ℓ(γ)|󰃑1;

max{ℓ(β),ℓ(γ)}=j

(−q)j−1 (q − 1)[ℓ(β)=ℓ(γ)]
󰀓
η
∗(q)
β ⊗ η∗(q)γ

󰀔
t|β|+|γ|

(here, we have substituted j − 1 for i in the outer sum)

=
󰁛

β,γ∈Comp;
|ℓ(β)−ℓ(γ)|󰃑1;

max{ℓ(β),ℓ(γ)}>0

(−q)max{ℓ(β),ℓ(γ)}−1 (q − 1)[ℓ(β)=ℓ(γ)]
󰀓
η
∗(q)
β ⊗ η∗(q)γ

󰀔
t|β|+|γ|

(here, we have folded the two summation signs into one). Comparing this with

∆ (G) = ∆

󰀣
󰁛

n󰃍1

η∗(q)n tn

󰀤 󰀣
since G = G (t) =

󰁛

n󰃍1

η∗(q)n tn

󰀤

=
󰁛

n󰃍1

∆
󰀃
η∗(q)n

󰀄
tn (since ∆ is k-linear) ,

we obtain

󰁛

n󰃍1

∆
󰀃
η∗(q)n

󰀄
tn

=
󰁛

β,γ∈Comp;
|ℓ(β)−ℓ(γ)|󰃑1;

max{ℓ(β),ℓ(γ)}>0

(−q)max{ℓ(β),ℓ(γ)}−1 (q − 1)[ℓ(β)=ℓ(γ)]
󰀓
η
∗(q)
β ⊗ η∗(q)γ

󰀔
t|β|+|γ|
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=
󰁛

n󰃍0

󰁛

β,γ∈Comp;
|ℓ(β)−ℓ(γ)|󰃑1;

max{ℓ(β),ℓ(γ)}>0;
|β|+|γ|=n

(−q)max{ℓ(β),ℓ(γ)}−1 (q − 1)[ℓ(β)=ℓ(γ)]
󰀓
η
∗(q)
β ⊗ η∗(q)γ

󰀔
tn (41)

(here, we have collected all addends with equal values of |β|+ |γ| in our sum).
Now, forget that we fixed t. We thus have proved the equality (41) for each nilpotent

element t ∈ k.
Now, letm be a positive integer. Let us adjoin a nilpotent element t satisfying tm+1 = 0

(but tm ∕= 0) to the ring k. More precisely, let k′ be the quotient ring k [T ] / (Tm+1) of
the polynomial ring k [T ], and let t ∈ k′ be the residue class of the polynomial T . Then,
the ring k′ is commutative, and its element t is nilpotent (with tm+1 = 0). Moreover,
the m + 1 elements t0, t1, . . . , tm form a basis of the k-module k′. Hence, if M is any
k-module, and if a0, a1, . . . , am and b0, b1, . . . , bm are arbitrary elements of M satisfying
m󰁓

n=0

an ⊗ tn =
m󰁓

n=0

bn ⊗ tn, then

an = bn for each n ∈ {0, 1, . . . ,m} ,

and thus, in particular,
am = bm. (42)

We have proved the equality (41) for our base ring k, but we can equally well prove it
for k′ instead (since k′ is again a commutative ring). Thus, the equality (41) holds for our
nilpotent element t ∈ k′. The two sides of this equality then belong to NSymk′ ⊗k′ NSymk′

(where NSymk′ denotes the ring of noncommutative symmetric functions over k′). How-
ever, we have canonical isomorphisms NSymk′ ∼= NSym⊗k′ (where NSym still denotes
NSymk) and thus

NSymk′ ⊗k′ NSymk′ ∼= (NSym⊗k′)⊗k′ (NSym⊗k′)
∼= (NSym⊗NSym)⊗ k′.

Applying the latter isomorphism to both sides of (41), we obtain
󰁛

n󰃍1

∆
󰀃
η∗(q)n

󰀄
⊗ tn

=
󰁛

n󰃍0

󰁛

β,γ∈Comp;
|ℓ(β)−ℓ(γ)|󰃑1;

max{ℓ(β),ℓ(γ)}>0;
|β|+|γ|=n

(−q)max{ℓ(β),ℓ(γ)}−1 (q − 1)[ℓ(β)=ℓ(γ)]
󰀓
η
∗(q)
β ⊗ η∗(q)γ

󰀔
⊗ tn

in the tensor product (NSym⊗NSym)⊗ k′. Since tm+1 = 0, we see that all addends for
n 󰃍 m+1 on both sides of this equality must vanish, and we can thus restrict both sums
to range from n = 0 to m (or from n = 1 to m) only. Hence we obtain

m󰁛

n=1

∆
󰀃
η∗(q)n

󰀄
⊗ tn
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=
m󰁛

n=0

󰁛

β,γ∈Comp;
|ℓ(β)−ℓ(γ)|󰃑1;

max{ℓ(β),ℓ(γ)}>0;
|β|+|γ|=n

(−q)max{ℓ(β),ℓ(γ)}−1 (q − 1)[ℓ(β)=ℓ(γ)]
󰀓
η
∗(q)
β ⊗ η∗(q)γ

󰀔
⊗ tn.

Thus, comparing the coefficients of tm on both sides of this equality (or, to be more formal:
applying (42)), we conclude that

∆
󰀃
η∗(q)m

󰀄
=

󰁛

β,γ∈Comp;
|ℓ(β)−ℓ(γ)|󰃑1;

max{ℓ(β),ℓ(γ)}>0;
|β|+|γ|=m

(−q)max{ℓ(β),ℓ(γ)}−1 (q − 1)[ℓ(β)=ℓ(γ)] η
∗(q)
β ⊗ η∗(q)γ . (43)

However, any two compositions β and γ that satisfy |β| + |γ| = m will automatically
satisfy max {ℓ (β) , ℓ (γ)} > 0 (since m is positive). Hence, in the summation sign on the
right hand side of (43), the condition “max {ℓ (β) , ℓ (γ)} > 0” is redundant. We can thus
rewrite this summation sign as follows:

󰁛

β,γ∈Comp;
|ℓ(β)−ℓ(γ)|󰃑1;

max{ℓ(β),ℓ(γ)}>0;
|β|+|γ|=m

=
󰁛

β,γ∈Comp;
|ℓ(β)−ℓ(γ)|󰃑1;
|β|+|γ|=m

=
󰁛

β,γ∈Comp;
|β|+|γ|=m;

|ℓ(β)−ℓ(γ)|󰃑1

.

Hence, (43) rewrites as

∆
󰀃
η∗(q)m

󰀄
=

󰁛

β,γ∈Comp;
|β|+|γ|=m;

|ℓ(β)−ℓ(γ)|󰃑1

(−q)max{ℓ(β),ℓ(γ)}−1 (q − 1)[ℓ(β)=ℓ(γ)] η
∗(q)
β ⊗ η∗(q)γ .

Renaming m as n in this result, we obtain precisely the claim of Theorem 35.

Using Theorem 35, we can easily compute the coproduct of any η
∗(q)
α :8

Corollary 37. Let α = (α1,α2, . . . ,αk) be any composition. Then,

∆
󰀃
η∗(q)α

󰀄
=

󰁛

β1,β2,...,βk∈Comp;
γ1,γ2,...,γk∈Comp;

|βs|+|γs|=αs for all s;
|ℓ(βs)−ℓ(γs)|󰃑1 for all s

(−q)

k󰁓
s=1

max{ℓ(βs),ℓ(γs)}−k

· (q − 1)(# of all s∈[k] such that ℓ(βs)=ℓ(γs))
󰀓
η
∗(q)
β1β2···βk

⊗ η∗(q)γ1γ2···γk

󰀔
.

8The symbol “#” means “number”. Thus, e.g., we have (# of odd numbers i ∈ [2n]) = n for each
n ∈ N.
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Proof. The comultiplication ∆ of the k-bialgebra NSym is a k-algebra homomorphism
(indeed, this is true for any k-bialgebra). However, Proposition 29 yields

η∗(q)α = η∗(q)α1
η∗(q)α2

· · · η∗(q)αk
.

Hence,
∆
󰀃
η∗(q)α

󰀄
= ∆

󰀃
η∗(q)α1

η∗(q)α2
· · · η∗(q)αk

󰀄
= ∆

󰀃
η∗(q)α1

󰀄
∆
󰀃
η∗(q)α2

󰀄
· · ·∆

󰀃
η∗(q)αk

󰀄

(since ∆ is a k-algebra homomorphism). Now, we can use Theorem 35 to compute each

factor ∆
󰀓
η
∗(q)
αs

󰀔
on the right hand side, and expand the resulting product of sums into

one single sum (using the product rule). The result is

∆
󰀃
η∗(q)α

󰀄
=

󰁛

β1,β2,...,βk∈Comp;
γ1,γ2,...,γk∈Comp;

|βs|+|γs|=αs for all s;
|ℓ(βs)−ℓ(γs)|󰃑1 for all s

(−q)

k󰁓
s=1

max{ℓ(βs),ℓ(γs)}−k
(q − 1)(# of all s∈[k] such that ℓ(βs)=ℓ(γs))

·
󰀓
η
∗(q)
β1

η
∗(q)
β2

· · · η∗(q)βk
⊗ η∗(q)γ1

η∗(q)γ2
· · · η∗(q)γk

󰀔
.

Since Corollary 31 yields η
∗(q)
β1

η
∗(q)
β2

· · · η∗(q)βk
= η

∗(q)
β1β2···βk

and η
∗(q)
γ1 η

∗(q)
γ2 · · · η∗(q)γk = η

∗(q)
γ1γ2···γk ,

this formula becomes precisely the claim of Corollary 37.

