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Abstract

We discover new linear relations between the chromatic symmetric functions
of certain sequences of graphs and apply these relations to find new families of e-
positive unit interval graphs. Motivated by the results of Gebhard and Sagan, we
revisit their ideas and reinterpret their equivalence relation in terms of a new quo-
tient algebra of NCSym. We investigate the projection of the chromatic symmetric
function YG in noncommuting variables in this quotient algebra, which defines yG:v,
the chromatic symmetric function of a graph G centred at a vertex v. We then
apply our methods to yG:v and find new families of unit interval graphs that are
(e)-positive, a stronger condition than classical e-positivity, thus confirming new
cases of the (3 + 1)-free conjecture of Stanley and Stembridge.

In our study of yG:v, we also describe methods of constructing new e-positive
graphs from given (e)-positive graphs and classify the (e)-positivity of trees and cut
vertices. We moreover construct a related quotient algebra of NCQSym to prove
theorems relating the coefficients of yG:v to acyclic orientations of graphs, including
a noncommutative refinement of Stanley’s sink theorem.

Mathematics Subject Classifications: 05A18, 05C15, 05C20, 05C25, 05E05,
16T30

1 Introduction

The chromatic symmetric function XG of a graph G was introduced by Stanley [25]
in 1995 as a generalization of Birkhoff’s chromatic polynomial [3]. Since then, it has
inspired fruitful research mainly in two avenues. The first avenue is to determine whether
two nonisomorphic trees can have the same chromatic symmetric function [2, 14, 17, 19].
Heil and Ji showed in [14] that there was no counterexample on 󰃑 29 vertices. However,
the second and more prominent avenue of research is to prove the Stanley-Stembridge
conjecture [26, Conjecture 5.5], which was formulated in terms of chromatic symmetric
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functions by Stanley in [25, Conjecture 5.1]. In 2013, Guay-Paquet [11] showed that to
prove the Stanley-Stembridge conjecture it was sufficient to prove that all unit interval
graphs were e-positive, namely that their chromatic symmetric functions expanded with
nonnegative coefficients in the basis of elementary symmetric functions.

Much interest has also arisen due to a q-analogue of the conjecture, introduced by
Shareshian and Wachs [23] in terms of the chromatic quasisymmetric functions of la-
belled unit interval graphs. Brosnan and Chow [4] and, independently, Guay-Paquet [12]
proved that the chromatic quasisymmetric functions of labelled unit interval graphs were
related to the cohomology of regular semisimple Hessenberg varieties, first conjectured
by Shareshian and Wachs in [23], and this connection has been used to prove a special
case of the q-analogue of the conjecture in [13]. Considerable progress has been made
on the Stanley-Stembridge conjecture and Shareshian and Wachs’ quasisymmetric refine-
ment also due to the study of the modular law, which appears in several forms across
[1, 8, 11, 15] and is a consequence of Orellana and Scott’s triple-deletion rule [20] when
q = 1.

A second approach to the Stanley-Stembridge conjecture was pioneered by Gebhard
and Sagan in [10], where they introduced YG, the chromatic symmetric function of a graph
G in noncommuting variables. Intriguingly, the natural labelling of unit interval graphs
was also important to their approach, as it was for chromatic quasisymmetric functions.
Gebhard and Sagan proved for a large family of labelled unit interval graphs that the
graphs were (e)-positive at their last vertices (see Definition 13), a condition stronger
than being e-positive arising from an equivalence relation on the algebra of NCSym.
Dahlberg in [5] proved that triangular ladders were (e)-positive at their last vertices using
a sign-reversing involution, resolving a special case of the conjecture identified by Stanley
in [25]. Our paper makes progress on the Stanley-Stembridge conjecture by combining
the modular law with (e)-positivity to prove new cases of the conjecture. We also inves-
tigate in-depth the equivalence relation introduced by Gebhard and Sagan, including, in
particular, the equivalence class of YG. More precisely, our paper is structured as follows.

We cover the necessary background in Section 2. In Section 3 we describe in Propo-
sition 6 sequences of graphs with the property that their chromatic symmetric functions
form an arithmetic progression, which may be applied to deduce positivity. In Corollary 8,
we specialize and obtain a tool to prove new cases of the Stanley-Stembridge conjecture,
which we then apply in Proposition 11 to prove the e-positivity of a new family of unit
interval graphs. In Section 4 we review the methods and results of Gebhard and Sagan
from [10], and reinterpret them in terms of a new quotient algebra exhibiting “unbalanced
commutativity”, UBCSym, of NCSym, for which we define analogues of the elementary,
power sum and monomial bases. In UBCSym we also define yG:v, the chromatic sym-
metric function of G centred at v. We then meld the ideas of Gebhard and Sagan and
the ideas of Section 3 to prove that many more families of labelled unit interval graphs
are (e)-positive at their last vertices in Section 5. In Section 6 we introduce a technique
to work with linear maps on UBCSym, which allows us to prove the validity of methods
of constructing new e-positive graphs from given (e)-positive graphs in Theorems 32 and
35. In Section 7 we resolve the related questions of when trees are (e)-positive and which
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graphs are (e)-positive at a cut vertex. We construct a quotient algebra UBCQSym of
NCQSym in Section 8 and prove in Theorem 42 a noncommutative refinement of Stan-
ley’s sink theorem [25, Theorem 3.3]. We conclude the paper with Section 9, in which
we discuss the connections to a construction of Pawlowski [21], as well as possible further
avenues of research.

2 Background

In this section we review the necessary background and notation that will be used in the
rest of the paper. This section may be skipped, or referred back to later, by those familiar
with algebraic combinatorics.

An (integer) composition α = (α1, . . . ,αℓ(α)) is a finite ordered list of positive integers,
where ℓ(α) is the length of α. We call the integers the parts of the composition. When
αj+1 = · · · = αj+m = i, we often abbreviate this sublist to im. If α1 + · · ·+ αℓ(α) = d, we
say that α is a composition of d. We will also write ∅ to denote the empty composition.

Let [d] = {1, . . . , d}. If α = (α1, . . . ,αℓ(α)) is a composition of d, then we define
set(α) to be the set {α1,α1 + α2, . . . ,α1 + · · ·+αℓ(α)−1} ⊆ [d− 1]. This induces a natural
one-to-one correspondence between the compositions of d and the subsets of [d− 1].

An (integer) partition λ = (λ1, . . . ,λℓ(λ)) is a composition with parts satisfying λ1 󰃍
· · · 󰃍 λℓ(λ). If λ1 + · · ·+ λℓ(λ) = d, then we say that λ is a partition of d and write λ ⊢ d.
We also define λ! to mean the quantity λ1! · · ·λℓ(λ)!. Given two partitions λ and µ, we
write λ ∪ µ to denote the partition obtained by combining the parts of λ and µ together
in weakly decreasing order.

We next define Sym, the algebra of symmetric functions, which may be realized as
a subalgebra of Q[[x1, x2, . . . ]], where the variables xj commute, as follows. The ith
elementary symmetric function ei is defined by

ei =
󰁛

j1<···<ji

xj1 · · · xji .

Given a partition λ = (λ1, . . . ,λℓ(λ)), we define the elementary symmetric function eλ to
be

eλ =

ℓ(λ)󰁜

i=1

eλi
.

Sym can be defined as the graded algebra

Sym = Sym0 ⊕ Sym1 ⊕ · · ·

where for each d ∈ Z󰃍0, the dth graded piece Symd is spanned by the basis {eλ}λ⊢d.
Another basis of Sym consists of the power sum symmetric functions. The ith power

sum symmetric function pi is defined by

pi =
󰁛

j

xi
j,
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and we define the power sum symmetric function pλ for a partition λ = (λ1, . . . ,λℓ(λ)) to
be

pλ =

ℓ(λ)󰁜

i=1

pλi
.

Then the set {pλ}λ⊢d forms a basis for Symd.
We now turn our attention to graphs. All graphs in this paper will be finite and

simple. That is, our graphs G will consist of a nonempty finite vertex set V (G) and a
finite edge set E(G) consisting of pairs of distinct vertices. For v, w ∈ V (G), we write
vw to mean an edge connecting v and w. Given a graph G with vertices v, w, we write
G + vw to denote the graph obtained by adding an edge connecting v and w to G. The
order |G| of a graph G is the number of vertices of the graph.

Using the standard notation, given a vertex v ∈ V (G), its open neighbourhood N(v)
is the set of all vertices of G connected by an edge to v. The closed neighbourhood N [v]
of v is the set N(v) ∪ {v}.

A proper colouring of a graph G is a map κ : V (G) → Z>0 such that κ(v) ∕= κ(w)
whenever vw ∈ E(G). In 1995, Stanley defined the chromatic symmetric function of G
in commuting variables as follows.

Definition 1. [25, Definition 2.1] Let G be a graph with vertex set {v1, . . . , vd}. Then
the chromatic symmetric function of G is defined to be

XG =
󰁛

κ

xκ(v1) · · · xκ(vd)

where the sum is over all proper colourings κ of G.

Given a basis {bi}i∈I of a vector space over Q, we say that an element of the space is
b-positive if it expands in the b-basis with all coefficients nonnegative. We will say that a
graph G is e-positive if and only if XG is e-positive.

A set partition π of [d] is a collection of disjoint nonempty sets B1, . . . , Bℓ(π) whose
union is [d], and we denote this by

π = B1/ · · · /Bℓ(π) ⊢ [d].

We call the Bj for 1 󰃑 j 󰃑 ℓ(π) the blocks of π and ℓ(π) the length of π. For ease of
notation we usually omit the set parentheses and commas of the blocks. We also define
λ(π) to be the integer partition of d whose parts are |B1|, . . . , |Bℓ(π)| sorted in weakly
decreasing order. We will let π! denote λ(π)!. For a set partition π ⊢ [d] we will use the
notation Bπ,i for i ∈ [d] to mean the block of π containing i.

