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Abstract

We study dynamical and computational properties of the set of bi-infinite self-
avoiding walks on Cayley graphs, as well as ways to compute, approximate and
bound their connective constant. To do this, we introduce the skeleton G,S of a
finitely generated group G relative to a generating set S, which is a one-dimensional
subshift made of configurations on S that avoid all words that reduce to the iden-
tity. We provide a characterization of groups which have SFT skeletons and sofic
skeletons: first, there exists a finite generating set S such that G,S is a subshift of
finite type if and only if G is a plain group; second, there exists S such that G,S is
sofic if and only if G is a plain group, Z×Z/2Z or D∞×Z/2Z. We also characterize
finitely generated torsion groups as groups whose skeletons are aperiodic.

For connective constants, using graph height functions and bridges, we show
that Cayley graphs of finitely generated torsion groups do not admit graph height
functions, and that for groups that admit transitive graph height functions, the
connective constant is equal to the growth rate of periodic points of the skeleton.
Finally, we take a brief look at the set of bi-infinite geodesics and introduce an
analog of the connective constant for the geodesic growth.

Mathematics Subject Classifications: 37B10, 20F10, 05C25, 68Q45

1 Introduction

In this article we study bi-infinite self-avoiding walks on Cayley graphs of finitely generated
groups from the point of view of symbolic dynamics and group theory. A self-avoiding
walk is a path on a graph that visits a vertex at most once. Figure 1 shows an example of a
self-avoiding walk on the hexagonal grid. These walks were originally introduced by Flory
for the study of long-chain polymers [19]. Although the original setting was the infinite
square grid, self-avoiding walks are more generally studied in the context of infinite quasi-
transitive graphs, intersecting with areas such as combinatorics, probability and statistical
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physics. The fundamental problem in this area is the study of the asymptotic growth rate
of the number of self-avoiding walks of a given length, called the connective constant.
See [30] for a recent survey on this problem. Recently, there has been increasing interest
in the study of the set of all self-avoiding walks on edge-labeled graphs from the point
of view of formal language theory [51, 46]. We take this study further by focusing on
both bi-infinite self-avoiding walks and bi-infinite geodesics on Cayley graphs of finitely
generated groups.

Figure 1: A self-avoiding walk, marked in red, on the hexagonal grid.

Given a finitely generated group G, and a symmetric finite generating set S, we intro-
duce the skeleton of G with respect to S, denoted G,S, as the set of labels of bi-infinite
self-avoiding walks on the Cayley graph Γ(G,S). The name, skeleton, comes from the
study of the decidability of tiling problems on groups, particularly the infinite snake
problem [4]. The skeleton G,S is equivalently defined as the set of bi-infinite words
x ∈ SZ that contain no factors representing the identity in G (see Sections 2.3 and 2.4
for formal definitions). This set admits a Z-action through the shift operation, making it
a symbolic dynamical system, commonly refered to as a subshift. Our present goal is to
establish connections between the dynamical properties G,S, and geometric and algebraic
properties of the underlying group and Cayley graph. We will explore how the skeleton
provides a way to translate results from groups to shift spaces.

The article is divided into three parts. First, we look at the relation between the
skeletons’ dynamical properties and the underlying group’s properties. We study which
groups admit skeletons that are subshifts of finite type, sofic, effective, or minimal, and
study their periodic points. We completely characterize the first two properties and
provide partial results for the rest. Second, we look at the skeleton’s entropy. Using a
result independently established by Rosenfeld [57] for subshifts and Grimmet et al. [24]
for self-avoiding walks, we show the topological entropy of the skeleton is given by

h( G,S) = log(µ(G,S)),

where µ(G,S) is the connective constant of the Cayley graph Γ(G,S). This answers one
of the questions from Problem 108 posed by Rufus Bowen in his notebook of problems [9].
With this connection, we give some results on the approximation of connective constants
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and the existence of graph height functions. Lastly, we focus our attention on a subset of
the skeleton composed of all bi-infinite geodesics, which we call the geodesic skeleton. We
study its dynamic properties and introduce a geodesic analog of the connective constant.

Characterizing Classes of Subshifts

An important class of subshifts in the theory of symbolic dynamics is the class of subshifts
of finite type. These subshifts are defined as sets of bi-infinite sequences that avoid a
finite set of forbidden patterns. In this article, we completely classify groups that admit
a skeleton that is a subshift of finite type.

Theorem A. Let G be a finitely generated group. Then, there exists a finite generating
set S such that G,S is an SFT if and only if G is a plain group.

Plain groups are a subset of virtually free groups defined as free products of a finite
number of finite groups and a free group (Definition 25). The connective constants of
some Cayley graphs of plain groups were previously studied by Gilch and Müller [22].
We refine their result by showing that, when the skeleton is a subshift of finite type, the
connective constant is a non-negative rational power of a Perron number.

A bigger class of subshifts is the class of sofic shifts. A subshift is said to be sofic
if the language of its finite factors is regular. For the skeleton, this is equivalent to the
language of labels of bi-infinitely extendable self-avoiding walks being regular. Lindorfer
and Woess showed that the set of labels of finite length self-avoiding walks on a connected
quasi-transitive locally finite deterministically-labeled infinite graph is regular if and only
if the graph has only thin ends, all of them of size 1 [51]. For Cayley graphs, through
a theorem of Haring-Smith (Theorem 27), this can be shown to be exactly the class
of plain groups. Nevertheless, when working with bi-infinitely extendable self-avoiding
walks, there exist Cayley graphs (in particular the bi-infinite ladder graph) with ends of
size 2 where the language of bi-infinite extendable walks is regular, i.e. its skeleton G,S

is sofic. We classify all groups that admit a Cayley graph for which the skeleton is sofic.

Theorem B. Let G be a finitely generated group. There exists S such that G,S is sofic
if and only if G is a plain group, Z× Z/2Z or D∞ × Z/2Z.

This result should be contrasted with Proposition 47 that shows that every group
admits a generating set such that the skeleton is not sofic. In other words, the property
of having a sofic skeleton is dependent on the Cayley graph. As is the case for subshifts
of finite type, when the skeleton is sofic its connective constant is a non-negative rational
power of a Perron number.

Lastly, from our study of effective skeletons, we provide an alternative proof of the exis-
tence of effective one-dimensional subshift that has no computable configurations (Propo-
sition 36).
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Connective Constants and Graph Height Functions

The next part of the article is concerned with finding ways to approximate connective
constants through periodic configurations and finding lower bounds when they are not
available.

We show that if a Cayley graph Γ(G,S) admits a graph height function (see Defini-
tion 58), then the skeleton contains periodic points. As shown in [4], torsion groups can
be characterized as groups whose skeletons never contain periodic points, independently
of the generating set. This allows us to state the following result.

Theorem C. The Cayley graphs of infinite torsion finitely generated groups do not admit
graph height functions.

This theorem generalizes a result by Grimmet and Li who showed the Grigorchuk
group does not admit graph height functions, and more generally, Cayley graphs of tor-
sion groups with certain conditions on the stabilizer of the identity [28].

In contrast, using the General Bridge Theorem by Lindorfer [50], we can extend a
result of Clisby [14] on the approximation of the connective constant through periodic
self-avoiding walks for the square lattice, to groups admitting a particular type of graph
height function.

Theorem D. Let G be a finitely generated group and S a finite generating set. If Γ(G,S)
admits a graph height function (h,H) such that H acts transitively on Γ(G,S), then

µ(G,S) = lim
n→∞

n
√
en,

where en denotes the number of periodic points of period n ∈ N in G,S.

The next step is to look at torsion groups to find ways of approximating their connec-
tive constants without the use of periodic points. To do this, we use a counting method
popularized by Rosenfeld [56, 57], that provides us with a method to find lower bounds
on any graph by finding solutions to an inequality dependent on the number of simple
cycles on the graph (see Proposition 65).

Bi-infinite Geodesics

A sub-class of self-avoiding walks that are of special interest are geodesics. A geodesic is
a shortest path between two points on the Cayley graph. We define the geodesic skeleton,
g
G,S of a group G with respect to the generating set S as the set of all bi-infinite geodesics

on the corresponding Cayley graph. We obtain partial results on the classification of
groups that admit geodesic skeletons that are subshifts of finite type, sofic and effective.
In addition, we show that the characterization of torsion groups through periodic points
also holds in this case.
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Theorem E. Let G be a finitely generated group. The following are equivalent,

• G is a torsion group,

• G,S is aperiodic for all (some) generating sets S,

• g
G,S is aperiodic for all (some) generating sets S.

Finally, we introduce a geodesic analog of the connective constant. If we take ΓG,S
the geodesic growth function of G with respect to S, we define the geodesic connective
constant of a Cayley graph as the limit,

µg(G,S) = lim
n→∞

n

√
ΓG,S(n).

The geodesic growth of groups has been extensively studied, especially in the case of
virtually nilpotent groups [10, 7, 6, 8]. As was the case with the skeleton, the entropy
of the geodesic skeleton is the logarithm of the geodesic connective constant. We are
able to explicitly compute the geodesic connective constants for lattices with known (or
well approximated) connective constants such as the square grid, ladder graph (L) and
hexagonal grid (H):

• µg(Z2) = 2,

• µg(L) = 1,

• µg(H) =
√

2.

Structure of the Article The paper is organized as follows. Section 2 is devoted to
definitions and background on symbolic dynamics, combinatorial group theory ans self-
avoiding walks. Section 3 surveys general properties of the skeleton subshift, and shows
how its entropy corresponds to the logarithm of the connective constant of the corre-
sponding Cayley graph. In Section 4 we investigate how dynamical and computational
properties of the skeleton subshift – existence of periodic configurations in G,S, mini-
mality of G,S, being SFT or effective – relate to properties on the group G itself. Next,
in Section 5 we provide a characterization of groups that admit sofic skeletons. To do
this we also introduce notions from the study of thin and thick ends of graphs, and au-
tomorphisms of graphs. In Section 6 we use the skeleton to get new results on entropy
and connective constant. We begin by looking at graph height functions and bridges, and
their relation to periodicity in the skeleton. Then, we use Rosenfeld’s counting method
to provide lower bounds on the connective constant based on the number of simple cycles
on the Cayley graph of a given length. Finally, Section 7 is devoted to the study of the
geodesic skeleton and the geodesic connective constant.
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2 Background and Definitions

Given an alphabet A, we denote by An the set of words on A of length n, A6n the set of
words of length at most n, and A∗ the set of all finite length words including the empty
word ε. Furthermore, we denote by A+ = A∗ \ {ε} the set of non-empty finite words over
A. A factor v of a word w is a contiguous subword of w; we denote this by v v w. For a
bi-infinite word x ∈ AZ, given i, j ∈ Z, x[i,j] denotes the word xixi+1 · · · xj, x[j,+∞) the
infinite word stating at j, and x(−∞,i] the infinite word finishing at i. For a word w ∈ A∗,
the expression w∞ denotes the infinite word obtained by repeating w. We denote the free
group defined by the free generating set of size n by Fn, and FS the free group generated
by S. The commutator of two group elements g, h is denoted by [g, h] = ghg−1h−1.

2.1 Symbolic Dynamics

Given a finite alphabet A, we define the full-shift over A as the set of maps AZ = {x :
Z → A}. We call maps x : Z → A configurations. There is a natural Z-action on
the full-shift called the shift, σ : AZ → AZ, given by σ(x)i = xi+1. The full-shift is also
endowed with the prodiscrete topology, making it a compact space.

Let F ⊆ Z be a finite connected subset. A pattern of support F is an element p ∈ AF .
We say a pattern p ∈ AF appears in a configuration x ∈ AZ if there exists k ∈ Z such
that xk+i = pi for all i ∈ F . Given a set of patterns F , we define the set of configurations
where no pattern from F appears as,

XF = {x ∈ AZ | ∀p ∈ F , p does not appear in x}.

A subshift is a subset of the full-shift X ⊆ AZ such that there exists a set of patterns
F that verifies X = XF . Subshifts are equivalently defined as closed σ-invariant subsets
of the full-shift. We say a subshift X is

• a subshift of finite type (SFT) if there exists a finite F such that X = XF ,

• sofic if there exists a regular F such that X = XF ,

• effective if there exists a decidable F such that X = XF .

Each class is strictly contained in the next.

The language of a subshift X, denoted L(X), is defined as the set of all contiguous
patterns that appear within some configuration from X. Formally,

L(X) = {w ∈ A∗ | ∃x ∈ X,w v x}.