5 The product rule for η(q)
α

We now approach the most intricate of the rules for the η
(q)
α functions: the product rule,

i.e., the expression of a product η
(q)
δ η

(q)
ε as a Z [q]-linear combination of other η

(q)
α ’s. We

shall give three different versions of this rule, all equivalent but using somewhat different
indexing sets. Only the first version will be proved in any detail, as it suffices for the
applications we have in mind.

5.1 The product rule in terms of compositions

Our first version of the product rule is as follows:9

Theorem 38. Let δ and ε be two compositions. Then,

η
(q)
δ η(q)ε =

󰁛

k∈N;
β1,β2,...,βk∈Comp;
γ1,γ2,...,γk∈Comp;

β1β2···βk=δ;
γ1γ2···γk=ε;

|ℓ(βs)−ℓ(γs)|󰃑1 for all s;
ℓ(βs)+ℓ(γs)>0 for all s

(−q)

k󰁓
s=1

max{ℓ(βs),ℓ(γs)}−k

9The symbol “#” means “number” (so that, e.g., we have (# of odd numbers i ∈ [2n]) = n for each
n ∈ N).
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· (q − 1)(# of all s∈[k] such that ℓ(βs)=ℓ(γs))

· η(q)(|β1|+|γ1|, |β2|+|γ2|, ..., |βk|+|γk|).

Remark 39. The compositions β1, β2, . . . , βk and γ1, γ2, . . . , γk in the sum on the right
hand side of Theorem 38 are allowed to be empty. Nevertheless, the sum is finite. Indeed,
if k ∈ N and β1, β2, . . . , βk ∈ Comp and γ1, γ2, . . . , γk ∈ Comp satisfy

β1β2 · · · βk = δ and γ1γ2 · · · γk = ε and

|ℓ (βs)− ℓ (γs)| 󰃑 1 for all s and ℓ (βs) + ℓ (γs) > 0 for all s,

then k 󰃑 ℓ (δ) + ℓ (ε), because

ℓ (δ)󰁿󰁾󰁽󰂀
=ℓ(β1)+ℓ(β2)+···+ℓ(βk)

(since δ=β1β2···βk)

+ ℓ (ε)󰁿󰁾󰁽󰂀
=ℓ(γ1)+ℓ(γ2)+···+ℓ(γk)

(since ε=γ1γ2···γk)

= (ℓ (β1) + ℓ (β2) + · · ·+ ℓ (βk)) + (ℓ (γ1) + ℓ (γ2) + · · ·+ ℓ (γk))

=
k󰁛

s=1

ℓ (βs) +
k󰁛

s=1

ℓ (γs) =
k󰁛

s=1

(ℓ (βs) + ℓ (γs))󰁿 󰁾󰁽 󰂀
󰃍1

(since our above assumptions
yield ℓ(βs)+ℓ(γs)>0,

but ℓ(βs)+ℓ(γs) is an integer)

󰃍
k󰁛

s=1

1 = k.

This narrows down the options for k to the finite set {0, 1, . . . , ℓ (δ) + ℓ (ε)}, and thus
leaves only finitely many options for β1, β2, . . . , βk (since there are only finitely many
ways to decompose the composition δ as a concatenation δ = β1β2 · · · βk when k is fixed)
and for γ1, γ2, . . . , γk (similarly). Thus, the sum is finite.

Example 40. Let δ and ε be two compositions of the form δ = (a, b) and ε = (c) for

some positive integers a, b, c. Then, Theorem 38 expresses the product η
(q)
δ η

(q)
ε = η

(q)
(a,b)η

(q)
(c)

as a sum over all choices of k ∈ N and of k compositions β1, β2, . . . , βk ∈ Comp and of k
further compositions γ1, γ2, . . . , γk ∈ Comp satisfying

β1β2 · · · βk = δ and γ1γ2 · · · γk = ε and

|ℓ (βs)− ℓ (γs)| 󰃑 1 for all s and ℓ (βs) + ℓ (γs) > 0 for all s.

These choices are

1. having k = 1 and β1 = δ = (a, b) and γ1 = ε = (c);

2. having k = 2 and β1 = (a) and β2 = (b) and γ1 = ∅ and γ2 = (c);

3. having k = 2 and β1 = (a) and β2 = (b) and γ1 = (c) and γ2 = ∅;

4. having k = 3 and β1 = ∅ and β2 = (a) and β3 = (b) and γ1 = (c) and γ2 = ∅ and
γ3 = ∅;
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5. having k = 3 and β1 = (a) and β2 = ∅ and β3 = (b) and γ1 = ∅ and γ2 = (c) and
γ3 = ∅;

6. having k = 3 and β1 = (a) and β2 = (b) and β3 = ∅ and γ1 = ∅ and γ2 = ∅ and
γ3 = (c).

Thus, Theorem 38 yields

η
(q)
(a,b)η

(q)
(c)

= (−q)2−1 (q − 1)0 η
(q)
(a+b+c) + (−q)1+1−2 (q − 1)1 η

(q)
(a, b+c)

+ (−q)1+1−2 (q − 1)1 η
(q)
(a+c, b) + (−q)1+1+1−3 (q − 1)0 η

(q)
(c,a,b)

+ (−q)1+1+1−3 (q − 1)0 η
(q)
(a,c,b) + (−q)1+1+1−3 (q − 1)0 η

(q)
(a,b,c)

= −qη
(q)
(a+b+c) + (q − 1) η

(q)
(a, b+c) + (q − 1) η

(q)
(a+c, b) + η

(q)
(c,a,b) + η

(q)
(a,c,b) + η

(q)
(a,b,c).

Note that the last three addends η
(q)
(c,a,b), η

(q)
(a,c,b), η

(q)
(a,b,c) here come from those choices in

which min {ℓ (βs) , ℓ (γs)} = 0 for each s ∈ [k] (that is, for each s ∈ [k], one of the two
compositions βs and γs is empty). In these choices, the two powers

(−q)

k󰁓
s=1

max{ℓ(βs),ℓ(γs)}−k
and (q − 1)(# of all s∈[k] such that ℓ(βs)=ℓ(γs))

are equal to 1 (because the exponents are easily seen to be 0), whereas the composition
(|β1|+ |γ1| , |β2|+ |γ2| , . . . , |βk|+ |γk|) is a shuffle of δ with ε. Thus, these choices

contribute terms of the form η
(q)
ϕ , where ϕ is a shuffle of δ with ε, to the right hand

side of Theorem 38, and these terms all have coefficient 1. These are the only choices
of k, β1, β2, . . . , βk, γ1, γ2, . . . , γk that have k = ℓ (δ) + ℓ (ε). All other choices have
k < ℓ (δ) + ℓ (ε), and these choices lead to addends that involve either a nontrivial power
of −q or a nontrivial power of q − 1 (or both). In this sense, we can view Theorem 38 as
a deformation of the overlapping shuffle product formula for MδMε (see, e.g., [GriRei20,
Proposition 5.1.3]), although the concept of a “deformation” must be understood in a
wide sense (we cannot obtain the latter just by specializing the former).

We will derive Theorem 38 from Corollary 37. For this, we will again use the duality
between NSym and QSym:

Lemma 41. Let f, g ∈ QSym and h ∈ NSym be arbitrary. Let the tensor ∆ (h) ∈
NSym⊗NSym be written in the form ∆ (h) =

󰁓
i∈I

si⊗ ti, where I is a finite set and where

si, ti ∈ NSym for each i ∈ I. Then,

〈h, fg〉 =
󰁛

i∈I

〈si, f〉 〈ti, g〉 .

Proof. This is analogous to Lemma 75, except that the roles of QSym and NSym have
now been switched.
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For the sake of convenience, let us extend Lemma 41 to infinite sums with only finitely
many infinite addends:

Lemma 42. Let f, g ∈ QSym and h ∈ NSym be arbitrary. Let the tensor ∆ (h) ∈
NSym⊗NSym be written in the form ∆ (h) =

󰁓
i∈I

si ⊗ ti, where I is a set and where

si, ti ∈ NSym for each i ∈ I are chosen such that only finitely many i ∈ I satisfy si ∕= 0.
Then,

〈h, fg〉 =
󰁛

i∈I

〈si, f〉 〈ti, g〉 .

Proof. This is easily reduced to Lemma 41 (just replace the set I by its subset I ′ :=
{i ∈ I | si ∕= 0}).

Proof of Theorem 38. Forget that we fixed δ and ε. For any three compositions α =
(α1,α2, . . . ,αk), δ and ε, we define an element

dαδ,ε (q) =
󰁛

β1,β2,...,βk∈Comp;
γ1,γ2,...,γk∈Comp;

β1β2···βk=δ;
γ1γ2···γk=ε;

|ℓ(βs)−ℓ(γs)|󰃑1 for all s;
|βs|+|γs|=αs for all s

(−q)

k󰁓
s=1

max{ℓ(βs),ℓ(γs)}−k

· (q − 1)(# of all s∈[k] such that ℓ(βs)=ℓ(γs)) ∈ k. (44)

Note that the sum on the right hand side here is finite (because for a given k ∈ N
and given compositions δ and ε, there are only finitely many ways to decompose δ as
δ = β1β2 · · · βk, and only finitely many ways to decompose ε as ε = γ1γ2 · · · γk), and thus
is a polynomial in q with integer coefficients. Moreover, this polynomial is the same for
all rings k and all values of q.

The claim that we must prove (i.e., the claim of Theorem 38) can now be rewritten as

η
(q)
δ η(q)ε =

󰁛

α∈Comp

dαδ,ε (q) η
(q)
α (45)

for all δ, ε ∈ Comp (because this is what we obtain if we collect like terms on the right
hand side of Theorem 38). Here, the right hand side is a polynomial in q with coefficients
in QSym (because dαδ,ε (q) = 0 for all compositions α satisfying |α| ∕= |δ| + |ε|, and thus
only finitely many addends of the sum have any chance of being nonzero).

