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Abstract

The Q-polynomial property is an algebraic property of distance-regular graphs,
that was introduced by Delsarte in his study of coding theory. Many distance-
regular graphs admit the Q-polynomial property. Only recently the Q-polynomial
property has been generalized to graphs that are not necessarily distance-regular.
In [J. Combin. Theory Series. A, 205:105872, 2024] it was shown that the graphs
arising from the Hasse diagrams of the so-called attenuated space posets are Q-
polynomial. These posets could be viewed as q-analogs of the Hamming posets,
which were not studied in that paper. The main goal of this article is to fill this
gap by showing that the graphs arising from the Hasse diagrams of the Hamming
posets are Q-polynomial.

Mathematics Subject Classifications: 05E99, 05C50.

1 Introduction

Distance-regular graphs represent a significant class of finite, undirected, connected graphs
within Algebraic Combinatorics, a field extensively explored in references [1, 2, 3, 4].
These graphs exhibit a remarkable combinatorial regularity that can be analyzed using
various algebraic methodologies, including linear algebra techniques such as exploring
eigenvalues/eigenvectors of the adjacency matrix [3, Section 4.1], tridiagonal pairs [9];
geometric approaches like linear programming bounds [5] and root systems [3, Chapter
3]; special functions such as orthogonal polynomials [14, 20], and hypergeometric series [1,
Chapter 3]; and representation theory, where structures like the subconstituent algebra
[16, 17, 18, 21] and the q-Onsager algebra [10, 11] play pivotal roles.
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Many distance-regular graphs admit an algebraic property called the Q-polynomial
property. This property was introduced by Delsarte in his seminal work on coding theory
[5], and extensively investigated thereafter [1, 2, 3, 4, 16, 17, 18].

Let Γ be a Q-polynomial distance-regular graph. For each vertex x of Γ there exists
a certain diagonal matrix A∗ = A∗(x), known as the dual adjacency matrix of Γ with
respect to x. The eigenspaces of A∗ are the subconstituents of Γ with respect to x. The
adjacency matrix A of Γ and the dual adjacency matrix A∗ are related as follows: the
matrix A acts on the eigenspaces of A∗ in a (block) tridiagonal fashion, and A∗ acts
on the eigenspaces of A likewise [21, Section 13]. In [22], Terwilliger used this property
of Q-polynomial distance-regular graphs to extend the Q-polynomial property to graphs
that are not necessarily distance-regular. To do this, (i) he dropped the assumption
that Γ is distance-regular; (ii) he dropped the assumption that every vertex of Γ has a
dual adjacency matrix (instead he required that one distinguished vertex of Γ has a dual
adjacency matrix); (iii) he replaced the adjacency matrix of Γ by a weighted adjacency
matrix.

As the Q-polynomial property of general graphs has only been defined recently, there
are not a lot of examples of non-distance-regular graphs that are Q-polynomial. To our
best knowledge, there are only two (infinite) families of Q-polynomial graphs, available in
the literature, that are not distance-regular. The first one is a family of graphs associated
with the projective geometry LN(q), see [22]. The second one is a family of graphs arising
from the Hasse diagrams of the so-called Attenuated Space posets Aq(N,M) [23]. The
attenuated space posets could be viewed as q-analogs of the Hamming posets, which were
not studied in [23]. The main goal of this paper is to fill this gap by showing that the
Hasse diagram of the Hamming poset (viewed as an undirected graph) is Q-polynomial.
To describe our result we first give an alternative definition of these graphs.

Let Γ denote a connected graph with vertex set X and edge set E . Fix a vertex
x ∈ X, and define Ef = E \ {yz | ∂(x, y) = ∂(x, z)}. Observe that the graph Γf = (X, Ef )
is bipartite. The graph Γf is called the full bipartite graph of Γ with respect to x. Let
D,n > 2 denote positive integers and S be a set with n elements. The Hamming graph
H(D,n) has vertex set SD (that is, the set of the ordered D-tuples of elements of S, or
sequences of length D from S). Two vertices are adjacent if and only if they differ in
precisely one coordinate; that is, if their Hamming distance is one. The main result of this
paper is that the full bipartite graph of the Hamming graph H(D,n) is Q-polynomial.

General ideas of our proofs follow ideas from [23]. In particular, a key feature that
allows us to provide a Q-polynomial structure for H(D,n)f is a certain equation involving
adjacency matrix A of H(D,n)f and a certain diagonal matrix A∗ (which will later turn
out to be a dual adjacency matrix of H(D,n)f ) - see [23, Proposition 8.6] and Theorem
17 of this paper. However to prove this result we utilize a different tool - we extensively
use the fact, that H(D,n)f is uniform in the sense of Terwilliger [15]. In our future
paper we plan to generalize this approach to an arbitrary uniform graph. To prove that
H(D,n)f is Q-polynomial, we also compute the eigenvalues of H(D,n)f , together with
their multiplicities, which is a result of independent interest. As already mentioned above,
there are only two (infinite) families of Q-polynomial graphs, available in the literature,
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that are not distance-regular. Therefore, at this stage of research, providing additional
examples of such graphs is also very relevant, and so this is yet another contribution of
this paper.

Our paper is organized as follows. We recall preliminary definitions and results in
Sections 2, 3, and 4. In Section 4, we also define our candidate for the dual adjacency
matrix A∗ of the full bipartite graph of H(D,n). We prove that the adjacency matrix A
of the full bipartite graph of H(D,n) and the matrix A∗ satisfy a certain equation (which
is cubic in A and linear in A∗) in Section 5. We then compute the eigenvalues of A in
Section 6. In Section 7, we prove our main result.

