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Abstract

We consider two decomposition problems in directed graphs. We say that a
digraph is k-bounded for some k ∈ Z>1 if each of its connected components contains
at most k arcs.

For the first problem, a directed linear forest is a collection of vertex-disjoint
directed paths and we consider the problem of decomposing a given digraph into a
k-bounded and an `-bounded directed linear forest for some fixed k, ` ∈ Z>1 ∪{∞}.
We give a full dichotomy for this problem by showing that it can be solved in
polynomial time if k+` 6 3 and is NP-complete otherwise. This answers a question
of Campbell, Hörsch, and Moore.

For the second problem, we say that an out-galaxy is a vertex-disjoint collection
of out-stars. Again, we give a full dichotomy of when a given digraph can be
arc-decomposed into a k-bounded and an `-bounded out-galaxy for fixed k, ` ∈
Z>1 ∪ {∞}. More precisely, we show that the problem can be solved in polynomial
time if min{k, `} ∈ {1,∞} and is NP-complete otherwise.

Mathematics Subject Classifications: 05C20, 05C70

1 Introduction

Given a graph G (resp. a digraph), we say that a collection (H1, . . . , Ht) of spanning
subgraphs (resp. subdigraphs) of G is a decomposition of G if (A(H1), . . . , A(Ht)) is a
partition of E(G) (resp. A(G)). Given two properties P1 and P2 on digraphs, a general
problem consists of asking whether a digraph decomposes into two subdigraphs H1, H2

such that Hi satisfies Pi. We refer the reader to [4] for an extensive study of such problems.
Given an undirected graph G, a classical decomposition problem asks for the minimum

integer t such that G admits a decomposition (H1, . . . , Ht) in which Hi is a forest for i ∈ [t].
This parameter is called the arboricity of G, and the following celebrated theorem by
Nash-Williams characterizes graphs with arboricity at most t.
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Theorem 1 (Nash-Williams [16]). For some positive integer t, a graph G decomposes
into t forests if and only if for every X ⊆ V (G), the subgraph of G induced by X contains
at most t · (|X| − 1) edges.

Although the condition in Theorem 1 involves an exponential family of vertex-sets,
it is well-known that one can actually compute the arboricity of a graph in polynomial
time.

An analogous problem has been defined for digraphs. A digraph is a branching if it is
an orientation of a forest in which every vertex has in-degree at most one. The directed
arboricity of a digraph D is then the minimum integer t for which D decomposes into
t branchings. Using the celebrated Edmonds’ Branching Theorem [10], Frank proved the
following characterization of digraphs with directed arboricity at most t.

Theorem 2 (Frank [11]). A digraph D decomposes into t branchings if and only if

• d−D(v) 6 t holds for every vertex v ∈ V (D), and

• the underlying graph G of D decomposes into t forests.

Theorem 2 together with the undirected result implies that the directed arboricity of
a digraph can be computed in polynomial time. A natural question is then to look at
the notion of arboricity when restricted to some classes of branchings. This is the topic
of this work, and we will consider both (bounded) directed linear forests and (bounded)
out-galaxies.

Recall that a directed linear forest is a vertex-disjoint union of directed paths. A
directed linear forest is k-bounded for some k ∈ Z>1 ∪ {∞} if each of its connected
components is a directed path of length at most k, where the length of a directed path
refers to its number of arcs. Given a digraph D, the minimum integer t such that D
decomposes into t directed linear forests is known as the directed linear-arboricity of
D, introduced by Nakayama and Peroche [15], see also [14]. For every integer k > 1, when
restricted to k-bounded directed linear forests, following the notion recently introduced
by Zhou et al. [18], we define the directed linear-k-arboricity of a given digraph D
to be the minimum integer t such that D decomposes into t k-bounded directed linear
forests. Clearly, the problem of decomposing into one k-bounded linear forest is trivial.
Further, the problem of decomposing into three or more directed linear forests generalizes
the 3-edge-colouring problem, so there is little hope to obtain positive algorithmic results
for this class of problems. We hence focus on the possibility of decomposing a digraph
into two bounded directed linear forests. We thus consider the following class of problems,
for which not much is known.