If we expand both sides of (45) in the monomial basis (Mβ)β∈Comp of QSym, then
each specific coefficient will be a polynomial in q with coefficients in Z, and again, the
polynomial will be the same for every k and every q. Thus, the claim we must prove can
be rewritten as a set of identities between polynomials with coefficients in Z.

When proving such a claim, we can always WLOG assume that k is the polynomial
ring Z [X] and that q is the indeterminate X. Even better, we can WLOG assume that
k is the field of rational functions Q (X) and that q is the indeterminate X (since the
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polynomial ring Z [X] is canonically a subring of Q (X), and we lose nothing by passing
to a larger ring). Let us make this latter assumption. Then, r = q + 1 = X + 1 is an
invertible element of k (since k = Q (X) is a field).

Hence, the dual basis
󰀓
η
∗(q)
α

󰀔

α∈Comp
of NSym is well-defined. Moreover, any composi-

tion α satisfies
∆
󰀃
η∗(q)α

󰀄
=

󰁛

δ,ε∈Comp

dαδ,ε (q)
󰀓
η
∗(q)
δ ⊗ η∗(q)ε

󰀔
. (46)

(Indeed, this is just Corollary 37, rewritten by collecting like addends on the right hand
side and simplifying the resulting expression using (44).)

Now, our claim (45) follows easily from (46) by dualization (i.e., using Lemma 42).
The details are similar to our proof of Proposition 30, except that we are now drawing
conclusions about QSym from NSym instead of the other way around. See [GriVas23a]
for details.

5.2 The product rule in terms of stufflers

We will next rewrite Theorem 38 in a somewhat different language, using certain surjective
maps instead of factorizations of compositions. First, we introduce several pieces of
notation:

Definition 43. Let i and j be two integers. Then, we write i ≈ j (and say that i is
nearly equal to j) if and only if |i− j| 󰃑 1.

(Of course, ≈ is not an equivalence relation.)

Definition 44. Let δ = (δ1, δ2, . . . , δℓ) and ε = (ε1, ε2, . . . , εm) be two compositions.
Fix two chains (i.e., totally ordered sets) P = {p1 < p2 < · · · < pℓ} and

Q = {q1 < q2 < · · · < qm}, and let
U = P ⊔Q

be their disjoint union. This U is a poset with ℓ+m elements p1, p2, . . . , pℓ, q1, q2, . . . , qm,
whose relations are given by p1 < p2 < · · · < pℓ and q1 < q2 < · · · < qm (while each pi is
incomparable to each qj).

If f : U → X is a map from U to any set X, and if s ∈ X is any element, then we
define the two sets

f−1
P (s) := {u ∈ [ℓ] | f (pu) = s} and

f−1
Q (s) := {v ∈ [m] | f (qv) = s} .

(Essentially, f−1
P (s) and f−1

Q (s) are the sets of the preimages of s in P and Q, respectively,
except that they consist of numbers instead of actual elements of P and Q.)

A stufufuffler for δ and ε shall mean a surjective and weakly order-preserving map

f : U → {1 < 2 < · · · < k} for some k ∈ N
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with the property that each s ∈ {1 < 2 < · · · < k} satisfies
󰀏󰀏f−1

P (s)
󰀏󰀏 ≈

󰀏󰀏f−1
Q (s)

󰀏󰀏 . (47)

(“Weakly order-preserving” means that if u and v are two elements of the poset U satis-
fying u < v, then f (u) 󰃑 f (v).)

If f : U → {1 < 2 < · · · < k} is a stufufuffler for δ and ε, then we define three further
concepts:

• We define the weight wt (f) of f to be the composition

(wt1 (f) ,wt2 (f) , . . . ,wtk (f)) ,

where

wts (f) =
󰁛

u∈f−1
P (s)

δu +
󰁛

v∈f−1
Q (s)

εv

=
󰁛

u∈[ℓ];
f(pu)=s

δu +
󰁛

v∈[m];
f(qv)=s

εv for each s ∈ [k] .

(Note that (47) ensures that the two sums on the right hand side here have nearly
equal numbers of addends. Moreover, the surjectivity of f ensures that at least one
of these two sums has at least one addend, and thus wts (f) is a positive integer;
therefore, wt (f) is a composition.)

• We define the loss of f to be the nonnegative integer

loss (f) :=
k󰁛

s=1

max
󰀋󰀏󰀏f−1

P (s)
󰀏󰀏 ,

󰀏󰀏f−1
Q (s)

󰀏󰀏󰀌− k.

(This really is a nonnegative integer, since the surjectivity of f yields that
max

󰀋󰀏󰀏f−1
P (s)

󰀏󰀏 ,
󰀏󰀏f−1

Q (s)
󰀏󰀏󰀌 󰃍 1 for each s ∈ [k], and thus we obtain loss (f) =

k󰁓
s=1

max
󰀋󰀏󰀏f−1

P (s)
󰀏󰀏 ,

󰀏󰀏f−1
Q (s)

󰀏󰀏󰀌
󰁿 󰁾󰁽 󰂀

󰃍1

− k 󰃍
k󰁛

s=1

1

󰁿 󰁾󰁽 󰂀
=k

− k = 0.)

• We define the poise of f to be the nonnegative integer

poise (f) :=
󰀃
# of all s ∈ [k] such that

󰀏󰀏f−1
P (s)

󰀏󰀏 =
󰀏󰀏f−1

Q (s)
󰀏󰀏󰀄 .

Example 45. Let δ = (a, b) and ε = (c, d, e) be two compositions. Then, the poset U in
Definition 44 is U = {p1 < p2} ⊔ {q1 < q2 < q3}. The following maps (written in two-line
notation) are stufufufflers for δ and ε:

󰀕
p1 p2 q1 q2 q3
1 2 3 4 5

󰀖
,

󰀕
p1 p2 q1 q2 q3
2 5 1 3 4

󰀖
,
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󰀕
p1 p2 q1 q2 q3
1 1 1 2 3

󰀖
,

󰀕
p1 p2 q1 q2 q3
1 2 2 2 3

󰀖
,

󰀕
p1 p2 q1 q2 q3
2 2 1 2 3

󰀖
,

󰀕
p1 p2 q1 q2 q3
1 1 1 1 1

󰀖
,

󰀕
p1 p2 q1 q2 q3
1 1 1 1 2

󰀖
,

󰀕
p1 p2 q1 q2 q3
1 2 1 1 2

󰀖
.

(The list is not exhaustive – there are many more stufufufflers for δ and ε.)
On the other hand, here are some maps (in two-line notation) that are not stufufufflers

for δ and ε:

• The map

󰀕
p1 p2 q1 q2 q3
1 2 1 1 1

󰀖
is not a stufufuffler, since it violates (47) for s = 1.

• The map

󰀕
p1 p2 q1 q2 q3
1 2 2 1 2

󰀖
is not a stufufuffler, since it is not weakly increas-

ing (f (q1) > f (q2)).

• The map

󰀕
p1 p2 q1 q2 q3
2 2 2 2 2

󰀖
is not a stufufuffler, since it fails to be surjective

onto {1 < 2 < · · · < k} whatever k is.

Here are the weights of the eight stufufufflers listed above:

wt

󰀕
p1 p2 q1 q2 q3
1 2 3 4 5

󰀖
= (a, b, c, d, e) ,

wt

󰀕
p1 p2 q1 q2 q3
2 5 1 3 4

󰀖
= (c, a, d, e, b) ,

wt

󰀕
p1 p2 q1 q2 q3
1 1 1 2 3

󰀖
= (a+ b+ c, d, e) ,

wt

󰀕
p1 p2 q1 q2 q3
1 2 2 2 3

󰀖
= (a, b+ c+ d, e) ,

wt

󰀕
p1 p2 q1 q2 q3
2 2 1 2 3

󰀖
= (c, a+ b+ d, e) ,

wt

󰀕
p1 p2 q1 q2 q3
1 1 1 1 1

󰀖
= (a+ b+ c+ d+ e) ,

wt

󰀕
p1 p2 q1 q2 q3
1 1 1 1 2

󰀖
= (a+ b+ c+ d, e) ,

wt

󰀕
p1 p2 q1 q2 q3
1 2 1 1 2

󰀖
= (a+ c+ d, b+ e) .

The losses of these stufufufflers are 0, 0, 1, 1, 1, 2, 1 and 1, respectively. Their poises are
0, 0, 0, 0, 0, 0, 1 and 1, respectively.
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Intuitively, the composition wt (f) in Definition 44 can be thought of as a variant of
a stuffle10 of δ with ε, but instead of adding an entry of δ with an entry of ε, it allows
adding i consecutive entries of δ and j consecutive entries of ε whenever i and j are
integers satisfying i ≈ j. (Such a sum can be obtained by starting with 0 and taking
turns at adding the next available entry from δ or from ε; thus the name “stufufuffle”.)
The poise statistic poise (f) tells us how often this i ≈ j relation becomes an equality.
The loss statistic loss (f) tells how much is being added, i.e., how far this “stufufuffle”
deviates from a stuffle.

Now we can restate the multiplication rule for η
(q)
δ η

(q)
ε in terms of stufufufflers:

Theorem 46. Let δ and ε be two compositions. Then,

η
(q)
δ η(q)ε =

󰁛

f is a stufufuffler
for δ and ε

(−q)loss(f) (q − 1)poise(f) η
(q)
wt(f).