For a finite set of integers S, define S+n = {s+n : s ∈ S}. Then for two set partitions
π ⊢ [n] and σ = B1/ · · · /Bℓ(σ) ⊢ [m], their slash product is defined to be

π | σ = π/(B1 + n)/ · · · /(Bℓ(σ) + n) ⊢ [n+m].
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We next define NCSym, the algebra of symmetric functions in noncommuting variables,
which may be realized as a subalgebra of Q〈〈x1, x2, . . . 〉〉, where the variables xj do not
commute. NCSym can be defined as the graded algebra

NCSym = NCSym0 ⊕NCSym1 ⊕ · · · ,

where the dth graded piece is spanned by the bases {eπ}π⊢[d], {pπ}π⊢[d] and {mπ}π⊢[d],
which we define next.

The elementary symmetric function eπ in NCSym is given by

eπ =
󰁛

(i1,...,id)

xi1 · · · xid ,

summed over all tuples (i1, . . . , id) with ij ∕= ik if Bπ,j = Bπ,k. For set partitions π, σ, we
have eπeσ = eπ|σ, e.g. by [5, Lemma 2.1].

The power sum symmetric function pπ in NCSym is given by

pπ =
󰁛

(i1,...,id)

xi1 · · · xid ,

summed over all tuples (i1, . . . , id) with ij = ik if Bπ,j = Bπ,k.
Finally, the monomial symmetric function mπ in NCSym is given by

mπ =
󰁛

(i1,...,id)

xi1 · · · xid ,

summed over all tuples (i1, . . . , id) with ij = ik if and only if Bπ,j = Bπ,k.
There is an algebra map ρ : NCSym → Sym obtained by allowing the variables to

commute. By parts (ii) and (iii) of [22, Theorem 2.1], we have ρ(eπ) = π!eλ(π) and
ρ(pπ) = pλ(π).

We will also define an action of the symmetric group Sd on the dth graded piece of
NCSym by permuting the positions of the variables. For δ ∈ Sd, we define the right action
on monomials by

δ ◦ (xi1 · · · xid) = xiδ−1(1)
· · · xiδ−1(d)

and extend linearly. For π ⊢ [d], we then have a left action δ ◦mπ = mδ(π), δ ◦ eπ = eδ(π)
and δ ◦ pπ = pδ(π) by [10, Section 2], where the action of δ on set partitions of [d] is by
permuting the elements of the blocks.

Gebhard and Sagan in [10, Definition 3.4] defined a linear operation called induction,
↑, on NCSymd for d ∈ Z>0, by defining it on monomials via

(xi1 · · · xid)↑ = xi1 · · · xidxid ,

and extending linearly. Similarly, for j 󰃑 d, they also defined ↑d+1
j on NCSymd by defining

(xi1 · · · xid)↑
d+1
j = xi1 · · · xidxij ,
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and extending linearly.
A labelled graph on d vertices is a graph with vertex set [d]. We can also define the

action of δ ∈ Sd on labelled graphs on d vertices, by letting δ act by permuting the vertex
labels. The labelled graph δ(G) is then just a relabelling of G. We also define reverse
graph Gr of a labelled graph G on d vertices to be the labelled graph δ(G), where δ ∈ Sd

is the permutation exchanging each i with d+ 1− i.
A labelled unit interval graph is a labelled graph G with the property that whenever

i 󰃑 v < w 󰃑 j and ij ∈ E(G), then vw ∈ E(G) as well.

Definition 2. Given a labelled unit interval graph on d vertices, we associate two weakly
increasing sequences (mi)

d
i=1 and (wi)

d
i=1, where mi 󰃍 i is the largest label in N [i] and

wi 󰃑 i is the smallest label in N [i].

Note the closed neighbourhood N [i] is given by the set {wi, wi +1, . . . ,mi}. Either of
the two sequences is sufficient to uniquely determine the labelled unit interval graph.

Some labelled unit interval graphs we require familiarity with are the path Pd on d
vertices with an edge between i and i+ 1 for each i ∈ [d− 1] and the complete graph Kd

on d vertices with an edge between every pair of distinct vertices. The cycle Cd for d 󰃍 3
is obtained by adding an edge between 1 and d to the path Pd. We also define Kπ for
π ⊢ [d] to be the labelled graph on d vertices with an edge between i ∕= j if and only if
Bπ,i = Bπ,j.

Given two labelled graphs G and H on n and m vertices, respectively, define G | H
to be the disjoint union of G and H, where the vertices corresponding to G have labels
in [n] in the same relative order as in G, and the vertices corresponding to H have labels
in [m] + n in the same relative order as in H. We also define the concatenation G + H
with vertex set [n + m − 1] to be the labelled graph obtained from G | H by formally
identifying vertices n and n+1 of G | H and otherwise shifting labels so that the vertices
of G + H have labels in the same relative order as in G | H. For a sequence (Gj)

k
j=1 of

labelled graphs, define
󰁓k

j=1 Gj to mean G1 + · · ·+Gk. If k = 0, we take the convention

that
󰁓k

j=1 Gj = K1. Note when G,H are labelled unit interval graphs that Gr, G | H
and G+H are all also labelled unit interval graphs.

Guay-Paquet showed in [11, Theorem 5.1] that the Stanley-Stembridge conjecture is
equivalent to the following.

Conjecture 3. All labelled unit interval graphs are e-positive.

Gebhard and Sagan defined a noncommutative analogue of the chromatic symmetric
function in NCSym, which they used to resolve cases of Conjecture 3.

Definition 4. [10, Definition 3.1] Let G be a labelled graph on d vertices. Then the
chromatic symmetric function in noncommuting variables of G is defined to be

YG =
󰁛

κ

xκ(1) · · · xκ(d),

where the sum is over all proper colourings κ of G.
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Note we have ρ(YG) = XG, by [9, Proposition 3.5] YG|H = YGYH , by [10, Proposition
3.3] Yδ(G) = δ ◦ YG, and by [9, Lemma 4.9] YKπ = eπ.

Gebhard and Sagan showed in [10, Proposition 3.5] that YG satisfied a deletion-
contraction relation. Given a labelled graph G on d vertices and an edge jd ∈ E(G),
we define G \ jd to be the the labelled graph obtained by removing the edge jd from G,
and G/jd to be the labelled graph on d−1 vertices obtained from G by formally identify-
ing vertices j and d as the single vertex j in G/jd. Dahlberg gave in [5, Proposition 2.2] a
slight generalization of Gebhard and Sagan’s [10, Proposition 3.5], obtained by relabelling
vertices.

Proposition 5. [5, Proposition 2.2] If G is a labelled graph on d vertices with jd ∈ E(G),
then

YG = YG\jd − YG/jd↑dj .

We end this section by defining NCQSym, the algebra of quasisymmetric functions in
noncommuting variables, with bases indexed by set compositions. A set composition Φ
of [d], written Φ ⊨ [d], is an ordered list of blocks of some set partition 󰁨Φ ⊢ [d], which we
write as

Φ = B1 // · · · // Bℓ(Φ),

where ℓ(Φ) is the length of Φ. We also define α(Φ) to be the integer composition
(|B1|, . . . , |Bℓ(Φ)|).

The graded algebra NCQSym may be realized as a subalgebra of Q〈〈x1, x2, . . . 〉〉,
where the variables xj do not commute, via

NCQSym = NCQSym0 ⊕NCQSym1 ⊕ · · · ,

where the dth graded piece NCQSymd is spanned by the basis {MΦ}Φ⊨[d]. The monomial
quasisymmetric function MΦ is defined by

MΦ =
󰁛

(i1,...,id)

xi1 · · · xid ,

summed over all tuples (i1, . . . , id) with ij = ik if and only if B󰁨Φ,j = B󰁨Φ,k and ij < ik
whenever B󰁨Φ,j appears before B󰁨Φ,k in Φ. Note NCSym is a subalgebra of NCQSym, via

mπ =
󰁛

󰁨Φ=π

MΦ.

3 Arithmetic progressions of graphs

Our first result describes relations between the chromatic symmetric functions of certain
sequences of graphs, and has applications toward positivity.
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Proposition 6. Suppose v1, . . . , vk are distinct vertices of a graph G satisfying N [v1] =
· · · = N [vk]. If w is another vertex of G not adjacent to any vj, then the (XGj

)kj=0 form
an arithmetic progression, where G0 = G and Gj = Gj−1 + vjw for 1 󰃑 j 󰃑 k. In
particular, if G0 and Gk are b-positive for some basis {bλ}λ⊢n󰃍0 of Sym, then so is every
Gj for 0 󰃑 j 󰃑 k.

Proof. We will show that the statement of the first part of the proposition holds for any
number of vertices k by applying induction on k.

The base case k = 1 is immediate, because (XGj
)1j=0 will always be an arithmetic

progression, being a sequence of length 2.
When k > 1, the vertices v1, v2, w are mutually adjacent in G + v1w + v2w (since

{v1, v2} ⊆ N [v1] = N [v2] implies that v1 and v2 are joined by an edge in G). Then by
triple-deletion [20, Theorem 3.1],

XG+v1w+v2w = XG+v1w +XG+v2w −XG.

Since N [v1] = N [v2], we obtain a graph automorphism of G by exchanging v1 and v2,
and so G+ v1w and G+ v2w are isomorphic. Our equation thus becomes

XG+v1w+v2w = 2XG+v1w −XG,

or equivalently,
XG2 −XG1 = XG1 −XG0 .

We next note that the graph G1 satisfies the hypotheses of the proposition with vertex
w not adjacent to the k− 1 vertices v2, . . . , vk. By the inductive hypothesis, the (XGj

)kj=1

form an arithmetic progression. Then, since XG2 − XG1 = XG1 − XG0 is its common
difference, we can extend it to obtain the arithmetic progression (XGj

)kj=0.
The second part of the proposition then follows because if XG0 and XGk

are b-positive,
then

XGj
=

k − j

k
XG0 +

j

k
XGk

must also be b-positive for any 0 󰃑 j 󰃑 k.

Example 7. Let G = G0 be the left graph in Figure 1 below. Then G, together with
vertices v1, v2, v3 and w, as labelled, satisfies the hypotheses of Proposition 6. Let G1 and
G3 denote G+ v1w and G+ v1w + v2w + v3w, respectively.