(k, `)-bounded directed linear forest decomposition ((k, `)-BDLFD)
Input: A digraph D
Question: Does D decompose into a k-bounded directed linear forest and an `-
bounded directed linear forest?
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In the following result, we settle the complexity of the problem above for all fixed
values of k and `, which answers a question raised by Campbell, Moore, and the first
author [7, Problem 3].

Theorem 3. For k, ` ∈ Z>1 ∪ {∞}, the (k, `)-BDLFD problem is solvable in polynomial
time when k + ` 6 3 and it is NP-complete when k + ` > 4.

Observe that it is straightforward that the (1,1)-BDLFD problem is solvable in polyno-
mial time: it asks whether the underlying graph of the input digraph is 2-edge-colourable.
The (∞,∞)-BDLFD problem has been shown to be NP-complete by Nakayama and Pe-
roche in [15, Theorem 3.2]. We prove the remaining cases in Section 3. Interestingly, the
dichotomy proved in Theorem 3 matches exactly the one proved for the corresponding
problem in undirected graph which was partially proved in [7] and partially proved by
Banerjee et al. in [3]. Notice also that the following result directly follows from Theorem 3
when k = `.

Corollary 4. For every integer k > 2, deciding whether the directed linear-k-arboricity
of a digraph is 2 is NP-complete.

An out-star is a branching in which at most one vertex has positive out-degree. An
out-galaxy is a collection of vertex-disjoint out-stars. Again, it is k-bounded for some
k ∈ Z>1 ∪ {∞} if each of its connected component contains at most k+ 1 vertices. Given
a digraph D, the minimum integer t such that D decomposes into t out-galaxies is known
as the directed star-arboricity of D, and has been introduced by Algor and Alon
in [1], see also [2, 13, 8]. Analogously to the linear-arboricity, for every integer k > 1,
when restricted to k-bounded out-galaxies, we obtain the notion of directed star-k-
arboricity. To the best of the authors’ knowledge, it has not been defined before. We
then consider the following class of problems, which includes a directed analogue of [7,
Problem 2]. The undirected version of the problem was solved in [3, Theorem 1.4].

(k, `)-bounded out-galaxy decomposition ((k, `)-BOGD)
Input: A digraph D
Question: Does D decompose into a k-bounded out-galaxy and an `-bounded out-
galaxy?

In the following result, we settle the complexity of the problem above for all fixed
values of k and `.

Theorem 5. (k, `)-BOGD is solvable in polynomial time when min{k, `} = 1 or k = ` =
∞. In every other case, it is NP-complete.

Again, we can observe that (1,1)-BOGD is easily solvable in polynomial time. We
prove the other cases in Section 4. Observe the following analogue of Corollary 4 for
star-arboricity.

Corollary 6. For every fixed k > 2, deciding if the directed star-k-arboricity of a digraph
is 2 is NP-complete.
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Outline of the paper. The paper is organised as follows. We first give our notation
on digraphs and recall some preliminary results in Section 2. Section 3 is devoted to
the proof of Theorem 3. We start by proving, in Section 3.1, that (k, `)-BDLFD reduces
to 2-SAT when k + ` 6 3, using some ideas which are similar to the ones of [7, Theo-
rem 2]. When both k and ` are integers, we prove the NP-completeness of (k, `)-BDLFD
when ` = 1 and k > 3 in Section 3.2 and its NP-completeness when min{k, `} > 2 in
Section 3.3. In both cases, our proof consists of building specific gadgets, called forcers,
which force the existence, in every decomposition, of a directed path of specific length
on a vertex. We then use these forcers to build larger gadgets that model variables and
clauses, hence allowing us to reduce satisfiability problems to (k, `)-BDLFD. Finally, we
prove the NP-completeness of (k, `)-BDLFD when one of {k, `} is equal to∞ by reducing
from hamiltonicity in 2-diregular digraphs. Section 4 is devoted to the proof of Theorem 5.
We first show in Section 4.1 that (∞,∞)-BOGD reduces to a 2-colourability problem. In
Section 4.2, we give a more involved proof that (1, k)-BOGD is solvable in polynomial
time when k ∈ Z>2 ∪ {∞}. The proof is based on a reduction to a matching problem in
undirected graphs and is also inspired by the proof of [7, Theorem 2]. We finally prove
the NP-completeness of (k, `)-BOGD for the remaining cases in Section 4.3 by reducing
from specific satisfiability problems.