Example 47. Let δ = (a, b) and ε = (c, d) be two compositions of length 2. Let us

compute η
(q)
(a,b)η

(q)
(c,d) using Theorem 46. The stufufufflers for δ and ε are the maps (written

here in two-line notation)
󰀕

p1 p2 q1 q2
1 2 3 4

󰀖
,

󰀕
p1 p2 q1 q2
1 3 2 4

󰀖
,

󰀕
p1 p2 q1 q2
1 4 2 3

󰀖
,

󰀕
p1 p2 q1 q2
2 3 1 4

󰀖
,

󰀕
p1 p2 q1 q2
2 4 1 3

󰀖
,

󰀕
p1 p2 q1 q2
3 4 1 2

󰀖
,

󰀕
p1 p2 q1 q2
1 2 2 2

󰀖
,

󰀕
p1 p2 q1 q2
2 2 1 2

󰀖
,

󰀕
p1 p2 q1 q2
1 1 1 2

󰀖
,

󰀕
p1 p2 q1 q2
1 2 1 1

󰀖
,

󰀕
p1 p2 q1 q2
1 2 1 2

󰀖
,

󰀕
p1 p2 q1 q2
1 1 1 1

󰀖
,

󰀕
p1 p2 q1 q2
1 2 1 3

󰀖
,

󰀕
p1 p2 q1 q2
1 3 1 2

󰀖
,

󰀕
p1 p2 q1 q2
1 3 2 3

󰀖
,

󰀕
p1 p2 q1 q2
2 3 1 3

󰀖
,

󰀕
p1 p2 q1 q2
1 2 2 3

󰀖
,

󰀕
p1 p2 q1 q2
2 3 1 2

󰀖
.

Their respective weights are

(a, b, c, d) , (a, c, b, d) , (a, c, d, b) ,

(c, a, b, d) , (c, a, d, b) , (c, d, a, b) ,

(a, b+ c+ d) , (c, a+ b+ d) , (a+ b+ c, d) ,

(a+ c+ d, b) , (a+ c, b+ d) , (a+ b+ c+ d) ,

(a+ c, b, d) , (a+ c, d, b) , (a, c, b+ d) ,

(c, a, b+ d) , (a, b+ c, d) , (c, a+ d, b) ;

10“Stuffles” are also known as “overlapping shuffles”; see [GriRei20, Proposition 5.1.3 and Example 5.1.4]
for the meaning of this concept (and [DEMT17] for more).
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their respective losses are

0, 0, 0,

0, 0, 0,

1, 1, 1,

1, 0, 1,

0, 0, 0,

0, 0, 0,

whereas their respective poises are

0, 0, 0,

0, 0, 0,

0, 0, 0,

0, 2, 1,

1, 1, 1,

1, 1, 1.

Thus, Theorem 46 yields

η
(q)
(a,b)η

(q)
(c,d) = η

(q)
(a,b,c,d) + η

(q)
(a,c,b,d) + η

(q)
(a,c,d,b)

+ η
(q)
(c,a,b,d) + η

(q)
(c,a,d,b) + η

(q)
(c,d,a,b)

− qη
(q)
(a, b+c+d) − qη

(q)
(c, a+b+d) − qη

(q)
(a+b+c, d)

− qη
(q)
(a+c+d, b) + (q − 1)2 η

(q)
(a+c, b+d) − q (q − 1) η

(q)
(a+b+c+d)

+ (q − 1) η
(q)
(a+c, b, d) + (q − 1) η

(q)
(a+c, d, b) + (q − 1) η

(q)
(a, c, b+d)

+ (q − 1) η
(q)
(c, a, b+d) + (q − 1) η

(q)
(a, b+c, d) + (q − 1) η

(q)
(c, a+d, b).

Let us now outline how Theorem 46 can be derived from Theorem 38.

Proof. Fix a composition α = (α1,α2, . . . ,αk). Let P be the set of all pairs

((β1, β2, . . . , βk) , (γ1, γ2, . . . , γk))

satisfying the six conditions

β1, β2, . . . , βk ∈ Comp; γ1, γ2, . . . , γk ∈ Comp;

β1β2 · · · βk = δ; γ1γ2 · · · γk = ε;

|ℓ (βs)− ℓ (γs)| 󰃑 1 for each s;

|βs|+ |γs| = αs for each s.

On the other hand, let S be the set of all stufufufflers f for δ and ε satisfying wt (f) = α.

the electronic journal of combinatorics 31(4) (2024), #P4.20 47



Then, there is a bijection Φ : S → P, which sends any stufufuffler f ∈ S to the pair

((β1, β2, . . . , βk) , (γ1, γ2, . . . , γk)) ,

where

βs =
󰀃
the composition consisting of the δu for all u ∈ f−1

P (s)

(in the order of increasing u)
󰀄

and

γs =
󰀃
the composition consisting of the εv for all v ∈ f−1

Q (s)

(in the order of increasing v)
󰀄

for all s ∈ [k] .

We leave it to the reader to verify that this map Φ really is well-defined and bijective (see
[GriVas23a] for a few hints on this). It also has a further useful property: If Φ sends a
stufufuffler f to a pair ((β1, β2, . . . , βk) , (γ1, γ2, . . . , γk)), then

k󰁛

s=1

max {ℓ (βs) , ℓ (γs)}− k = loss (f) and

(# of all s ∈ [k] such that ℓ (βs) = ℓ (γs)) = poise (f) .

Thus, we can use the bijection Φ to convince ourselves that the sum on the right hand
side of Theorem 46 equals the sum on the right hand side of Theorem 38. Hence, the
former theorem follows from the latter.

5.3 The product rule in terms of subsets

Finally, let us state the product rule for the η
(q)
α (Theorem 38) in yet another form, using

classical shuffles ([GriVas22, Corollary 1]):

Definition 48. If T is any set of integers, then T−1 shall denote the set {t− 1 | t ∈ T}.

Definition 49. Let α = (α1,α2, . . . ,αn) be a composition with n entries. For any i ∈
[n− 1], we let α↓i denote the following composition with n− 1 entries:

α↓i := (α1, . . . ,αi−1,αi + αi+1,αi+2, . . . ,αn) .

Furthermore, for any subset I ⊆ [n− 1], we set

α↓I :=
󰀓󰀃

· · ·
󰀃
α↓ik

󰀄
· · ·

󰀄↓i2󰀔↓i1
,

where i1, i2, . . . , ik are the elements of I in increasing order.
Finally, if I and J are two subsets of [n− 1], then we set

α↓I↓↓J := α↓K , where K = I ∪ J ∪ (J − 1).
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Example 50. Let α = (a, b, c, d, e, f, g) be a composition with 7 entries. Then,

α↓2 = (a, b+ c, d, e, f, g) ;

α↓{2,4,5} = (a, b+ c, d+ e+ f, g) ;

α↓{2}↓↓{6} = α↓{2,5,6} = (a, b+ c, d, e+ f + g) .

Theorem 51. Let δ = (δ1, δ2, . . . , δn) and ε = (ε1, ε2, . . . , εm) be two compositions.
If T is any m-element subset of [n+m], then we define the T -shuffle of δ with ε to be

the composition
δ ⌊T ⌋ ε := (γ1, γ2, . . . , γn+m) ,

where

γk :=

󰀫
δi, if k is the i-th smallest element of [n+m] \ T ;
εj, if k is the j-th smallest element of T.

Furthermore, if T is any subset of [n+m], then we define a further subset

T ′ := (T \ (T − 1)) \ {n+m} .

Then,

η
(q)
δ η(q)ε =

󰁛

triples (T,I,J);
T⊆[n+m];
|T |=m;
I⊆T ′;

J⊆T ′\{1};
I∩J=∅

(−q)|J | (q − 1)|I| η
(q)

(δ⌊T ⌋ε)↓I↓↓J .

Example 52. Let δ = (a) and ε = (b, c) be two compositions. Then, applying Theorem

51 (with n = 1 and m = 2), we see that η
(q)
δ η

(q)
ε = η

(q)
(a)η

(q)
(b,c) is a sum over all triples (T, I, J)

satisfying

T ⊆ [3] , |T | = 2, I ⊆ T ′, J ⊆ T ′ \ {1} , I ∩ J = ∅.

There are exactly six such triples (T, I, J), namely

({1, 2} , ∅, ∅) , ({1, 2} , ∅, {2}) , ({1, 2} , {2} , ∅) ,

({1, 3} , ∅, ∅) , ({1, 3} , {1} , ∅) , ({2, 3} , ∅, ∅) .

Thus, the claim of Theorem 51 becomes

η
(q)
(a)η

(q)
(b,c) = η

(q)
(b,c,a) − qη

(q)
(a+b+c) + (q − 1) η

(q)
(b, a+c) + η

(q)
(b,a,c) + (q − 1) η

(q)
(a+b, c) + η

(q)
(a,b,c)

(here, we have listed the addends in the same order in which the corresponding triples
were listed above).

Theorem 51 can be derived from Theorem 46 by constructing a bijection between the
stufufufflers of δ and ε and the triples (T, I, J) from Theorem 51. The details of this
bijection are somewhat bothersome, so we shall omit them, not least because Theorem
51 can also be proved in a different way (using enriched P -partitions). The latter proof
has been outlined in [GriVas22, Corollary 1] and will be elaborated upon in forthcoming
work.
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6 Applications

We shall now discuss some applications of the basis
󰀓
η
(q)
α

󰀔

α∈Comp
and its features.

6.1 Hopf subalgebras of QSym

The q = 1 case in particular is useful for constructing Hopf subalgebras of QSym, such
as the peak subalgebra Π introduced by Stembridge [Stembr97, §3] (without its Hopf
structure) and later studied by various authors ([AgBeSo06, §6, particularly Proposition
6.5], [BMSW99], [BMSW00, §5], [Hsiao07] etc.). We shall now briefly survey some Hopf
subalgebras that can be obtained in this way.

Convention 4. For the rest of Subsection 6.1, we fix a set T of compositions (i.e., a subset
T of Comp).

We let QSym
(q)
T be the k-submodule of QSym spanned by the family

󰀓
η
(q)
α

󰀔

α∈T
.

When is this k-submodule QSym
(q)
T a subcoalgebra of QSym? The answer is simple:11

Proposition 53. For any subset Y of {1, 2, 3, . . .}, we let

Y ∗ := {all compositions whose entries all belong to Y }
= {(α1,α2, . . . ,αk) ∈ Comp | αi ∈ Y for each i} .