Figure 1

v1

v2

v3

w
G0 G1 G3
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Then we have, in the basis of Schur functions (see [18, Section 1.3] for an introduction),

XG0 = 5760s(19) + 7200s(2,17) + 3168s(22,15) + 468s(23,13) + 2880s(3,16)

+ 864s(3,2,14) + 360s(4,15),

XG3 = 14400s(19) + 12960s(2,17) + 3888s(22,15) + 288s(23,13) + 2880s(3,16) + 432s(3,2,14),

which are both Schur-positive.
By Proposition 6, the graph G1 is also Schur-positive, since

XG1 =
2

3
XG0 +

1

3
XG3

= 8640s(19) + 9120s(2,17) + 3408s(22,15) + 408s(23,13) + 2880s(3,16)

+ 720s(3,2,14) + 240s(4,15).

We can specialise the previous proposition and obtain a tool to help prove the e-
positivity of labelled unit interval graphs, making progress toward Conjecture 3.

Corollary 8. Suppose G is a labelled unit interval graph. Then the following hold.

(a) If i < |G| is a vertex such that mi + 1 󰃑 mi+1 and (wmi+1,mmi+1) = · · · =
(wmi+k,mmi+k), then the (XGj

)kj=0 form an arithmetic progression, where Gj =
G + {ib | mi + 1 󰃑 b 󰃑 mi + j} for 0 󰃑 j 󰃑 k. In particular, if G0 and Gk are
e-positive, then so is every Gj for 0 󰃑 j 󰃑 k.

(b) Alternatively, if i > 1 is a vertex such that wi − 1 󰃍 wi−1 and (wwi−1,mwi−1) =
· · · = (wwi−k,mwi−k), then the (XGj

)kj=0 form an arithmetic progression, where Gj =
G + {bi | wi − 1 󰃍 b 󰃍 wi − j} for 0 󰃑 j 󰃑 k. In particular, if G0 and Gk are
e-positive, then so is every Gj for 0 󰃑 j 󰃑 k.

Proof. Part (a) follows immediately from applying Proposition 6 to G on vertices i and
mi + 1, . . . ,mi + k in the e-basis. Part (b) follows from applying part (a) to the reverse
graph Gr of G.

Observation 9. When the hypotheses of either part (a) or (b) of Corollary 8 are satisfied,
the labelled graphs Gj for 0 󰃑 j 󰃑 k are labelled unit interval graphs.

Remark 10. Special cases of the relations in Corollary 8 were studied by Dahlberg and
van Willigenburg in [8] to give a proof of the e-positivity of the lollipop graphs Lm,n for
m,n 󰃍 1 in [8, Theorem 8], which are the labelled unit interval graphs associated with
the sequence (wi)

m+n
i=1 where

wi =

󰀫
1 if 1 󰃑 i 󰃑 m,

i− 1 if m+ 1 󰃑 i 󰃑 m+ n.

In [15], Huh, Nam and Yoo further studied these relations for the chromatic qua-
sisymmetric function of labelled unit interval graphs, and proved in [15, Theorem 4.9] the
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e-positivity of melting lollipop graphs L
(k)
m,n for m,n 󰃍 1 and 0 󰃑 k 󰃑 m − 1, obtained

by deleting the edges between vertex m and vertices 1, . . . , k from Lm,n. (The definition
given differs slightly from that of Huh, Nam and Yoo’s in that these are actually the
reverse graphs of what they call L

(k)
m,n. See the rightmost graph of Figure 2 for the ex-

ample of L
(1)
5,2.) In fact, Corollary 8 is equivalent to [15, Theorem 3.4(b’)] for q = 1. The

quasisymmetric case of these relations is also studied in [1] by Abreu and Nigro.

We will refer to the graphs L
(k)
m,n as type I melting lollipop graphs to distinguish them

from a related family of graphs introduced in the next proposition, which we will prove
are e-positive by an application of Corollary 8. Melting lollipop graphs are interesting
because there exists an induction scheme from which their e-positivity can be deduced
only from the e-positivity argument in Corollary 8 and the e-positivity of disjoint unions
of complete graphs.

Proposition 11. Type II melting lollipop graphs Γ
(k)
m,n for m 󰃍 3, n 󰃍 1 and 1 󰃑 k 󰃑

m− 1, obtained by deleting the edges between vertex 1 and vertices m, . . . ,m− k+1 from
Lm,n, are e-positive.

Proof. Apply Corollary 8(a) to the labelled unit interval graph K1 | Lm−1,n on vertices 1
and 2, . . . ,m− 1. Figure 2 illustrates the case of m = 5, n = 2 and k = 2.

Figure 2

1 2 m− 1

K1 | Lm−1,n Γ
(k)
m,n L

(1)
m,n

The graph K1 | Lm−1,n is e-positive because lollipop graphs are e-positive, e.g. by [8,

Theorem 8]. The type I melting lollipop graph L
(1)
m,n is e-positive by [15, Theorem 4.9].

Therefore since

X
Γ
(k)
m,n

=
k − 1

m− 2
XK1XLm−1,n +

m− k − 1

m− 2
X

L
(1)
m,n

,

the graph Γ
(k)
m,n is e-positive.

4 UBCSym and graph concatenations

Applying Corollary 8 to deduce the e-positivity of certain labelled unit interval graphs
requires the e-positivity of a pair of labelled unit interval graphs to be known ahead
of time. It will be useful to review some of the known e-positive labelled unit interval
graphs in the literature to find more graphs on which we can apply the technique from
Corollary 8. Gebhard and Sagan in [10, Corollary 7.7] showed the e-positivity of all
labelled unit interval graphs obtained from concatenating a sequence of complete graphs,

the electronic journal of combinatorics 31(4) (2024), #P4.22 10



which they called Kα-chains. We will also review some of the ideas they used to prove
e-positivity, stemming from an equivalence relation in NCSym.

In [10, Section 6], Gebhard and Sagan noted that “even for some of the simplest
graphs, YG is usually not e-positive.” As an example, they gave YP3 = 1

2
e12/3 − 1

2
e13/2 +

1
2
e1/23 +

1
2
e123. Dahlberg and van Willigenburg later showed in [9, Theorem 4.14] that YG

is e-positive if and only if G = Kπ for some set partition π.
However, after defining

eπ1 ≡i eπ2 if and only if λ(π1) = λ(π2) and |Bπ1,i| = |Bπ2,i|,

and extending linearly, we then have

YP3 ≡3
1

2
e12/3 +

1

2
e123,

where the right-hand side is e-positive. This is because λ(13/2) = (2, 1) = λ(1/23) and
the size of a block containing 3 in each of 13/2 and 1/23 is 2, hence the −1

2
e13/2 and

+1
2
e1/23 in YP3 cancel. Gebhard and Sagan called this relation congruence modulo i.
Gebhard and Sagan in [10] and, later, Dahlberg in [5] together found several families of

labelled unit interval graphs G that were congruent modulo |G| to an e-positive function
in NCSym. We will say then that a labelled graph G is (e)-positive to mean that YG is
congruent modulo |G| to an e-positive function, e.g. the labelled graph P3 is (e)-positive.
We next give an equivalent formulation of these ideas in terms of a new quotient algebra
of NCSym.

For d ∈ Z>0 and any set partition π ⊢ [d], write type(π) to mean the pair (λ, b), where
b = |Bπ,d| and λ is the partition whose parts are the sizes of the other parts of π, e.g.

type(1/24/35) = ((2, 1), 2).

When π is the empty set partition, write type(π) = (∅).
Recall that one basis of NCSym consists of the eπ over all set partitions π. We can

define UBCSym first as the free vector space spanned by elements etype(π) over all set
partitions π. Then UBCSym is naturally a quotient vector space of NCSym via the linear
projection map

ν : NCSym → UBCSym

eπ 󰀁→ etype(π).

The kernel of ν is given by

ker ν = span{eπ1 − eπ2 | type(π1) = type(π2)}.

If set partitions π1, π2 satisfy type(π1) = type(π2), then for any other set partition σ, we
still have type(π1 | σ) = type(π2 | σ) and type(σ | π1) = type(σ | π2), so the kernel of ν is
in fact a two-sided ideal of NCSym, via the equalities

ν((eπ1 − eπ2)eσ) = ν(eσ(eπ1 − eπ2)) = 0
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and extending bilinearly. Moreover, it is a graded ideal of NCSym. This makes UBCSym
a graded quotient algebra of NCSym, with

UBCSym = NCSym / span{eπ1 − eπ2 | type(π1) = type(π2)}.

We will write UBCSymd = ν(NCSymd) to denote the homogeneous part of degree d
in UBCSym. The kernel of ν is contained in the kernel of ρ, so the induced map ρ̄ :
UBCSym → Sym is well-defined, and Sym is a quotient algebra of UBCSym.

Note for d ∈ Z>0, for all π ⊢ [d] and δ ∈ Sd fixing d we have that ν(δ ◦ eπ) =
ν(eδ(π)) = ν(eπ). Extending linearly, for any f ∈ NCSymd and δ ∈ Sd fixing d, we also
have ν(δ ◦ f) = ν(f). This is the content of [10, Lemma 6.6].

If type(π1) = type(π2) for set partitions π1, π2 ⊢ [d] with d ∈ Z>0, then there exists
δ ∈ Sd fixing d such that π1 = δ(π2), and so ν(pπ1) = ν(pπ2). So we can define ptype(π) =
ν(pπ) for each set partition π. Since the ptype(π) over all π ⊢ [d] span UBCSymd, which
has dimension equal to the number of distinct types of set partitions of [d], it follows that
the ptype(π) form another basis for UBCSym. Similarly, we can define mtype(π) = ν(mπ)
for each set partition π, and they form a third basis for UBCSym.