2 Preliminaries

2.1 Notation on digraphs

Our notation follows [5]. For some integer k, we denote by Z>k the set of integers which
are not smaller than k. We use [k] for {1, . . . , k}. Let D be a digraph. The underlying
graph UG(D) of D is the graph obtained from D by removing the orientations. We also
say that D is an orientation of UG(D). Note that UG(D) may contain parallel edges.
A digraph is connected if its underlying graph is a connected graph. A connected
component of D is a subdigraph H of D such that UG(H) is a connected component of
UG(D). A digon in D is a pair of opposite arcs between two vertices. The out-degree,
d+D(v) (resp. in-degree, d−D(v)) of a vertex v ∈ V (D) is the number of arcs in A(D)
of the form vw (resp, uv) and the degree of v is dD(v) = d+D(v) + d−D(v). A digraph
D is k-diregular if every vertex has in-degree and out-degree equal to k. Given a set
X ⊆ V (D) of vertices, we denote by δ−D(X) the set of arcs with tail in V (D) − X and
head in X. We let δ+D(X) denote δ−D(V (D) −X). When X = {x} for a single vertex x,
with a slight abuse of notation we denote δ+D(X) and δ−D(X) respectively by δ+D(x) and
δ−D(x). A matching is a graph in which every vertex has degree at most one. A directed
matching is an orientation of a matching. A directed cycle is a connected digraph
in which every vertex has in-degree and out-degree exactly 1. A hamiltonian cycle in
a digraph D is a directed cycle of length |V (D)|. A directed path is obtained from a
directed cycle by the removal of exactly one arc. Let P be an orientation of a path. The
endvertices of P are the vertices of degree one in UG(P ). When P has length at least
two, the endarcs of P are the arcs incident to its endvertices. A connected branching
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is called an arborescence, and its unique vertex with in-degree 0 is called its root. We
now recursively define a graph called binary tree with a special vertex called its tip
that has an integer k > 0 as parameter called its depth. A binary tree of depth 0 only
consists of the tip. For k > 1, a binary tree of depth k is constructed from two disjoint
binary trees T1, T2 of depth k − 1 with tips x1, x2, respectively, by adding a vertex x and
the edges x1x and x2x. Further, x is the tip of the binary tree.

2.2 Known complexity results

We recall a collection of well-known complexity results that we will use all along the
paper.

Proposition 7. (see [12]) k-SAT is NP-complete for any k > 3.

Proposition 8. (see [12]) 2-SAT can be solved in polynomial time. Moreover, a satisfying
assignment for a positive instance can be found in polynomial time.

Proposition 9. (see [12]) We can check in polynomial time whether a given graph is
bipartite.

Proposition 10. (see [17]) Let G be a graph and Z ⊆ V (G). We can decide in polynomial
time whether G contains a matching covering Z. Moreover, if such a matching exists, it
can be computed in polynomial time.

Theorem 11 ([5, Theorem 6.1.2]). It is NP-complete to decide whether a 2-diregular
digraph contains a hamiltonian cycle.

For some integer k > 1, an instance of the Monotone Equitable k-SAT problem
(ME-k-SAT for conciseness) consists of a set of variables X and a set of clauses C each of
which contains exactly 2k + 1 non-negated variables and the question is whether there is
a truth assignment φ : X −→ {true, false} such that every clause in C contains at least
k true and k false variables with respect to φ. Note that ME-1-SAT is often referred
to as Monotone-Not-All-Equal-3-SAT.

Proposition 12 ([9, Proposition 4.1]). For every integer k > 1, ME-k-SAT is NP-
complete.