Any subshift can be defined by taking the complement of its language as forbidden pat-
terns, that is, X = XL(X)c . Furthermore, a subshift is sofic if and only if its language
is regular. Similarly, for a set of forbidden patterns we define the language of locally
admissible patterns, Lloc(F), as the set of words w ∈ A∗ which contain no patterns
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from F . Notice that L(XF) ⊆ Lloc(F), but is often not equal, and XF = XLloc(F)c .

An important measure of the combinatorial properties of the subshift is its complex-
ity, pX , defined as pX(n) = |L(X) ∩ An|, which counts the amount of words of a given
length present in the subshift’s language. Because the complexity is a submultiplicative
function, that is, pX(m + n) 6 pX(m)pX(n), Fekete’s Lemma allows us to define the
asymptotic word growth rate as

α∞(X) = lim
n→∞

n
√
pX(n).

Analogously, we define the function q(n) = |Lloc(F)∩An|, which is also submultiplicative,
and thus α(F) = limn→∞

n
√
q(n) exists. Rosenfeld showed this quantity is equal to the

asymptotic word growth rate.

Lemma 1 ([57]). For F ⊆ A+, α(F) = α∞(XF).

An important quantity in symbolic dynamics is the (topological) entropy of the sub-
shift, defined as

h(X) = lim
n→∞

1

n
log(pX(n)) = log(α∞(X)).

For example, in the case of the full-shift on A, h(AZ) = log(|A|). Entropy informs many
dynamical properties of the subshift, and is invariant under shift-commuting continuous
bijections. Furthermore, for two subshifts X and Y such that Y ⊆ X, h(Y ) 6 h(X).
A classical result by Lind [48] shows that the entropies of SFTs and sofic subshifts are
exactly the set of non-negative rational multiple of Perron numbers. In contrast, the set
of entropies of effective subshifts is the set of right computable real numbers [38].

We say a configuration x ∈ X is periodic if there exists k ∈ Z \ {0} such that
σk(x) = x. We say the subshift X is aperiodic if it contains no periodic configurations.
If a non-empty subshift is sofic, it always contains periodic configurations.

We say a subshift is minimal if it does not contain non-empty proper subshifts.
Equivalently, a subshift is minimal if every orbit under the shift action is dense in the
subshift. Finally, a minimal subshift with a periodic configuration is always finite.

For a comprehensive introduction to one-dimensional symbolic dynamics we refer the
reader to [49], were proof of our assertions can be found.

2.2 Combinatorial Group Theory

Let G be a finitely generated (f.g.) group and S a finite generating set. In this article we
will only consider finite symmetric generating sets, that is, generating sets that verify
S = S−1, that never contain the identity. Elements in the group are represented as words
on the alphabet S through the evaluation function w 7→ w. Two words w and v represent
the same element in G when w = v, and we denote this by w =G v. We say a word is
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reduced if it contains no factor of the form ss−1 or s−1s with s ∈ S. We denote the
identity of a group G by 1G.

Definition 2. Let G be a group. We say (S,R) is a presentation of G, denoted G =
〈S | R〉, if the group is isomorphic to 〈S | R〉 = FS/〈〈R〉〉, where 〈〈R〉〉 is the normal
closure of R, i.e. the smallest normal subgroup containing R. We say G is recursively
presented if there exists a presentation (S,R) such that S is finite and R is recursively
enumerable.

For a group G and a generating set S, we define:

WP(G,S) = {w ∈ S∗ | w =G ε}.

Definition 3. The word problem of a group G with respect to a set of generators S
asks to determine, given a word w ∈ S∗, if w ∈WP(G,S).

We say a word w ∈ S+ is G-reduced if w contains no factor in WP(G,S). We say a
word w ∈ S∗ is a geodesic if for all words v ∈ S∗ such that w = v we have |w| 6 |v|. For a
given group G and generating set S, we denote its language of geodesics by Geo(G,S).
The length of an element g ∈ G with respect to S is defined as ‖g‖S = |w| where w is any
geodesic representing g. This length also defines a G-invariant metric dS : G × G → N
given by dS(g, h) = ‖g−1h‖S.

Definition 4. Let G be a finitely generated group, with generating set S. The growth
function γG,S : N→ N of G with respect to S is defined for a given n ∈ N as the amount
of elements of length at most n. In other words, γG,S(n) = |{g ∈ G | ‖g‖S 6 n}|.

We say an element g ∈ G has torsion if there exists n > 1 such that gn = 1G. If there
is no such n, we say g is torsion-free. Analogously, we say G is a torsion group if all
of its elements have torsion. Otherwise, if the only torsion element is the identity, we say
the group is torsion-free.

The free product of two groups G and H given by presentations 〈SG | RG〉 and
〈SH | RH〉 respectively, is the group given by the presentation,

G ∗H = 〈SG ∪ SH | RG ∪RH〉.

Finally, let P be a class of groups (for example abelian groups, free groups, etc). We
say a group G is virtually P , if there exists a finite index subgroup H 6 G that is in P .

2.3 The Skeleton, Infinite Domino Snakes and Analogies between Groups
and Subshifts

Let G be a finitely generated group with S a set of generators. We define the skeleton
of G with respect to S as the subshift,

G,S = {x ∈ SZ | ∀w v x, w /∈WP(G,S)} = XWP(G,S).
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In other words, G,S is the set of all bi-infinite words that do not contain factor that
evaluate to the group’s identity. This subshift was originally defined in the context of the
infinite snake problem [4], where its properties where shown to inform the decidability
of the problem. In particular, if G,S is sofic, then the infinite snake problem for (G,S) is
decidable.

Example 5. Take Z2 with its standard generating set S = {a±, b±}. Its skeleton is given
by

Z2,S = {x ∈ SZ | ∀w v x, |w|a 6= 0 ∨ |w|b 6= 0},
where |w|s is the sum of exponents of the generator s.

Example 6. Let D∞ be the infinite dihedral group. The skeletons of this group can be
radically different depending on the generating set. For instance, if we take the presenta-
tion

D∞ = 〈a, b | a2, b2〉,
the corresponding skeleton is the finite subshift {(ab)∞, (ba)∞}. On the other hand, if we
take the presentation,

D∞ = 〈r, s | s2, srsr〉,
the skeleton is infinite: for every n ∈ Z it contains a configuration x defined by x(n) = s

and x(k) = r for all k 6= n.

The skeleton is also present in Rufus Bowen’s notebook of problems [9, Problem 108],
where he asks what can be said about G,S, what is its entropy and if it is intrisically
ergodic. In Section 3.2 we tackle the second question. Further still, this subshift is
inserted in the larger project of understanding the analogies between multidimensional
subshifts and finitely generated groups. Jeandel and Vanier observed [44] that the for-
bidden patterns of a subshift play a similar role to relations of a group. A summary of
this comparison is shown in Table 1. These comparison has been further strengthened

Group Subshift
Group with n generators Subshift on n symbols
Word problem WP(G) co-language L(X)c

Finitely presented group SFT
Recursively presented group Effectively closed subshift

Simple group Minimal subshift
H is a quotient of G Y ⊆ X

Table 1: A part of the Jeandel-Vanier dictionary between groups and subshifts as intro-
duced in [44]

through results such as Higman and Boone-Higman Theorems for subshifts [44].

The skeleton is an attempt to establish these analogies explicitly, by using the gener-
ators as an alphabet, and WP(G,S) as the set of forbidden patterns. We will see that in
this case some of these analogies hold and some do not.
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2.4 Cayley Graphs and Self-Avoiding Walks

Let G be a finitely generated group along with a finite symmetric generating set S. The
Cayley graph of G with respect to S, denoted Γ(G,S), is defined by the set of vertices
VΓ = G and the set of labeled edges EΓ = {(g, s, gs) | g ∈ G, s ∈ S} ⊆ G× S ×G. Each
edge e = (g, s, h) ∈ EΓ has an initial vertex i(e) = g, a terminal vertex t(e) = h and a
label λ(e) = s. The graph is also endowed with an involution e 7→ e−1 = (h, s−1, g) ∈ EΓ.
If a generator has order 2, that is, if s ∈ S satisfies s2 = 1G, we take a unique edge
between g and gs for every g ∈ G. Notice that every Cayley graph is |S|-regular, locally
finite, transitive and deterministically labeled, that is, for every vertex there is a unique
out-going edge for each label S. The group G acts by translation on Γ(G,S) by left
multiplication, in other words, the action of g ∈ G over a vertex h ∈ VΓ is given by
g · h = gh. Through this action, we can identify G with a subgroup of the automorphism
group of the Cayley graph.

We also consider the undirected Cayley graph Γ̂(G,S), where we collapse each
edge e and e−1 to a single undirected edge between i(e) to t(e). In other words, Γ̂(G,S)
is the graph with vertex set G such that g, h ∈ G are adjacent if gh−1 ∈ S.

Example 7. The hexagonal grid H is the Cayley graph of the affine Coxeter group Ã2

given by the presentation,

Ã2 = 〈a, b, c | a2, b2, c2, (ab)3, (ac)3, (bc)3〉.

This can be seen in Figure 2.

Figure 2: A Cayley graph of the affine Coxeter group Ã2. The red edges represent a, blue
edges represent b, and green edges c.

Example 8. The ladder graph L is the Cayley graph of Z×Z/2Z with the presentation,

Z× Z/2Z = 〈t, s | s2, tst−1s〉.
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s

Figure 3: A Cayley graph of the group Z×Z/2Z. The generator t defines the horizontal
right-pointing edges, and the generator s defines the vertical undirected edges.

This can be seen in Figure 3. This is not the only group that admits the ladder graph as
a Cayley graph, this is also the case for the groups D∞ and D∞ × Z/2Z.

A path on Γ(G,S) is a sequence of edges π = (e1, . . . , en) such that for all i ∈
{1, . . . , n − 1} we have i(ei+1) = t(ei). We denote the initial vertex of the path by
i(π) = i(e1) and its terminal vertex as t(π) = t(en). The length of the path is given by
`(π) = n, and its label is λ(π) = λ(e1) · · · λ(en) ∈ S∗. We also define the sequence
of vertices visited by π as the sequence V (π) = (g0, . . . , gn) with gi = i(ei+1) for all
i ∈ {0, . . . , n − 1} and gn = t(en). This formalism gives us a one-to-one correspondence
between paths starting at 1G and words in S∗. In particular, a path π satisfies i(π) = t(π)
if and only if λ(π) ∈WP(G,S).

A path π is a self-avoiding walk (SAW) if it never visits the same vertex twice. We
define the language of self-avoiding walks over Γ(G,S) as the set

LSAW (G,S) = {λ(π) | π is a SAW with i(π) = 1G}.

Remark that the language remains the same if we change the initial vertex from the
identity to any other group element because the graph is transitive. Furthermore, because
Cayley graphs are deterministically labeled, no two SAWs share the same label. A bi-
infinite SAW centered at g ∈ G is a sequence of edges π = (ei)i∈Z ∈ EZ such that
i(ei+1) = t(ei), and g = i(e0) such that π never visits the same vertex twice. We can thus
state the following.

Lemma 9. Let G be a group and S a generating set. Then,

G,S = {λ(π) ∈ SZ | π is a bi-infinite SAW centered at 1G},
= XLSAW (G,S)c .

Moreover, Lloc( G,S) = LSAW (G,S).

Proof. This is a direct consequence of the definitions.

Once again, as the graph is transitive, we can change the center for any other element
of the group. Notice that any finite subwalk of a bi-infinite SAW is a SAW. The converse
is not always true, that is, there are SAWs that do not appear in any bi-infinite SAW (see
Figure 4).
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Figure 4: On Z2 with standard generating set: a finite SAW that does not appear in a
bi-infinite SAW.

Remark 10. For the undirected Cayley graph Γ̂(G,S) we can define a labelling function
λ′ from the set of self-avoiding walks over Γ̂(G,S) to S∗. Take a self-avoiding walk π that
passes through the sequence of vertices (g0, g1, . . . , gn), its label λ′(π) = s0 · · · sn−1 is such
that si = g−1

i gi+1. This way, both LSAW(G,S) and G,S are equal to the corresponding
labels of self-avoiding walks on the undirected Cayley graph. Because of this, in what
follows we do not distinguish between the directed and undirected Cayley graphs.

