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Abstract

A subgraph of the n-dimensional hypercube is called ‘layered’ if it is a subgraph
of a layer of some hypercube. In this paper we show that there exist subgraphs of
the cube of arbitrarily large girth that are not layered. This answers a question of
Axenovich, Martin and Winter. Perhaps surprisingly, these subgraphs may even be
taken to be induced.

Mathematics Subject Classifications: 05D05, 05C35

1 Introduction

Recall that the n-dimensional hypercube Qn has vertex set {0, 1}n and two vertices x, y ∈
Qn are joined by an edge if and only if they differ on exactly one coordinate. Equivalently,
we may view the vertex set as the power set of an n-point set, with x and y adjacent if and
only if their symmetric difference has size 1. In this paper, we are interested in subgraphs
of the hypercube that cannot be found as subgraphs of a ‘layer’ of any hypercube.

To be more precise, the kth layer of Qn is the subgraph induced by all vertices in Qn

containing exactly k or k + 1 1s in their coordinate representation. We say that a graph
G is cubical if there exists some n such that G is a subgraph of the hypercube Qn, and
we say that G is layered if there exists some n and k such that G is a subgraph of the
kth edge-layer of Qn.

Whether or not a given cubical graph is layered is an important question that relates
to Turán density problems. Indeed, if a cubical connected graph G is not layered then it
is easy to see that it has positive Turán edge-density, meaning that the greatest number
of edges in a G-free subgraph of Qn is not o(e(Qn)) – we just take alternate layers of
Qn. It is a major open question to determine which cubical graphs have positive Turán
edge-density: we mention for example the recent proof by Grebennikov and Marciano [3]
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that the 10-cycle has positive Turán density, which was the last remaining cycle for which
the answer was not known. See Axenovich, Martin and Winter [1] for background and
many related results.

Now, there are many graphs that are cubical but not layered – a simple example is
the 4-cycle. However, the known examples all tend to fail to be layered for ‘local’ reasons:
they contain 4-cycles, or else some other dense cube-like local structure. Indeed, one can
find graphs of girth 6 that are cubical but not layered, but getting beyond this seems
difficult. Axenovich, Martin and Winter [1] exhibited an elegant graph of girth 8 that is
cubical but not layered. They asked if there exist graphs of arbitrarily large girth that
are cubical but not layered – in other words, cubical graphs that fail to be layered for a
‘long-distance’ reason. Our aim in this paper is to answer this question in the affirmative.

Theorem 1. For every k there exists a graph of girth at least k that is cubical but not
layered.

In fact, we also obtain a strengthening of this result that tells us this is even possible
with induced subgraphs. This is perhaps rather surprising.

Theorem 2. For every k there exists a graph of girth at least k that is an induced subgraph
of some hypercube but is not layered.

A key notion in the proof of Theorem 1 is the consideration of metric properties of
embeddings. That is, we consider how the graph distance (in the subgraph) relates to the
actual metric distance in the hypercube. At the heart of our proof is an iterative procedure
(see Lemma 5) that takes a starting cubical graph with particular properties and creates
a cubical graph that can only be embedded in a layer if certain pairs of vertices are ‘far’
apart. A suitable modification of the graph obtained at the end of this process can then
be shown to be cubical but not layered. The proof of Theorem 2 is more involved, as we
need to preserve certain additional properties during the proof (as well as starting with a
different base graph).

In Section 2 we prove Theorem 1. The further work required for the proof of Theorem 2
is given in Section 3. We use standard graph-theoretic notation – see for example [2]. For
an edge xy of the hypercube, we say its direction is the coordinate in which x and y differ.

2 Proof of Theorem 1

We first describe a relationship between particular embeddings of a graph G into a hyper-
cube and certain edge-labellings of G. This will be useful for us later in showing whether
G is cubical or layered.

We start with some notation. An embedding f of a graph G into a graph H (which,
for our purposes, will be taken to be the hypercube Qn or a layer of Qn) is a graph
isomorphism from G to a subgraph of H.

As noted by Havel and Morávek [4], one may characterise cubical graphs in terms
of edge-labellings; in the following definitions we slightly abuse notation, using ‘cubical’
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and ’layered’ as properties of certain edge-labellings. For any graph G, an edge-labelling
χ : E(G) → N of G is called cubical if it has the following properties.