2 Terwilliger algebras and the Q-polynomial property

In this section, we will introduce the terminology and notation needed to define the
concept of the Terwilliger algebra of a graph and the associated Q-polynomial property.
Throughout this paper, we consider a finite, undirected, connected graph Γ = (X, E),
where X denotes the vertex set and E denotes the edge set. The graph Γ is assumed to
be simple, meaning it has no loops or multiple edges.

The distance between any two vertices x, y ∈ X, denoted by ∂(x, y), is defined as the
length of a shortest path connecting x and y. The eccentricity of a vertex x, denoted
by ε = ε(x), is the maximum distance from x to any other vertex in Γ. The diameter
D = D(Γ) of the graph Γ is defined as the maximum eccentricity among all vertices in X.

Additionally, for a vertex x ∈ X and for each integer i, let Γi(x) represent the set of
vertices in Γ that are exactly at distance i from x. It is important to note that Γi(x) is
empty if and only if i < 0 or i > ε(x), and Γ(x) = Γ1(x) specifically denotes the set of
neighbors of x.

A graph Γ is termed regular if all its vertices share the same valency, meaning there
exists a non-negative integer k such that |Γ(x)| = k for every vertex x ∈ X. In such cases,
we refer to Γ as being regular with valency k, or simply k-regular.

Let MatX(R) denote the matrix algebra over the real numbers R, consisting of all
matrices whose rows and columns are indexed by X. Let I ∈ MatX(R) denote the identity
matrix and V denotes the vector space over R consisting of all column vectors whose
coordinates are indexed by X. We observe that MatX(R) acts on V by left multiplication.
We call V the standard module. For every y ∈ X, let ŷ denote the element of V with 1 in
the y-coordinate and 0 in all other coordinates. We observe that {ŷ | y ∈ X} is a basis
for V .

Definition 1. By a weighted adjacency matrix of Γ we mean a matrix A ∈ MatX(R)
that has (z, y)-entry given by

(A)zy =

{
6= 0 if ∂(z, y) = 1,
0 if ∂(z, y) 6= 1

(y, z ∈ X).

For the rest of this section, we fix a weighted adjacency matrix A of Γ that is diago-
nalizable over R. Let M denote the subalgebra of MatX(R) generated by A. The algebra
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M is called the adjacency algebra of the graph Γ, generated by A. Observe that M is
commutative. Let D+1 denote the dimension of the vector space M . Since A is diagonal-
izable, the vector space M has a basis {Ei}Di=0 such that

∑D
i=0Ei = I and EiEj = δi,jEi

for 0 6 i, j 6 D. We call {Ei}Di=0 the primitive idempotents of A. Since A ∈ M , there
exist real numbers {θi}Di=0 such that A =

∑D
i=0 θiEi. The scalars {θi}Di=0 are mutually

distinct since A generates M . We have AEi = θiEi = EiA for 0 6 i 6 D. Note that

V =
D∑
i=0

EiV (direct sum).

For 0 6 i 6 D the subspace EiV is an eigenspace of A, and θi is the corresponding
eigenvalue. For notational convenience, we assume Ei = 0 for i < 0 and i > D.

Next we discuss the dual adjacency algebras of Γ. To do that, we fix a vertex x ∈ X for
the rest of this section. Let ε = ε(x) denote the eccentricity of x, that is, ε = max{∂(x, y) |
y ∈ X}. For 0 6 i 6 ε, let E∗i = E∗i (x) denote the diagonal matrix in MatX(R) with
(y, y)-entry given by

(E∗i )yy =

{
1 if ∂(x, y) = i,
0 if ∂(x, y) 6= i

(y ∈ X).

We call E∗i the i-th dual idempotent of Γ with respect to x [16, p. 378]. We observe that
(ei)

∑ε
i=0E

∗
i = I; (eii) E∗>i = E∗i (0 6 i 6 ε); (eiii) E∗iE

∗
j = δijE

∗
i (0 6 i, j 6 ε). It

follows that {E∗i }εi=0 is a basis for a commutative subalgebra M∗ = M∗(x) of MatX(R).
The algebra M∗ is called the dual adjacency algebra of Γ with respect to x [16, p. 378].
Note that for 0 6 i 6 ε we have E∗i V = Span{ŷ | y ∈ X, ∂(x, y) = i}, and

V = E∗0V + E∗1V + · · ·+ E∗εV (direct sum).

The subspace E∗i V is known as the i-th subconstituent of Γ with respect to x. For conve-
nience we set E∗i = 0 for i < 0 and i > ε. By the triangle inequality, for adjacent y, z ∈ X
the distances ∂(x, y) and ∂(x, z) differ by at most one. Consequently,

AE∗i V ⊆ E∗i−1V + E∗i V + E∗i+1V (0 6 i 6 ε).

Next we discuss the Q-polynomial property.

Definition 2. (See [21, Definition 20.6].) A matrix A∗ ∈ MatX(R) is called a dual adja-
cency matrix of Γ (with respect to x and the ordering {Ei}Di=0 of the primitive idempotents)
whenever A∗ generates M∗ and

A∗EiV ⊆ Ei−1V + EiV + Ei+1V (0 6 i 6 D).

Definition 3. (See [21, Definition 20.7].) We say that the ordering {Ei}Di=0 is Q-
polynomial with respect to x whenever there exists a dual adjacency matrix of Γ with
respect to x and {Ei}Di=0.

the electronic journal of combinatorics 31(4) (2024), #P4.25 4



Definition 4. (See [21, Definition 20.8].) We say that A is Q-polynomial with respect to
x whenever there exists an ordering of the primitive idempotents of A that is Q-polynomial
with respect to x.