The (3, B2)-SAT problem is the restriction of 3-SAT in which every litteral appears
exactly twice.

Theorem 13 ([6, Theorem 1]). (3, B2)-SAT is NP-complete.

3 Decompositions into bounded directed linear forests

This section is dedicated to proving our results concerning the computational complexity
of decomposing a given digraph into two (bounded) directed linear forests. More precisely,
we prove Theorem 3.
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First, in Section 3.1, we prove the positive algorithmic result contained in Theorem 3,
namely the case that k + ` 6 3. The negative results are split into several parts. In
Section 3.2, we prove the complexity result for the case when both k and ` are finite
integers such that ` = 1 and k > 3. In Section 3.3, we consider the case that both k and
` are finite integers and min{k, `} > 2. Finally, the case that exactly one of the directed
linear forests is unbounded is considered in Section 3.4. Together with the result in [15]
and the fact that (1, 1)-BDLFD reduces to 2-colourability, we obtain Theorem 3.

Throughout this section, for k, ` ∈ Z>1 ∪ {∞}, a (k, `)-decomposition of a digraph
D is a decomposition (Fk, F`) of D such that Fk is a k-bounded directed linear forest, and
F` is an `-bounded directed linear forest.

3.1 Decomposing into a matching and a 2-bounded directed linear forest

This section is dedicated to proving the main positive algorithmic result on directed linear
forest decompositions. More precisely, we prove the following theorem.

Theorem 14. (2,1)-BDLFD is solvable in polynomial time.

The proof of Theorem 14 contains some ideas which are similar to the proof of [7,
Theorem 2]. We first need a collection of easy preliminary results, that we prove for
completeness, which deal with decompositions of orientations of paths and cycles.

Proposition 15. Let P be an orientation of a path of length at least 2, let a1, a2 be the
endarcs of P , and let A0 ⊆ {a1, a2}. Then we can decide in polynomial time whether there
exists a (2, 1)-decomposition (F2, F1) of P with {a1, a2} ∩ A(F1) = A0. Further, such a
decomposition can be constructed in polynomial time if it exists.

Proof. If the length of UG(P ) is exactly 2, we can solve the problem by a brute force
approach. We may hence suppose that UG(P ) is a path v1 . . . vq with q > 4. Let P ′ =
P − v1 and let a′1 be the arc in A(P ) whose endvertices are v2 and v3. We distinguish
three cases.

Case 1: A0 6= ∅.

Assume without loss of generality that a1 ∈ A0. There exists a (2, 1)-decomposition
(F2, F1) of P with {a1, a2} ∩ A(F1) = A0 if and only if there exists a (2, 1)-
decomposition (F ′2, F

′
1) of P ′ with {a′1, a2} ∩ A(F ′1) = A0 − a1. We can hence

recursively solve this smaller problem.

Case 2: A0 = ∅ and P [{v1, v2, v3}] is not a directed path.

In this case, there exists a (2, 1)-decomposition (F2, F1) of D with {a1, a2}∩A(F1) =
A0 if and only if there exists a (2, 1)-decomposition (F ′2, F

′
1) of P ′ with {a1, a2} ∩

A(F ′1) = A0 ∪ a′1. We can hence recursively solve this smaller problem.

Case 3: A0 = ∅ and P [{v1, v2, v3}] is a directed path.
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In this case, P has the desired decomposition. If q is even, we define (F2, F1) so
that A(F2) contains the orientation of vivi+1 for all odd i ∈ [q − 1] and A(F1) =
A(P )−A(F2). If q is odd, we define (F2, F1) so that A(F2) contains the orientation
of the edge v1v2 and the orientation of the edge vivi+1 for all even i ∈ [q − 1] and
A(F1) = A(P )−A(F2). In either case, we have that (F2, F1) is a (2, 1)-decomposition
of P .

Proposition 16. Let P be an orientation of a path of length at least 2, let a1, a2 be the
endarcs of P , and let A0 ⊆ {a1, a2}. Then we can decide in polynomial time whether
there exists a (2, 1)-decomposition (F2, F1) of P with A(F1) ∩ {a1, a2} = A0 and every
a ∈ {a1, a2} − A0 is the only arc in a connected component of F2. Further, such a
decomposition can be constructed in polynomial time if it exists.