In [10, Lemma 6.2], Gebhard and Sagan state that if f, g ∈ NCSym are homogeneous
of degree d ∈ Z>0 satisfying ν(f) = ν(g), then ν(f↑) = ν(g↑). We will define the linear
operation induction, ↑, on UBCSymd to be the induced map sending ν(f) 󰀁→ ν(f↑) for
every f ∈ NCSymd.

Our main object of study will be ν(YG) of a labelled graph G. Since for any labelled
graph G on d vertices and δ ∈ Sd fixing d we have

ν(Yδ(G)) = ν(δ ◦ YG) = ν(YG),

the value of ν(YG) depends only on the (unlabelled) graph G and the choice of vertex
labelled last.

Definition 12. Given a labelled graph G, we define

yG = ν(YG).

If G is a graph with a distinguished vertex v, the chromatic symmetric function of G
centred at v is

yG:v = yG,

where G is given a labelling with v as the last vertex.

We will call an arbitrary function in UBCSym (e)-positive if all coefficients are non-
negative in its expansion in the e-basis. Note that this is consistent with the notation of
Gebhard and Sagan in that the following gives an equivalent definition of (e)-positivity
of a labelled graph.

Definition 13. A labelled graph G is (e)-positive if and only if yG is (e)-positive. We
also say that a graph G is (e)-positive at a vertex v if and only if yG:v is (e)-positive.
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As an example, we saw earlier that the labelled graph P3 is (e)-positive, and

yP3 =
1

2
e((2),1) +

1

2
e(∅,3).

Note since
ρ̄(e(λ,b)) = λ!b!eλ∪(b),

any graph that is (e)-positive at some vertex is then necessarily also e-positive.
Gebhard and Sagan in [10] and Dahlberg in [5] found results showing for certain

families of labelled graphs H, the concatenation G + H is (e)-positive whenever G is
(e)-positive, motivating the following definition.

Definition 14. A labelled graph H is appendable (e)-positive if and only if G + H is
(e)-positive for all (e)-positive labelled graphs G.

Appendable (e)-positive labelled graphs H are necessarily (e)-positive, because K1

is (e)-positive, and so H = K1 + H must be (e)-positive by definition of appendable
(e)-positivity.

We next briefly list the known (e)-positive and appendable (e)-positive labelled graphs
from [10] and [5]. Results that follow by some combination of the listed propositions are
omitted.

Proposition 15. [10, Proposition 6.8] Cycle graphs Cn for n 󰃍 3 are (e)-positive.

Proposition 16. [10, Theorem 7.6] Complete graphs Kn for n 󰃍 1 are appendable (e)-
positive.

Proposition 17. [5, Theorem 5.3] Triangular ladder graphs TLn for n 󰃍 1, given by the
sequence (mi)

n
i=1 where each mi = min{i+ 2, n}, are appendable (e)-positive.

These alone already prove the e-positivity of a plethora of labelled unit interval graphs.
In particular, any labelled unit interval graph obtained by concatenating a sequence of
complete graphs and triangular ladder graphs is (e)-positive (and therefore e-positive),
as noted by Dahlberg in [5, Corollary 5.4]. Dahlberg suggests in [5, Section 5] that the
following conjecture, which is a strengthening of the Stanley-Stembridge conjecture, may
hold, and has verified it for all labelled unit interval graphs on up to 7 vertices.

Conjecture 18. [5, Section 5] All labelled unit interval graphs are (e)-positive.

An even more optimistic conjecture is the following.

Conjecture 19. All labelled unit interval graphs are appendable (e)-positive.

One of our goals in the next section will be to lend credence to this conjecture, by
finding more families of appendable (e)-positive labelled unit interval graphs.
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5 New (e)-positive labelled unit interval graphs

In this section we will combine the ideas in Section 3 with the ideas of Gebhard and Sagan
to find new (e)-positive and appendable (e)-positive labelled unit interval graphs. We
begin this section by modifying Corollary 8 to obtain versions that apply to (e)-positivity
and appendable (e)-positivity.

Proposition 20. Suppose G is a labelled unit interval graph. Then the following hold.

(a) If i < |G| is a vertex such that mi + 1 󰃑 mi+1 and (wmi+1,mmi+1) = · · · =
(wmi+k,mmi+k) with mi + k < |G|, then the (yGj

)kj=0 form an arithmetic progres-
sion, where Gj = G + {ib | mi + 1 󰃑 b 󰃑 mi + j}. In particular, if G0 and Gk are
(e)-positive, then so is every Gj for 0 󰃑 j 󰃑 k.

(b) Alternatively, if i > 1 is a vertex such that wi − 1 󰃍 wi−1 and (wwi−1,mwi−1) =
· · · = (wwi−k,mwi−k), then the (yGj

)kj=0 form an arithmetic progression, where Gj =
G + {bi | wi − 1 󰃍 b 󰃍 wi − j} for 0 󰃑 j 󰃑 k. In particular, if G0 and Gk are
(e)-positive, then so is every Gj for 0 󰃑 j 󰃑 k.

Proof. We will only give a proof of part (a). The proof of (b) is similar.
It suffices to show that the (yGj

)kj=0 form an arithmetic progression in UBCSym, since
the second part of the statement would then follow from

yGj
=

k − j

k
yG0 +

j

k
yGk

.

We will proceed by induction on k.
The base case k = 1 is immediate, because (yGj

)1j=0 will always be an arithmetic
progression, being a sequence of length 2.

When k > 1, note since (wmi+1,mmi+1) = (wmi+2,mmi+2), there is a graph automor-
phism of G obtained by exchanging vertices mi + 1 and mi + 2. Let δ ∈ S|G| be the
permutation swapping mi +1 and mi +2. Then the labelled graph obtained from adding
an edge joining i and mi + 2 to G is the labelled graph δ(G1). Note δ fixes |G|, since
mi + k < |G|.

The vertices mi + 1, mi + 2, i are mutually adjacent in G2. By noncommutative
triple-deletion [9, Proposition 3.6],

YG2 − Yδ(G1) − YG1 + YG0 = 0.

Applying the projection map ν, we obtain

yG2 − 2yG1 + yG0 = 0.

We next note that the labelled unit interval graph G1 satisfies the hypotheses of part
(a) with vertex i and the k − 1 vertices mi + 2, . . . ,mi + k (where mi is defined by the
sequence of G). By the inductive hypothesis, the (yGj

)kj=1 form an arithmetic progression
with common difference yG2 − yG1 = yG1 − yG0 . Therefore it can be extended to obtain
the arithmetic progression (yGj

)kj=0, as desired.
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Corollary 21. Suppose G is a labelled unit interval graph. Then the following hold.

(a) If i < |G| is a vertex such that mi + 1 󰃑 mi+1 and (wmi+1,mmi+1) = · · · =
(wmi+k,mmi+k) with mi + k < |G|, then define the labelled graphs Gj = G + {ib |
mi +1 󰃑 b 󰃑 mi + j} for 0 󰃑 j 󰃑 k. If G0 and Gk are appendable (e)-positive, then
so is every Gj for 0 󰃑 j 󰃑 k.

(b) Alternatively, if i > 1 is a vertex such that wi − 1 󰃍 wi−1 and (wwi−1,mwi−1) =
· · · = (wwi−k,mwi−k) with wi − k > 1, then define the labelled graphs Gj = G+ {bi |
wi − 1 󰃍 b 󰃍 wi − j} for 0 󰃑 j 󰃑 k. If G0 and Gk are appendable (e)-positive, then
so is every Gj for 0 󰃑 j 󰃑 k.

Proof. For part (a), note if G0 and Gk are appendable (e)-positive, then for every n ∈ Z>0,
the labelled graphs Kn+G0 and Kn+Gk are (e)-positive. The labelled unit interval graph
Kn + G0 satisfies the hypotheses of Proposition 20(a) on the images in Kn + G0 of the
vertices i and mi + 1, . . . ,mi + k of G0. Therefore,

yKn+Gj
=

k − j

k
yKn+G0 +

j

k
yKn+Gk

,

and so Kn+Gj is (e)-positive for every n ∈ Z>0 and every 0 󰃑 j 󰃑 k. By Proposition 30,
the labelled graphs Gj for 0 󰃑 j 󰃑 k are all appendable (e)-positive.

The proof of part (b) is the same, except part (b) of Proposition 20 is applied instead
of part (a).

Remark 22. Note the symmetry between the statements of parts (a) and (b) of Corol-
lary 21. In particular, if the labelled unit interval graphs (Gj)

k
j=0 are considered in either

part of the corollary, then the appendable (e)-positivity of the (Gr
j)

k
j=0 follow from the

appendable (e)-positivity of Gr
0 and Gr

k by applying the opposite part of the corollary.

We next prove the (e)-positivity and appendable (e)-positivity of several families of
labelled unit interval graphs. The appendable (e)-positivity of our first family of graphs
will follow from the computations of Gebhard and Sagan in [10, Section 7].

Proposition 23. Twin peaks graphs TPn+1 for n 󰃍 2, obtained by removing the edge
between 1 and n+ 1 in Kn+1, are appendable (e)-positive.

Proof. Let G be a labelled graph with

yG =
󰁛

|λ|+b=|G|

c(λ,b)e(λ,b).

Then by [10, Lemma 7.3] and [10, Lemma 7.5], which describe the expansions of yG+Kn+1
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and yG+Kn:|G|↑ in the e-basis,

yG+Kn+1 =
󰁛

|λ|+b=|G|

n−1󰁛

i=0

c(λ,b)
(n− 1)!(b− 1)!

(n− i− 1)!(b+ i)!

󰀃
(b− n+ i)e(λ∪(b+i),n−i)

+(i+ 1)e(λ∪(n−i−1),b+i+1)

󰀄
,

yG+Kn:|G|↑ =
󰁛

|λ|+b=|G|

n−1󰁛

i=0

c(λ,b)
(n− 1)!(b− 1)!

(n− i− 1)!(b+ i)!

󰀃
e(λ∪(b+i),n−i) − e(λ∪(n−i−1),b+i+1)

󰀄
.