Assume that Γ has a dual adjacency matrix A∗ with respect to x and {Ei}Di=0. Since
A∗ ∈ M∗, there exist real numbers {θ∗i }εi=0 such that A∗ =

∑ε
i=0 θ

∗
iE
∗
i . The scalars

{θ∗i }εi=0 are mutually distinct since A∗ generates M∗. We have A∗E∗i = θ∗iE
∗
i = E∗iA

∗ for
0 6 i 6 ε. We mentioned earlier that the sum V =

∑ε
i=0E

∗
i V is direct. For 0 6 i 6 ε

the subspace E∗i V is an eigenspace of A∗, and θ∗i is the corresponding eigenvalue. As
we investigate the Q-polynomial property, it is helpful to bring in the Terwilliger algebra
[16, 17, 18]. The following definition is a variation on [16, Definition 3.3].

The Terwilliger algebra of Γ with respect to x and A, denoted by T = T (x,A), is the
subalgebra of MatX(R) generated by M and M∗. Observe that T is generated by the
weighted adjacency matrix A and the dual idempotents E∗i (0 6 i 6 ε), and hence it is
finite-dimensional. If Γ has a dual adjacency matrix A∗ with respect to x and {Ei}Di=0,
then T is generated by A and A∗, see [22, Lemma 2.6]. The following result will also be
useful.

Lemma 5. (See [22, Lemma 2.7].) We have E∗iAE
∗
j = 0 if |i − j| > 1 (0 6 i, j 6 ε).

Assume that Γ has a dual adjacency matrix A∗ with respect to x and {Ei}Di=0. Then,
EiA

∗Ej = 0 if |i− j| > 1 (0 6 i, j 6 D).

By a T -module we mean a subspace W of V such that BW ⊆ W for every B ∈ T .
Let W denote a T -module. Then, W is said to be irreducible whenever it is nonzero and
contains no submodules other than 0 and W .

Let W denote an irreducible T -module. Observe that W is a direct sum of the
non-vanishing subspaces E∗iW for 0 6 i 6 ε. The endpoint of W is defined as r :=
r(W ) = min{i | 0 6 i 6 ε, E∗iW 6= 0}, and the diameter of W as d := d(W ) =
|{i | 0 6 i 6 ε, E∗iW 6= 0}| − 1. It turns out that E∗iW 6= 0 if and only if r 6 i 6 r + d
(0 6 i 6 ε), see [22, Lemma 2.9]. The module W is said to be thin whenever dim(E∗iW ) 6
1 for 0 6 i 6 ε. We say that two T -modules W and W ′ are T -isomorphic (or simply
isomorphic) whenever there exists a vector space isomorphism σ : W → W ′ such that
(σB −Bσ)W = 0 for all B ∈ T .

3 The lowering, flat, and raising matrices

Recall our graph Γ = (X, E) from Section 2. For the rest of this paper, we will assume
that A is the (usual) adjacency matrix of Γ: the (z, y)-entry of A is equal to 1 if y, z are
adjacent, and is equal to 0 otherwise. Fix a vertex x of Γ, and let ε denote the eccentricity
of x. Let E∗i (0 6 i 6 ε) be the dual idempotents with respect to x, and let T = T (x,A)
denote the corresponding Terwilliger algebra. We now recall certain matrices in T .
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Definition 6. With reference to the notation above, define L = L(x), F = F (x), and
R = R(x) in MatX(R) by

L =
ε∑

i=1

E∗i−1AE
∗
i , F =

ε∑
i=0

E∗iAE
∗
i , R =

ε−1∑
i=0

E∗i+1AE
∗
i .

We refer to L, F , and R as the lowering, the flat, and the raising matrix with respect to
x, respectively.

Note that, by definition, L, F,R ∈ T , F = F>, R = L>, and A = L+F +R. Observe
that for y, z ∈ X the (z, y)-entry of L equals 1 if ∂(z, y) = 1 and ∂(x, z) = ∂(x, y)−1 and 0
otherwise. The (z, y)-entry of F is equal to 1 if ∂(z, y) = 1 and ∂(x, z) = ∂(x, y), and is 0
otherwise. Similarly, the (z, y)-entry of R equals 1 if ∂(z, y) = 1 and ∂(x, z) = ∂(x, y) + 1,
and is 0 otherwise. Consequently, for v ∈ E∗i V (0 6 i 6 ε) we have

Lv ∈ E∗i−1V, Fv ∈ E∗i V, Rv ∈ E∗i+1V. (1)

Observe also that Γ is bipartite if and only if F = 0. We now recall a connection between
matrices R,F, L and certain walks in Γ. The concept of shape of a walk with respect to a
fixed vertex was introduced in [7]. Now, we recall the definition of this concept together
with some immediate consequences.

Definition 7. Let Γ = (X, E) be a graph. Pick x, y, z ∈ X, and let P = [y =
x0, x1, . . . , xj = z] denote a yz-walk. The shape of P with respect to x is a sequence
of symbols t1t2 · · · tj, where for 1 6 i 6 j we have ti ∈ {`, f, r}, and such that ti = r
if ∂(x, xi) = ∂(x, xi−1) + 1, ti = f if ∂(x, xi) = ∂(x, xi−1), and ti = ` if ∂(x, xi) =
∂(x, xi−1) − 1. The number of yz-walks of the shape t1t2 · · · tj with respect to x will be
denoted as t1t2 · · · tj(y, z), using exponential notation for the shapes containing several
consecutive identical symbols.