(i) For any set of edges e1, e2, . . . , ek forming a cycle, each possible label occurs an even
number of times in χ(e1),χ(e2), . . . ,χ(ek).

(ii) For any (non-empty) set of edges e1, e2, . . . , ek forming a path, some label occurs an
odd number of times in χ(e1),χ(e2), . . . ,χ(ek).

Lemma 3 (Havel and Morávek [4]). Let G be a graph. An embedding f of G into a
hypercube Qn induces a cubical edge-labelling χ : E(G) → N, where χ(xy) is the direction
of the edge f(x)f(y) in Qn. Conversely, if G admits a cubical edge-labelling χ then there
exists a embedding f of G into a hypercube such that χ(xy) is the direction of the edge
f(x)f(y).

Axenovich, Martin and Winter [1] made the very useful observation that one may
characterise layered graphs in a similar way. For a graph G, we call an edge-labelling
χ : E(G) → N of G layered if it is cubical and has the additional property that for any
two edges of the same colour c, any path between them with no edges of colour c contains
an even number of edges.

Lemma 4 (Axenovich, Martin and Winter [1]). Let G be a graph. An embedding f of
G into a layer of a hypercube Qn induces a layered edge-labelling χ : E(G) → N, where
χ(xy) is the direction of the edge f(x)f(y) in Qn. Conversely, if G admits a layered
edge-labelling χ then there exists a embedding f of G into a layer of a hypercube such that
χ(xy) is the direction of the edge f(x)f(y).

We now introduce an important notion that will be used in building our graphs of
large girth that are cubical but not layered. In the following, we stress that, for two
vertices x and y of a cube, we always write d(x, y) to denote the distance from x to y in
the cube itself (in other words, the number of coordinates in which x and y differ) – never
the distance inside a particular subgraph.

Let G be a graph and let P be a set of unordered pairs of vertices in G. (We do not
insist that these pairs are disjoint.) For a given positive integer t, we say that (G,P ) is
t-distance-separating if the following hold:

(i) There exists some n and some embedding f of G into Qn such that d(f(x), f(y)) = t
for all pairs {x, y} ∈ P ; and

(ii) For any embedding g of G into a layer of a hypercube, there is some pair {x, y} ∈ P
with d(g(x), g(y)) = t+ 2.

The following is the key lemma for the proof of Theorem 1. The reader may worry that
it concerns only trees, and of course all trees are layered – but in fact in our construction
we use trees until the final step, and it is only then that we move away from trees.
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Lemma 5. Let T be a tree and let P be a set of pairs of vertices in T . Suppose that
(T, P ) is t-distance-separating, for some value of t. Then there exists a tree T ′ and a set
P ′ of pairs of vertices in T ′ such that (T ′, P ′) is (t+ 2)-distance-separating.

Proof. Let s = t+ 4. Let T ′ be the tree obtained from T as follows. For each vertex x in
T , we add s new leaves x1, . . . , xs adjacent to x. Thus |T ′| = (s + 1)|T |. For each {x, y}
in P , let Pxy be the set of all pairs {xi, yj} where 1  i, j  s, and let P ′ be the union of
Pxy taken over all pairs {x, y} in P .

We must check that (T ′, P ′) is (t+ 2)-distance-separating.

Claim 5.1. There exists an n and an embedding f of T ′ into Qn such that for all pairs
{x, y} ∈ P ′ we have d(f(x), f(y)) = t+ 2.

Proof of Claim. We first define a cubical edge-labelling of T ′ in order to apply Lemma 3
to obtain an embedding f of T ′ into some hypercube. We then show that f satisfies the
required distance properties.

As T is t-distance-separating, there is some n and some isomorphism h from T to a
subgraph of Qn such that d(h(x), h(y)) = t for all pairs {x, y} ∈ P . By Lemma 3, the
embedding h corresponds to a cubical edge-labelling of T . Let the edges of T ′ ∩ T inherit
these labels.

Give each edge in E(T ′) \E(T ) a unique new label distinct from any other label. It is
straightforward to verify that the resulting edge-labelling is cubical: T ′ does not contain
any cycles so the first condition is satisfied automatically. Any path containing an edge
of T ′ \ T has a label used exactly once, namely the label on the new edge. Any path not
containing a new edge is entirely in T , for which the labelling was cubical.