By the deletion-contraction relation in Proposition 5,

yG+TPn+1 = yG+Kn+1 + yG+Kn:|G|↑

=
󰁛

|λ|+b=|G|

n−1󰁛

i=0

c(λ,b)
(n− 1)!(b− 1)!

(n− i− 1)!(b+ i)!

󰀃
(b− n+ i+ 1)e(λ∪(b+i),n−i)

+ ie(λ∪(n−i−1),b+i+1)

󰀄
.

Now suppose G is (e)-positive, i.e. each coefficient c(λ,b) is 󰃍 0. The contribution of
c(λ,b)e(λ,b) to yG+TPn+1 is

n−1󰁛

i=0

c(λ,b)
(n− 1)!(b− 1)!

(n− i− 1)!(b+ i)!

󰀃
(b− n+ i+ 1)e(λ∪(b+i),n−i) + ie(λ∪(n−i−1),b+i+1)

󰀄
,

which has nonnegative coefficients in the e-basis, except possibly at the e(λ∪(b+i),n−1) when
both 0 󰃑 i 󰃑 n−1 and b−n+i+1 < 0. In that case, j = n−i−b−1 satisfies 0 󰃑 j 󰃑 n−1
and (λ ∪ (n− j − 1), b+ j + 1) = (λ ∪ (b+ i), n− i).

So the coefficient of e(λ∪(b+i),n−i) in the contribution of c(λ,b)e(λ,b) to yG+TPn+1 when
0 󰃑 i 󰃑 n− 1 and b− n+ i+ 1 < 0 is

c(λ,b)

󰀕
(n− 1)!(b− 1)!

(n− i− 1)!(b+ i)!
(b− n+ i+ 1) +

(n− 1)!(b− 1)!

(b+ i)!(n− i− 1)!
(n− i− b− 1)

󰀖
= 0.

Therefore, if G is (e)-positive, then so is G + TPn+1. That is, TPn+1 is appendable
(e)-positive.

We can now find new (e)-positive and appendable (e)-positive families of graphs by
applying Proposition 20 and Corollary 21 to all the known (e)-positive and appendable
(e)-positive labelled unit interval graphs we already have.

Proposition 24. Melting ice cream scoop graphs IC
(k)
n+1 for n 󰃍 2 and 1 󰃑 k 󰃑 n,

obtained by deleting the edges between vertex n + 1 and vertices 1, . . . , k from Kn+1, and
their reverse graphs are appendable (e)-positive.
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Proof. To prove the appendable (e)-positivity of IC
(k)
n+1, we will apply Corollary 21(b) to

Kn | K1 on vertex n + 1 and vertices n, . . . , 2. Figure 3 illustrates the case of n = 5 and
k = 2.

Figure 3

2 n n+ 1

Kn | K1 IC
(k)
n+1

TPn+1

Note Kn | K1 is appendable (e)-positive because Kn is appendable (e)-positive by
Proposition 16 and because for any labelled graph G we have yG+Kn|K1 = yG+Kne(∅,1).

Additionally, TPn+1 is appendable (e)-positive by Proposition 23. Therefore, IC
(k)
n+1 is

appendable (e)-positive by Corollary 21(b) setting G0 = Kn | K1, Gn−1 = TPn+1 and
i = n+ 1.

Next note that K1 | Kn, the reverse graph of Kn | K1, is appendable (e)-positive,
because for any labelled graph G we have yG+K1|Kn = yGe(∅,n). The reverse graph of
TPn+1, which is TPn+1 itself, is appendable (e)-positive by Proposition 23. By Remark 22,

the reverse graph of IC
(k)
n+1 is also appendable (e)-positive.

Proposition 25. Snowy twin peaks graphs STP k
n+1 for n 󰃍 3 and 1 󰃑 k 󰃑 n− 2, given

by the sequence (mi)
n+1
i=1 where

mi =

󰀻
󰁁󰀿

󰁁󰀽

k + 1 if i = 1,

n if i = 2,

n+ 1 if 3 󰃑 i 󰃑 n+ 1,

and their reverse graphs are appendable (e)-positive.

Proof. To prove the appendable (e)-positivity of STP k
n+1, we will apply Corollary 21(a)

to K2 + TPn on vertex 1 with vertices 3, . . . , n. Figure 4 illustrates the case of n = 6 and
k = 3.

Figure 4

1 3 n

K2 + TPn STP k
n+1 IC

(2)
n+1
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Note K2 + TPn is appendable (e)-positive because both K2 and TPn are appendable
(e)-positive by Propositions 16 and 23, respectively, and so for any (e)-positive labelled
graph G, the labelled graph G+K2 is (e)-positive, and therefore the labelled graph G+

K2+TPn is (e)-positive. Additionally, IC
(2)
n+1 is appendable (e)-positive by Proposition 24.

Therefore, STP k
n+1 is appendable (e)-positive by applying Corollary 21(a) setting G0 =

K2 + TPn, Gn−2 = IC
(2)
n+1 and i = 1.

Next note that TPn +K2, the reverse graph of K2 + TPn, is appendable (e)-positive
because TPn and K2 are appendable (e)-positive by Propositions 23 and 16, and the

reverse graph of IC
(2)
n+1 is appendable (e)-positive by Proposition 24. By Remark 22, the

reverse graph of STP k
n+1 is also appendable (e)-positive.

Proposition 26. Wide melting lollipop graphs WL
(k)
m,n for m 󰃍 4, n 󰃍 0 and 1 󰃑 k 󰃑

m− 2, given by the sequence (wi)
m+n
i=1 where

wi =

󰀻
󰁁󰀿

󰁁󰀽

1 if 1 󰃑 i 󰃑 m− 1,

k + 1 if i = m,

i− 2 if m+ 1 󰃑 i 󰃑 m+ n,

are (e)-positive.

Proof. We will proceed by induction on n. For the base case n = 0, note that in Propo-
sition 24 we can equivalently define IC

(k)
m to be given by the sequence (wi)

m
i=1 where

wi =

󰀫
1 if 1 󰃑 i 󰃑 m− 1,

k + 1 if i = m.

Hence WL
(k)
m,0 = IC

(k)
m , which is (e)-positive by Proposition 24.

For n > 0, we will apply Corollary 21(b) to Km−1 + TLn+2 on vertex m with vertices
m− 2, . . . , 1. Figure 5 illustrates the case of m = 5, n = 2 and k = 1.

Figure 5

1 m− 2 m

Km−1 + TLn+2 WL
(k)
m,n WL

(m−2)
m+1,n−1

Note Km−1 + TLn+2 is (e)-positive because triangular ladders are appendable (e)-

positive by Proposition 17, and WL
(m−2)
m+1,n−1 is (e)-positive by the inductive hypothesis.

Therefore since

y
WL

(k)
m,n

=
k

m− 2
yKm−1+TLn+2 +

m− k − 2

m− 2
y
WL

(m−2)
m+1,n−1

,

the labelled graph WL
(k)
m,n is (e)-positive.
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Proposition 27. Wide melting lollipop graphs WL
(k)
m,1 with n = 1, for m 󰃍 4 and 1 󰃑

k 󰃑 m− 2, and their reverse graphs are appendable (e)-positive.

Proof. To prove the appendable (e)-positivity of WL
(k)
m,1, we will apply Corollary 21(b) to

Km−1 +K3 on vertex m and vertices m− 2, . . . , 2. Figure 6 illustrates the case of m = 6
and k = 2.

Figure 6

2 m− 2 m

Km−1 +K3 WL
(k)
m,1 (STP 2

m+1)
r

Note Km−1+K3 is appendable (e)-positive because both Km−1 and K3 are appendable
(e)-positive by Proposition 16, and the reverse graph of STP 2

m+1 is appendable (e)-positive

by Proposition 25. Therefore WL
(k)
m,1 is appendable (e)-positive by Corollary 21 setting

G0 = Km−1 +K3, Gm−3 = (STP 2
m+1)

r and i = m.
Next note that K3+Km−1, the reverse graph of Km−1+K3, is appendable (e)-positive

because both K3 and Km−1 are appendable (e)-positive by Proposition 16, and STP 2
m+1,

the reverse graph of (STP 2
m+1)

r, is appendable (e)-positive by Proposition 25. By Re-

mark 22, the reverse graph of WL
(k)
m,1 is also appendable (e)-positive.

6 The reduction to complete graphs

In this section we will highlight a simple but useful idea. For any linear map on UBCSymd

with a special interpretation when yG:v is substituted in, we can compute the image of
any function in UBCSymd by writing the function in the e-basis and then noting each
e(λ,b) = yKλ1

|···|Kλℓ(λ)
|Kb

. In particular, to understand the map on UBCSymd, it is enough

to study its behaviour on disjoint unions of complete graphs.
Our first illustration of this concept is a shorter derivation of the first part of [10,

Corollary 6.1], which computes the result of the induction operation on the e-basis of
UBCSym. The second part of [10, Corollary 6.1] also follows by symmetry.

Lemma 28. [10, Corollary 6.1] For any partition λ and positive integer b,

e(λ,b)↑ =
1

b
e(λ∪(b),1) −

1

b
e(λ,b+1).

Proof. By Proposition 5, deletion-contraction,

yKλ1
|···|Kλℓ(λ)

|Kb+K2 = yKλ1
|···|Kλℓ(λ)

|Kb|K1 − yKλ1
|···|Kλℓ(λ)

|Kb
↑.
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Therefore,

e(λ,b)↑ = yKλ1
|···|Kλℓ(λ)

|Kb
↑ = yKλ1

|···|Kλℓ(λ)
|Kb|K1 − yKλ1

|···|Kλℓ(λ)
|Kb+K2 .

To compute yKλ1
|···|Kλℓ(λ)

|Kb+K2 = e((λ1,...,λℓ(λ)−1),λℓ(λ))yKb+K2 , we note by Proposition 20(b)

(applied to Kb | K1 and vertex b+ 1 together with vertices b, . . . , 1) that

yKb+K2 =
b− 1

b
yKb|K1 +

1

b
yKb+1

=
b− 1

b
e((b),1) +

1

b
e(∅,b+1).