Referring to Definition 7, pick a vertex x ∈ X and, for each integer 0 6 i 6 ε(x),
consider the set Γi(x). For a vertex y ∈ Γi(x) and another vertex z ∈ Γi+1(x), let
P = [y, x1, x2, x3, x4, x5, z] denote a yz-walk as depicted in Figure 1. We note that the
shape of P with respect to x is `rr`fr, or more concisely, `r2`fr.

The following Lemma is a consequence of elementary matrix multiplication and com-
ments below the Definition 6 (see also [7, Lemma 4.2]).

Lemma 8. With reference to the notation above, pick y, z ∈ X and let m be a positive
integer. Then, the following hold.

(i) The (z, y)-entry of Lm is equal to the number `m(y, z) with respect to x.

(ii) The (z, y)-entry of LmR is equal to the number r`m(y, z) with respect to x.

(iii) The (z, y)-entry of RLm is equal to the number `mr(y, z) with respect to x.

(iv) The (z, y)-entry of LRL is equal to the number `r`(y, z) with respect to x.
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x · · ·· · · · · ·

Γ0(x) Γi−1(x) Γi(x) Γi+1(x) Γd(x)

y

z

x1
x2

x3
x4

x5

Figure 1: A yz-walk in a graph Γ with the shape `r2`fr with respect to x.

We finish this section with a definition and a couple of comments.

Definition 9. With reference to the notation above, define Ef = E \ {yz | ∂(x, y) =
∂(x, z)}. Observe that the graph Γf = (X, Ef ) is bipartite. The graph Γf is called the
full bipartite graph of Γ with respect to x.

With reference to Definition 9, let ε = ε(x) denote the eccentricity of x and let V
denote the standard module for Γ. Since the vertex set of Γ is equal to the vertex set
of Γf , observe that V is also the standard module for Γf . Recall that T is generated
by the adjacency matrix A and the dual idempotents E∗i (0 6 i 6 ε). Furthermore, we
have A = L+F +R, where L, F , and R are the corresponding lowering, flat, and raising
matrices, respectively. Let Af denote the adjacency matrix of Γf and let Tf = Tf (x,Af )
be the Terwilliger algebra of Γf with respect to x. As Γf is bipartite, the flat matrix
of Γf with respect to x is equal to the zero matrix. Moreover, the lowering and the
raising matrices of Γf with respect to x are equal to L and R, respectively. It follows that
Af = L + R. For 0 6 i 6 ε, note also that the i-th dual idempotent of Γf with respect
to x is equal to E∗i . Consequently, the algebra Tf is generated by the matrices L,R, and
E∗i (0 6 i 6 ε). Furthermore, the dual adjacency algebra of Γ with respect to x coincides
with the dual adjacency algebra of Γf with respect to x.

We conclude this section with a discussion of the uniform property of bipartite graphs.
This property was initially introduced for graded partially ordered sets [15], and its defi-
nition was subsequently extended to bipartite distance-regular graphs in [13], and further
generalized to arbitrary bipartite graphs in [6].

Definition 10. A parameter matrix U = (eij)16i,j6ε is defined to be a tridiagonal matrix
with entries in C, satisfying the following properties:

(i) eii = 1 (1 6 i 6 ε),

(ii) ei,i−1 6= 0 for 2 6 i 6 ε or ei−1,i 6= 0 for 2 6 i 6 ε, and

(iii) the principal submatrix (eij)s6i, j6t is nonsingular for 1 6 s 6 t 6 ε.
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For convenience, we write e−i := ei,i−1 for 2 6 i 6 ε and e+i := ei,i+1 for 1 6 i 6 ε− 1. We
also define e−1 := 0 and e+ε := 0.

Referring to the notation mentioned above, a uniform structure of Γ with respect to
x is a pair (U, f) where f = {fi}εi=1 is a vector in Cε, such that

e−i RL
2 + LRL+ e+i L

2R = fiL

is satisfied on E∗i V for 1 6 i 6 ε, where E∗i ∈ T are the dual idempotents of Γ with respect
to x. If the vertex x is clear from the context, we will refer to the uniform structure of Γ
rather than specifying the uniform structure of Γ with respect to x.

4 Distance-regular graphs and Hamming graphs

In this section, we review some definitions and basic concepts regarding distance-regular
graphs and Hamming graphs.

Let Γ = (X, E) denote a graph with diameter D. Fix x ∈ X, and let ε denote the
eccentricity of x. Assume that y ∈ Γi(x) (0 6 i 6 ε). By the triangle inequality we have
∂(x, y) ∈ {i− 1, i, i+ 1}. We therefore define the following numbers:

ai(x, y) = |Γi(x) ∩ Γ(y)| (0 6 i 6 ε),

bi(x, y) = |Γi+1(x) ∩ Γ(y)| (0 6 i 6 ε),

ci(x, y) = |Γi−1(x) ∩ Γ(y)| (0 6 i 6 ε).

Note that bε(x, y) = c0(x, y) = 0. We say that x is distance-regularized (or that Γ is
distance-regular around x) if the numbers ai(x, y), bi(x, y), and ci(x, y) do not depend on
the choice of y ∈ Γi(x) (0 6 i 6 ε). In this case, these numbers are called the intersection
numbers of x, and we abbreviate ai(x) = ai(x, y), bi(x) = bi(x, y), and ci(x) = ci(x, y).