2.5 Connective Constants

Let cn be the number of self-avoiding walks of length n in the Cayley graph Γ(G,S)
starting at the identity. This sequence is submultiplicative, i.e. cn+m 6 cncm for all
m,n ∈ N, so that by Fekete’s Lemma, the limit of n

√
cn exists:

µ(G,S) = lim
n→∞

n
√
cn = inf

n∈N
n
√
cn ∈ [1,∞).

This limit is known as the connective constant of the Cayley graph. For general
quasi-transitive graphs, this limit was proved to be independent of the starting vertex by
Hammersly and Morton [35].

In general, connective constants are hard to compute. Nevertheless, the exact value
of some connective constants is known. For instance, for the hexagonal grid (which as we

saw, is a Cayley graph for Ã2) its value is
√

2 +
√

2 [15], for the bi-infinite ladder (as in
Figure 3) it is the golden mean 1

2
(1+
√

5) [1], and for some Cayley graphs of free products
of finite groups it is the zero of a polynomial [22]. On the other hand, giving a closed
form for the connective constant of Z2 with standard generators is still an open problem.
The best estimate as of writing is

µ(Z2) ≈ 2.63815853032790(3),

obtained by Jacobsen, Scullard, and Guttman [43].
There are, however, bounds on the connective constant. We translate the following

results from Grimmet and Li – which were stated for larger classes of graphs – to our
Cayley graph context.

Theorem 11 ([25, 26]). Let G be an infinite finitely generated group and S a generating
set.
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• µ(G,S) >
√
|S| − 1,

• For w 6=G 1G and N its normal closure in G, µ(G/N, S) < µ(G,S),

• For g /∈ S a non-identity element of G and S ′ = S ∪ {g±}, µ(G,S) < µ(G,S ′).

For more bounds and details, see [30].

3 General Properties

Let us begin by establishing properties of the skeleton that are common for all groups
and generating sets.

3.1 Bi-infinite SAWs through Group Elements and Computability

A first observation is that G,S = ∅ for a generating set if and only if G is a finite
group; this is a consequence of Konig’s Lemma (see [61]). As we only consider infinite
finitely generated groups, unless explicitly stated, the skeletons are never empty. Next, if
π = (ei)i∈Z is a bi-infinite SAW on the Cayley graph Γ(G,S), its inverse π−1 = (e−1

i )i∈Z is
also a bi-infinite SAW. Therefore, for each configuration x ∈ G,S, its inverse configuration
x−1(k) = x(k)−1 belongs to G,S.

Next, as shown in Figure 4, the word w = a−2b2a5b−2a−2b in Z2 avoids factors from
the word problem but does not define a configuration. Nevertheless, the word ab defines
the same group element, and can be extended to a complete configuration. Is this always
the case? Is it true that for every non-trivial group element there is a word evaluating to
it in L( G,S)? For every finitely generated group G and every group element g ∈ G, one
can find a generating set S such that this is true (Proposition 12).

Proposition 12. Let G be a finitely generated group. Then there exists S a generating
set for G such that for every non trivial group element g ∈ G, there exists a word w ∈ S∗
such that w = g and w ∈ L( G,S).

Proof. A theorem by Seward [58, Theorem 1.8] states that for every finitely generated
group G, there exists a finite generating set S such that the Cayley graph Γ(G,S) has
a regular spanning tree. In particular, this tree has no leaves, thus each path leading
to a vertex can be continued (see Figure 5). Consider such an S and one associated
regular spanning tree of Γ(G,S). Take a non trivial element g ∈ G and consider the path
connecting the identity 1G to g in the regular spanning tree. Then this finite simple path
can be extended to an infinite simple path inside the spanning tree, leading to an infinite
simple path going through 1G and g. Translating this path into a bi-infinite sequence of
elements in S give a configuration of the skeleton G,S.

This can be made more precise in the case of one and two ended groups. Cayley graph
Γ = Γ(G,S) has k ends if k is the supremum of the number of infinite connected compo-
nents of the induced subgraph Γ[VΓ \A] over every finite subset A ⊆ V (see Section 5.1).
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Figure 5: In blue, an example of regular spanning tree of degree 2 – thus a bi-infinite
Hamiltonian path – for Z2 with its standard presentation. In green a path from (0, 0) to
(2, 2) extracted from this regular spanning tree. Note that this path is highly non-geodesic.

Proposition 13. Let G be a finitely generated group with one or two ends, with S a
generating set. Define S ′ = {g ∈ G | ‖g‖S 6 3}. Then, for every non trivial group
element g ∈ G, there exists a word w ∈ (S ′)∗ such that w = g and w ∈ L( G,S′).

Proof. In [11, Theorem 1.3] Carrasco-Vargas showed that for one and two ended groups,
Sewards’ Theorem holds for S ′, that is, there is a Hamiltonian path on the Cayley graph
Γ(G,S ′). This directly implies our statement.

By translating and joining Lemmas 4.4 and 3.7 from [11], we can state results on the
decidability of the language of the skeleton for particular sets of generators.

Proposition 14. Let G be a finitely generated group with one or two ends, with S a
generating set. Suppose G has decidable word problem, and define S ′ = {g ∈ G | ‖g‖S 6
3}. Then, L( G,S′) is computable.

For a skeleton, having a computable language means that there is an algorithm that
determines if a finite SAW is bi-infinitely extendable. A particular class of subshifts that
have computable language are sofic subshifts. In Sections 4 and 5 we will explore when
skeletons belong to this class.

3.2 Entropy

As seen in Lemma 9, the skeleton shift is the set of labels of bi-infinite SAWs over a Cayley
graph. Consequently, its complexity function counts the number of infinitely bi-extendable
SAWs of length n, with α∞( G,S) being their asymptotic growth rate. Furthermore, the
number of locally admissible words of length n is exactly cn, the number of finite SAWs
of length n. Therefore, by Lemma 1 we obtain the following.

Lemma 15. For a finitely generated group G and a generating set S

h( G,S) = log(µ(G,S)).
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This equality can also be deduced from [24], where Grimmet et al. show that the
connective constant is equal to the growth rate of infinitely bi-extendable SAWs.

Let (G,S) be a f.g. group and γG,S : N → N its growth function. We define its
asymptotic growth rate as the value,

HG,S = lim
n→∞

1

n
log(γG,S(n)).

As the growth function is sub-multiplicative (see [12]), HG,S exists by Fekete’s Lemma.

Remark 16. An alternative way to look at the growth of a group is the strict growth
function σG,S, where σG,S(n) is the number of elements of length exactly n. As is the
case for the growth function, σG,S is sub-multiplicative. Its asymptotic growth rate is the
same as that of γG,S, namely HG,S. This can be seen through their generating functions.
Take F, f : C→ C defined as

F (z) =
∑
n∈N

γG,S(n)zn, f(z) =
∑
n∈N

σG,S(n)zn.

By the Cauchy-Hadamard theorem we know that the asymptotic growth rate of γG,S
(resp. σG,S) is the reciprocal of the radius of convergence of F (resp. f). Because strict
growth can be expressed as σG,S(n) = γG,S(n) − γG,S(n − 1), with the convention that
γG,S(−1) = 0, we get that f(x) = (1− x)F (x). As the term (1− x) does not change the
radius of convergence of the series, we have that

lim
n→∞

log(σG,S(n))

n
= HG,S.

Proposition 17. Let G be a f.g. group with S a finite generating set. Then,

HG,S 6 h( G,S) 6 log(|S| − 1).

Proof. Let p(n) be the complexity function for G,S and k = |S|. For the upper bound,
notice that the total number of reduced words of length n over S is exactly the number
of elements of length n in free group Fm, with m = dk

2
e. Therefore,

p(n) 6 γFm(n)− γFm(n− 1) = k(k − 1)n−1.

On the other hand, every element of length n has a geodesic representative of length
n, which by definition is G-reduced. In particular, this representative is a SAW of length
n. Thus, σG,S(n) 6 cn and

HG,S = lim
n→∞

log(σG,S(n))

n
6 log(µ(G,S)).

Remark 18. The bounds from Proposition 17 are tight in general, as free groups with free
generating sets satisfy HFm,S = h( Fm,S) = log(2m− 1). Nevertheless, by Theorem 11 we
know that for non-free groups h( G,S) < log(2m − 1) for all generating sets. This same
theorem also tells us that for groups with polynomial growth the lower bound is strict, as

0 = HG,S <
1

2
log(|S| − 1) 6 h( G,S).
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Another straightforward bound we find from algebraic considerations is the following.

Proposition 19. Take G a finitely generated group and S generating set. If {s1, . . . , sn} ⊆
S is a subset of generators such that there induced semigroup 〈s1, . . . , sn〉+ does not con-
tain the identity, then h( G,S) > log(n).

Proof. If 〈s1, . . . , sn〉+ does not contain the identity, any combination of these generators
will give a word that does not contain factors that evaluate to the identity. In other words,
the skeleton contains the full-shift {s1, . . . , sn}Z. Consequently, h( G,Sn

) > log(n).

Example 20. Take Z2 with its standard generating set {a±, b±}. Then, the semigroup
generated by a and b does not contain the identity. Then, h( Z2,{a±,b±}) > log(2). Simi-
larly, if we take the discrete Heisenberg group H3 with generating set {a±, b±, c±} through
the presentation,

H3 = 〈a, b, c | [a, c], [b, c], [a, b]c−1〉,

the semigroup given by the three generators a, b and c does not contain the identity.
Then, by the previous proposition h( H3,{a±,b±,c±}) > log(3).

Remark 21. Given a group G, the entropy of its skeleton can be made arbitrarily large.
This can be done be taking bigger and bigger generating sets and using the lower bound√
|S| − 1 given by Theorem 11. This can also be done in torsion-free groups by taking

a torsion-free element g ∈ G, a generating set containing {g, g2, . . . , gn} and using the
previous proposition.

In Section 6 we will see methods to approximate entropy and connective constants for
different classes of groups.

4 Dynamic and Computational Aspects

The goal of this section is to explore the multiple dynamical and computational properties
of skeletons, and how they interact with the algebraic properties of the underlying group.
We look at groups that admits SFT, sofic, effective or minimal skeletons, as well as their
periodic points.

A subshift can be defined by various different sets of forbidden patterns. We saw,
from its definition and Lemma 9, that G,S is defined by at least two different sets,
namely LSAW (G,S) and WP(G,S). We begin by describing an additional set that will
help us better understand the structure of forbidden patterns.

We begin by looking at the set of patterns that define simple cycles (also called em-
bedded cycles) in the Cayley graph. We define the set of labels of simple cycles of a group
G with respect to a finite generating set S as,

OG,S = {w ∈WP(G,S) | w defines a simple cycle in Γ(G,S)}
= {w ∈WP(G,S) | ∀w′ @ w, w′ /∈WP(G,S)}.
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Example 22. Consider Z2 with its standard presentation 〈a, b | [a, b]〉. Then the word
aba−3b−1abab−1 is in WP(Z2, {a, b}) but not in OZ2,{a,b} since there are repeated vertices
in the path it represents in Γ(Z2, {a, b}).

We call elements of OG,S self-avoiding polygons (SAPs) of the Cayley graph of
Γ(G,S).

Lemma 23. Let F = OG,S ∪ {ss−1 | s ∈ S}. Then, G,S = XF .

Proof. Since OG,S ⊆ WP(G,S) and {ss−1 | s ∈ S} ⊆ WP(G,S), we have that F ⊆
WP(G,S). So, the subshifts defined by two sets respect the reciprocal inclusion, and we
have G,S ⊆ XF .

Reciprocally, take some configuration x ∈ XF and assume it contains some pattern
w ∈WP(G,S). Without loss of generality we assume that w = s1 . . . sn for some n ∈ N, so
that s1 . . . sn = 1G. Consider the group elements gi defined by gi = s1 . . . si for i ∈ {1 . . . n}
and g0 = 1G. Since x ∈ XF the pattern w does not belong to OG,S ∪ {ss−1 | s ∈ S}. So
necessarily n > 1 and there are some repetitions among the gi’s in addition to g0 = gn.
Take two indices i, j such that i < j and {i, j} 6= {0}, {n}, {0, n} (at least one of the two
indices is neither 0 nor n) and i, j are minimal. Then the word si . . . sj defines a cycle in
Γ(G,S), which contradicts our original assumption. Finally, x ∈ G,S, which concludes
the proof.

This alternative set of forbidden patterns for G,S will be particularly helpful in the
proof of Theorem 26, where we characterize groups G which admit a generating set S
such that G,S is an SFT and also in Section 6.2.