(a) If T = Y ∗ for some subset Y of {1, 2, 3, . . .}, then QSym
(q)
T is a subcoalgebra of

QSym.

(b) If k is a field and r ∕= 0, then the converse holds as well: If QSym
(q)
T is a subcoalgebra

of QSym, then T = Y ∗ for some subset Y of {1, 2, 3, . . .}.

Proof sketch. (a) This follows from Theorem 20.
(b) Use the graded dual NSym of QSym and Proposition 30. (The orthogonal com-

plement of a subcoalgebra is an ideal.)

Proposition 53 allows us to restrict ourselves to sets T of the form Y ∗ for Y ⊆
{1, 2, 3, . . .} if we want QSym

(q)
T to be a Hopf subalgebra of QSym. However, not ev-

ery set T of this form Y ∗ results in a Hopf subalgebra. For generic q, this happens fairly
rarely:

11We are being sloppy: For us here, a “subcoalgebra” of a coalgebra C means a k-submodule D of C
that satisfies

∆ (D) ⊆ (image of the canonical map D ⊗D → C ⊗ C) .

This is not the algebraically literate definition of a “subcoalgebra”, as it does not imply that D itself
becomes a k-coalgebra (after all, the canonical map D ⊗ D → C ⊗ C might fail to be injective, and
then it is not clear how to “restrict” ∆ to a map D → D ⊗ D). Fortunately, the two definitions are
equivalent when k is a field (or when D is a direct addend of C as a k-module).
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Proposition 54. Let Y be a subset of {1, 2, 3, . . .} that is closed under addition (i.e.,

satisfies y+ z ∈ Y for every y, z ∈ Y ). Let T := Y ∗. Then, QSym
(q)
T is a Hopf subalgebra

of QSym.

Proof sketch. Clearly, 1 = η
(q)
∅ ∈ QSym

(q)
T , and Proposition 53 (a) shows that QSym

(q)
T is

a subcoalgebra of QSym. Next, we will show that QSym
(q)
T is closed under multiplication.

In view of Theorem 38, this will follow once we can show the following claim:

Claim 1: Let k ∈ N. Let δ ∈ Y ∗ and ε ∈ Y ∗ be two compositions all of whose
entries are ∈ Y . Let β1, β2, . . . , βk ∈ Comp and γ1, γ2, . . . , γk ∈ Comp be 2k
compositions satisfying

β1β2 · · · βk = δ and γ1γ2 · · · γk = ε

and ℓ (βs) + ℓ (γs) > 0 for all s.

Then,
(|β1|+ |γ1| , |β2|+ |γ2| , . . . , |βk|+ |γk|) ∈ Y ∗.

Proof of Claim 1. We need to show that |βs| + |γs| ∈ Y for each s ∈ [k]. To do so, we
fix s ∈ [k]. Then, ℓ (βs) + ℓ (γs) > 0 (by assumption). In other words, at least one of the
compositions βs and γs is nonempty.

However, all entries of the composition βs are entries of the composition β1β2 · · · βk = δ,
and thus belong to Y (since δ ∈ Y ∗). Thus, the sum of all entries of βs either equals 0
or belongs to Y (since Y is closed under addition). In other words, the size |βs| either
equals 0 or belongs to Y . Similarly, |γs| either equals 0 or belongs to Y . Hence, the sum
|βs|+ |γs| either equals 0 or belongs to Y as well (since Y is closed under addition). Since
|βs|+ |γs| cannot equal 0 (because at least one of the compositions βs and γs is nonempty),
we thus conclude that |βs| + |γs| belongs to Y . In other words, |βs| + |γs| ∈ Y . As we
said, this completes the proof of Claim 1.

Now, Claim 1 (together with 1 ∈ QSym
(q)
T ) shows that QSym

(q)
T is a k-subalgebra of

QSym. As we saw above, QSym
(q)
T is a k-subcoalgebra of QSym as well, and thus is a

k-subbialgebra of QSym. This bialgebra QSym
(q)
T is connected graded, and therefore a

Hopf algebra (by Takeuchi’s famous result [GriRei20, Proposition 1.4.16]). The inclusion

map QSym
(q)
T → QSym is a bialgebra morphism between two Hopf algebras, and thus

automatically a Hopf algebra morphism (by another well-known result: [GriRei20, Corol-

lary 1.4.27]). Hence, QSym
(q)
T is a Hopf subalgebra of QSym. This proves Proposition

54.

Example 55. The subset {2, 4, 6, 8, . . .} of {1, 2, 3, . . .} is closed under addition. Thus,

Proposition 54 shows that QSym
(q)
T is a Hopf subalgebra of QSym for Y := {2, 4, 6, 8, . . .}

and T := Y ∗. This Hopf subalgebra can be viewed as a copy of QSym in the indeterminates
x2
1, x

2
2, x

2
3, . . ., and thus is isomorphic to QSym.
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Example 56. The subset {2, 3, 4, 5, . . .} of {1, 2, 3, . . .} is closed under addition. Thus,

Proposition 54 shows that QSym
(q)
T is a Hopf subalgebra of QSym for Y := {2, 3, 4, 5, . . .}

and T := Y ∗.

Proposition 54 is not very surprising. In fact, (4) shows that (under the assumptions

of Proposition 54) the space QSym
(q)
T is just the k-linear span of the functions rℓ(α)Mα

with α ∈ Y ∗; but the latter span is easily seen to be a Hopf subalgebra (using [GriRei20,
Proposition 5.1.3] and (22)).

If q ∕= 1 and if r is invertible, then Proposition 54 has a converse (i.e., QSym
(q)
T is a

Hopf subalgebra of QSym only when Y is closed under addition), since it is easy to see
that

η
(q)
(a)η

(q)
(b) = (q − 1) η

(q)
(a+b) + η

(q)
(a,b) + η

(q)
(b,a) for any a, b 󰃍 1.

However, more interesting behavior emerges when q = 1:

Proposition 57. Let Y be a subset of {1, 2, 3, . . .} that is closed under ternary addition

(i.e., satisfies y + z + w ∈ Y for every y, z, w ∈ Y ). Let T := Y ∗. Then, QSym
(1)
T is a

Hopf subalgebra of QSym.

Proof sketch. This is similar to Proposition 54, but now we set q = 1 and observe that all
addends on the right hand side of Theorem 38 that satisfy

ℓ (βs) = ℓ (γs) for at least one s ∈ [k]

are 0 (because they include the factor (1− 1)a positive integer, which vanishes), and all the
remaining addends have the property that |ℓ (βs)− ℓ (γs)| = 1 for all s (since we have
|ℓ (βs)− ℓ (γs)| 󰃑 1 and ℓ (βs) ∕= ℓ (γs)). Hence, the following claim now replaces Claim 1:

Claim 1’: Let k ∈ N. Let δ ∈ Y ∗ and ε ∈ Y ∗ be two compositions all of whose
entries are ∈ Y . Let β1, β2, . . . , βk ∈ Comp and γ1, γ2, . . . , γk ∈ Comp be 2k
compositions satisfying

β1β2 · · · βk = δ and γ1γ2 · · · γk = ε

and |ℓ (βs)− ℓ (γs)| = 1 for all s.

Then,
(|β1|+ |γ1| , |β2|+ |γ2| , . . . , |βk|+ |γk|) ∈ Y ∗.

Proof of Claim 1’. We need to show that |βs| + |γs| ∈ Y for each s ∈ [k]. To do so, we
fix s ∈ [k]. Then, |ℓ (βs)− ℓ (γs)| = 1 (by assumption), and thus ℓ (βs) + ℓ (γs) is odd.
Hence, |βs| + |γs| is a sum of an odd number of entries of δ and ε, and therefore a sum
of an odd number of elements of Y (since δ and ε belong to Y ∗). But Y is closed under
ternary addition, and therefore any sum of an odd number of elements of Y must belong
to Y (easy induction exercise). Hence, |βs|+ |γs| ∈ Y , and thus Claim 1’ is proved.

The rest of the proof proceeds as for Proposition 54.
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Example 58. The subset {1, 3, 5, 7, . . .} of {1, 2, 3, . . .} is closed under ternary addi-

tion. Thus, Proposition 57 shows that QSym
(1)
T is a Hopf subalgebra of QSym for

Y := {1, 3, 5, 7, . . .} and T := Y ∗. This Hopf subalgebra is precisely the peak algebra
Π of [Stembr97, §3], [AgBeSo06, §6, particularly Proposition 6.5], [BMSW99], [BMSW00,
§5] and [Hsiao07] (since [Hsiao07, (2.1) and (2.2)] shows that the θα for α odd have the
same span as the ηα for α odd, but [Hsiao07, Proposition 2.1] shows that the latter ηα
are precisely our η

(1)
α up to sign).

Example 59. The subset {positive integers ∕= 2} = {1, 3, 4, 5, . . .} of {1, 2, 3, . . .} is

closed under ternary addition. Thus, Proposition 57 shows that QSym
(1)
T is a Hopf sub-

algebra of QSym for Y := {positive integers ∕= 2} and T := Y ∗. This Hopf subalgebra
is the Hopf subalgebra Ξ constructed in [BMSW00, Theorem 5.7]. (Indeed, both Hopf
subalgebras have the same orthogonal complement: the principal ideal of NSym generated

by η∗2 =
1

4
X2 =

1

4
(2H2 −H1H1).)

Example 60. More generally, if we pick a positive integer k and set

Y := {odd positive integers} ∪ {k, k + 1, k + 2, . . .}

and T := Y ∗, then Proposition 57 shows that QSym
(1)
T is a Hopf subalgebra of QSym

(since Y is closed under ternary addition).

The reader can find more examples without trouble. When k is nontrivial and 2 is
invertible in k, Proposition 57 is easily seen to have a converse (using Example 40).