We say that Γ is distance-regular whenever every vertex z of Γ is distance-regularized,
and the intersection numbers ai(z), bi(z), and ci(z) do not depend on the choice of z. In
this case we abbreviate ai = ai(z), bi = bi(z), and ci = ci(z). Note that in a distance-
regular graph, the eccentricity of every vertex is equal to D. We have ci 6= 0 for 1 6 i 6 D
and bi 6= 0 for 0 6 i 6 D − 1. Observe that Γ is regular with valency k = b0 and
ci +ai + bi = k for 0 6 i 6 D. Moreover, Γ is bipartite if and only if ai = 0 for 0 6 i 6 D.
Note that, if Γ is a distance-regular graph, then its full bipartite graph Γf = Γf (x) is
distance-regular around x (but not distance-regular unless Γ is bipartite).

We now recall the definition of Hamming graphs. Let S denote a set with n > 2
elements and let D be a positive integer. The Hamming graph H(D,n) has vertex set SD

(that is, the set of the ordered D-tuples of elements of S, or sequences of length D from
S). Two vertices are adjacent if and only if they differ in precisely one coordinate; that is,
if their Hamming distance is one. The Hamming graph H(D,n) is distance-regular with
intersection numbers

ai = i(n− 2), bi = (D − i)(n− 1), ci = i, (0 6 i 6 D).
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Recall that the Hamming graph H(D,n) is bipartite if and only if n = 2. For the context
of this paper, we will assume that n > 3. For the rest of this paper, we adopt the following
notation.

Notation 11. Let D,n > 3 be positive integers and H(D,n) be the Hamming graph
with vertex set X. Recall that H(D,n) is distance-regular with intersection numbers
bi = (D − i)(n − 1) and ci = i. Fix x ∈ X, and let Γ = H(D,n)f (x) denote the full
bipartite graph of H(D,n) with respect to x. Let E∗i (0 6 i 6 D) denote the dual
idempotents of Γ with respect to x and M∗ denotes the dual adjacency algebra of Γ with
respect to x. Let A denote the (usual) adjacency matrix of Γ and T = T (x,A) denote the
corresponding Terwilliger algebra. Let L = L(x) and R = R(x) denote the corresponding
lowering and raising matrix, respectively. For 0 6 i 6 D define θ∗i = D(n − 1) − ni and
let A∗ ∈ MatX(R) be a diagonal matrix defined by

(A∗)yy = θ∗∂(x,y) (y ∈ X).

We now turn our attention to the uniform property in the context of Hamming graphs.
Furthermore, in line with Notation 11, we established in [6] that Γ is uniform with respect
to x in the sense of [15]. In particular, the following lemma holds.

Lemma 12. With reference to Notation 11 we have

−1

2
RL2 + LRL− 1

2
L2R = (n− 1)L.

Proof. The proof follows immediately from [6, Theorem 9.5] (or [15, Theorem 3.2]) and
the comments after Definition 9.

Moreover, since Γ is uniform with respect to x, the following is true.

Lemma 13. (See [15, Theorem 2.5 and Theorem 3.3].) With reference to Notation 11, let
W denote an irreducible T -module with endpoint r and diameter d. Then, the following
(i)–(iii) hold.

(i) W is thin.

(ii) Let W ′ denote an irreducible T -module with endpoint r′ and diameter d′. Then, W
and W ′ are isomorphic if and only if r = r′ and d = d′.

(iii) W has a basis {wi}r+d
i=r such that the following hold:

a) wi ∈ E∗iW (r 6 i 6 r + d);

b) Lwr = 0 and Lwr+i = wr+i−1 (1 6 i 6 d);

c) Rwr+i = xi+1wr+i+1, where xi+1 = xi+1(d) = (i+1)(n−1)(d−i) (0 6 i 6 d−1),
and Rwr+d = 0.
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With reference to Notation 11, the algebra T is semi-simple since the matrix A is sym-
metric. Consequently, the standard module V is a direct sum of irreducible T -modules.
Let W be an irreducible T -module. By the multiplicity of W we mean the number of
irreducible T -modules in this direct sum, that are isomorphic to W . Assume that W has
endpoint r and diameter d. Since the isomorphism class of W is determined by r and d,
we will denote the multiplicity of W by mult(r, d).

Lemma 14. (See [15, Theorem 3.3].) With reference to Notation 11, the following (i),
(ii) are equivalent.

(i) There exists an irreducible T -module W with the endpoint r and diameter d.

(ii) 0 6 r 6 r + d 6 D 6 2r + d.

Furthermore, let 0 6 r 6 r + d 6 D 6 2r + d. Then,

mult(r, d) =
(D + 1)r(n− 2)2r+d−D(d+ 1)

(D − r − d)!(2r + d−D)!(D + 1)

=
d+ 1

D − r + 1

(
D

2D − 2r − d

)(
2D − 2r − d
D − r − d

)
(n− 2)2r+d−D,

(2)

where for a nonnegative integer a we define (a)r = 1 if r = 0 and (a)r = a(a− 1) · · · (a−
r + 1) if r > 0.

Proposition 15. With reference to Notation 11, the matrix A∗ generates the dual adja-
cency algebra M∗.

Proof. It is well-known that A∗ is a dual adjacency matrix of the Hamming graph H(D,n),
see for example [8]. Therefore, A∗ generates the dual adjacency algebra of H(D,n) with
respect to x. As the dual adjacency algebra of H(D,n) with respect to x coincides with
the dual adjacency algebra of Γ with respect to x, the result follows.

5 A relationship between the matrices A and A∗

With reference to Notation 11, in this section, we prove that a so-called tridiagonal relation
[19, Equation (131)] holds for the pair (A,A∗). In other words, we show that A,A∗ satisfy
a certain equation, which is cubic in A and linear in A∗. Recall from Notation 11 that we
have θ∗i − θ∗j = n(j− i). For y, z ∈ X we denote by γ3(y, z) the number of walks of length
3 between y and z in Γ.