4.1 SFT Skeletons

To find SFTs, we start with a warm-up lemma that contains the central idea used in our
classification of groups that admit skeleton SFTs.

Lemma 24. Zd,S is not an SFT for d > 2 and any generating set S.

Proof. Let S be a generating set for Zd and suppose F ′ is a finite set of forbidden patterns
such that Zd,S = XF ′ . Then, as S generates the group, there must exist s1, s2 ∈ S such
that 〈s1〉 ∩ 〈s2〉 = {1Zd}, and 〈s1, s2〉 ' Z2. Let us denote N = maxw∈F ′ |w|. Take the
SAP defined by the square of length 2N on the first two generators w = s2N

1 s2N
2 s−2N

1 s−2N
2 .

Notice that no factors of w2 of length N belong to F ′ as they are all globally admissible
in Zd,S. Let x = w∞. Clearly x /∈ Zd,S, as it contains w which satisfies w = 1G.
Nevertheless, no factor of x of length N is contained in F ′. Therefore x ∈ XF ′ , which is
a contradiction.

the electronic journal of combinatorics 31(4) (2024), #P4.24 17



The main idea of this lemma is using arbitrarily large cycles that are locally self-
avoiding. This way, it is not possible to detect that the path eventually crosses itself
using a finite window. Which groups admit generating sets that define SFT skeletons
then? Let us show that this is the case of a specific class of virtually free groups.

Definition 25. A group G is plain if there exist finite groups {Gi}ki=1 and m > 1 such
that G is isomorphic to the free product(

k∗
i=1

Gi

)
∗ Fm.

We say a finite generating set S for such G is standard if it can be written as the disjoint
union S = S1 ∪ · · · ∪ Sk ∪ Sk+1 where Si is a generating set for Gi and Sk+1 is a free
generating set for Fm.

Theorem 26 (Theorem A). Let G be a finitely generated group. Then, there exists a
finite generating set S such that G,S is an SFT if and only if G is a plain group.

In order to prove this theorem we use a characterization of plain groups with respect
to their simple cycles. The diameter of a simple cycle is the greatest distance between
to vertices in the cycle. A vertex v in a graph Γ is said to be a cut vertex if Γ \ {v}
is disconnected. A graph is said to be 2-connected if it contains no cut vertices. A
maximal 2-connected subgraph is called a block.

Theorem 27 ([37]). Let G be a group and m ∈ N. Then, the following are equivalent

• G admits a finite generating set S such that all simple cycles in the undirected Cayley
graph Γ(G,S) have diameter at most m,

• G admits a finite generating set S such that all blocks in the undirected Cayley graph
Γ(G,S) have diamater at most m,

• G is a plain group.

Proofs of this Theorem can be found in [37, 16].

Proof of Theorem 26. Let G be a plain group decomposed as
(∗ki=1Gi

)
∗ Fm with S =

S1 ∪ · · · ∪ Sk+1 a standard generating set. Due to its free product structure, any word
w ∈ S∗ can be uniquely decomposed as w = w1w2 · · ·wr where,

• wj ∈ S∗l for some l, for all j ∈ {1, . . . , r};

• wj and wj+1 are words over different alphabets for all j ∈ {1, . . . , r − 1}.

If w = 1G, by our decomposition, wj = 1G for every j. This means every SAP from G
must be entirely contained in one of the finite groups Gi, as Fm has no SAPs with its free
generating set. Therefore, OG,S is finite because the number of SAPs in each finite group
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is finite. By Lemma 23, G,S is an SFT.

Now, let G be a finitely generated group with S such that G,S is an SFT, defined
by the finite set of forbidden patterns F . If G is not a plain group, by Theorem 27, the
Cayley graph Γ(G,S) contains arbitrarily large simple cycles, and therefore arbitrarily
large SAPs. Next, we can assume without loss of generality that every word in F has
the same length, say N > 1. If F ⊆ WP(G,S), take a SAP W of length greater than
N + 1. Because SAPs contain no strict factors that belong to WP(G,S) and every cyclic
permutation of the word defining a SAP is itself a SAP, the configuration x = W∞ does
not contain any word from F . Therefore x ∈ XF \ G,S, which is a contradiction. Suppose
there are elements in F that are not in WP(G,S). As F contains forbidden patterns and
XF = G,S, for every word w ∈ F there exists Nw ∈ N such that for every u, v ∈ SNw the
word uwv contains a factor from WP(G,S). Let M = maxw∈F Nw and take W a SAP
of length 2M + N + 4. Once again, because every SAP contains no strict factors that
belong to WP(G,S) and every cyclic permutation of the word defining the SAP is itself a
SAP, the configuration x = W∞ contains no factors from F . Indeed, if there is a w ∈ F
such that w v W we can take the cyclic permutation of W such that w is at the middle.
Thus, w can be extended by words u, v of length M + 1 such that uwv contains no factor
in WP(G,S). As a consequence x ∈ XF \ G,S, which is a contradiction.

As plain groups admit SFT skeletons, we have an effective procedure to calculate the
connective constant of their Cayley graphs. As mentioned in Section 2.1, entropies of
SFTs are non-negative rational multiples of logarithms of Perron numbers (see Theorem
4.4.4 [49]). Thus, we can slightly improve Corollary 3.4 from [22] in the case of (plain)
groups.

Corollary 28. Let G be a plain group with S a standard set of generators. Then, µ(G,S)
is a non-negative rational power of a Perron number.

Let us sketch how to compute the connective constant using SFTs. Let G,S be the

skeleton of the plain group G = (∗ki=1Gi)∗Fm and F be the finite set of patterns defining
it. Recall from Theorem 26 that this set corresponds to the SAPs on each individual group
Gi as well as the words ss−1 for all s ∈ S. Let N be the length of the biggest word in
F . We can extend F to F ′ so that all words have length N . The Rauzy graph RN(G,S)
of order N of G,S is the finite directed graph whose vertices are labeled by the language
of size N of the skeleton LN( G,S), and edges are labeled with LN+1( G,S). There is an
edge labeled by w from u to v if u is the prefix of length N of w and v is the suffix
of length N of w. We denote the adjacency matrix of the graph RN by MN , that is,
if LN( G,S) = {u1, . . . , u`}, the entry MN(i, j) represents the number of edges in RN

from ui to uj. Then the connective constant of Γ(G,S) is the logarithm of the dominant
eigenvalue of MN , which exists by Perron-Frobenius’ Theorem.

Example 29. Take S3 the symmetric group on 3 elements with generating set s1 = (1 2)
and s2 = (1 3), and the cyclic group Z/3Z = 〈t〉. Then, the skeleton of the plain group
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G = S3 ∗ Z/3Z with respect to S = {s1, s2, t
±1} is defined by the forbidden patterns,

F = {s2
1, s

2
2, (s1s2)3, t3, tt−1, t−1t}.

We obtain that the connective constant µ = µ(G, {s1, s2, t
±1}) is the solution of the

polynomial equation x7−4x5−8x4−8x3−8x2−8x−4 = 0 obtained from the characteristic
polynomial of the matrix described above, which is approximately µ ≈ 2.8698315.

Figure 6: A portion of the Cayley graph of the plain group S3 ∗Z/3Z. The two generators
for S3 are pictured in red and blue and alternate; the generator for Z/3Z is pictured in
green.

The skeletons of plain groups with respect to their standard generating sets also have
nice dynamical properties. We say a subshift X ⊆ AZ is irreducible if for every w1, w2 ∈
L(X), there exists some w ∈ L(X) such that w1ww2 ∈ L(X).

Proposition 30. Let G be a plain group with standard generating set S. Then, G,S is
irreducible.

Proof. Decompose G as
(∗ki=1 Gi

)
∗ Fm with S = S1 ∪ · · · ∪ Sk+1 a standard generating

set. Take w1, w2 ∈ L( G,S) appearing at position 0 of the configurations x(1), x(2) ∈ G,S

respectively. There is a unique decomposition wi = wi1w
i
2 · · ·wiri where,

• wij ∈ S+
l for some l, for all j ∈ {1, . . . , ri};

• wij and wij+1 are words over different alphabets for all j ∈ {1, . . . , r − 1}.

If w1
r1
, w2

1 ∈ S∗i , take any generator s ∈ Sj for j 6= i and define x = x
(1)
(−∞,0]w1sw2x

(2)
[|w2|,+∞).

Because we chose a generator that does not belong to Gi, and x(1) and x(2) belong to the
skeleton, x must also belong to the skeleton. This implies, w1sw2 ∈ L( G,S). If instead

w1
r ∈ S∗i and w2

1 ∈ S∗j for i 6= j, define y = x
(1)
(−∞,0]w1ss

′w2x
(2)
[|w2|,+∞). As before, y must

belong to G,S. This means, w1w2 ∈ L( G,S).

the electronic journal of combinatorics 31(4) (2024), #P4.24 20



Corollary 31. For G a plain group with standard generating set S, the set of periodic
configurations of G,S is dense in G,S. In other words, any bi-infinitely extendable SAW
on Γ(G,S) appears in a periodic bi-infinite SAW. Furthermore,

µ(G,S) = lim
n→∞

n
√
en,

where en denotes the number of periodic points in G,S of period n ∈ N.

This corollary states a general property of irreducible subshifts of finite type, namely,
its set of periodic configurations is dense and its entropy is approximated through its
periodic points [49]. We obtain a similar expression for the connective constants of Cayley
graphs whose skeletons is not an SFT in Section 6.

4.2 Effective Skeletons

Let us briefly look at the case of effective skeletons. We know that recursively presented
groups have recursively enumerable word problem. WP(G,S) is thus recursively enu-
merable for all finite generating sets. This enumeration gives us an enumeration of the
forbidden patterns of our skeleton.

Lemma 32 ([4]). Let G be a recursively presented group. Then, for every generating set
S, the subshift G,S is an effective subshift. In particular, µ(G,S) is a right computable
real number.

In order to approach the converse, we give a computational upper bound of the word
problem of the group in terms of the computability of finite SAWs on the Cayley graph.

Lemma 33. The word problem for G with respect to a generating set S is decidable given
an algorithm for LSAW (G,S)c.

Proof. We describe a procedure to compute the word problem of G given an algorithm
that determines if a word belongs to L = LSAW (G,S)c. We begin with an algorithm that
computes all words w ∈ S6n such that w ∈WP(G,S) given n. This algorithm, which we
call M, is shown in Algorithm 1.

Let us show the output of M on n is WP(G,S) ∩ S6n. Let Ti be the set T in
the algorithm after the first i iterations of the for loop, for i ∈ {2, . . . , n}. We claim
Ti = WP(G,S)∩S6i. First off, every non-self avoiding path of length two must represent
the identity. Thus, T2 = WP(G,S) ∩ S2. Now, suppose we have the equality for Ti.
Take w ∈ WP(G,S) ∩ Si+1. This implies w ∈ L, and as seen in Lemma 23, it must
represent a simple cycle, contain a shorter simple cycle, or a word of the form ss−1.
In the first case, w contains no factors from Ti and is therefore added to Ti+1. In the
other two cases, it contains a factor from Ti that after being deleted creates a word that
belongs to WP(G,S) ∩ S6i = Ti. Therefore, w ∈ Ti+1. Conversely, if w′ ∈ Ti+1 \ Ti we
know w ∈ L. If w was added to Ti+1 because it contains no factors from Ti, it must
represent a simple loop and is therefore in WP(G,S). On the other hand, if w was added
after deleting a factor from Ti, w is made up of a word representing the identity with a
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Algorithm 1:M
Input: n > 2
T ← ∅;
for w ∈ S2 do

if w ∈ L then
T ← T ∪ {w};

end

end
for i ∈ {3, ..., n} do

for w ∈ Si do
if w ∈ L then

if w contains no factors from T then
T ← T ∪ {w};

end
for v ∈ T do

Delete v from w if present, to obtain w′;
if w′ ∈ T then

T ← T ∪ {w};
end

end

end

end

end
return T ;

factor representing the identity inserted into it. This means, w ∈WP(G,S) and therefore
Ti+1 = WP(G,S) ∩ S6i+1.

Finally, to determine if a given word w belongs to WP(G,S), we runM on the input
|w|, and see if it is present in T .

As a consequence, if LSAW (G,S) is co-recursively enumerable, the word problem of G
must be in ∆0

2 on the arithmetical hierarchy. This is the case when G∗H,S is effective for
H any f.g. group, and S = SG∪SH with SG, SH generating sets for G and H respectively.

Conjecture 34. A group is recursively presented if and only if there exists a finite
generating set S such that G,S is effective.