In total we introduce s|T | new labels. Let f be the corresponding embedding of T ′

into the hypercube Qn+s|T | given by Lemma 3.
Let {u, v} ∈ P ′. We must show that d(f(u), f(v)) = t + 2. We have that {u, v} is

in Pxy for some {x, y} ∈ P with u adjacent to x and v adjacent to y. We see that f(u)
differs from f(x) in one coordinate that is the label used on ux and similarly, f(v) differs
from f(y) in one coordinate that is the label used on vy. By construction, these labels
are distinct from each other and from the coordinates that f(x) and f(y) differ in (which
are the same as the coordinates that h(x) and h(y) differ in). Therefore,

d(f(u), f(v)) = d(f(x), f(y)) + 2 = d(h(x), h(y)) + 2 = t+ 2.

□ (claim)

Claim 5.2. For any embedding g of T ′ into a layer of a hypercube, there is some pair
{x, y} ∈ P ′ with d(g(x), g(y)) = t+ 4.

Proof of Claim. Let g be an embedding of T ′ into a layer L of a hypercube. As T is
t-distance-separating, we know that there is some {x, y} ∈ P with d(g(x), g(y)) = t + 2.
We will show that there is some {u, v} ∈ Pxy for this {x, y} with d(g(u), g(v)) = t+ 4.

Let I be the set of coordinates where g(x) and g(y) differ, so |I| = d(g(u), g(v)) = t+2.
Note that the directions of edges adjacent to g(x) must all be distinct and thus we can
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find at least s− |I| = 2 vertices adjacent to x that are not in T and do not use a direction
in I – let u be one of these. Similarly, we can find 2 vertices adjacent to y that are not in
T and do not use a direction in I – call these v1 and v2. Take v ∈ {v1, v2} such that yv
has a label different from the label on xu. We see that

d(g(u), g(v)) = d(g(x), g(y)) + 2 = t+ 4.

□ (claim)

Claims 5.1 and 5.2 together give that (T ′, P ′) is (t+2)-distance-separating, completing
the proof of Lemma 5.

We now turn to the ‘base case’.

Lemma 6. Let P6 be the path on 6 edges with vertices labelled v0, v1, . . . , v6, and let P be
the pairs of vertices {{v0, v4}, {v1, v5}, {v2, v6}}. Then (P6, P ) is 2-distance-separating.

Proof. Let f be the following embedding of P6 into Q3:

v0 → ∅, v1 → {1}, v2 → {1, 2}, v3 → {2},

v4 → {2, 3}, v5 → {1, 2, 3}, v6 → {1, 3}.
It is easy to check that d(f(x), f(y)) = 2 for all {x, y} ∈ P , and so the first condition is
satisfied.

To prove the second condition, we will use the following claim.

Claim 6.1. Let χ : E(P6) → N be any layered edge-labelling of P6. Then for some
0  i  2, there are four distinct labels on the edges vivi+1, vi+1vi+2, vi+2vi+3, vi+3vi+4.

Proof of Claim. This is just a routine case-check; we write it out merely for completeness.
Recall that for an edge-labelling to be layered the following three conditions must

hold:

(i) For any set of edges e1, e2, . . . , ek forming a cycle, each possible label occurs an even
number of times in χ(e1),χ(e2), . . . ,χ(ek).

(ii) For any (non-empty) set of edges e1, e2, . . . , ek forming a path, some label occurs an
odd number of times in χ(e1),χ(e2), . . . ,χ(ek).

(iii) For any two edges of the same colour c, any path between them that has no edges
of colour c has an even length.

Without loss of generality, let edge v0v1 have label 1. By condition (ii) on the path
v0v1v2, edge v1v2 has a different label to 1, say 2.

Edge v2v3 cannot have label 2 by condition (ii) on the path v1v2v3, and cannot have
label 1 by condition (iii) with edge v0v1. So it must have a new label, say 3.

Edge v3v4 cannot have label 3 by condition (ii) on the path v2v3v4, and cannot have
label 2 by condition (iii) with edge v1v2. If it had a label other than 1, 2, 3 then edges

the electronic journal of combinatorics 31(4) (2024), #P4.21 5



v0v1, v1v2, v2v3, v3v4 would all have distinct labels and we would be done. So we may
suppose that v3v4 has label 1.