Lemma 16. With reference to Notation 11, pick y, z ∈ X. Then, the following (i)–(iii)
hold.

(i) (A3A∗ − A∗A3)zy = γ3(y, z)(θ
∗
∂(x,y) − θ∗∂(x,z)).

(ii) (AA∗A2 − A2A∗A)zy =
∑

[y,v,w,z]

(θ∗∂(x,w) − θ∗∂(x,v)), where the sum is over all 3-walks

[y, v, w, z] between y and z.
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(iii) (AA∗ − A∗A)zy is (θ∗∂(x,y) − θ∗∂(x,z)) if ∂(z, y) = 1, and 0 otherwise.

Proof. The equations hold using elementary matrix multiplication, the definition of the
matrix A∗, and the fact that the (v, w)-entry of Ai is equal to the number of walks of
length i between v and w.

Theorem 17. With reference to Notation 11, the pair (A,A∗) satisfies the following
tridiagonal relation:

A3A∗ − A∗A3 + 3(AA∗A2 − A2A∗A) = 4(n− 1)(AA∗ − A∗A). (3)

Proof. We will prove that for all z, y ∈ X the (z, y)-entries of both sides of the equation
(3) agree. It is clear from Lemma 16 that, if ∂(z, y) > 4, then the (z, y)-entries of both
sides of the equation (3) equal 0. Next, if z = y or ∂(z, y) = 2, then there are no walks
of length 3 between y and z (recall that Γ is bipartite), and so again, by Lemma 16, the
(z, y)-entries of both sides of the equation (3) equal 0.

In what follows, we will assume that ∂(x, z) < ∂(x, y); if ∂(x, z) > ∂(x, y), then the
proof is analogous. Assume first that ∂(x, z) = i, ∂(x, y) = i+ 3 for some 0 6 i 6 D − 3,
and that ∂(y, z) = 3. Since H(D,n) is distance-regular and Γ was obtained from H(D,n)
by deleting only the edges that are “flat” with respect to x, it follows that all geodesics
between y and z in H(D,n) remain geodesics between y and z in Γ. It follows that there
are exactly c3c2 = 6 walks of length 3 between y and z in Γ, that is, γ3(y, z) = 6. Thus,
Lemma 16 implies that

(A3A∗ − A∗A3)zy = 6(θ∗i+3 − θ∗i ) = −18n,

(AA∗A2 − A2A∗A)zy = 6(θ∗i+1 − θ∗i+2) = 6n,

and (AA∗−A∗A)zy = 0. We again find that the (z, y)-entries of both sides of the equation
(3) agree.

It remains to consider the case when ∂(x, z) = i, ∂(x, y) = i+1 for some 0 6 i 6 D−1,
and ∂(z, y) ∈ {1, 3}. Note that in this case we can have exactly three possible shapes of
walks of length 3 between y and z in Γ, namely walks of shapes `2r, `r` and r`2. Let us
abbreviate a = `2r(y, z), b = `r`(y, z) and c = r`2(y, z). Recall also that by Lemma 8 we
have that a = (RL2)zy, b = (LRL)zy and c = (L2R)zy, and that by Lemma 12 we have

−1

2
RL2 + LRL− 1

2
L2R = (n− 1)L.

The above comments now yield

−1

2
a+ b− 1

2
c =

{
n− 1 if ∂(z, y) = 1,
0 otherwise.

(4)

On the other hand, using Lemma 8 we find that the (z, y)-entry of the left-hand side of
(3) is equal to

−n(a+ b+ c) + 3(a(θ∗i−1 − θ∗i ) + b(θ∗i+1 − θ∗i ) + c(θ∗i+1 − θ∗i+2)) =

−n(a+ b+ c) + 3(na− nb+ nc) = n(2a− 4b+ 2c).
(5)
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Using (4) we obtain

n(2a− 4b+ 2c) =

{
−4n(n− 1) if ∂(z, y) = 1,
0 otherwise.

This shows that the (z, y)-entries of both sides of the equation (3) agree also in this case,
thus completing the proof.

Remark 18. With reference to Notation 11, it is easy to see that the dual version of
equality (3) also holds, namely

((A∗)3A− A(A∗)3) + 3(A∗A(A∗)2 − (A∗)2AA∗) = n2(A∗A− AA∗).

To see that, one should simply compare the (y, z)-entry of the left hand side with the
(y, z)-entry of the right hand side of the above equation.

6 The eigenvalues of A

With reference to Notation 11, in this section, we compute the eigenvalues of Γ. In
order to do that, we first look at the action of the adjacency matrix A on the irreducible
T -modules.

Recall that by Lemma 14, an irreducible T -module with endpoint r and diameter d
exists if and only if 0 6 r 6 r+d 6 D 6 2r+d. Assume that 0 6 r 6 r+d 6 D 6 2r+d
and let W denote an irreducible T -module with endpoint r and diameter d. Recall the
basis {wi}r+d

i=r of W from Lemma 13(iii). Let Ar,d denote the matrix representing the action
of A on W with respect to this basis. Then, by Lemma 13(iii) and since A = R + L, we
have

Ar,d =



0 1

x1 0 1 0
. . . . . . . . .