6.2 A new shuffle algebra

Next, we shall use the enriched q-monomial quasisymmetric functions to realize a certain
deformed version of the shuffle product, which has appeared in recent work of [BoNoTh22]
by Bouillot, Novelli and Thibon (generalizing the “block shuffle product” of Hirose and
Sato [HirSat22, ♦]).

Shuffle products are a broad and deep subject with a long history and many appli-
cations (e.g., to multiple zeta values, algebraic topology and stochastic differential equa-
tions). An overview of known variants (such as the stuffles, the “muffles”, the infiltrations
and many more) can be found in [DEMT17, Table 1]. In the following, we shall discuss
a variant that does not directly fit into the framework of [DEMT17], but is sufficiently
similar to enjoy some of the same behavior. To our knowledge, this variant has first ap-
peared in [BoNoTh22]. We will use the letters a and b for what was called α and β in
[BoNoTh22], as we prefer to use Greek letters for compositions.

Let F be the free k-algebra with generators x1, x2, x3, . . .. It has a basis consist-
ing of all words over the alphabet {x1, x2, x3, . . .}; these words are in bijection with the
compositions. In fact, let us set

xγ := xγ1xγ2 · · · xγk (48)
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for every composition γ = (γ1, γ2, . . . , γk). Then, the bijection sends each composition γ
to the word xγ.

For any k ∈ N, we let ζk : F → F be the k-linear operator defined by

ζk (1) = 0;

ζk (xiw) = xi+kw for each i 󰃍 1 and any word w.

(Thus, explicitly, the map ζk sends 1 to 0, and transforms any nonempty word by adding k
to the subscript of its first letter. For example, ζk (xuxvxw) = xu+kxvxw for any u, v, w 󰃍
1.)

Fix two elements a and b of the base ring k.
Let # : F×F → F be the k-bilinear map on F defined recursively by the requirements

1#w = w for any word w;

w#1 = w for any word w;

(xiu)# (xjv) = xi (u#(xjv)) + xj ((xiu)#v) + axi+j (u#v) + bζi+j (u#v)

for any i, j 󰃍 1 and any words u and v.

We call this bilinear map # the stufufuffle12. Explicitly, we can compute this operation
as follows:

Proposition 61. Let δ and ε be two compositions. Then, using the notation of (48), we
have

xδ#xε =
󰁛

f is a stufufuffler
for δ and ε

bloss(f)apoise(f)xwt(f).

Proof sketch. Write δ and ε as δ = (δ1, δ2, . . . , δℓ) and ε = (ε1, ε2, . . . , εm). Use strong
induction on ℓ+m.

Induction step: If δ = ∅ or ε = ∅, then the claim is easy to check. Thus, assume
WLOG that neither δ nor ε is ∅. Let i = δ1 and j = ε1 and δ = (δ2, δ3, . . . , δℓ) and
ε = (ε2, ε3, . . . , εm). Hence, xδ = xixδ and xε = xjxε, so that

xδ#xε = (xixδ)# (xjxε)

= xi

󰀳

󰁃xδ#(xjxε)󰁿 󰁾󰁽 󰂀
=xε

󰀴

󰁄+ xj

󰀳

󰁃(xixδ)󰁿 󰁾󰁽 󰂀
=xδ

#xε

󰀴

󰁄+ axi+j (xδ#xε) + bζi+j (xδ#xε)

(by the recursive definition of #)

= xi (xδ#xε) + xj (xδ#xε) + axi+j (xδ#xε) + bζi+j (xδ#xε) . (49)

On the other hand, the stufufufflers f for δ and ε can be classified into four types:

12This is a riff on the notion of “stuffle” (which is recovered when a = 1 and b = 0) and the fact that
multiple letters of both words u and v can get combined into one in u#v.
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1. Type 1 consists of those stufufufflers f that satisfy
󰀏󰀏f−1

P (1)
󰀏󰀏 = 1 and

󰀏󰀏f−1
Q (1)

󰀏󰀏 = 0
(so that the composition wt (f) begins with the entry δ1 = i).

2. Type 2 consists of those stufufufflers f that satisfy
󰀏󰀏f−1

P (1)
󰀏󰀏 = 0 and

󰀏󰀏f−1
Q (1)

󰀏󰀏 = 1
(so that the composition wt (f) begins with the entry ε1 = j).

3. Type 3 consists of those stufufufflers f that satisfy
󰀏󰀏f−1

P (1)
󰀏󰀏 = 1 and

󰀏󰀏f−1
Q (1)

󰀏󰀏 = 1
(so that the composition wt (f) begins with the entry δ1 + ε1 = i+ j).

4. Type 4 consists of those stufufufflers f that satisfy
󰀏󰀏f−1

P (1)
󰀏󰀏 +

󰀏󰀏f−1
Q (1)

󰀏󰀏 > 2 (so

that both numbers
󰀏󰀏f−1

P (1)
󰀏󰀏 and

󰀏󰀏f−1
Q (1)

󰀏󰀏 are positive13, and one of them is at
least 2, and therefore the composition wt (f) begins with the entry δ1 + ε1 +
(some further numbers)).

A type-1 stufufuffler f for δ and ε becomes a stufufuffler for δ and ε if we de-
crease all its values by 1 and remove p1 from P . This is furthermore a bijection from
{type-1 stufufufflers for δ and ε} to

󰀋
stufufufflers for δ and ε

󰀌
, and this bijection pre-

serves both loss and poise while removing the first entry from the weight. Hence, we
obtain

󰁛

f is a type-1 stufufuffler
for δ and ε

bloss(f)apoise(f)xwt(f) =
󰁛

f is a stufufuffler
for δ and ε

bloss(f)apoise(f)xixwt(f)

= xi ·
󰁛

f is a stufufuffler
for δ and ε

bloss(f)apoise(f)xwt(f)

󰁿 󰁾󰁽 󰂀
=xδ#xε

(by the induction hypothesis,

since δ has length ℓ−1<ℓ)

= xi (xδ#xε) .

Similar reasoning leads to
󰁛

f is a type-2 stufufuffler
for δ and ε

bloss(f)apoise(f)xwt(f) = xj (xδ#xε) ;

󰁛

f is a type-3 stufufuffler
for δ and ε

bloss(f)apoise(f)xwt(f) = axi+j (xδ#xε) ;

󰁛

f is a type-4 stufufuffler
for δ and ε

bloss(f)apoise(f)xwt(f) = bζi+j (xδ#xε) .

Adding these four equalities together (and recalling that each stufufuffler for δ and ε
belongs to exactly one of the four types 1, 2, 3 and 4), we obtain

󰁛

f is a stufufuffler
for δ and ε

bloss(f)apoise(f)xwt(f)

13by (47), applied to s = 1
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= xi (xδ#xε) + xj (xδ#xε) + axi+j (xδ#xε) + bζi+j (xδ#xε) .

Comparing this with (49), we obtain

xδ#xε =
󰁛

f is a stufufuffler
for δ and ε

bloss(f)apoise(f)xwt(f).

This completes the induction step, and thus Proposition 61 is proved.

Theorem 62. The bilinear map # is commutative and associative, and the element 1 ∈ F
is a neutral element for it. Thus, the k-module F , equipped with the operation # (as
multiplication), becomes a commutative k-algebra with unity 1.

It appears possible to prove Theorem 62 by induction, but the most convenient method
at this point is to deduce this from the properties of the enriched q-monomial basis of
QSym. To wit, the following proposition connects the map # to the latter basis:

Proposition 63. Let q and u be two elements of k such that a = (q − 1) u and b = −qu2.
(Such q and u do not always exist, of course.)

Let eta : F → QSym be the k-linear map that sends the word xα = xα1xα2 · · · xαk
∈ F

to uℓ(α)η
(q)
α ∈ QSym for each composition α = (α1,α2, . . . ,αk). Then, eta (g#h) = (eta g)·

(etah) for any g, h ∈ F .

Proof sketch. Let g, h ∈ F . We WLOG assume that g = xδ and h = xε for two composi-
tions δ and ε. Consider these δ and ε. Thus,

eta g = eta xδ = uℓ(δ)η
(q)
δ (by the definition of eta)

and similarly etah = uℓ(ε)η
(q)
ε . Multiplying these two equalities, we find

(eta g) · (etah)
= uℓ(δ)η

(q)
δ · uℓ(ε)η(q)ε = uℓ(δ)+ℓ(ε)η

(q)
δ η(q)ε

= uℓ(δ)+ℓ(ε)
󰁛

f is a stufufuffler
for δ and ε

(−q)loss(f) (q − 1)poise(f) η
(q)
wt(f) (50)

(by Theorem 46).
On the other hand, from g = xδ and h = xε, we obtain

g#h = xδ#xε =
󰁛

f is a stufufuffler
for δ and ε

bloss(f)apoise(f)xwt(f)

(by Proposition 61). Hence, by the definition of eta, we obtain

eta (g#h) =
󰁛

f is a stufufuffler
for δ and ε

bloss(f)apoise(f)uℓ(wt(f))η
(q)
wt(f). (51)
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We must prove that the left hand sides of (51) and (50) are equal. Of course, it suffices
to show that the right hand sides are equal. For that purpose, it suffices to show that

bloss(f)apoise(f)uℓ(wt(f)) = uℓ(δ)+ℓ(ε) (−q)loss(f) (q − 1)poise(f)

whenever f is a stufufuffler for δ and ε. Recalling that a = (q − 1) u and b = −qu2, we
can easily boil this down to the fact that every stufufuffler f for δ and ε satisfies

2 loss (f) + poise (f) + ℓ (wt (f)) = ℓ (δ) + ℓ (ε) ;

but this fact is easily verified combinatorially.

Proof of Theorem 62 (sketched). All claims of this theorem boil down to polynomial iden-
tities in a and b. For example, associativity of # is saying that the elements (u#v)#w
and u#(v#w) of F have the same t-coefficient whenever u, v, w, t are four words; but this
is easily revealed (upon expanding all products) to be an equality between two polynomi-
als in a and b (when u, v, w, t are fixed). Note that all relevant polynomials have integer
coefficients.