Edge v4v5 cannot have label 1 by condition (ii) on the path v3v4v5, and cannot have
label 3 by condition (iii) with edge v2v3. If it had a label other than 1, 2, 3 then edges
v1v2, v2v3, v3v4, v4v5 would all have distinct labels and we would be done. So we may
suppose that v4v5 has label 2. See Figure 1 for an illustration of the labelling forced up
to this point.

v0 v1 v3 v4 v5 v6v2
1 2 3 1 2

Figure 1: The edge-labels forced on P6 during the proof of Lemma 6.

Edge v5v6 cannot have label 2 by condition (ii) on the path v4v5v6, and cannot have
label 1 by condition (iii) with edge v3v4. It also cannot have label 3 by condition (ii) on
the path v0v1v2v3v4v5v6. Therefore it must have a label distinct from 1, 2, 3. Then the
edges v2v3, v3v4, v4v5, v5v6 all have distinct labels and we are done. □ (claim)

Let f be an embedding of P6 into a layer L of a hypercube. Let χ : E(G) → N be
the edge-labelling where χ(uv) is the direction of the edge f(u)f(v), which is layered by
Lemma 4. By Claim 6.1, there is some pair of points {x, y} ∈ P where there are four
distinct labels on the edges of the path joining them. Therefore, for this x, y we have
d(f(x), f(y)) = 4.

Lemmas 5 and 6 together immediately give the following corollary.

Corollary 7. For all even t  2, there exists a tree T and a set P of pairs of vertices in
T such that (T, P ) is t-distance-separating.

Armed with Corollary 7, we can now prove Theorem 1 which we restate below for
convenience.

Theorem 1. For every k there exists a graph of girth at least k that is cubical but not
layered.

Proof. Fix k  4 to be even. By Corollary 7, there exists a tree T and a set P of pairs of
vertices in T that is (k − 2)-distance-separating.

Define a graph G as follows. For each pair of vertices {x, y} in P , add k + 1 paths of
k edges between x and y that are vertex disjoint other than at the endpoints. Let Sxy be
this set of k+1 paths, which we will refer to as a spindle. See Figure 2 for an illustration
of a spindle.

As T is a tree, any cycle in G must use the entirety of one of these added paths and
so clearly G has girth at least k.

Claim 8.1. G is cubical.
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x y

Figure 2: A spindle (with k = 4) between vertices x and y.

Proof of Claim. We define a cubical edge-labelling of G in order to apply Lemma 3. As
T is (k− 2)-distance-separating, there exists an n and an embedding f of T into Qn such
that we have d(f(x), f(y)) = k − 2 for all pairs {x, y} ∈ P . By Lemma 3, this embedding
corresponds to a cubical edge-labelling of T . The edges of G contained in the underlying
copy of T (that is, those edges that are not in an added spindle) inherit these labels.

Fix {x, y} ∈ P . Let Ixy be the set of coordinates that f(x) and f(y) differ on. Note
that |Ixy| = d(f(x), f(y)) = k − 2. For each of the paths in Sxy, we introduce a new edge
label, distinct from those used elsewhere in G′, and use it to label the first and last edges
of the path. Label the central k− 2 edges of the path by the elements of Ixy in any order.

Repeat this for each pair {x, y} ∈ P , so that every edge of G has a label. We must
verify that the resulting edge-labelling is cubical. As T is a tree, any cycle in G must use
the entirety of one of the added paths. Thus a cycle in G is the union of two paths from
x to y for some {x, y} ∈ P . A path from x to y uses each label in Ixy an odd number of
times and all other labels an even number of times, so the union of two such paths uses
every label an even number of times.

Suppose for a contradiction there is a non-empty path Q in G where every label is
used an even number of times on Q. We know that Q cannot be contained entirely within
T , as the edge-labelling on T is cubical. Thus there must be some {x, y} ∈ P such that Q
intersects a path Q′ ∈ Sxy. As Q

′ starts and ends with a label that is not used elsewhere
in G, we must have that Q contains both the start and end edges of Q′.

If Q does not contain the entirety of Q′, then Q must consist of a path from x to y
together with some strict subset of the edges of Q′. In this case, there is some direction
in Ixy that is used an odd number of times.