Proof. If the length of UG(P ) is at most 3, we can solve the problem by a brute force
approach. We may hence suppose that UG(P ) is a path v1 . . . vq where q > 5. Let P ′ be
the unique connected component of P − ({a1, a2} − A0) with v2 ∈ V (P ′) and let a′1, a

′
2

be the endarcs of P ′ such that a′1 is incident to v2 and a′2 is incident to vq−1. Then
there exists a (2, 1)-decomposition (F2, F1) of P with A(F1) ∩ {a1, a2} = A0 and every
a ∈ {a1, a2} − A0 is the only arc in a connected component of F2 if and only if there
exists a (2, 1)-decomposition (F ′2, F

′
1) of P ′ with {a′1, a′2} ⊆ A(F ′1). By Proposition 15,

in polynomial time, we can decide the existence of such a decomposition of P ′ and find
such a decomposition if it exists in polynomial time. Clearly, this yields a constructive
polynomial time algorithm for finding the desired decomposition of P .

Proposition 17. Let P be an orientation of a path and let a be an endarc of P . Then
there exists a (2, 1)-decomposition (F2, F1) of P with a ∈ A(F1) and a (2, 1)-decomposition
(F ′2, F

′
1) of P with a ∈ A(F ′2) and a is the only arc in a connected component of F ′2.

Further, these decompositions can be constructed in polynomial time.

Proof. Let UG(P ) be a path v1 . . . vq such that a is the orientation of v1v2. Let (F2, F1) be
the decomposition of P defined so that A(F1) contains the orientation of vivi+1 for all odd
i ∈ [q− 1] and A(F2) = A(P )−A(F1). Further, let (F ′2, F

′
1) be defined by A(F ′2) = A(F1)

and A(F ′1) = A(F2). It is easy to see that (F2, F1) and (F ′2, F
′
1) have the desired properties.

The proof is clearly algorithmic.

Proposition 18. Let C be an orientation of a cycle v1 . . . vqv1. Then C admits a (2, 1)-
decomposition. Further, such a decomposition can be found in polynomial time.

Proof. If q is even, let the decomposition (F2, F1) of C be defined so that the orientation
of vivi+1 is contained in A(F2) for all odd i ∈ [q − 1] and A(F1) = A(C) − A(F2). It
is easy to see that (F2, F1) is a (2, 1)-decomposition of C. Now suppose that q is odd.
As

∑
v∈V (C) d

+
C(v) = |A(C)| is odd, there exists some v ∈ V (C) with d+C(v) = 1. By

symmetry, we may suppose that C[{v1, v2, v3}] is a directed path v1v2v3. We now consider
the decomposition (F2, F1) of C which is defined so that A(F2) contains v1v2 and vivi+1

for all even i ∈ [q − 1] and A(F1) = A(C) − A(F2). It is easy to see that (F2, F1) is a
(2, 1)-decomposition of C. Observe that this proof is clearly algorithmic.
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We are now ready to give the main proof of Theorem 14. It is based on excluding
a collection of configurations which clearly exclude the desired decomposition and then
reducing the problem to 2-SAT.