Even though recursively presented groups define subshifts that are effective, if the
structure of the underlying group is computationally complex, the configurations of the
skeleton may be uncomputable. We say a configuration x ∈ SZ is computable if there
is an algorithm that on input n ∈ Z computes xn ∈ S.

Definition 35. A finitely generated group G and generating set S are said to be algo-
rithmically finite if for every infinite recursively enumerable set L ⊆ FS, there exist
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infinitely many pairs of distinct words u, v ∈ L such that π(u) = π(v), where π : FS → G
is the canonical projection. We say G is a Dehn Monster if it is infinite, recursively
presented and algorithmically finite.

This class of groups was introduced by Myasnikov and Osin in [53], where they showed
that Dehn Monsters exist. Furthermore, they showed that being algorithmically finite
does not depend on the generating set.

Proposition 36. Let G be a Dehn Monster. Then G,S is effective for any finite gener-
ating set S, but no configuration in G,S is computable.

Proof. As the properties of being infinite, recursively presented and algorithmically finite
are independent of the generating set, we take any generating set S for G. If there existed
a computable configuration x ∈ G,S, we could recursively enumerate the set of words
L = {x[0,n−1] ∈ S∗ | n > 1}. Then for any u, v ∈ L, π(u) 6= π(v). If not, we would
arrive at x[0,n−1] =G x[0,m−1] for some n > m > 1, which implies x[n,m−1] =G ε. Therefore,
any pair of elements in L maps to a different element through π, which contradicts the
algorithmic finiteness of G.

4.3 Periodic Configurations

Configurations of particular importance in the study of subshifts are periodic configura-
tions. Recall that a configuration x ∈ G,S is periodic if there exists k ∈ Z\{0} such that
xi+k = xi for all i ∈ Z. Such a configuration has a rigid structure, if we take w = x[0,k−1]

the configuration x is equal to the bi-infinite repetition of w, i.e., x = w∞. We will see
that the existence of periodic points in the skeleton imposes strong restrictions on the
structure of the underlying group.

In [4] it was shown that for any finitely generated group with a torsion-free element, the
skeleton contains a periodic point. The periodic configuration was obtained by iterating
any geodesic of the torsion-free element with the smallest length in the group. By re-
interpreting the proof of [33, Theorem 7] we obtain the following generalization.

Proposition 37. Let G be a finitely generated group. Take a generating set S and a
torsion-free element g ∈ G, and k = argmin{‖gn‖S | n > 1}. Then, for any geodesic
w ∈ S∗ representing gk, w∞ ∈ G,S and is a bi-infinite geodesic.

Proof. Fix a generating set S and g ∈ G torsion-free. Let k > 1 be as in the statement
of the result, and denote h = gk. Take a geodesic w ∈ S∗ for h and let π = (e0, . . . , en−1)
be the (self-avoiding) walk starting at the identity in the Cayley graph, of label w and
|w| = n. Let Π be the bi-infinite walk made by concatenating the paths hm · π, for all
m ∈ Z. Thus, λ(Π) = w∞. We claim Π is self-avoiding. Suppose it is not, and take the
smallest m ∈ N such that wm does not represent a SAW. Let πi denote the walk hi · π
where i(πi) = hi and t(πi) = hi+1. As m is minimal, we know the concatenated walks
π0 · · · πm−1 and π1 · · · πm are self-avoiding, and therefore the first intersection must
occur between π0 and πm. Then, there exists v, u v w prefixes, and f ∈ π0 ∩ πm such

the electronic journal of combinatorics 31(4) (2024), #P4.24 23



that f = v = hm−1u. Once again, because m is minimal, f 6= h, hm−1. If we compute the
distance,

dS(f, hm−1f) = dS(u, v) 6 |w|,

as k was chosen to minimize ‖gk‖S, the distance between f and hm−1f must be |w|. As
both vertices are in πm, this is only possible if f = hm and hm−1f = hm−1. Thus hm = 1G,
which is a contradiction as h is torsion-free. Therefore, w∞ ∈ G,S. Finally, as we chose
k to minimize the distance to the identity of powers of g, wn must be a geodesic for all
n ∈ N.

Theorem 38 ([4]). Let G be a finitely generated group. Then, G is a torsion group if
and only if G,S is aperiodic for every (any) generating set.

Proof. Suppose G is a torsion group and let x ∈ G,S be a periodic configuration that
infinitely repeats the word w. Let g = w. By definition of the skeleton, gn = wn 6= 1G
for all n ∈ N. This contradicts the fact that G is a torsion group. Conversely, if G has a
torsion-element, by Proposition 37, G,S contains a periodic point.

Corollary 39. If G is a finitely generated torsion group, then for all generating sets G,S

is not sofic.

Proof. If G is a finitely generated torsion group, Theorem 38 tells us that none of its
skeletons contain periodic configurations. Because non-empty sofic shifts always contain
periodic configurations, no skeleton of G can be sofic.

4.4 Minimality

Our next objective is to find sufficient and necessary properties for the skeleton to be
minimal. We begin by identifying possible subshifts of G,S.

Lemma 40. Let G be a finitely generated group. Then,

• For a symmetric subset S ′ ⊆ S and H = 〈S ′〉, H,S′ is a subshift of G,S.

• For N E G a normal subgroup, G/N,S′ is a subshift of G,S, where S ′ = S \N .

Proof. The first statement follows from the fact that any configuration from H,S′ avoids
all words from WP(G,S), as H is a subgroup of G. For the second statement, let x ∈
G/N,S and {wi}i ⊆ S∗ a set of generators for N . Then by definition no factor w v x

belongs to WP(G/N, S) = 〈〈WP(G,S) ∪ {wi}〉〉. In particular, it does not belong to
WP(G,S). Therefore x ∈ G,S.

Because every non-finite quotient gives us a non-empty subshift of G,S, if we want
to find a minimal skeleton, it is reasonable to look at the class of just infinite groups. A
group G is said to be just infinite if it is infinite and every proper quotient is finite.

Proposition 41. Let G be a finitely generated group with a generating set S. If G,S is
minimal, then G is a just infinite group.
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Proof. If G,S is minimal, every subshift of the form G/N,S must be either empty or equal
to G,S. Let N be a proper normal subgroup, that is, non trivial and not equal to G. By
Theorem 11, the connective constants satisfy µ(G/N, S) < µ(G,S). Thus, the entropy
of G/N,S is strictly less than that of G,S, so they cannot be equal. Then G/N,S = ∅,
meaning G/N is finite. Therefore, G is just infinite.

Proposition 42. Let G be a finitely generated group with a generating set S. If G,S is
minimal, for every symmetric subset S ′ ( S, the subgroup 〈S ′〉 is finite. In particular,
torsion-free groups do not admit minimal skeletons.

Proof. If G,S is minimal, every subshift of the form H,S′ , for H = 〈S ′〉, must be either
empty or equal to G,S. If H = G, then by Theorem 11, µ(G,S ′) < µ(G,S) meaning

G,S′ is empty, which is a contradiction. Therefore, H � G. Now, take s ∈ S \ H and
x ∈ H,S′ . Define the configuration x′ = x(−∞,−1]sx[0,+∞) ∈ SZ. Because x is in H’s
skeleton, we know neither x(−∞,−1] nor x[0,+∞) contain subwords from WP(G,S). Next,
if there exist i, j ∈ N such that x[i,−1]sx[0,j] ∈ WP(G,S), then s =G (x[i,−1])

−1(x[0,j])
−1

which implies s ∈ H. This is a contradiction. Therefore, x′ ∈ G,S \ H,S′ . As G,S is
minimal, H,S′ = ∅ and thus H is finite. Finally, if a group is torsion-free, each generator
generates Z which is not possible if the skeleton is minimal.

Remark 43. Both conditions are not sufficient to characterize minimal skeletons. Take
the group Ã2 with generating set {a, b, c} as defined in Section 2.4. This group is just
infinite [52], every pair of different generators generates a subgroup isomorphic to the finite
group S3, and every generator generates a copy of Z/2Z. Nonetheless, its skeleton is not
minimal. Take the periodic configuration x = (abcb)∞ which belongs to the skeleton.
Then, the closure of the orbit of x is finite and contains exactly periodic configurations
defined by cyclic permutations of abcb. But, the skeleton also contains the periodic
configuration y = (bcac)∞, which is not one of the cyclic permutations.

As the remark shows, if a minimal skeleton contains periodic configurations, it must
be finite. This is the case of D∞ with generating set {a, b}, as seen on Example 6, which
defines a minimal skeleton.

5 Sofic Skeletons

Let us tackle the question of which groups admit skeletons that are sofic. Since SFTs are
sofic subshifts, from Theorem 26 we already know that plain groups admit sofic skeletons.
But are there groups that admit sofic skeletons which are not SFTs? The first naive
strategy would be to ask when the word problem of the group is regular, as this is the
set of forbidden patterns used in the definition of the skeleton. Unfortunately, Anisimov
showed in [2] that WP(G,S) is regular if and only if G is a finite group. We must therefore
find other sets of forbidden patterns to study. Lemma 9 tells us that we can look at the
classes of groups where the language of SAWs is regular. The class of groups with such
property have already been classified.
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Theorem 44 ([51]). Let G be a finitely generated group with S a finite generating set.
Then, LSAW(G,S) is regular if and only if Γ(G,S) has more than one end and all ends
are thin of size 1.

As Lindorfer and Woess show, if Γ(G,S) has only thin ends of size 1 its blocks are
finite [51, Lemma 5.3]. Combining this fact with Haring-Smith’s characterization of plain
groups (Theorem 27), we see that groups where LSAW(G,S) is regular are exactly plain
groups. Nevertheless, when considering bi-infinitely extendable SAWs, the situation is
different.

Lemma 45. The group G = Z × Z/2Z given by the presentation 〈s, t | s2, [t, s]〉 has a
sofic skeleton.

Proof. We will exhibit a regular set of forbidden patterns for G,S, with S = {s±1, t±1}.
Take the set of forbidden patterns

F = {st±nst∓1 | n ∈ N} ∪ {t±1st∓ns | n ∈ N} ∪ {s2, t±1t∓1}.

It is a simple exercise to show that F is a regular language. Let us show G,S = XF .
Suppose there is a configuration x ∈ G,S \ XF . Because x is in the skeleton, we know it
does not contain factors of the form s2 or t±1t∓1. Therefore it must contain a factor of the
form st±nst∓1 or t±1st±ns. Suppose, x contains the word w = stnst−1, for some n ∈ N.
There is no way to extend this word to the right, as ws contains the factor tst−1s which
evaluates to the identity, extending by t−k with k > n creates the factor stnst−n which
evaluates to the identity, and extending by t−ks with k 6 n− 1 creates the factor tkst−ks
which also evaluates to the identity. This leads to a contradiction. The other cases being
analogous, we have G,S ⊆ XF .

Now, suppose there is a configuration x ∈ XF \ G,S. By Lemma 23 and the definition
of F , x must contain a SAP. Nevertheless, all SAPs in G are cyclic permutations of words
of the form stnst−n for some n ∈ N. Thus, each SAP contains a factor from F , leading
to a contradiction and proving XF ⊆ G,S.

The Cayley graph of Z × Z/2Z with respect to the before mentioned generating set
is the bi-infinite ladder, which is a graph with two thin ends of size 2. An analogous
proof can be done for the Cayley graph of Z, which is a plain group, with respect to the
generating set {±1,±2}, which also has thin ends of size 2.

To characterize groups which admit sofic skeletons we will make use of the fact that the
language of a sofic subshift is regular. Our main tool in this regard will be the following
version of the Pumping Lemma.

Lemma 46 (Pumping Lemma). Let L be a regular language. Then, there exists p > 0
such that every word w ∈ L with |w| > p can be decomposed as w = w′uv with |u| > 1
and |uv| 6 p, such that for all n ∈ N, w′unv ∈ L.

This allows us to show that being sofic is a property of skeletons that depends on the
generating set.
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Proposition 47. Every group G admits a generating set S such that G,S is not sofic.

Proof. By Corollary 39, if G is a torsion group, no skeleton is sofic. We can therefore
suppose G has a torsion-free element. Let S ′ be any generating set for G, and g a torsion-
free element. We denote s = g2, t = g3, and define S = S ′ ∪ {s, t}. Suppose G,S is
sofic. Then, its language L( G,S) is regular. Take p > 0 given by the pumping lemma.
The word w = tsp+1t−1s−p is contained in L( G,S) as it is globally admissible through the
configuration s∞tsp+1t−1s−pt−1(s−1)∞ (see Figure 7).

t
s

Figure 7: The configuration used for the Pumping Lemma (with p = 4) depicted in the
Cayley graph of the subgroup 〈s, t〉. The blue edges represent s and the red edges t.