Thus we may assume that for all {x, y} ∈ P and for all Q′ ∈ Sxy, the path Q contains
either all edges of Q′ or none of them. Consider the walk Q on T obtained by taking Q
and replacing every traversal of a path in Sxy by the path in T from x to y. We have that
Q uses each label an even number of times. The label of an edge in T corresponds to the
direction on the image of the edge under the embedding f , and so this means that the
walk Q starts and ends at the same vertex. However, then Q must also start and end at
the same vertex, which contradicts that Q is a path. □ (claim)

Claim 8.2. G is not layered.

Proof of Claim. Suppose for a contradiction that g is an embedding of G into an layer of
a hypercube. As T is (k− 2)-distance-separating, we know that there is some {x, y} ∈ P
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with d(g(x), g(y)) = k. Let I be the set of coordinates that g(x) and g(y) differ on, so
that |I| = k.

There are k+1 paths from g(x) to g(y) of length k that are vertex disjoint other than
at the endpoints. However, a path of length k from g(x) to g(y) must use exactly the k
directions in I. In particular, these k + 1 paths must each start with one of k distinct
directions from I. Hence we have a contradiction, and G is not layered. □ (claim)

This concludes the proof of Theorem 1.

3 Proof of Theorem 2

The family of graphs used to prove Theorem 1 are not induced subgraphs of the hypercube.
Thus it is natural to ask whether there exist induced subgraphs of the hypercube of
arbitrarily large girth that are not layered. It turns out that there are such graphs, which
we prove by extending the framework of the previous section.

Lemma 9. Let T be the tree on 9 vertices that is the path v0, v1, . . . , v7 together with a
vertex v8 adjacent to v2 and let

P = {{v0, v4}, {v0, v6}, {v3, v7}, {v5, v8}}.

Then (T, P ) is 2-distance-separating. Moreover, there exists some embedding f of T into
Q4 such that

(i) d(f(x), f(y)) = 2 for all pairs {x, y} ∈ P ,

(ii) for any pair of points {x, y} in P , each direction is used on at most two edges on
the path from f(x) to f(y) in f(T ), and

(iii) f(T ) is an induced subgraph of Q4.

See Figure 3 for a diagram of the tree T .

Proof. Let f be the following embedding of T into Q4:

v0 → ∅, v1 → {1}, v2 → {1, 2}, v3 → {1, 2, 3}, v4 → {2, 3},

v5 → {2, 3, 4}, v6 → {3, 4}, v7 → {1, 3, 4}, v8 → {1, 2, 4}.
It is easy to check that f(T ) is an induced subgraph of Q4 as two vertices u, v are adjacent
in T if and only if f(u) and f(v) are adjacent in Q4. Moreover, for all {x, y} ∈ P , we
have d(f(x), f(y)) = 2 and each direction is used on at most two edges on the path from
f(x) to f(y) in f(T ).

To complete the proof we will use the following claim.

Claim 9.1. Let χ : E(T ) → N be any layered edge-labelling of T . Then for some {x, y} ∈
P , there are exactly four labels each of which is used exactly once on the edges of the
path between x and y.

the electronic journal of combinatorics 31(4) (2024), #P4.21 8



Proof of Claim. This is a routine check. Recall that for an edge-labelling to be layered
the following three conditions must hold:

(i) For any set of edges e1, e2, . . . , ek forming a cycle, each possible label occurs an even
number of times in χ(e1),χ(e2), . . . ,χ(ek).

(ii) For any (non-empty) set of edges e1, e2, . . . , ek forming a path, some label occurs an
odd number of times in χ(e1),χ(e2), . . . ,χ(ek).

(iii) For any for any two edges of the same colour c, any path between them that has no
edges of colour c has an even length.

Without loss of generality, let edge v0v1 have label 1. By condition (ii) on the path
v0v1v2, edge v1v2 has a different label to 1, say 2.

Edge v2v3 cannot have label 2 by condition (ii) on the path v1v2v3, and cannot have
label 1 by condition (iii) with edge v0v1. So it must have a new label, say 3.

Similarly, edge v2v8 cannot have label 2 or 3 by condition (ii) on the paths v1v2v8 and
v3v2v8 respectively, and cannot have label 1 by condition (iii) with edge v0v1. So it must
have a new label, say 4.

Edge v3v4 cannot have label 3 by condition (ii) on the path v2v3v4, and cannot have
label 2 by condition (iii) with edge v1v2. If it had a label other than 1, 2, 3 then the edges
v0v1, v1v2, v2v3, v3v4 would all have distinct labels and we would be done. So we may
suppose that v3v4 has label 1.