Proof of Theorem 14. Let D be an instance of (2, 1)-BDLFD. Clearly, if there exists some
v ∈ V (D) with dD(v) > 4, then D is a negative instance of (2, 1)-BDLFD. We may hence
suppose that dD(v) 6 3 for all v ∈ V (D). Let V3 denote the set of vertices v ∈ V (D)
with dD(v) = 3 and let V1 denote the set of vertices v ∈ V with dD(v) = 1. Observe that,
if there is some v ∈ V3 with max{d+D(v), d−D(v)} = 3, then D is a negative instance of
(2, 1)-BDLFD. We may hence suppose that max{d+D(v), d−D(v)} = 2 for every v ∈ V3. By
Propositions 17 and 18, we may suppose that every connected component of D contains
at least one vertex of V3. Let P0 be the collection of subdigraphs of D whose underlying
graph is either a path connecting two vertices in V3 and none of whose interior vertices
is contained in V3 or a cycle containing exactly one vertex in V3. For some P ∈ P0, we
define the associated path P ′ to be P if P is a path and to be the path obtained from
P by detaching the unique vertex in V (P ) ∩ V3 into two vertices of degree 1 in UG(P ′)
if P is cycle. Further, let P1 be the collection of subdigraphs of D whose underlying
graph is a path connecting a vertex in V3 and a vertex in V1 and none of whose interior
vertices is contained in V3. Observe that {A(P ) | P ∈ P0 ∪ P1} is a partition of A(D).
We now create an instance (X, C) of 2-SAT. We let X consist of a variable xa for every
arc a ∈ A which is incident to at least one vertex in V3 in D. We let C consist of a
collection of clauses Cv for every v ∈ V3, a collection of clauses CP for every P ∈ P0 and
a collection of clauses CQ for every subdigraph Q ∈ Q where Q denotes the collection
of subdigraphs of D which are isomorphic to a digon. First consider some v ∈ V3. Let
a1, a2, a3 be the arcs incident to v such that |δ+D(v) ∩ {a2, a3}| ∈ {0, 2}. We then let Cv
consist of the clauses {x̄a1}, {x̄a2 , x̄a3}, and {xa2 , xa3}. Now consider some P ∈ P0 and
let P ′ be the associated path of P . If A(P ) contains a single arc a, we set CP = {xa}.
Now suppose that the length of UG(P ′) is at least 2 and let a1 and a2 be the endarcs
of P ′. For every A0 ⊆ {a1, a2}, we test whether there is a (2, 1)-decomposition (F P

2 , F
P
1 )

of P ′ such that A(F P
1 ) ∩ {a1, a2} = A0 and every a ∈ {a1, a2} − A0 is the only arc in

a connected component of F P
2 . Observe that this can be tested in polynomial time by

Proposition 16. If no such decomposition exists, we add the clause {ya1 , ya2} to CP where
yai = x̄ai if ai ∈ A0 and yai = xai otherwise, for i ∈ [2]. We do this for every A0 ⊆ {a1, a2},
thus creating CP . Further, for every subdigraph Q of D which is a digon containing two
arcs a1, a2, we set Cq = {{xa1 , xa2}, {x̄a1 , x̄a2}}. Finally, we set C =

⋃
v∈V3∪P0∪Q Cv. This

finishes the description of (X, C).

Claim 19. (X, C) is a positive instance of 2-SAT if and only if D is a positive instance
of (2, 1)-BDLFD. Further, a (2, 1)-decomposition of D can be obtained from a satisfying
assignment for (X, C) in polynomial time.

Proof of claim. First suppose that (X, C) is a positive instance of 2-SAT, so there exists a
satisfying assignment φ : X → {true, false} for (X, C). Consider some P ∈ P0 and let P ′

be the associated path of P . If A(P ) contains only one arc a, we define a decomposition
(F P

1 , F
P
2 ) of P by A(F P

1 ) = A(P ) and A(F P
2 ) = ∅ if φ(xa) = true and by A(F P

2 ) = A(P )
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and A(F P
1 ) = ∅ if φ(xa) = false. Now suppose that the length of UG(P ′) is at least 2

and let a1 and a2 be the endarcs of P ′. As φ is satisfying for (X, C), there exists a (2, 1)-
decomposition (F P

2 , F
P
1 ) of P ′ such that for i ∈ [2], we have that ai is contained in A(F1)

if φ(xai) = true and ai is the only arc in a connected component of F2 if φ(xai) = false.
Now consider some P ∈ P1 and let a be the unique arc in A(P ) which is incident to a

vertex in V3. If φ(xa) = true, we choose a (2, 1)-decomposition (F P
2 , F

P
1 ) of P with a ∈

A(F P
1 ). Otherwise, we choose a (2, 1)-decomposition (F P

2 , F
P
1 ) of P with a ∈ A(F P

2 ) and a
is the only arc in a connected component of F2. By Proposition 17, such a decomposition
exists and can be computed in polynomial time. We now define a decomposition (F2, F1)
of D by A(F2) =

⋃
P∈P0∪P1

A(F P
2 ) and A(F1) =

⋃
P∈P0∪P1

A(F P
1 ).