Now, by the Pumping Lemma we can decompose w as w = w′uv with |uv| 6 p. Thus,
u = s−k with k > 1. Therefore, the word w′u2v = tsp+1t−1s−(p+k) belongs to L( G,S),
which is a contradiction as tsp+1t−1s−(p+1) =G ε. We conclude that G,S is not sofic.

5.1 Ends and Automorphisms

To go towards a characterization we must make a brief detour through the theory of ends
and automorphisms of infinite quasi-transitive graphs. Let us begin by taking a look at
the theory of ends of connected graphs as introduced by Halin [32].

For a connected graph Γ = (VΓ, EΓ), and a subset of vertices A ⊆ VΓ we denote by
Γ\A the graph obtained by removing the vertices from A and all their incident edges. We
define a ray ρ to be an infinite sequence of distinct vertices π = (v0, v1, . . . ) ∈ V NΓ such
that there is an edge between vi and vi+1. Analogously, a double ray to be a bi-infinite
sequence of distinct vertices π = (. . . , v−1, v0, v1, . . . ) ∈ V ZΓ such that each successive
vertex is connected by an edge. Two rays are said to be equivalent if for any finite
set A ⊆ VΓ all but finitely many of their vertices are contained in the same connected
component of Γ \ A. The equivalence classes of this relation are called the ends of the
graph. Given an end ω and a finite set A ⊆ VΓ, we define C(ω,A) to be the connected
component of Γ \ A where all the rays defining ω eventually end up in.

A defining sequence for an end ω is a sequence of finite subsets (Ai)i∈N such that
for all i > 1, Ai ∪ C(ω,Ai) ⊆ C(ω,Ai−1). We say that an end ω is thin if there exist
m > 1 and a defining sequence (Ai)i∈N such that |Ai| = m for all i ∈ N. The smallest
m verifying this condition is called the size of ω. An end is called thick if its size is
infinite. Thomassen and Woess [59] showed using Menger’s Theorem that an end of size
m ∈ N ∪ {∞}, seen as an equivalence class of rays, contains a maximum of m vertex
disjoint rays.
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Let Aut(Γ) denote the set of automorphisms of Γ, that is, bijections f : VΓ → VΓ that
preserve edge adjacency. We say a subgroup G 6 Aut(Γ) acts quasi-transitively on Γ
if the set of orbits of the action Gy Γ is finite. We say G acts transitively if there is a
unique orbit. Freudenthal and Hopf independently showed [20, 41] that a quasi-transitive
graph has either 0, 1, 2 or an infinite amount of ends.

In our setting, all Cayley graphs Γ(G,S) are transitive under the action of the group
G by left translations. Furthermore, this action preserves the labeling given by the gen-
erating set.

Take Γ to be locally finite and connected. Following [33], automorphisms of Γ can be
classified into three classes. An automorphism g ∈ Aut(Γ) is,

• elliptic if it fixes a finite subset of VΓ,

• parabolic if it fixes a unique end, and

• hyperbolic if it fixes a unique pair of ends.

Halin showed [33] that for a non-elliptic automorphism g ∈ Aut(Γ) and vertex v ∈ V
the sequence (v, g · v, g2 · v, . . . ) uniquely defines and fixes an end which we call the
direction of g, and denote D(g).

Theorem 48 (Halin, [33] Theorem 9). Let g be a non-elliptic automorphism acting on a
connected locally finite graph Γ. Then,

• D(g) and D(g−1) have the same size m.

• D(g) 6= D(g−1) if and only if m <∞. In this case g is hyperbolic.

• There are m disjoint double rays {πi}mi=1 that are invariant by some positive power
of g.

• If g is hyperbolic, there exists a set A ⊆ VΓ of size m and k ∈ N such that (gkn ·A)n∈N
and (g−kn · A)n∈N are defining sequences for D(g) and D(g−1) respectively, that
intersect each πi in exactly one vertex.

To precisely understand thin ends, we study the following graphs.

Definition 49. A connected locally finite graph is called a strip if it is two ended and
quasi-transitive.

We present general facts about strips that can be found in [51] and can be partly
deduced from Theorem 48. For every strip Q, there exits a hyperbolic automorphism
g ∈ Aut(Q) that fixes both ends ω+ and ω−. Both ends have the same size, for instance
m, which entails the existence of a finite set A of size m such that (gn · A) and (g−n · A)
are defining sequence for ω+ and ω− respectively. In addition, there are m disjoint double
rays intersecting every gn ·A at exactly one vertex. We call such a strip a g-strip of size m.
When working with a g-strip, up to taking a power of g, we can assume that the subgraph
induced by C(ω+, A) \ C(ω+, g · A), which we call P (ω+), is connected and finite.

The following results show that quasi-transitive graphs contain strips, under conditions
on their ends and automorphisms.
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Lemma 50 (Lindorfer, Woess, [51] Lemma 3.3). Let Γ be a connected and locally finite
graph where G 6 Aut(Γ) acts quasi-transitively. If Γ has a thin end of size m, then it
contains a g-strip of size m for some g ∈ G.

Lemma 51 (Lindorfer, Woess, [51] Lemma 3.4). Let Γ be a connected and locally finite
graph where G 6 Aut(Γ) acts quasi-transitively. If G contains a parabolic element, then
for every m > 1, Γ contains a g-strip of size at least m for some g ∈ G.

5.2 Characterizing Sofic Skeletons

We provide the following characterization.

Theorem 52 (Theorem B). Let G be a finitely generated group. There exists S such that

G,S is sofic if and only if G is a plain group, Z× Z/2Z or D∞ × Z/2Z.

The idea of the proof is as follows. First, we use the same constructions of Lindorfer
and Woess [51] to find ladder-like structures on strips that will allow us to use the Pumping
Lemma, and then conclude that all ends of the graph must be thin and of size at least
2. Next, by using similar ideas, we show that if the graph has an end of size two and the
skeleton is sofic, then the group must be virtually Z. Finally, we characterize virtually Z
groups with sofic skeletons, completing the proof.

Lemma 53. Let G be a finitely generated group with a generating set S, such that Γ(G,S)
contains an g-strip Q for some g ∈ G. If G,S is sofic, then Q has size at most 2.

Proof. Suppose Q is of size greater or equal than 3. Then, Q contains three disjoint double
rays which we call π1 = (vi)i∈Z, π2 = (ui)i∈Z and π3 = (v′i)i∈Z, that are g-invariant. Recall
we took our subgraph P (ω+) to be connected and finite. Therefore, there is a path p1 that
connects two of the rays. Suppose without loss of generality that p1 connects π1 and π2

from v0 to u0 with no other vertices from πi for i ∈ {1, 2, 3}. Analogously, g · P (ω+) will
connect π3 with another of the rays through a path p2. Up to rearranging indices, suppose
p2 connects π2 to π3 starting at uk and ending at v′k, for some k ∈ N such that there are
no other vertices from πi for i ∈ {1, 2, 3}. Because the vertex set of every element of the
sequence (gn·P (ω+))n∈N is pairwise disjoint, no walks in {g2n·p1 | n ∈ Z}∪{g2n·p2 | n ∈ Z}
intersect. This way, the subgraph induced by the three paths {πi}3

i=1 and all g2n · p1 and
g2n · p2, Q′ ⊆ Q is a periodic subdivision of the bi-infinite 3-ladder (see Figure 8).

Now, let us give names to the labels of the different portions of the subdivision. Denote
λ1 the label from uk to g · uk, λ2 the label from uk to g · u0, λ3 the label from u0 to v0, λ4

the label from v0 to g · v0, λ5 the label from uk to v′k, and finally λ6 the label from g · v′k
to v′k. Then, for every n > 1 and k < n the configuration

x = λ∞1 λ2.λ3λ
n
4λ
−1
3 λ−k1 λ−1

2 λ5λ
∞
6 ,

belongs to the skeleton (See Figure 8). Thus, λ3λ
n
4λ
−1
3 λ−k1 ∈ L( G,S) for every n > 1 and

k < n. Notice that the language L = {λ3λ
n
4λ
−1
3 λ−k1 ∈ S∗ | k, n ∈ N} is regular. If G,S is

sofic, its language L( G,S) is regular. Then by the closure properties of regular languages,

L′ = L ∩ L( G,S) = {λ3λ
n
4λ
−1
3 λ−k1 ∈ S∗ | k < n},
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u0

v0

uk

v′k

g · v0

g · u0

g · uk

g · v′k

g4 · v0

g4 · u0

Figure 8: The periodic subdivision of the 3-ladder with the configuration x highlighted
in red and blue. The word λ3λ

3
4λ
−1
3 λ−2

1 is marked in blue, whereas the infinite prefix and
suffix of x are marked in red.

is regular. By the Pumping Lemma, there exists a pumping length p > 0. Take
λ3λ

p+1
4 λ−1

3 λ−p1 ∈ L′. This word decomposes as w̃ww′ such that |ww′| 6 p. By the
structure of our word, ww′ is a suffix of λ−p1 . Next, w̃w2w′ belongs to L′ and therefore
has the form

w̃w2w′ = λ3λ
n
4λ
−1
3 λ−k1 = λ3λ

p+1
4 λ−1

3 w1w
2w′,

for some k, l ∈ N and w1 ∈ S∗. Because we are working over a Cayley graph, the labels
of different edges starting from u0 must be different and thus the first generators for λ4

and λ−1
3 are different. Therefore, n = p + 1. This means, λ−k1 = w1w

2w′. Finally, as λ−k1

is strictly longer than λ−p1 , k > p + 1. But, this would imply λ3λ
p+1
4 λ−1

3 λ−k1 belongs to
L( G,S) and is not self-avoiding, which is a contradiction.

Proposition 54. Let G be a finitely generated group. If there exists S such that G,S is
sofic, then G has more than one end, and Γ(G,S) only has thin ends of size at most 2.

Proof. Let G be a finitely generated group with generating set S such that G,S is sofic.
By Theorem 38, G is not a torsion group and therefore contains non-elliptic elements
when seen as a subgroup of Aut(Γ(G,S)). If G is one-ended, then Γ(G,S) has one end,
which by Lemmas 51 and 53 is a contradiction. Thus, Γ(G,S) has at least one thin
end. By Lemma 50, every thin end of size m implies the existence of a strip of size m in
Γ(G,S). By Lemma 53, these strips – and consequently their corresponding ends – must
have size at most 2. Finally, if Γ(G,S) had a thick end, from the proof of Theorem 4.1
in [51] we know it contains a one-ended subgraph. As before, this contradicts Lemmas 51
and 53.

The converse of this proposition is not true: the group F2 × Z/2Z along with the
generating set S = {a±1, b±1, s}, given by the presentation 〈a, b, s | s2, [a, s], [b, s]〉, has
thin ends of size two, but its skeleton is not sofic. Similar to what we did in Proposition
47, we can use the Pumping Lemma on the words san+1sa−n, with n ∈ N, which are in
L( G,S) through the configuration b∞san+1sa−nb∞. The next Lemma captures this idea
in the general setting.
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Lemma 55. Let G be a finitely generated group. If there exists S such that G,S is sofic
and Γ(G,S) has an end of size 2, then G is virtually Z.

Proof. Suppose Γ(G,S) has more than two ends, and take ω+ the end of size 2. By
Lemma 50, there exists g ∈ G and Q a g-strip of size 2. Then, there exist two g-invariant
disjoint double rays π1 = (vi)i∈Z and π2 = (ui)i∈Z. In the induced subgraph P (ω+) we
can find a path p linking, without loss of generality, v0 and u0 with no other vertices
from π1 and π2. Furthermore, the walks belonging to {gn · p | n ∈ Z} do not intersect
each other. This way, the graph spanned by π1, π2 and p is a periodic subdivision of the
infinite 2-ladder, Q′ ⊆ Q. Now, take an end ω1 6= ω± and π3 = (v′i)i∈N a ray defining ω1.
As π3 defines an end different from ω+ there exists a smallest N ∈ N such that v′i /∈ Q′
for all i > N . Because Γ(G,S) is transitive, we can take without loss of generality v′N to
be equal to some uk with k ∈ N, placed between g · u0 and g2 · u0. This is all represented
in Figure 9.

u0

v0 g · v0

g · u0

uk = v′N

g4 · v0

g4 · u0

π3

Figure 9: The periodic subdivision of the 2-ladder with the configuration x highlighted
in red and blue. The word λ2λ

3
3λ
−1
2 λ−2

1 is marked in blue, whereas the infinite prefix and
suffix of x are marked in red.