Edge v4v5 cannot have label 1 by condition (ii) on the path v3v4v5, and cannot have
label 3 by condition (iii) with edge v2v3. If it had a label other than 1, 3, 4 then edges
v8v2, v2v3, v3v4, v4v5 would all have distinct labels and we would be done. So we may
suppose that v4v5 has label 4.

Edge v5v6 cannot have label 4 by condition (ii) on the path v4v5v6. It cannot have
label 1 or 2 by condition (iii) with edges v3v4 and v1v2 respectively. Therefore it must
have a label distinct from 1, 2, 4. If it had a label other than 1, 2, 3, 4 then the edges of
the path from v0 to v6 would have four labels used exactly once and we would be done.
So we may suppose that v5v6 has label 3. See Figure 3 for an illustration of the labelling
forced up to this point.

v0 v1 v3 v4 v5 v6 v7

v8

v2
1 2 3 1 4 3

4

Figure 3: The edge-labels forced on T during the proof of Lemma 9.

Finally, edge v6v7 cannot have label 3 by condition (ii) on the path v5v6v7. It cannot
have label 4 by condition (iii) with edge v4v5. It also cannot have label 1 by condition (ii)
on the path v8v2v3v4v5v6v7. Therefore v6v7 must have a label other than 1, 3, 4.

Then the edges v3v4, v4v5, v5v6, v6v7 all have distinct labels and we are done. □ (claim)
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Let f be an embedding of T into a layer L of a hypercube. Let χ : E(G) → N be
the edge-labelling where χ(uv) is the direction of the edge f(u)f(v), which is layered
by Lemma 4. By Claim 9.1, there is some pair of points {x, y} ∈ P where there are
four labels used exactly once on the path between them. Therefore, for this x, y we have
d(f(x), f(y)) = 4, concluding the proof of Lemma 9.

We will use Lemma 9 together with Lemma 5 to prove Theorem 2, which we restate
below for convenience.

Theorem 2. For every k there exists a graph of girth at least k that is an induced subgraph
of some hypercube but is not layered.

Proof. Fix k > 4 to be even, and let r = (k/2)− 1 > 1.
We define a sequence (T1, P1), (T2, P2), . . . , (Tr, Pr) as follows: Let (T1, P1) be the

tree and set of pairs of vertices given in Lemma 9. Given (Ti−1, Pi−1) is 2(i− 1)-distance
separating, let (Ti, Pi) be as given in Lemma 5 (more precisely, as given in the construction
in the proof of Lemma 5), so that (Ti, Pi) is 2i-distance-separating. Specifically, we let
Ti be the tree formed from Ti−1 by adding 2i + 2 new vertices adjacent to x, for each
x ∈ Ti−1. For {x, y} ∈ Pi−1, let P

′
xy be the set of all pairs consisting of one of these new

vertices adjacent to x and one of the new vertices adjacent to y. Finally, let Pi be the
union of P ′

xy taken over all pairs {x, y} in Pi−1.
Note that by construction, for all i > 1 all vertices in a pair in Pi are leaves of the tree

Ti. We claim that for all 1  i  r, there exists some n and some embedding f (i) of Ti in
Qn such that:

(i) d(f (i)(x), f (i)(y)) = 2i for all pairs {x, y} ∈ Pi,

(ii) for any pair of points {x, y} in Pi, each direction is used on at most two edges on
the path from f (i)(x) to f (i)(y) in f (i)(Ti), and

(iii) f (i)(Ti) is an induced subgraph of Qn.

All of these hold for T1 where f
(1) is the embedding given in Lemma 9. Consider the case

i > 1 and take f (i) as given in the proof of Lemma 5, so that all edges in E(Ti) \E(Ti−1)
get new distinct directions under f (i) and the remaining edges of inherit the directions
given by f (i−1).

Property (i) follows from the proof of Claim 5.1.
For {x, y} in Pi, there is some {u, v} ∈ Pi−1 such that x is attached to u and y is

attached to v. Thus property (ii) then holds by induction, as the new edges f (i)(x)f (i)(u)
and f (i)(y)f (i)(v) receive new directions, and the other edges of the path inherit the
directions given by f (i−1).