0 xd−1 0 1
xd 0

 . (6)

Let fi denote the characteristic polynomial of the submatrix of Ar,d obtained by removing
the last d+1− i rows and columns, for 1 6 i 6 d+1. Therefore, fd+1 is the characteristic
polynomial of Ar,d. It is straightforward to check that the polynomials fi satisfy the
recurrence formula

fi+1(t) = tfi(t)− xifi−1(t) = tfi(t)− i(n− 1)(d− i+ 1)fi−1(t),

with f0(t) = 1, f1(t) = t. The following theorem provides an explicit expression for the
polynomial fd+1.

the electronic journal of combinatorics 31(4) (2024), #P4.25 12



Theorem 19. With reference to Notation 11, assume that 0 6 r 6 r + d 6 D 6 2r + d
and consider the matrix Ar,d as defined in (6). Then, the polynomials fi (0 6 i 6 d+ 1),
defined above, satisfy

fi(t) = (2
√
n− 1)iPi

(
t

2
√
n− 1

+
d

2

)
,

where Pi(t) is the normalized Krawtchouk polynomial of degree i (see [12, Equation (9.11.4)]
with p = 1

2
for a definition of these polynomials). In particular, the characteristic polyno-

mial of Ar,d is equal to

fd+1(t) = (2
√
n− 1)d+1Pd+1

(
t

2
√
n− 1

+
d

2

)
.

Proof. By [12, Equation (9.11.4)], the normalized Krawtchouk polynomials (for p = 1
2
)

satisfy the recurrence formula

tPi(t) = Pi+1(t) +
d

2
Pi(t) +

i

4
(d− i+ 1)Pi−1(t), (7)

with P0(t) = 1 and P1(t) = t− d/2. Define the polynomials gi(t) as follows

gi(t) = (2
√
n− 1)iPi

(
t

2
√
n− 1

+
d

2

)
.

We will now show that fi(t) = gi(t) for 0 6 i 6 d + 1. To do that, we first replace t
by t

2
√
n−1 + d

2
in (7) and multiply the obtained equality by (2

√
n− 1)i+1 on both sides.

Precisely, we get(
t

2
√
n− 1

+
d

2

)
Pi

(
t

2
√
n− 1

+
d

2

)
(2
√
n− 1)i+1 =Pi+1

(
t

2
√
n− 1

+
d

2

)
(2
√
n− 1)i+1

+
d

2
Pi

(
t

2
√
n− 1

+
d

2

)
(2
√
n− 1)i+1

+
i

4
(d− i + 1)Pi−1

(
t

2
√
n− 1

+
d

2

)
(2
√
n− 1)i+1.

In other words,

(t+ d
√
n− 1)gi(t) = gi+1(t) + d

√
n− 1gi(t) + i(n− 1)(d− i+ 1)gi−1(t),

or equivalently,
tgi(t) = gi+1(t) + i(n− 1)(d− i+ 1)gi−1(t).

Therefore, the polynomials fi and gi satisfy the same recurrence formula. Furthermore,
note that

g0(t) = 1 and g1(t) = (2
√
n− 1)P1

(
t

2
√
n− 1

+
d

2

)
= 2
√
n− 1

t

2
√
n− 1

= t,

showing that f0(t) = g0(t) = 1 and f1(t) = g1(t) = t. This implies that fi(t) = gi(t) for
all i. In particular,

fd+1(t) = gd+1(t) = (2
√
n− 1)d+1Pd+1

(
t

2
√
n− 1

+
d

2

)
.
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Consider a linear map on a finite-dimensional vector space. This map is called
multiplicity-free whenever the map is diagonalizable, and each eigenspace has dimension
one.

Corollary 20. With reference to Notation 11, assume that 0 6 r 6 r + d 6 D 6 2r + d,
and consider the matrix Ar,d defined in (6). Then, Ar,d is multiplicity-free with eigenvalues

{
√
n− 1(d− 2j) ; 0 6 j 6 d}.

Proof. By Theorem 19, the characteristic polynomial of Ar,d is equal to

fd+1(t) = (2
√
n− 1)d+1Pd+1

(
t

2
√
n− 1

+
d

2

)
,

where Pd+1(t) is the normalized Krawtchouk polynomial of degree d + 1. It is known
that the normalized Krawtchouk polynomial of degree d + 1 factorizes as Pd+1(x) =
x(x− 1) · · · (x− d); see for example [12, p. viii]. Pick 0 6 j 6 d. Then, from Theorem 19
we have that

fd+1(
√
n− 1(d− 2j)) = (2

√
n− 1)d+1Pd+1(d− j) = 0.

Therefore, the roots of fd+1 are {
√
n− 1(d−2j) ; 0 6 j 6 d}. As these roots are pairwise

different and Ar,d has dimension (d+ 1)× (d+ 1), this concludes the proof.

Theorem 21. With reference to Notation 11, the matrix A is diagonalizable with eigen-
values θi (0 6 i 6 2D), where

θi =
√
n− 1(D − i).

Proof. Observe that the matrix A is diagonalizable because the standard module V is a
direct sum of irreducible T -modules and A is diagonalizable on each irreducible T -module.
Let θ denote an eigenvalue of A. We first claim that θ = θi for some 0 6 i 6 2D. We
mentioned that V is a direct sum of irreducible T -modules. So, θ is an eigenvalue for
the action of A on some irreducible T -module W . Let d denote the diameter of W . By
Corollary 20, we have that θ =

√
n− 1(d − 2j) =

√
n− 1(D − (D − d + 2j)) for some

0 6 j 6 d. Let us denote i = D − d + 2j and observe that i > 0 since j > 0 and d 6 D
by Lemma 14. On the other hand side, we have that 2j 6 2d 6 D + d, which shows that
i = D − d+ 2j 6 2D. This proves the claim.