We now show that (F2, F1) is a (2, 1)-decomposition of D. Let K be a connected
component of F2 or F1. If V (K) ⊆ V (P ) − V3 for some P ∈ P0 ∪ P1, then K is a
2-bounded directed path if K is a connected component of F2 and 1-bounded directed
path if F is a connected component of F1 by construction. We may hence suppose
that V (K) contains a vertex v ∈ V3. Let a1, a2, and a3 be the arcs incident to v such
that |δ+D(v) ∩ {a2, a3}| ∈ {0, 2}. As the clauses in Cv are satisfied by φ, we obtain that
φ(xa1) = false and exactly one of xa2 and xa3 is true under φ, say φ(xa2) = true

and φ(xa3) = false. As φ satisfies (X, C), we obtain that that none of a1 and a3 are
contained in a path of P0 of length 1. Hence if K is a connected component of F2, we
have A(K) = {a1, a3}. Further, as φ satisfies (X, C), we obtain that a1 and a3 do not
form a digon and so K is a 2-bounded directed path. Next, observe that, as the choice
of v was arbitrary, the second endvertex of a2 is not incident to any arc in A(F1) except
a2. It follows that a2 is the only arc of A(K) if K is a connected component of F1.
Hence (F2, F1) is a (2, 1)-decomposition of D. Observe that (F2, F1) can be obtained in
polynomial time from φ.

Now suppose that D is a positive instance of (2, 1)-BDLFD, so there exists a (2, 1)-
decomposition (F2, F1) of D. We now define a truth assignment φ : X → {true, false}
in the following way: for every a ∈ A which is incident to at least one vertex in V3 in
D, we set φ(xa) = true if a ∈ A(F1) and φ(xa) = false if a ∈ A(F2). We show in the
following that φ is a satisfying assignment for (X, C). First consider some v ∈ V3 and
let a1, a2, a3 be the arcs incident to v such that |δ+D(v) ∩ {a2, a3}| ∈ {0, 2}. As F2 is a
directed linear forest, we obtain that one of a2 and a3, say a2, is contained in A(F1). As
F1 is a directed matching, we obtain that {a1, a3} ⊆ A(F2). By construction, this yields
φ(xa1) = φ(xa3) = false and φ(xa2) = true. In particular, all clauses in Cv are satisfied
by φ. Now consider some P ∈ P0. If P is a path containing a single arc a, then observe
that a ∈ A(F1), as a is incident to two vertices in V3 and (F2, F1) is a (2, 1)-decomposition.
Hence φ(xa) = true and so the unique clause in CP is satisfied by φ. Now suppose that
P contains at least two arcs, let P ′ be the associated path of P and let a1 and a2 be the
endarcs of P ′. Observe that by construction, we have that CP does not contain the clause
{ya1 , ya2} where yai = xai if ai ∈ A(F2) and yai = x̄ai if ai ∈ A(F1) for i ∈ [2]. It follows
that all the clauses in CP are satisfied by φ. Next consider some q ∈ Q. As F2 and F1 are
directed linear forests, we obtain that exactly one of the two arcs in the digon is contained
in A(F1). Hence the clauses in CQ are satisfied by φ. As C =

⋃
v∈V3∪P0∪Q Cv, we obtain
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that φ is a satisfying assignment for (X, C). Hence φ is a satisfying assignment for (X, C).
♦

By Claim 19, it suffices to decide whether (X, C) is a positive instance of 2-SAT. By
Proposition 8, this can be done in polynomial time. Further, as the proof is algorithmic,
a (2, 1)-decomposition of D can be constructed in polynomial time.