Finally, property (iii) also follows by induction, using the fact that all new edges are
given a unique new direction.

Let s = k + 1. We define a graph G from Tr as in the proof of Theorem 1, that is,
for each pair of vertices {x, y} in Pr we add s paths of length k between x and y that are
vertex disjoint other than at the endpoints. Let Sxy be this set of paths.
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As Tr is a tree, any cycle in G must use the entirety of one of these added paths and
so clearly G has girth greater than k.

The proof that G is not layered is identical to the proof of Claim 8.2. Thus all that
remains is to prove the following claim.

Claim 10.1. G is an induced subgraph of some hypercube.

Proof of Claim. We define a cubical edge-labelling of G in order to apply Lemma 3. Let
f (r) be the embedding of Tr into Qn. By Lemma 3, this embedding corresponds to a
cubical edge-labelling of Tr. The edges of G contained in the underlying copy of Tr (that
is, those edges that are not in an added path) inherit these labels.

Fix {x, y} ∈ Pr. Let Ixy be the set of coordinates that f (r)(x) and f (r)(y) differ on.
Note that |Ixy| = d(f (r)(x), f (r)(y)) = k − 2.

We will label the central k − 2 edges of each path in Sxy by the elements of Ixy as in
the proof of Claim 8.1, but this time the order will matter. By property (ii), we know
that each label is used at most twice on the path from x to y in T . Thus each label in
Ixy is used exactly once, as it is used an odd number of times. Let ℓ1, ℓ2, . . . , ℓk−2 be the
labels in Ixy in the order they are used on the path from x to y.

For each path Q in Sxy, we introduce a new edge label, ℓ(Q), that is distinct from
those used elsewhere in G. Then going from x to y, we label the edges of Q in order by
ℓ(Q), ℓ2, ℓ3, . . . , ℓk−2, ℓ1, ℓ(Q).

Repeat this for each pair {x, y} ∈ Pr, so that every edge of G has a label. The
verification that the resulting edge-labelling is cubical is identical to the proof of Claim 8.1.
We therefore only need to justify that f(G) is an induced subgraph of a hypercube.

Suppose for a contradiction that there exist vertices u, v ∈ G where f(u) and f(v) are
adjacent in the hypercube but u and v are not adjacent in G. This means that on any
path from u to v, there is exactly one label that is used an odd number of times.

Since f (r) is an embedding of Tr into an induced subgraph of a hypercube, u and v
cannot both lie in Tr. We may assume that u does not lie in Tr and so u is in the interior
of a path Q in Sxy for some {x, y} ∈ Pr.

If v = x, then the subpath of Q from u to v uses the labels ℓ2 and ℓ(Q) exactly once.
Similarly, if v = y, then the subpath of Q from u to v uses the labels ℓ1 and ℓ(Q) exactly
once.

If v is in the interior of the same path Q then there are at least two labels used exactly
once on the subpath between u and v, as ℓ1, ℓ2, . . . , ℓk−2 are distinct. If v is in the interior
of some other added path Q′, then any path from u to v uses at least two labels used
exactly once: namely, the new labels ℓ(Q) and ℓ(Q′).

So we may assume that v is a vertex that lies in Tr \ {x, y}. As x is a leaf of Tr and
its adjacent edge has a label that is unique, this label must be ℓ1. In particular, the path
in Tr from x to v uses label ℓ1. If the subpath of Q from u to x does not use label ℓ1,
then we obtain a path from u to v via x there are at least two labels used exactly once:
namely, ℓ1 and ℓ(Q).

The only remaining case is if the subpath of Q from u to x uses label ℓ1, which implies
that u is adjacent to y and in particular, the path from u to y does not use label ℓk−2.
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As y is a leaf of Tr and its adjacent edge has a label that is unique, this label must be
ℓk−2. In particular, the path in Tr from x to v uses label ℓk−2 exactly once. Therefore
we obtain a path from u to v via y where there are at least two labels used exactly once:
namely, ℓk−2 and ℓ(Q). □ (claim)

This concludes the proof of Theorem 2.

It would be interesting to know what dimension of cube is needed to obtain a non-
layered subgraph of girth k. The construction above gives a dimension of the form kk,
but perhaps there are even examples when n is only polynomial in k. It would also be
nice to know if the number of vertices in such a cubical graph may be taken to be just
exponential, or even polynomial, in k.
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