Hence we conclude that

e(λ,b)↑ = yKλ1
|···|Kλℓ(λ)

|Kb|K1 − yKλ1
|···|Kλℓ(λ)

|Kb+K2

= e(λ∪(b),1) −
󰀕
b− 1

b
e(λ∪(b),1) +

1

b
e(λ,b+1)

󰀖

=
1

b
e(λ∪(b),1) −

1

b
e(λ,b+1).

To give more applications of the idea introduced in this section, we will require more
linear maps on UBCSymd with special interpretations when yG:v is substituted in. Our
next result shows for any labelled graph H that the map sending each yG 󰀁→ yG+H is
linear, which also explains why graph concatenation is natural to study in UBCSym.

Theorem 29. If H is a labelled graph, then for every d ∈ Z>0, there exists a linear map
TH : UBCSymd → UBCSymd+|H|−1 sending each yG 󰀁→ yG+H for all labelled graphs G on
d vertices.

Proof. For each subset S2 ⊆ E(H), define TS2 : NCSymd → UBCSymd+|H|−1 to be the
linear map taking each pπ 󰀁→ ptype(π′), where given a set partition π ⊢ [d], we construct
the set partition π′ ⊢ [d + |H| − 1] describing the connected components of the labelled
graph Kπ + (V (H), S2).

We next show that TS2 induces a linear map on UBCSymd. If π1, π2 ⊢ [d] are of the
same type, then there exists δ ∈ Sd fixing d such that π1 = δ(π2). If we interpret δ as an
element of Sd+|H|−1 acting only on the first d positions, we see that δ fixes the last |H|
positions and satisfies π′

1 = δ(π′
2). So type(π′

1) = type(π′
2) and

TS2(pπ1) = ptype(π′
1)
= ptype(π′

2)
= TS2(pπ2)

whenever π1, π2 are of the same type. This induces a linear map TS2 : UBCSymd →
UBCSymd+|H|−1.

Next we define
TH =

󰁛

S2⊆E(H)

(−1)|S2|TS2 .
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Let G be any labelled graph on d vertices. By [10, Theorem 3.6],

YG+H =
󰁛

S⊆E(G+H)

(−1)|S|pπ(S)

=
󰁛

S1⊆E(G)

(−1)|S1|
󰁛

S2⊆E(H)

(−1)|S2|pπ(S1∪S2),

where π(S) is the set partition of [d + |H| − 1] describing the connected components of
the labelled graph (V (G+H), S). Also,

YG =
󰁛

S1⊆E(G)

(−1)|S1|pπ(S1),

where in this case π(S1) ⊢ [d] describes the connected components of (V (G), S1).
Then

TH(yG) =
󰁛

S2⊆E(H)

(−1)|S2|TS2(yG)

=
󰁛

S2⊆E(H)

(−1)|S2|TS2

󰀳

󰁃
󰁛

S1⊆E(G)

(−1)|S1|pπ(S1)

󰀴

󰁄

=
󰁛

S2⊆E(H)

(−1)|S2|
󰁛

S1⊆E(G)

(−1)|S1|ptype(π(S1∪S2)) = yG+H ,

proving the statement of the proposition.

We can apply our techniques to the map in Theorem 29 to obtain an equivalent
condition to appendable (e)-positivity.

Proposition 30. A labelled graph H is appendable (e)-positive if and only if Kd +H is
(e)-positive for all d ∈ Z>0.

Proof. The forward direction follows immediately from the definition of appendable (e)-
positivity, since each Kd is (e)-positive.

For the reverse direction, suppose eachKd+H is (e)-positive. Let G be any (e)-positive
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labelled graph. By Theorem 29,

yG+H = TH(yG)

= TH

󰀳

󰁃
󰁛

|λ|+b=|G|

c(λ,b)e(λ,b)

󰀴

󰁄

=
󰁛

|λ|+b=|G|

c(λ,b)TH(e(λ,b))

=
󰁛

|λ|+b=|G|

c(λ,b)TH(yKλ1
|···|Kλℓ(λ)

|Kb
)

=
󰁛

|λ|+b=|G|

c(λ,b)yKλ1
|···|Kλℓ(λ)

|Kb+H

=
󰁛

|λ|+b=|G|

c(λ,b)e((λ1,...,λℓ(λ)−1),λℓ(λ))yKb+H

for some nonnegative coefficients c(λ,b), and so yG+H is (e)-positive. Since this holds for
all (e)-positive G, it follows that H is appendable (e)-positive.

Corollary 31. Conjectures 18 and 19 are equivalent.

Proof. Conjecture 19 implies Conjecture 18, because every appendable (e)-positive la-
belled graph is (e)-positive.

For the other direction, suppose Conjecture 18 held. Let H be any labelled unit
interval graph. For each d ∈ Z>0, the labelled graph Kd + H is also a labelled unit
interval graph, and so is (e)-positive, by assumption. Then by Proposition 30, every
labelled unit interval graph H is appendable (e)-positive. So Conjecture 19 would follow
from Conjecture 18.

Another application of the idea in this section gives a method of constructing new
e-positive graphs from a pair of (e)-positive graphs.

Theorem 32. If G and H are (e)-positive labelled graphs, then G+Hr is e-positive.

Proof. By Theorem 29, there exists a linear map THr : UBCSym|G| → UBCSym|G|+|H|−1

sending yG′ 󰀁→ yG′+Hr for all labelled graphs G′ on |G| vertices.
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Since G is (e)-positive, there exist nonnegative coefficients c(λ,b) such that

XG+Hr = ρ̄
󰀃
THr (yG)

󰀄

= ρ̄

󰀳

󰁃THr

󰀳

󰁃
󰁛

|λ|+b=|G|

c(λ,b)e(λ,b)

󰀴

󰁄

󰀴

󰁄

=
󰁛

|λ|+b=|G|

c(λ,b)ρ̄
󰀃
THr(e(λ,b))

󰀄

=
󰁛

|λ|+b=|G|

c(λ,b)ρ̄
󰀓
THr(yKλ1

|···|Kλℓ(λ)
|Kb

)
󰀔

=
󰁛

|λ|+b=|G|

c(λ,b)XKλ1
|···|Kλℓ(λ)

|Kb+Hr

=
󰁛

|λ|+b=|G|

c(λ,b)λ!eλXH+Kb
.

Note since H is (e)-positive, by Proposition 16 each H +Kb is (e)-positive (and hence
e-positive). So G+Hr is e-positive.

We next give a summary of the positivity results we obtain from concatenating (e)-
positive and appendable (e)-positive graphs.

Corollary 33. If G,G′ are (e)-positive and (Hi)
k
i=1 are appendable (e)-positive, then

(a)
󰁓k

i=1 Hi is appendable (e)-positive,

(b) G+
󰁓k

i=1 Hi is (e)-positive, and

(c) G+
󰁓k

i=1 Hi +G′r is e-positive.

Proof. Part (a) follows from definition of appendable (e)-positivity and induction on k.
Part (b) follows from part (a). Part (c) follows from part (b) together with Theorem 32.

We demonstrate Corollary 33 in the following proposition, which proves the e-positivity
of kayak paddle graphs KPm,ℓ−1,n = Cm +Pℓ+1 +Cn for m,n 󰃍 3 and ℓ 󰃍 0. See Figure 7
below for the example of KP4,3,4.

Figure 7

KP4,3,4
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Proposition 34. Kayak paddle graphs KPm,ℓ−1,n for m,n 󰃍 3 and ℓ 󰃍 0, are e-positive.

Proof. Note KPm,ℓ−1,n = Cm +
󰁓ℓ

i=1 K2 + Cr
n, where the cycles Cm and Cn are (e)-

positive by Proposition 15, and the complete graph K2 is appendable (e)-positive by
Proposition 16. By Corollary 33(c), the graph KPm,ℓ−1,n is e-positive.

Our last result of the section is a theorem relating the (e)-positivity of yG:v to the
e-positivity of XG−v, where G − v is the graph G with vertex v and all incident edges
deleted.

Theorem 35. If a graph G is (e)-positive at a vertex v, then G− v is e-positive.

Proof. Define the linear map ϑ : UBCSym|G| → Sym|G|−1 satisfying

ϑ(p(λ,b)) =

󰀫
pλ if b = 1,

0 otherwise.

Give G a labelling in which v is labelled last. By [10, Theorem 3.6],

yG:v =
󰁛

S⊆E(G)

(−1)|S|ptype(π(S)),

where π(S) is the set partition describing the connected components of (V (G), S). Note
type(π(S)) = (λ, b) has b = 1 if and only if S ⊆ E(G− v). So

yG:v =
󰁛

S⊆E(G−v)

(−1)|S|p(λ(S),1) +
󰁛

S⊆E(G)
S ∕⊆E(G−v)

(−1)|S|ptype(π(S)),

where for S ⊆ E(G−v) the integer partition λ(S) describes the connected components of
(V (G−v), S), and type(π(S)) = (λ, b) has b > 1 for all S ⊆ E(G) satisfying S ∕⊆ E(G−v).

Therefore,

ϑ(yG:v) =
󰁛

S⊆E(G−v)

(−1)|S|pλ(S) = XG−v,

with the right equality following by [25, Theorem 2.5]. The equation above holds for all
graphs on |G| vertices with a distinguished vertex so in particular,

ϑ(e(λ,b)) = ϑ(yKλ1
|···|Kℓ(λ)|Kb

) = XKλ1
|···|Kλℓ(λ)

|Kb−1
= λ!(b− 1)!eλ∪(b−1),

where for a labelled graph G we take G | K0 to mean G, and for a partition λ we take
λ ∪ (0) to mean λ.

So if
yG:v =

󰁛

|λ|+b=|G|

c(λ,b)e(λ,b),

then we have
XG−v = ϑ(yG:v) =

󰁛

|λ|+b=|G|

c(λ,b)λ!(b− 1)!eλ∪(b−1).

In particular if G is (e)-positive at v, then G− v is e-positive.
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Example 36. Let G denote the left graph in Figure 8 below, with vertex v as labelled.