Conversely, we show that θi is an eigenvalue of A for 0 6 i 6 2D. Let W0 denote the
irreducible T -module with endpoint 0 and diameter D. Note that this module exists by
Lemma 14. By Corollary 20 and since the standard module is a direct sum of irreducible
T -modules, we have that θi with 0 6 i 6 2D, i even, are eigenvalues of A. Similarly, let
W1 denote an irreducible T -module with endpoint 1 and diameter D − 1. Note that this
module exists by Lemma 14. By Corollary 20, the eigenvalues of the matrix A1,D−1 are√
n− 1(D − 1 − 2j) =

√
n− 1(D − (2j + 1)) (0 6 j 6 D − 1), which are exactly the

numbers θi with 0 6 i 6 2D and i odd. Since the standard module is a direct sum of
irreducible T -modules, we have that θi with 0 6 i 6 D, i odd, are eigenvalues of A. This
finishes the proof.
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For the sake of completeness, in our next result, we give the multiplicities of the eigenvalues
of A.

Proposition 22. With reference to Notation 11 and Theorem 21, the following holds for
0 6 i 6 2D: the multiplicity mi of the eigenvalue θi is

mi =
∑

|D−i|6d6D
d−D+i even

∑
06r6D−d

mult(r, d),

where mult(r, d) are as given in (2).

Proof. Recall the matrices Ar,d defined in (6). Observe that θi is an eigenvalue of Ar,d if
and only if there exists an integer j (0 6 j 6 d), such that D− i = d−2j, or equivalently,
j = d−D+i

2
. Since the standard module is a direct sum of irreducible T -modules and the

matrices Ar,d (0 6 r 6 r + d 6 D 6 2r + d) are multiplicity-free by Corollary 20, the
multiplicity of θi will be equal to ∑

mult(r, d),

where the sum is over all pairs (r, d) with 0 6 r 6 r + d 6 D 6 2r + d and such that θi
is an eigenvalue of Ar,d. The result follows.

7 A Q-polynomial structure for A

With reference to Notation 11, in our last section, we prove that the matrix A∗ is actually a
dual adjacency matrix of A (with respect to certain orderings of the primitive idempotents
of A). To do that, first recall the eigenvalues

θi =
√
n− 1(D − i) (0 6 i 6 2D)

of the matrix A. Let Vi denote the eigenspace of θi and let Ei denote the corresponding
primitive idempotent. The following (i)–(iv) are well known.

(i) EiEj = δijEi (0 6 i, j 6 2D),

(ii)
2D∑
i=0

Ei = I,

(iii) EiA = θiEi = AEi (0 6 i 6 2D),

(iv) A =
2D∑
i=0

θiEi.

Recall also that for notational convenience we assume that Ei = 0 (and therefore also
Vi = ∅) for i < 0 and i > 2D.
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Proposition 23. With reference to Notation 11 and the notation above, we have that
EiA

∗Ej = 0 for 0 6 i, j 6 2D and |i− j| /∈ {0, 2}.

Proof. Multiplying the equation (3) on the left by Ei and on the right by Ej and using
the above-mentioned properties of primitive idempotents, we obtain

(θi − θj)
(
(θi − θj)2 − 4(n− 1)

)
EiA

∗Ej = 0.

Since we have

(θi − θj)
(
(θi − θj)2 − 4(n− 1)

)
=
√
n− 1(n− 1)(i− j)(i− j − 2)(i− j + 2),

the result follows.

Lemma 24. With reference to Notation 11 and the notation above, the following holds:

A∗Vi ⊆ Vi−2 + Vi + Vi+2 (0 6 i 6 2D).

Proof. Using the above properties of the primitive idempotents Ei together with the result
from Proposition 23, we get

A∗Vi = A∗EiV =
2D∑
j=0

EjA
∗EiV = Ei−2A

∗EiV + EiA
∗EiVi + Ei+2A

∗EiVi

⊆ Vi−2 + Vi + Vi+2.

We are now ready to prove our main result.

Theorem 25. With reference to Notation 11 and the notation above, the matrix A∗ is a
dual adjacency matrix of Γ with respect to x and with respect to the following orderings
of primitive idempotents:

(i) E0, E2, . . . , E2D, E1, E3, . . . , E2D−1;

(ii) E1, E3, . . . , E2D−1, E0, E2, . . . , E2D.

Proof. The result follows immediately from Proposition 15 and Lemma 24.

Corollary 26. With reference to Notation 11 and the notation above, the adjacency
matrix A of Γ is Q-polynomial.

Proof. Immediately from Theorem 25.
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[7] B. Fernández and Š. Miklavič. On bipartite graphs with exactly one irreducible
T -module with endpoint 1, which is thin. European J. Combin., 97:103387, 2021.

[8] H. W. Huang. The Clebsch–Gordan Rule for U (sl2), the Krawtchouk Algebras
and the Hamming Graphs. Symmetry, Integrability and Geometry: Methods and
Applications, 19(0):17–19, 2023.

[9] T. Ito, K. Tanabe, and P. Terwilliger. Some algebra related to P -and Q-polynomial
association schemes, Codes and association schemes (Piscataway, NJ, 1999), 167-192.
DIMACS Ser. Discrete Math. Theoret. Comput. Sci, 56.

[10] T. Ito. TD-pairs and the q-Onsager algebra. Sugaku Expositions, 32(2):205–232,
2019.

[11] T. Ito and P. Terwilliger. The augmented tridiagonal algebra. Kyushu J. Math.,
64(1):81–144, 2009.

[12] R. Koekoek, P. A. Lesky, and R. F. Swarttouw. Hypergeometric orthogonal poly-
nomials. Springer, 2010.
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