Thus, in order to prove Theorem 62, we can WLOG assume that a and b are two
distinct indeterminates in a polynomial ring over Z (for example, a = X and b = Y in
the polynomial ring Z [X, Y ]). Even better, we can WLOG assume that a and b are two
algebraically independent elements of a Z-algebra.

However, in the ring Z [X, Y ], the two elements X + Y and XY are algebraically
independent (since they are the elementary symmetric polynomials in the indeterminates
X and Y ). Thus, we can WLOG assume that k = Z [X, Y ] and that a = X + Y and
b = XY . Moreover, we can extend the base ring k to its quotient field Q (X, Y ). So we
assume that k = Q (X, Y ) and a = X + Y and b = XY .

Set q := −XY −1 and u := −Y in k. Then, simple computations confirm that a =
(q − 1) u and b = −qu2. Hence, the map eta : F → QSym constructed in Proposition 63
satisfies

eta (g#h) = (eta g) · (etah) for any g, h ∈ F (52)

(by Proposition 63). Moreover, the element u = −Y ∈ k is invertible (since k is a field),
and so is the element r := q + 1 = −XY −1 + 1 ∈ k (for the same reason, since r ∕= 0).

Thus, the family
󰀓
uℓ(α)η

(q)
α

󰀔

α∈Comp
is a basis of QSym (by Theorem 11 (a)). Hence,

the map eta is a k-module isomorphism (since it sends the basis (xα)α∈Comp of F to the

basis
󰀓
uℓ(α)η

(q)
α

󰀔

α∈Comp
of QSym). The equality (52) shows that this isomorphism eta

transfers the multiplication of QSym to the binary operation # on F . Since the former
multiplication is associative, we thus conclude that the latter operation # is associative
as well. Similarly, we can see that # is commutative. Finally, it is clear that 1 is a neutral
element for #. Thus, Theorem 62 is proved.

In view of Theorem 62, we can restate Proposition 63 as follows:
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Theorem 64. Let q and u be two elements of k such that a = (q − 1) u and b = −qu2.
Let eta : F → QSym be the k-linear map that sends the word xα = xα1xα2 · · · xαk

∈ F
to uℓ(α)η

(q)
α ∈ QSym for each composition α = (α1,α2, . . . ,αk). Then, eta is a k-algebra

homomorphism from the k-algebra (F ,#) to the k-algebra QSym.

We can also turn F into a coalgebra. In fact, let ∆ : F → F ⊗ F be the k-linear

map that sends each word w1w2 · · ·wn to
n󰁓

i=0

w1w2 · · ·wi⊗wi+1wi+2 · · ·wn. This map ∆ is

called the deconcatenation coproduct (or the cut coproduct). This coproduct turns F into

a coalgebra (with counit ε : F → k sending each word w1w2 · · ·wn to

󰀫
1, if n = 0;

0, if n > 0
).

The map eta : F → QSym from Theorem 64 is then easily seen to be a k-coalgebra
homomorphism (by Theorem 20).

The stufufuffle product # on F respects the deconcatenation coproduct ∆ of F , in
the following sense:

Theorem 65. The k-algebra (F ,#), equipped with the coproduct ∆ and the counit ε
constructed above, is a commutative connected graded Hopf algebra.

Theorem 66. Let q and u be two elements of k such that a = (q − 1) u and b = −qu2.
Let eta : F → QSym be the k-linear map from Theorem 64. Then, eta is a Hopf

algebra homomorphism from the Hopf algebra (F ,#,∆, ε) to the Hopf algebra QSym.

We leave the proofs of these two theorems to the reader. (They follow the same mold
as our above proof of Theorem 62.)

Likewise, using Theorem 17 and the proof method of Theorem 62 above, we can prove
the following:

Theorem 67. Let S be the antipode of the Hopf algebra (F ,#) constructed in Theorem
65. Let n ∈ N and α ∈ Compn. Then, in F , we have

S (xα) = (−1)ℓ(α)
󰁛

β∈Compn;
D(β)⊆D(revα)

aℓ(α)−ℓ(β)xβ.

The recent work [BoNoTh22, Theorem 5.2] constructs another basis (XI) of QSym (in-
dexed by subsets I of [n− 1] instead of compositions α, but this difference is insubstantial)
that multiplies according to the stufufuffle product (thus obtaining another k-algebra ho-
momorphism from F to QSym, and with it another proof of Theorem 62). While similar
to ours, it uses the alphabet-transformed functions Hk ((s− t)A) instead of the plain
Hk, which lead to a basis of QSym that does not appear to have a simple combinatorial
formula like our η

(q)
α .

Remark 68. Assume that k is a field of characteristic 0. Then, Leray’s theorem ([GriRei20,
Theorem 1.7.29(f)]) shows that any commutative connected graded k-bialgebra A is iso-
morphic as a graded k-algebra to the symmetric algebra of a certain graded k-module
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(namely, of (ker ε) / (ker ε)2, where ε is the counit of A). In other words, any such A is iso-
morphic as a graded k-algebra to a polynomial ring whose generators are homogeneous of
various positive degrees, with exactly dim

󰀃
(ker ε) / (ker ε)2

󰀄
i
many generators of degree i.

This applies, in particular, to our connected graded k-bialgebra (F ,#). Moreover, using
standard Hilbert-series arguments, it is easy to see that the number of generators of each
given degree does not depend on the parameters a and b. Hence, as a graded k-algebra,
our (F ,#) is isomorphic to the usual shuffle algebra (which is obtained for a = 0 and
b = 0).

However, this is not a k-coalgebra isomorphism; nor is it canonical (although we
suspect that a canonical k-algebra isomorphism may exist); nor does it extend to fields
of positive characteristic.

A Appendix: The map Rq

We finish by stating yet another formula for η
(q)
α , which may eventually prove useful. This

formula relies on some more notations. We first define a simple combinatorial operation
on compositions:

Definition 69. Let α ∈ Comp, and let n = |α|. Then, α shall denote the unique
composition γ of n such that D (γ) = [n− 1] \D (α). (This γ is indeed unique, since the
map D is a bijection.) This composition α is called the complement of α.

For example, (2, 5, 1, 1) = (1, 2, 1, 1, 1, 3). We observe some simple properties of com-
plements of compositions:

Proposition 70.

(a) Every composition α satisfies α = α.

(b) For each n ∈ N, the map Compn → Compn, β 󰀁→ β is a bijection.

(c) If α and β are two compositions of n for some n ∈ N, then the statements “D (β) ⊆
D (α)” and “D

󰀃
β
󰀄
⊇ D (α)” are equivalent.

(d) If α is a composition of a positive integer n, then ℓ (α) + ℓ (α) = n+ 1.

Proof. See [GriVas23a] for the (very simple) proof.

We now define a linear endomorphism of QSym:

Definition 71. We let Rq be the k-linear map from QSym to QSym that sends each Mα

(with α ∈ Comp) to rℓ(α)Mα. (This is well-defined, since (Mα)α∈Comp is a basis of QSym.)

This map Rq is neither an algebra endomorphism nor a coalgebra endomorphism of
QSym (not even when r = 1), but it is exactly what we need for our formula. First, let
us observe that the map Rq is “close to an involution” in the following sense:
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Proposition 72. Let n be a positive integer. Let f ∈ QSym be homogeneous of degree n.
Then, (Rq ◦Rq) (f) = rn+1f .

Proof. By linearity, it suffices to check this for f = Mα for all compositions α ∈ Compn.
But this case follows easily from Proposition 70 (a) and (d).

Now we can state our final formula for η
(q)
α :

Theorem 73. Let α ∈ Comp. Then,

η(q)α = Rq (Lα) .

Proof. Let n = |α|, so that α ∈ Compn. Therefore, α ∈ Compn as well, so that (3) yields

Lα =
󰁛

β∈Compn;
D(β)⊇D(α)

Mβ =
󰁛

β∈Compn;

D(β)⊇D(α)

Mβ (53)

(here, we have substituted β for β in the sum, since Proposition 70 (b) shows that the
map Compn → Compn, β 󰀁→ β is a bijection). By Proposition 70 (c), we can replace
the condition “D

󰀃
β
󰀄
⊇ D (α)” under the summation sign by the equivalent condition

“D (β) ⊆ D (α)”. Hence, we can rewrite (53) as

Lα =
󰁛

β∈Compn;
D(β)⊆D(α)

Mβ.

Applying the linear map Rq to both sides of this equality, we find

Rq (Lα) =
󰁛

β∈Compn;
D(β)⊆D(α)

Rq

󰀃
Mβ

󰀄
󰁿 󰁾󰁽 󰂀
=r

ℓ(β)M
β

(by the definition of Rq)

=
󰁛

β∈Compn;
D(β)⊆D(α)

r
ℓ
󰀓
β
󰀔

M
β󰁿 󰁾󰁽 󰂀

=rℓ(β)Mβ

(by Proposition 70 (a))

=
󰁛

β∈Compn;
D(β)⊆D(α)

rℓ(β)Mβ

= η(q)α (by (4)) .

This proves Theorem 73.

Remark 74. Let n be a positive integer, and let α ∈ Compn. Combining Theorem 73 with

Proposition 72, we can easily see that Rq

󰀓
η
(q)
α

󰀔
= rn+1Lα. Contrasting this equality with

Theorem 73 reveals a symmetry of sorts between the η
(q)
α and Lα. This symmetry explains

the similarity between Proposition 12 and Proposition 13 (and allows one to derive one
of these propositions from the other with a bit of work).
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B Appendix: Some proofs omitted from the above

As promised, we shall now include some straightforward or otherwise simple proofs omit-
ted from the text above.