Figure 8

v

G G− v

Then

yG:v =
1

12
e((4,1),1) +

1

60
e((5),1) +

1

4
e((22),2) +

1

6
e((3,1),2) +

1

24
e((4),2)

+
1

6
e((12),4) +

1

12
e((2),4) +

1

6
e((1),5) +

1

40
e(∅,6),

which is (e)-positive. By Theorem 35, the graph G− v is therefore e-positive.

7 The (e)-positivity of trees and cut vertices

In [6], Dahlberg, She and van Willigenburg studied the positivity of chromatic symmetric
functions of trees in the Schur and e-bases. It will be of interest to study which trees are
(e)-positive and at which vertices, because we can construct more e-positive trees from
given (e)-positive trees by applying Theorem 32 or the appendable (e)-positivity of paths.

In their study of positivity of trees, it was also important for Dahlberg, She and van
Willigenburg to understand how cut vertices affect positivity. It is also natural to ask if
and when a graph can be (e)-positive at a cut vertex, noting that none of the (e)-positivity
results from the previous sections demonstrate (e)-positivity at a cut vertex. In this short
section, we will resolve both questions.

Proposition 37. If G is a graph with cut vertex v, then G is not (e)-positive at v.

Proof. Since v is a cut vertex of G, the graph G− v has at least 2 connected components,
each of order < |G|− 1.

Give G a labelling where v is ordered last. Consider the graph G + Gr on 2|G| − 1
vertices. The image of v in G+Gr is a cut vertex whose deletion gives the disjoint union of
2 copies of G−v, the connected components of which each have order < |G|−1 = ⌊2|G|−1

2
⌋.

By [6, Theorem 35], the graph G+Gr is not e-positive.
Then by Theorem 32, the graph G cannot be (e)-positive at cut vertex v.

Remark 38. In Section 4, we defined appendable (e)-positivity only for labelled graphs,
although there is a notion of appendable (e)-positivity that depends only on a graph and
a pair of distinguished vertices. (Namely, we may want to ask for which graphs H with
distinguished vertices v, w is it true that for all graphs G (e)-positive at a vertex u the
concatenation obtained by identifying vertex u of G and vertex v of H is (e)-positive at
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w.) In our definition of appendable (e)-positivity for labelled graphs, these vertices are
the first and last vertices of the labelled graph. However, for graphs on 󰃍 2 vertices,
there is no labelling that allows a single vertex to be both the first and last vertex of
the labelling. This raises the possibility that there may exist nontrivial cases in which a
graph and a pair of distinguished vertices satisfies the more general notion of appendable
(e)-positivity, but in a way that cannot be encapsulated by the notion of appendable
(e)-positivity for labelled graphs.

Proposition 37 combined with Proposition 30 resolves this concern, because for any
connected labelled graph G on 󰃍 2 vertices, Kd + G for d 󰃍 2 cannot be (e)-positive
at the cut vertex d. So every connected graph with a pair of distinguished vertices that
can be considered appendable (e)-positive admits a labelling in which it is appendable
(e)-positive as a labelled graph.

Corollary 39. A tree T is (e)-positive at vertex v if and only if T is a path with v as one
of its endpoints.

Proof. For the forward direction, suppose the contrary. Then let T be a minimal tree
that is (e)-positive at a vertex v such that T is not a path with v as one of its endpoints.
By Proposition 37, v cannot be a cut vertex of the tree T , and so must be a leaf. Let w
denote its unique neighbour.

Note T is obtained from T − v by concatenating a copy of K2 at w so that the other
endpoint of the K2 becomes the vertex v in T . By [10, Lemma 7.5], if

yT−v:w =
󰁛

|λ|+b=|T |−1

c(λ,b)e(λ,b)

then

yT :v =
󰁛

|λ|+b=|T |−1

c(λ,b)

󰀕
b− 1

b
e(λ∪(b),1) +

1

b
e(λ,b+1)

󰀖
.

Note for (λ, b) satisfying |λ| + b = |T | − 1 in the above equations that the coefficient
of e(λ,b) in yT−v:w is b times the coefficient of e(λ,b+1) in yT :v. Since T is (e)-positive at
v, it follows then that T − v is (e)-positive at w. But then T − v is a smaller tree that
is (e)-positive at a vertex w such that either T − v is not a path or w is not one of its
endpoints, contradicting the minimality of T .

The reverse direction is given by [10, Proposition 6.4], where Gebhard and Sagan show
that paths are (e)-positive at their endpoints.

8 UBCQSym and acyclic orientations

In this section we will define the quotient algebra UBCQSym of NCQSym by giving a
construction analogous to that of the quotient algebra UBCSym of NCSym. Working in
UBCQSym will aid us in proving theorems relating the coefficients of yG:v in the e-basis
and acyclic orientations.
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A marked composition α̂ of d ∈ Z>0 is a composition of d with a distinguished part,
which we identify by writing a caret above it. For example, (2, 2̂, 3) is a marked compo-
sition of 7 with underlying composition (2, 2, 3) and distinguished part chosen to be the
second 2. Given a set composition Φ ⊨ [d] with d ∈ Z>0, define type(Φ) to be the marked
composition with underlying composition α(Φ) and distinguished part corresponding to
the part of Φ containing d, e.g. type(13 // 45 // 2) = (2, 2̂, 1). When Φ is the empty set
composition, write type(Φ) = (∅).

Recall that one basis of NCQSym consists of the MΦ over all set compositions Φ. We
can define UBCQSym first as the free vector space spanned by elements Mtype(Φ) over all
set compositions Φ. It is naturally a quotient vector space of NCQSym via the linear
projection map ν : NCQSym → UBCQSym sending each MΦ 󰀁→ Mtype(Φ).

We define an action of Sd on NCQSymd by permuting the positions of the variables,
analogous to the action of Sd on NCSymd. It can be verified from the definitions of the
monomial basis of NCQSym and the action of δ ∈ Sd on NCQSymd that

δ ◦MΦ = Mδ(Φ),

where the action of δ on set compositions of [d] is by permuting the elements of the blocks.
Note for Φ ⊨ [d] and δ ∈ Sd fixing d that ν(δ ◦MΦ) = ν(Mδ(Φ)) = ν(MΦ). Extending

linearly, for any f ∈ NCQSymd and δ ∈ Sd fixing d, we also have ν(δ ◦ f) = ν(f). The
kernel of ν is given by

ker ν = span{δ ◦ f − f | f ∈ NCQSymd, δ ∈ Sd, δ(d) = d ∈ Z>0}.

For homogeneous f ∈ NCQSymd and g ∈ NCQSymd′ with δ ∈ Sd fixing d ∈ Z>0, we have

(δ ◦ f − f)g = δ ◦ fg − fg,

where in the right-hand side we extend δ ∈ Sd to a permutation in Sd+d′ fixing the last
1 + d′ positions, and

g(δ ◦ f − f) = δ′ ◦ gf − gf,

where δ′ ∈ Sd+d′ fixes the first d′ positions and permutes positions 1 + d′, . . . , d + d′

according to δ ∈ Sd (and, in particular, fixes d + d′). Extending bilinearly, we see that
ker ν is a two-sided graded ideal of NCQSym, so UBCQSym is a graded quotient algebra
of NCQSym with

UBCQSym = NCQSym / span{δ ◦ f − f | f ∈ NCQSymd, δ ∈ Sd, δ(d) = d ∈ Z>0}.

We will write UBCQSymd = ν(NCQSymd) to denote the homogeneous part of degree d
in UBCQSym.

Note that the ν(mπ) over set partitions π of distinct types are linearly independent
in UBCQSym, because type(π) = (λ, b) if and only if the coefficient of M(λ1,...,λℓ(λ),b̂)

is

nonzero in the expansion of ν(mπ) in the M -basis. Therefore UBCSym is a subalgebra of
UBCQSym.
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A labelled composition of d ∈ Z>0 is a pair (δ,α) consisting of a permutation in Sd

and a composition of d. We may also write a labelled composition more compactly by
writing the permutation in one-line notation and including commas to indicate the parts
of the composition. For example, we write (14, 52, 3) to mean the labelled composition
with underlying permutation 14523 and underlying composition (2, 2, 1).

Given a labelled composition (δ,α) of d, define the quasisymmetric function in non-
commuting variables

F(δ,α) =
󰁛

iδ(1)󰃑...󰃑iδ(d)
iδ(j)<iδ(j+1) if j∈set(α)

xi1 · · · xid .

For example,

F(14,52,3) =
󰁛

i1󰃑i4<i5󰃑i2<i3

xi1 · · · xi5 .

Note for δ, δ′ ∈ Sd that
F(δδ′,α) = δ ◦ F(δ′,α).

For a set composition Φ = Φ1 // · · · // Φℓ(Φ), define

QΦ = F(Φr
1,...,Φ

r
ℓ(Φ)

),

where Φr
j denotes the elements in jth part of Φ written in descending order. As an

example, Q13//45//2 = F(31,54,2). The QΦ for Φ ⊨ [d] form a basis for NCQSymd by an upper-
triangularity argument against the MΦ, after ordering set compositions by refinement.

Note if set compositions Φ,Ψ ⊨ [d] are of the same type α̂ with underlying composition
α and kth part marked, then ν(QΦ) = ν(QΨ). This follows because (Φr

1, . . . ,Φ
r
ℓ(Φ)) and

(Ψr
1, . . . ,Ψ

r
ℓ(Ψ)) both have underlying composition α, and their underlying permutations

δ, δ′ satisfy δ(
󰁓k−1

j=1 αj +1) = δ′(
󰁓k−1

j=1 αj +1) = d, and so δδ′−1 ∈ Sd fixes d, and therefore

ν(QΦ) = ν(F(δ,α)) = ν(δδ′−1 ◦ F(δ′,α)) = ν(F(δ′,α)) = ν(QΨ).

Define then Qtype(Φ) = ν(QΦ). Because the QΦ over all set compositions of [d] span
NCQSymd, it follows that the Qtype(Φ) over all set compositions of [d] span UBCQSymd.
Moreover, since the dimension of UBCQSymd is exactly the number of marked compo-
sitions of d, it follows that the Qtype(Φ) over all set compositions of d form a basis for
UBCQSymd.