Let us label the different sections of the bi-infinite ladder. We denote by λ1 the label
of the path from u0 to g · u0, λ2 the label from u0 to v0, λ3 the label from v0 to g · v0, λ4

the label from g2 · u0 to uk, and λ ∈ SN the label of the ray (v′N+i)i∈N. Then, for every
n ∈ N and k < n the configuration

x = λ∞1 .λ2λ
n
3λ
−1
2 λ−k1 λ4λ ∈ SZ,

belongs to the skeleton. Then, λ2λ
n
3λ
−1
2 λ−k1 ∈ L( G,S) for all k < n. Notice that the

language given by L = {λ2λ
n
3λ
−1
2 λ−k1 | n, k ∈ N} is regular. Therefore, L′ = L ∩ L( G,S)

is regular as we assume G,S is sofic. Take p > 0 the pumping length of L′ given by
the Pumping Lemma. If we pump the word λ2λ

p+1
3 λ−1

2 λ−p1 is in L′ as we did in the
proof of Lemma 53, we conclude that there must exist n, k ∈ N with k > n such that
λ2λ

n
3λ
−1
2 λ−k1 ∈ L′, which is a contradiction as it is not self-avoiding.

Virtually Z groups have a very rigid structure. Epstein and Wall [17, 60] (see [47] for
our current formulation) showed that a group is virtually Z if and only if it is of one of
the following forms:
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1. Z nφ F , for some finite group F and φ ∈ Aut(F ),

2. G1 ∗F G2, for G1, G2 and F finite groups such that [G1 : F ] = [G2 : F ] = 2.

Groups of the second type, G1 ∗F G2, can be shown to be isomorphic to D∞ nψ F
for some homomorphism ψ : D∞ → Aut(F ) (see [21, Section 1.3]). Furthermore, every
element g ∈ Z nφ F can be uniquely expressed as ftn with f ∈ F , n ∈ Z and t the free
generator of Z. Similarly, every element g ∈ D∞nφF can be uniquely expressed as frnsb

with f ∈ F , n ∈ Z, b ∈ {0, 1}, and r and s generators for D∞ = 〈r, s | s2, rsrs〉.

Lemma 56. Let G = H nφ F be a group such that F is a finite group, and H is either
Z or D∞. Then, for any generating set S the ends of the Cayley graph Γ(G,S) have size
at least |F |.

Proof. Take G as in the hypothesis. We will tackle the case when H = Z and H = D∞
separately.

Case 1: H = Z:
Let S be a generating set for G. Then, there must exist at least one generator that

does not belong to F , which we call s. This generator, must have the form s = gtn for
some g ∈ F and n ∈ Z, and is thus a torsion-free element of the group. For each element
f ∈ F we define the ray πf = (f, fs, . . . , fsi, . . . ). These rays are all pair-wise disjoint
because s is torsion-free. Therefore, the end D(s) has size at least |F |.

Case 2: H = D∞:
Let S be a generating set for G. As before, there must exist at least one generator that

does not belong to F , which we call s. If s is of the form grn, it is a torsion free element,
and by the argument for the previous case, D(s) has size at least |F |. Suppose then that
all elements S \F are of the form grns. Because S is a generating set, S \F must contain
at least two elements which we will name s = grns and s′ = g′rms. Without loss of
generality take n > m. Then, ss′ is the torsion-free element g1r

n−m for some g1 ∈ F . As
before, for each f ∈ F define the ray πf = (f, fs, fss′, . . . , f(ss′)i, . . . ). Let us prove
these rays are disjoint. If f(ss′)k = f ′(ss′)l for f, f ′ ∈ F and k, l ∈ N, then (ss′)k−l ∈ F
has torsion, which is a contradiction. On the other hand, if f(ss′)ks = f ′(ss′)l for f, f ′ ∈ F
and k, l ∈ N, then r(n−m)(k+l)+ns ∈ F , which is also a contradiction. Thus, the rays πf
are disjoint and therefore D(ss′) has size at least |F |.

Proposition 57. Let G be a virtually Z group. Then, there exists S such that G,S is
sofic if and only if G is either Z, Z× Z/2Z, D∞ × Z/2Z or D∞.

Proof. Let G be a virtually Z group. Then, G is of the form HnφF for H ∈ {Z,D∞} and
F a finite group. Joining Lemma 56 and Lemma 53, if G,S is sofic for some generating
set S, |F | 6 2. If |F | = 1, then G is either Z or D∞. If |F | = 2, then F ' Z/2Z and φ is
the trivial automorphism. In this case G is either Z× Z/2Z or D∞ × Z/2Z.
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Conversely, we already know Z and D∞ admit sofic skeletons as they are plain groups.
Similarly, by Lemma 45, Z×Z/2Z admits a sofic skeleton. Finally, if we take the presen-
tation for D∞ × Z/2Z given by 〈a, b, s | a2, b2, s2, (sa)2, (sb)2〉 the corresponding Cayley
graph is the bi-infinite ladder, and therefore Lemma 45 can be adapted to show its skeleton
is sofic.

We now have all the ingredients to characterize groups that admit a sofic skeleton.

Proof of Theorem 52. Let G be a finitely generated group that admits a sofic skeleton
through the generating set S. From Lemma 9, Γ(G,S) has only thin ends, all of size at
most 2. If all ends are of size 1, G is a plain group. Next, if G has at least one end of
size 2, it is virtually Z by Lemma 55. Then, by Proposition 57 G is either Z × Z/2Z or
D∞×Z/2Z. For the other direction, if G is a plain group by Theorem 26 it admits a sofic
skeleton (as SFTs are sofic). Finally, if G is either Z×Z/2Z or D∞×Z/2Z, Proposition 57
tells us G admits a sofic skeleton.

6 Approximating Entropy and Connective Constants

6.1 Bridges and Periodic Points

We saw in Corollary 31 that the connective constant of SFT skeletons of plain groups
can be approximated by their periodic points. This is also the case of irreducible sofic
shifts [49, Theorem 4.3.6.]. The natural question that follows is if this is possible for
skeletons that are not sofic. Clisby showed [14] that this is the case for Zd with standard
generating set, which by Theorem 52 do not define sofic skeletons. Instead of periodic
configurations, Clisby used the term endless SAWs. By using the notion of a bridge,
introduced by Hammersley and Welsh [36] and latter expanded upon by Grimmett and
Li [29], we can generalize this result to any Cayley graph admitting a particular kind of
graph height function.

Definition 58. Let Γ be an infinite, connected, locally finite, quasi-transitive graph. A
graph height function (h,H) is composed of a function h : VΓ → Z and a subgroup
H 6 Aut(Γ) acting quasi-transitively on Γ such that

• (H-difference-preserving) for all u, v ∈ VΓ and g ∈ H

h(g · v)− h(g · u) = h(v)− h(u),

• for all u ∈ VΓ, there exists v, v′ ∈ VΓ adjacent to u such that h(v) < h(u) < h(v′).

A bridge with respect to the height function (h,H) is a self-avoiding walk π =
(e0, . . . , en−1) that verifies

h(i(e0)) < h(t(ei)) 6 h(t(en−1)),

for all i ∈ {0, . . . , n− 1}.
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Example 59. Take G = Z2 with the standard generating set {a±, b±}. If we look at the
generators as a = (1, 0) and b = (0, 1), we define the map h(g) = m for g = (m,n) ∈
Z2. This function defines a graph height function with respect to H = Z2 acting by
left-translations. Further still, any elementary amenable group admits a graph height
function [29].

Lemma 60. Let G be a finitely generated group with generating set S. If Γ(G,S) admits
a graph height function (h,H), then G,S contains periodic configurations. Moreover, if π
is a bridge such that i(π) and t(π) lie in the same H-orbit, then λ(π)∞ ∈ G,S.

Proof. Let π and π′ be two bridges such that t(π) = i(π′). Then, the concatenation of
both paths, ππ′, is a bridge. Furthermore, for every g ∈ H, g · π is also a bridge, as h is
H-difference-preserving.

Now, let R be a finite right transversal for the action of H on Γ(G,S). Take a bridge
π such that i(π), t(π) ∈ H · r with r ∈ R. If i(π) = h1 · r and t(π) = h2 · r, because h is
H-difference-preserving, h2h

−1
1 · π is a bridge starting at h2 · r. We can then concatenate

π with h2h
−1
1 ·π to create a bridge, which we denote by π2, whose label is given by λ(π)2.

This process can be iterated indefinitely to obtain a bi-infinite SAW whose label is given
by λ(π)∞.

Next, take a bridge π such that i(π) ∈ H · r1 and t(π) ∈ H · r2, with r1, r2 ∈ R distinct
representatives. Up to translation by an element from H, we can take any bridge starting
at a vertex in H · r2, say π1 and concatenate to π to obtain a new bridge ππ1. Such
a bridge exists by the definition of a graph height function as there must exist at least
one vertex v next to r2 such that h(r2) < h(v). Similarly, we can take any bridge in the
H-orbit of t(π1), which we denote π2, and concatenate it –up to translation by H– to
ππ1. Iterating this process, for all n ∈ N we obtain a bridge ππ1 · · · πn. Because there is
a finite number of H-orbits, we will have i 6 j such that i(πi), t(πj) belong to the same
H-orbit. Then, as previously stated π′ = πiπi+1 · · · πj is a bridge that can be iterated to
obtain the periodic point λ(π′)∞.

We saw in Theorem 38 that torsion groups have aperiodic skeletons. By the previous
lemma, graph height functions imply the existence of periodic points. Combining these
two facts we can state the following.

Theorem 61 (Theorem C). The Cayley graphs of infinite torsion f.g. groups do not
admit graph height functions.

This generalizes a result from Grimmett and Li who showed that the Grigorchuk
group (which is an infinite torsion group) does not admit a graph height function, and
more generally, Cayley graphs of torsion groups with certain conditions on the stabilizer
of the identity [28]. However, the converse of the previous theorem does not hold, as
they also showed that the Higman group, which is torsion-free [39], does not admit graph
height functions.

Bridges are particularly useful to compute the connective constant of graphs, and have
been used to obtain exact expressions for the constant (for instance, [15]). Let us denote by
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bn,g the number of bridges of length n starting at g ∈ G, and bn = ming∈G bn,g. As stated
in the proof of Lemma 60, we can concatenate bridges with corresponding endpoints.
Then, bnbm 6 bn+m and by Fekete’s sub-additive Lemma, there exists a constant β(Γ, h),
where Γ = Γ(G,S), such that

β(Γ, h) = lim
n→∞

n
√
bn.

This process can be done for a larger class of graphs [29], and helps us compute
connective constants.

Theorem 62 (General Bridge Theorem [50]). Let Γ be an infinite, connected, locally
finite, quasi-transitive graph. Then, if Γ admits a graph height function (h,H),

µ(Γ) = max{β(Γ, h), β(Γ,−h)}.

Using this result, we can find conditions under which periodic points approximate the
connective constant. In other words, periodic points from G,S approximate its entropy.

Theorem 63 (Theorem D). Let G be a finitely generated group and S a finite generating
set. If Γ(G,S) admits a graph height function (h,H) such that H acts transitively on
Γ(G,S), then

µ(G,S) = lim
n→∞

n
√
en,

where en denotes the number of periodic points in G,S of period n ∈ N.

Proof. Let us denote by b̄n the minimum over all g ∈ G of the number of bridges of length
n starting at g for the graph height function (H,−h). Because H acts transitively on
Γ(G,S), there is a single H-orbit. Thus, by Lemma 60, every bridge for h and −h can be
iterated to obtain a periodic point. This means,

max{bn, b̄n} 6 en 6 cn.

By taking the nth root and limit, Theorem 62 implies,

µ(G,S) = max{β(Γ, h), β(Γ,−h)} 6 lim
n→∞

n
√
en 6 µ(G,S).

Examples of Cayley graphs with a graph height function (h,H) such that H acts
transitively are given by Cayley graphs that admit strong graph height function where
H = G. Strong graph height functions are graph functions where we also ask for H to
be a finite index subgroup of G, and to act by left translations [28]. A class of groups
that admit such functions are groups with strictly positive first Betty number [27]. Other
sufficient conditions can be found in [31].