Proof of Proposition 6. Essentially, this is obtained by substituting the definition of Mβ

into (4) and expanding. Let us elaborate:
Let β = (β1, β2, . . . , βℓ) be a composition of n. Then, Mβ is defined to be the sum of

all monomials of the form xβ1

i1
xβ2

i2
· · · xβℓ

iℓ
with i1 < i2 < · · · < iℓ. But these monomials are

precisely the monomials xg1xg2 · · · xgn that satisfy

g1 󰃑 g2 󰃑 · · · 󰃑 gn

and (gi < gi+1 for each i ∈ D (β))

and (gi = gi+1 for each i ∈ [n− 1] \D (β)) .

Hence, we obtain

Mβ =
󰁛

g1󰃑g2󰃑···󰃑gn;
gi<gi+1 for each i∈D(β);

gi=gi+1 for each i∈[n−1]\D(β)

xg1xg2 · · · xgn .

Multiplying this by rℓ(β), we find

rℓ(β)Mβ =
󰁛

g1󰃑g2󰃑···󰃑gn;
gi<gi+1 for each i∈D(β);

gi=gi+1 for each i∈[n−1]\D(β)

rℓ(β)󰁿󰁾󰁽󰂀
=r|{g1,g2,...,gn}|

(since the conditions on g1,g2,...,gn
ensure that the set {g1,g2,...,gn}

has exactly ℓ=ℓ(β) many distinct elements)

xg1xg2 · · · xgn

=
󰁛

g1󰃑g2󰃑···󰃑gn;
gi<gi+1 for each i∈D(β);

gi=gi+1 for each i∈[n−1]\D(β)

r|{g1,g2,...,gn}|xg1xg2 · · · xgn .

Now, forget that we fixed β. Summing the equality that we just obtained over all
compositions β ∈ Compn that satisfy D (β) ⊆ D (α), we obtain

󰁛

β∈Compn;
D(β)⊆D(α)

rℓ(β)Mβ =
󰁛

β∈Compn;
D(β)⊆D(α)

󰁛

g1󰃑g2󰃑···󰃑gn;
gi<gi+1 for each i∈D(β);

gi=gi+1 for each i∈[n−1]\D(β)

r|{g1,g2,...,gn}|xg1xg2 · · · xgn

=
󰁛

I⊆[n−1];
I⊆D(α)

󰁛

g1󰃑g2󰃑···󰃑gn;
gi<gi+1 for each i∈I;

gi=gi+1 for each i∈[n−1]\I

r|{g1,g2,...,gn}|xg1xg2 · · · xgn

(here, we have substituted I for D (β) in the first sum, since the map D : Comp n →
P ([n− 1]) is a bijection). In view of (4), we can rewrite this as

η(q)α =
󰁛

I⊆[n−1];
I⊆D(α)

󰁛

g1󰃑g2󰃑···󰃑gn;
gi<gi+1 for each i∈I;

gi=gi+1 for each i∈[n−1]\I

r|{g1,g2,...,gn}|xg1xg2 · · · xgn
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=
󰁛

I⊆D(α)

󰁛

g1󰃑g2󰃑···󰃑gn;
gi<gi+1 for each i∈I;

gi=gi+1 for each i∈[n−1]\I

r|{g1,g2,...,gn}|xg1xg2 · · · xgn (54)

(since every I ⊆ D (α) also satisfies I ⊆ [n− 1]).
However, we have the following equality of summation signs:

󰁛

g1󰃑g2󰃑···󰃑gn;
gi=gi+1 for each i∈[n−1]\D(α)

=
󰁛

I⊆[n−1];
I⊆D(α)

󰁛

g1󰃑g2󰃑···󰃑gn;
gi<gi+1 for each i∈I;

gi=gi+1 for each i∈[n−1]\I

(because for any given n-tuple (g1 󰃑 g2 󰃑 · · · 󰃑 gn), the condition “gi = gi+1 for each
i ∈ [n− 1] \ D (α)” is equivalent to the existence of a subset I ⊆ D (α) satisfying
(gi < gi+1 for each i ∈ I) and (gi = gi+1 for each i ∈ [n− 1] \ I), and moreover, such a
subset I is necessarily unique if it exists). Hence, the right hand side of (5) equals the
right hand side of (54). Thus, (5) follows from (54), and this proves Proposition 6.

Proof of Proposition 7. Let n = |α|, so that α ∈ Compn. Clearly, it suffices to show that
the right hand sides of (5) and (6) are identical.

But this is true, since they are just the same sum with a different way of indexing
its addends. Indeed, the monomials xg1xg2 · · · xgn for all n-tuples (g1 󰃑 g2 󰃑 · · · 󰃑 gn)
satisfying (gi = gi+1 for each i ∈ [n− 1] \D (α)) are precisely the monomials of the form
xα1
i1
xα2
i2

· · · xαℓ
iℓ

for all ℓ-tuples (i1 󰃑 i2 󰃑 · · · 󰃑 iℓ). Moreover, the coefficients r|{g1,g2,...,gn}|

in front of the former monomials equals the coefficients r|{i1,i2,...,iℓ}| in front of the latter
ones (because either coefficient can be rewritten as rk, where k is the number of distinct
indeterminates appearing in the given monomial). This shows that the right hand sides
of the equalities (5) and (6) are identical. Hence, (6) follows from (5).

Next, let us prove Proposition 30 in detail. To do so, we will use the comultiplication
∆ : QSym → QSym⊗QSym of the Hopf algebra QSym as well as the duality between
NSym and QSym:

Lemma 75. Let f, g ∈ NSym and h ∈ QSym be arbitrary. Let the tensor ∆ (h) ∈
QSym⊗QSym be written in the form ∆ (h) =

󰁓
i∈I

si⊗ ti, where I is a finite set and where

si, ti ∈ QSym for each i ∈ I. Then,

〈fg, h〉 =
󰁛

i∈I

〈f, si〉 〈g, ti〉 .

Proof. Recall that the k-bilinear form 〈·, ·〉 identifies NSym with the graded dual QSymo

as Hopf algebras. Thus, in particular, the multiplication of NSym and the comultiplication
of QSym are mutually adjoint with respect to this form. In other words, if f, g ∈ NSym
and h ∈ QSym, then

〈fg, h〉 =
󰁛

(h)

󰀍
f, h(1)

󰀎 󰀍
g, h(2)

󰀎
,
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where we are using the Sweedler notation
󰁓
(h)

h(1) ⊗ h(2) for ∆ (h) (see, e.g., [GriRei20,

(1.2.3)]). Lemma 75 is just restating this fact without using the Sweedler notation.

Proof of Proposition 30. This follows by dualization from Theorem 20. Here are the de-
tails:

Forget that we fixed α and β. Proposition 27 (a) shows that the families
󰀓
η
∗(q)
α

󰀔

α∈Comp

and
󰀓
η
(q)
α

󰀔

α∈Comp
are mutually dual bases of NSym and QSym with respect to the bilinear

form 〈·, ·〉. This shows that 󰁇
η
∗(q)
λ , η(q)µ

󰁈
= [λ = µ] (55)

for all λ, µ ∈ Comp. But another consequence of this duality is that the bilinear form

〈·, ·〉 is nondegenerate, and that the family
󰀓
η
(q)
α

󰀔

α∈Comp
is a basis of QSym. Hence,

in order to prove that two elements f, g ∈ NSym are equal, it suffices to show that󰁇
f, η

(q)
γ

󰁈
=

󰁇
g, η

(q)
γ

󰁈
holds for each γ ∈ Comp.

We shall use this strategy to prove η
∗(q)
α η

∗(q)
β = η

∗(q)
αβ for all α, β ∈ Comp. Thus, we

need to show that
󰁇
η
∗(q)
α η

∗(q)
β , η

(q)
γ

󰁈
=

󰁇
η
∗(q)
αβ , η

(q)
γ

󰁈
holds for all α, β, γ ∈ Comp.

To show this, we fix α, β, γ ∈ Comp. Theorem 20 then says that

∆
󰀃
η(q)γ

󰀄
=

󰁛

ϕ,ψ∈Comp;
γ=ϕψ

η(q)ϕ ⊗ η
(q)
ψ .

Hence, Lemma 75 yields
󰁇
η∗(q)α η

∗(q)
β , η(q)γ

󰁈
=

󰁛

ϕ,ψ∈Comp;
γ=ϕψ

󰀍
η∗(q)α , η(q)ϕ

󰀎
󰁿 󰁾󰁽 󰂀

=[α=ϕ]
(by (55))

󰁇
η
∗(q)
β , η

(q)
ψ

󰁈

󰁿 󰁾󰁽 󰂀
=[β=ψ]
(by (55))

=
󰁛

ϕ,ψ∈Comp;
γ=ϕψ

[α = ϕ] · [β = ψ]

= [γ = αβ]

(since the only possible nonzero addend that the sum
󰁓

ϕ,ψ∈Comp;
γ=ϕψ

[α = ϕ] · [β = ψ] could

have is the addend for ϕ = α and ψ = β, but this addend only exists when γ = αβ).
Comparing this with

󰁇
η
∗(q)
αβ , η(q)γ

󰁈
= [αβ = γ] (by (55))

= [γ = αβ] ,

we obtain
󰁇
η
∗(q)
α η

∗(q)
β , η

(q)
γ

󰁈
=

󰁇
η
∗(q)
αβ , η

(q)
γ

󰁈
.

Forget that we fixed γ. We thus have shown that
󰁇
η
∗(q)
α η

∗(q)
β , η

(q)
γ

󰁈
=

󰁇
η
∗(q)
αβ , η

(q)
γ

󰁈
for

each γ ∈ Comp. Since
󰀓
η
(q)
γ

󰀔

γ∈Comp
is a basis of QSym, and since the bilinear form 〈·, ·〉 is

nondegenerate, we thus conclude that η
∗(q)
α η

∗(q)
β = η

∗(q)
αβ . This proves Proposition 30.
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