A labelled poset on d ∈ Z>0 elements is a poset given by the set [d] with a partial
ordering <P . For a labelled poset P on d elements, define the quasisymmetric function
in noncommuting variables

YP =
󰁛

κ

xκ(1) . . . xκ(d),

where the sum is over all maps κ : [d] → Z>0 satisfying κ(i) < κ(j) whenever i <P j. Also
let yP denote ν(YP ). We can define the action of δ ∈ Sd on labelled posets on d elements
by permuting labels, e.g. the labelled poset δ(P ) is a relabelling of P . It follows by the
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definition of YP and the action of δ on NCQSymd and on labelled posets on d elements
that Yδ(P ) = δ ◦ YP .

We will require the following lemma, which follows by [24, Lemma 4.5.3(b)] from the
theory of P -partitions.

Lemma 40. Let P be a labelled poset on d elements, and let s be a fixed linear extension
of P . If w is another linear extension of P , given by i1 <w · · · <w id, then define
δw ∈ Sd to be the permutation i1 · · · id, and αs

w to be the composition of d satisfying
set(αs

w) = {j | ij <s ij+1}.
Then

YP =
󰁛

w

F(δw,αs
w),

where the sum is over all linear extensions w of P .

Corollary 41. Let P be a labelled poset on d elements. Let s be a linear extension of P
satisfying i >s d if and only if i >P d, and let ε ∈ Sd be the permutation satisfying

εδs(i) =

󰀻
󰁁󰀿

󰁁󰀽

i if i < δ−1
s (d),

d if i = δ−1
s (d),

i− 1 if i > δ−1
s (d).

Then the coefficient of Qα̂, where α̂ has underlying composition α and kth part marked,
in the Q-expansion of yP counts the number of linear extensions w of ε(P ) satisfying

α
ε(s)
w = α and δw(

󰁓k−1
j=1 αj + 1) = d. In particular, yP is Q-positive.

Proof. Observe that ε fixes d, since ε(d) = εδsδ
−1
s (d) = d. Then

yP = ν(YP ) = ν(ε ◦ YP ) = ν(Yε(P )) = yε(P ).

Next consider the linear extension ε(s) of ε(P ), given by

1 <ε(s) · · · <ε(s) δ
−1
s (d)− 1 <ε(s) d <ε(s) δ

−1
s (d) <ε(s) · · · <ε(s) d− 1.

Note that we have i >ε(s) d if and only if i >ε(P ) d.

For any linear extension w of ε(P ), we note i ∕∈ set(α
ε(s)
w ) if and only if δw(i) >ε(s)

δw(i + 1), which occurs only if δw(i) > δw(i + 1) in Z>0 or if δw(i + 1) = d. The latter
case cannot occur, because δw(i) >ε(s) d if and only if δw(i) >ε(P ) d, and so δw(i) >w d

since w is a linear extension of ε(P ). So i ∕∈ set(α
ε(s)
w ) only if δw(i) > δw(i + 1) in Z>0,

implying that the marked composition (δw,α
ε(s)
w ) is of the form (Φr

1, . . . ,Φ
r
ℓ(Φ)) for some

set composition Φ ⊨ [d].
The result then follows by applying Lemma 40 to ε(P ) with the linear extension ε(s)

and studying the projection in NCQSymd, since then each F
(δw,α

ε(s)
w )

is equal to some

QΦ.
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We can now state a noncommutative analogue of Stanley’s [25, Theorem 3.3]. It is
proved by adapting Stanley’s original proof using P -partitions and using the linear map
ϕ : UBCQSym|G| → Q[t] satisfying

ϕ(Qα̂) =

󰀫
t(t− 1)k−1 if α̂ = (1|G|−k, k̂),

0 otherwise.

Theorem 42. Suppose

yG:v =
󰁛

|λ|+b=|G|

c(λ,b)e(λ,b).

Let sinkv(G, j) count the number of acyclic orientations of G with j sinks, including a
sink at v. Then

sinkv(G, j) =
󰁛

|λ|+b=|G|
ℓ(λ)+1=j

c(λ,b)λ!(b− 1)!.

Example 43. We will apply Theorem 42 to the path P4 and its last vertex. We can
compute

yP4 =
1

3
e((3),1) +

1

2
e((2),2) +

1

6
e(∅,4).

By the theorem, there are exactly 1
3
3!0! + 1

2
2!1! = 3 acyclic orientations of P4 with two

sinks, one of which is at the last vertex, and 1
6
3! = 1 acyclic orientation of P4 with a

unique sink at the last vertex. These are shown in Figure 9 below.

Figure 9

4 4 4

4

Remark 44. Gebhard and Sagan’s [10, Theorem 4.4] is Theorem 42 in the special case of
j = 1.

From Theorem 42 we can recover Stanley’s original [25, Theorem 3.3].

Corollary 45. [25, Theorem 3.3] Suppose

XG =
󰁛

λ⊢|G|

cλeλ.

Let sink(G, j) count the number of acyclic orientations of G with j sinks. Then

sink(G, j) =
󰁛

λ⊢|G|
ℓ(λ)=j

cλ.
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Remark 46. In [16], the acyclic orientation polynomial of a graph is introduced and defined
to be the generating function for the sinks of a graph’s acyclic orientations. It is shown in
[16, Theorem 3.2] that the acyclic orientation polynomial satisfies a subgraph expansion
analogous to [25, Theorem 2.5] for XG, and so the authors of [16] were able to prove the

existence of a linear map sending XG 󰀁→
󰁓|G|

j=1 sink(G, j)tj, giving a new proof in [16,
Theorem 4.5] of Stanley’s sink theorem (Corollary 45) without using P -partitions.

In fact, there is a linear map sending YG to the acyclic orientation polynomial of a
labelled graph G, e.g. by comparing [10, Theorem 3.6] with [16, Theorem 3.2]. After
composing that with the linear map sending the acyclic orientation polynomial of G to󰁓|G|

j=1 sinkv(G, j)tj, one can construct the linear map induced on the quotient, sending

yG:v 󰀁→
󰁓|G|

j=1 sinkv(G, j)tj, which gives another proof of Theorem 42.

9 The pointed chromatic symmetric function and further av-
enues

In [21], Pawlowski defines the pointed chromatic symmetric function XG,v ∈ Sym[t] for a
graph G with distinguished vertex v. From [10, Theorem 3.6] and [21, Definition 3.1], one
can show that the injective linear map

η : Sym[t] → UBCSym

pλt
j 󰀁→ p(λ,j+1)

sends each XG,v 󰀁→ yG:v. That is, results for XG,v lift to results for yG:v, and vice-versa.
For example, the proof of Theorem 35 says that there is a linear map ϑη : Sym[t] → Sym
sending each XG,v 󰀁→ XG−v by evaluating at t = 0.

Pawlowski studied the expansion of XG,v in the basis of Sym[t] consisting of pointed
Schur functions, first considered by Strahov in [27]. By applying η, one can construct
a basis of Schur functions for UBCSym and define (s)-positivity and appendable (s)-
positivity in a way analogous to our definitions of (e)-positivity and appendable (e)-
positivity. Then [21, Theorem 3.15] equivalently states that the paths Pn for n 󰃍 1 are
appendable (s)-positive. It is known that the (s)-positivity of XG,v implies the Schur-
positivity of XG. It can be shown that XG−v is also Schur-positive, by applying the map
ϑη together with [27, Theorem 6.4.1].

Another basis of Sym[t] considered by Pawlowski is the basis of pointed elementary
symmetric functions. One can deduce by [21, Definition 4.1] and [21, Theorem 4.6] that
the image of a pointed elementary symmetric function under η is an element in UBCSym
of the form 1

λ!(b−1)!
e(λ,b). (Note that the same scaling coefficients arise in the proof of

Theorem 35 and in Theorem 42.) Therefore, XG,v is pointed e-positive if and only if
yG:v is (e)-positive, and Pawlowski’s [21, Conjecture 2] is equivalent to Conjecture 18.
Additionally, by [21, Corollary 4.3], any (e)-positive function is necessarily (s)-positive,
so for any conjecture of (e)-positivity, one can also study the weaker conjecture of (s)-
positivity for the same functions.
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From the framework introduced in this paper, there are various further avenues of
study, especially as possible approaches to the Stanley-Stembridge conjecture. It would
be interesting if there existed a q-analogue of Conjecture 18. Naively defining a chromatic
quasisymmetric function centred at a vertex by a construction similar to [23, Definition
1.2] gives a function in UBCQSym[q] but not UBCSym[q] even just for the labelled unit
interval graph K2. It may, however, be possible to define such a function implicitly for
labelled unit interval graphs at their rightmost vertex by requiring the function satisfy
a q-analogue of the relations in Proposition 20 and taking the function evaluated at

Kλ1 | · · · | Kℓ(λ) | Kb to be
[λ1]q !···[λℓ(λ)]q ![b]q !

λ!b!
e(λ,b). Abreu and Nigro showed something

similar holds for the chromatic quasisymmetric functions of labelled unit interval graphs
in [1, Theorem 1.1].

In the first part of [7, Conjecture 6.1], Dahlberg, She and van Willigenburg conjectured
that for any connected labelled unit interval graph G, if one constructs a second labelled
unit interval graph G′ by following a certain procedure, then G 󰃍e G′ in the chromatic
e-positivity poset. In [7, Remark 6.3], they note that this conjecture would imply the
Stanley-Stembridge conjecture. It may be fruitful to also study either a q-analogue of
this newer conjecture or a version of it in UBCSym (or a version combining the two, if an
appropriate definition for the chromatic quasisymmetric function centred at a vertex exists
for labelled unit interval graphs at their rightmost vertex). The relations in Corollary 8
and Proposition 20, as well as their q-analogues, can help reduce the number of cases
needed to prove various versions of the conjecture of Dahlberg, She and van Willigenburg.
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