6.2 Lower Bounds with Self-Avoiding Polygons

What other methods can we use when graph height functions are not available? We will
make use of a counting argument popularized by Rosenfeld [56] to find lower bounds on
the connective constant by studying the sets of forbidden patterns defining the skeleton.
Rosenfeld found the following criterion for subshifts.
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Theorem 64 ([57], Corollary 12). Let A be a finite alphabet and F ⊆ A+ a set of
connected forbidden patterns. If there exists a positive real number β > 1 such that

|A| > β +
∑
n>0

fnβ
1−n,

then α(XF) > β, where fn is the number of forbidden patterns of length n, that is,
fn = |F ∩ An|.

Therefore, we can use the different forbidden patterns we have found so far for the
skeleton to find lower bounds for the connective constant. From Lemma 23, we know the
set of SAPs along with words of the form ss−1 define a set of forbidden patterns for the
skeleton.

Proposition 65. Let (G,S) be an infinite finitely generated group. If there exists a
positive real number β such that

|S| − 1 > β +
∑
n>0

ρnβ
1−n,

then µ(G,S) > β, where ρn the number of SAPs of length n, that is, ρn = |OG,S ∩ Sn|.

The proof of the proposition is essentially the same as the one from [57], but we add
it for completion.

Proof. Let Lk be the set of SAWs of length k ∈ N. We prove by induction that |Lk| >
β|Lk−1|, for β > 1 as in the statement. Notice |L0| = 1 as it only contains the empty
word, and |L1| = |S|. By hypothesis, β 6 |S|, and therefore |L1| > β|L0|.

Suppose our statement is true up to some k > 0. In particular, for j 6 k

|Lk−j| 6
|Lk|
βj

.

Now, because every SAW from Lk can be extended in |S| − 1 ways, we have that

|Lk+1| = (|S| − 1)|Lk| − |B|,

where B is the set of SAWs that when extended generate a path of length k + 1 that
self-intersects. Notice that if u ∈ B, it can be written in the form u = u′v, where v is a
SAP, as u is the extension by one non-backtracking letter of a SAW. We define the sets
Bv = {u ∈ B | u = u′v} to obtain the upper bound |B| 6

∑
v∈OG,S

|Bv|. Then, every

word in Bv is determined by a word from Lk+1−|v|, namely u′. Therefore,

|Bv| 6 |Lk+1−|v|| 6
|Lk|
β|v|−1

,

and consequently,

|B| 6 |Lk|
∑

v∈OG,S

β1−|v| = |Lk|
∑
n>1

ρnβ
1−n
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Finally, joining all the formulas we obtain:

|Lk+1| >

(
(|S| − 1)−

∑
n>1

ρnβ
1−n

)
|Lk| > β|Lk|.

Our induction proven, we can iterate the identity to obtain |Lk| > βk, and thus µ(G,S) >
β.

This approach is different from the usual use of self-avoiding polygons to approximate
µ(G,S) in the literature. We define the asymptotic growth rate for SAPs through,

µSAP = lim sup
n→∞

√
ρn.

It has been shown that µSAP = µ(G,S) for Euclidean lattices [34, 45], but µSAP < µ(G,S)
for many non-euclidean lattices, including some Cayley graphs of surface groups [55].

7 Geodesic skeletons

A geodesic is always a self-avoiding walk. It is then natural to see what changes when we
restrict a group’s skeleton to bi-infinite geodesics. We define the geodesic skeleton of G
with respect to S by,

g
G,S = {x ∈ G,S | ∀w v x,w′ =G w : |w| 6 |w′|}.

This subshift is contained in the skeleton G,S, and the locally admissible language
given by its defining forbidden patterns is Geo(G,S). In particular, g

G,S is generated by
taking Geo(G,S)c as the set of forbidden patterns. As was the case with the skeleton,
g
G,S is empty if and only if the group is finite; this is due to Watkins who showed that

every transitive infinite graph contains a bi-infinite geodesic [61].

SFT Geodesics We have a sufficient condition for the geodesic skeleton to be an SFT
coming from a result by Gilman, Hermiller, Holt and Rees [23] that characterizes virtually
free groups. They showed that for a finitely generated group G, there exists a finite
generating set S such that Geo(G,S) is k-locally excluding, that is, there exists a set F
of words of length k such that a word w ∈ S∗ is geodesic if no factor of length k belongs
to F , if and only if G is virtually free. An immediate consequence is the following.

Proposition 66. Let G be a virtually free group. Then, there exists S such that g
G,S is

a SFT.

Effective Geodesics

Lemma 67. Let G be a recursively presented group. Then, g
G,S is effective for every

finite generating set S.

the electronic journal of combinatorics 31(4) (2024), #P4.24 37



Proof. We describe a co-semi-algorithm for Geo(G,S). By using an enumeration for the
word problem, we can test every word w′ of length |w′| < |w| to see if they define the
same group element, i.e. w′w−1 =G 1G. If one such w′w−1 appears in the enumeration,
we know w is not geodesic and accept. If w is not geodesic, w′w−1 will eventually be
enumerated, for some w′ of shorter length. When w ∈ Geo(G,S) the algorithm never
stops.

In other words, the effectiveness of g
G,S is a consequence of the fact that a recursively

enumerable word problem implies that the language of geodesics is co-recursively enumer-
able.

Sofic Geodesics By their definition, we can easily obtain many examples of sofic
geodesic skeletons.

Proposition 68. Let G be a finitely generated group and S a generating set. If Geo(G,S)
is regular, then g

G,S is sofic.

Because the complement of a regular language is regular, when Geo(G,S) is regular
then g

G,S is defined by a regular set of forbidden words, and is therefore sofic. We know
that Geo(G,S) is regular for all generating sets in abelian groups [54] and hyperbolic
groups [18]. Also, there exists at least one generating set such that Geo(G,S) is regular
for virtually abelian groups [54], Coxeter groups [42] and other classes [13, 40, 3].

In order to find a characterization of groups that admit a geodesic skeleton that is
sofic, we must look at geodesics that are not extendable. These elements are precisely
the ones known as dead-ends. An element g ∈ G is a dead-end with respect to the
generating set S if for all s ∈ S we have d(1G, gs) 6 d(1G, g).

Proposition 69. Let G be a finitely generated group along with a generating set S. Then,
g
G,S is sofic and the language of geodesics defining dead-ends is regular if and only if

Geo(G,S) is regular.

Proof. Denote the language of geodesics defining dead-ends by D. If Geo(G,S) is regular,
then D is regular: it suffices to take the minimal deterministic finite state automaton with
a single sink state for Geo(G,S) and only keep accepting states where every outgoing
transitions goes to the sink state. Furthermore, g

G,S is sofic by Proposition 68.
Conversely, suppose g

G,S is sofic and D is regular. To prove Geo(G,S) is regular in
this case, we make use of the following notation: for a language L ⊆ S∗, consider the
languages L−1 = {w | w−1 ∈ L} and

mL = {w ∈ S∗ | ∃v, u ∈ S∗ : vwu ∈ L}.

Notice that if L is regular, then both L−1 and mL are regular. We claim that

Geo(G,S) = L( g
G,S) ∪mD ∪m(D−1).
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Indeed, in this case Geo(G,S) is regular as it is the union of regular languages. Let us
prove the equality. First, it is clear that L( g

G,S) ⊆ Geo(G,S). Next, because inverses of
geodesics are geodesic, and factors of geodesics are geodesics, we have mD ∪m(D−1) ⊆
Geo(G,S). This proves the left inclusion. For the converse, take w ∈ Geo(G,S). If w is
bi-infinitely extendable as a geodesic, then w ∈ L( g

G,S). If w is not bi-extendable, there
exist v1, v2 ∈ S∗ such that v1wv2 ∈ Geo(G,S), and v1wv2s /∈ Geo(G,S) or for all s ∈ S
sv1wv2 /∈ Geo(G,S). This means w is either a factor of dead-end (first case) or a factor
of the inverse of a dead-end (second case). Therefore, w ∈ mD ∪m(D−1). This proves
our claim, and concludes the proof.

Corollary 70. Let G be any finitely generated group with generating set S, and Z = 〈t〉.
Then, g

G∗Z,S∪{t±1} is sofic if and only if Geo(G,S) is regular.

Proof. The language of dead-ends of G ∗ Z is empty as any geodesic can be extended by
t±1. Furthermore, any geodesic in G∗Z can be decomposed as geodesics on G separated by
factors of the form t±n. Therefore, Geo(G∗Z, S∪{t±1}) is regular if and only if Geo(G,S)
is regular. By Proposition 69 this happens if and only if g

G∗Z,S∪{t±1} is sofic.

We pose the following question for sofic geodesic skeleton.

Question 71. Is g
G,S sofic if and only if Geo(G,S) is regular?

Periodic Geodesics As was the case for the skeleton (Theorem 38), the aperiodicity
of the geodesic skeleton also characterizes torsion groups.

Theorem 72. Let G be a finitely generated group. Then, G is a torsion group if and only
if g

G,S is aperiodic for every (any) generating set S.

Proof. Suppose G contains a torsion-free element g. Then, by Proposition 37 for any
generating set S, there exists k > 1 and w ∈ S∗ a geodesic for gk such that w∞ ∈ g

G,S,
which is a periodic configuration. Conversely, if there exists a periodic configuration
x = w∞ ∈ g

G,S for some generating set S, then g = w is a torsion-free element.

7.1 Entropy and Connective Constant for Geodesics

The objective of this section is to define an analog of the connective constant for geodesics.
This relies on finding the asymptotic growth rate of geodesics of a given length. The
geodesic growth of G with respect to S is the map ΓG,S : N→ N given by

ΓG,S(n) = |{w ∈ Geo(G,S) | |w| 6 n}|.

Because this function is sub-multiplicative we can define the geodesic connective
constant of the Cayley graph Γ(G,S) as

µg(G,S) = lim
n→∞

n

√
ΓG,S(n).
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As we saw in Remark 16, µg(G,S) can be shown to be equal to the growth rate of the
number of geodesics of length exactly n. Thus, the geodesic growth is an upper bound on
the complexity of g

G,S. Because Geo(G,S) is the set of locally admissible words for the
geodesic skeleton, we use Lemma 1 to obtain an expression for the entropy.

Lemma 73. Let G be a finitely generated group along with a generating set S. Then,

h( g
G,S) = log(µg(G,S)).

In other words, the geodesic connective constant is equal to the connective constant of
bi-extendable geodesics.

Same as with the connective constant, the geodesic version is a non-negative rational
power of a Perron number when g

G,S is sofic, and a right-computable number when g
G,S is

effective. It is also a lower bound of the connective constant, that is, µg(G,S) 6 µ(G,S).
This inequality may be strict: graphs may have geodesic connective constant equal to 1
without being finite. As shown in [10], the virtually Z2 group H = 〈a, t | [a, tat−1], t2〉,
has geodesic growth of order O(n3) and therefore,

µg(H, {a, t}) = 1 <
√

3 6 µ(H, {a, t}).

This is also the case for lattices with known (or well-approximated) connective constants.

Proposition 74. The geodesic connective constants of the square grid, ladder graph and
hexagonal grid are as follows:

• µg(Z2) = 2,

• µg(L) = 1,

• µg(H) =
√

2.

Proof.

• For the square lattice, we know that ΓZ2,{a,b}(n) 6 2n+3 which implies h( g
Z2,{a,b}) =

log(2), as g
G,S contains the full-shift {a, b}Z.

• Recall that the ladder graph L is the Cayley graph of Z×Z/2Z with generating set
{t, s}, where s2 =G ε and t is the generator for Z. In this case, the geodesic growth
is given by Γ(n) = n2 + 3n when n > 2. Thus, the geodesic connective constant is
1.

• Also recall that the hexagonal grid H is the Cayley graph of the Coxeter group Ã2

with generating set {a, b, c} (see Example 7). From [5] we know that the generating
function for the geodesic growth of Ã2 in this case is given by

f(z) =
2z3 + z2 + z + 1

(1− z)(1− 2z2)
.

Thus, the geodesic connective constant is given by the reciprocal of the smallest
zero of the denominator, which is

√
2.
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On the other hand, if we take the infinite dihedral group D∞ with the generating set
S = {a, b} as seen in Example 6, we have that µ(D∞, S) = µg(D∞, S) = 1.

Question 75. Under which conditions µ(G,S) = µg(G,S)? Under which conditions is
the inequality strict?
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