3.2 Decomposing into a matching and a (> 3)-bounded directed linear forest

This section is dedicated to proving our hardness results for the case that k > 3 is finite
and ` = 1. We first need the following preliminary constructions. For some integer k > 2,
a short k-in-forcer is a digraph D together with an arc a whose head is a vertex z with
d+D(z) = 0 and d−D(z) = 1 such that there is a (k, 1)-decomposition of D and for every
(k, 1)-decomposition (Fk, F1) of D, we have that a ∈ A(F1). We call z the tip of the short
k-in-forcer.

Proposition 20. For every k > 2, there exists a short k-in-forcer.

Proof. Let D be the digraph with vertex-set V (D) = {v1, . . . , v4, z} and arc-set A(D) =
{v1v2, v2v3, v2v4, v1z} and let a = v1z. For an illustration, see Figure 1.

z
v1 v2

v3

v4

Figure 1: A (k, 1)-decomposition (Fk, F1) of the short k-in-forcer D. The dashed red
arcs are in A(F1) and the solid green arcs are in A(Fk).

Let (Fk, F1) be a (k, 1)-decomposition of D. As Fk is a directed linear forest, we have
v2vi ∈ A(F1) for some i ∈ {3, 4}. As F1 is a directed matching, we obtain v1v2 ∈ A(Fk).
As Fk is a directed linear forest, we obtain a ∈ A(F1). Further, it is easy to see that
(Fk, F1) is indeed a (k, 1)-decomposition.

For some integers k > α > 1, a long (k, α)-in-forcer is a digraph D together with
a vertex z satisfying d+D(z) = 0 and d−D(z) = 1 such that there is a (k, 1)-decomposition
(Fk, F1) of D in which z is not the last vertex of a path of length α+1 in Fk and for every
(k, 1)-decomposition (Fk, F1) of D, we have that z is the last vertex of a path of length α
in Fk. We call z the tip of the long (k, α)-in-forcer.

Proposition 21. For all integers k, α with k > α > 1, there exists a long (k, α)-in-forcer.

Proof. Let D be obtained from a directed path v1 . . . vα+1 of length α by identifying
each vertex of {v1, . . . , vα} with the tip of a short k-in-forcer (the existence of which is
guaranteed by Proposition 20). Further, we let z = vα+1. For an illustration, see Figure 2.
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v1 v2 v3 z

Figure 2: A (k, 1)-decomposition (Fk, F1) of a long (k, 3)-in-forcer for some k > 3 with
tip z. The triangles indicate short k-in-forcers. The solid green arcs are in A(Fk) and the
short k-in-forcers are decomposed as in Figure 1.

Let (Fk, F1) be a (k, 1)-decomposition of D. By the definition of short k-in-forcers and
as F1 is a directed matching, we obtain that vivi+1 ∈ A(Fk) for i ∈ [α]. Hence z is the last
vertex of a path of length α in Fk. Further, it is not the last vertex of a path of length
α + 1 since v1 has no in-neighbour in Fk.

In the following, we describe some gadgets we need for our reduction. A k-variable
gadget for some k > 3 is a digraph D together with four arcs a1, . . . , a4 ∈ A(D) satisfying
the following properties:

(a) d+D(zi) = 0 and d−D(zi) = 1 where zi is the head of ai for i ∈ [4],

(b) for every (k, 1)-decomposition (Fk, F1) of D, we have

{a1, . . . , a4} ∩ A(F1) ⊆ {a1+i, a3+i}

for some i ∈ {0, 1}, and

(c) for every i ∈ {0, 1}, there is a (k, 1)-decomposition (F i
k, F

i
1) of D such that

{a1, . . . , a4} ∩ A(F i
1) = {a1+i, a3+i}.

Lemma 22. For every k > 3, there exists a k-variable gadget.

Proof. We describe a k-variable gadget D for some integer k > 3. We first let V (D)
contain sets {v1, . . . , v12}, {z1, . . . , z4}, and {y1, . . . , y4} and we let A(D) contain the arcs
vivi+1 for i ∈ [11], the arc v12v1, and the arcs yizi and yiv3i−2 for i ∈ [4]. Further, for
i ∈ [4], we identify yi with the tip of a long (k, k− 2)-in-forcer. Finally, for i ∈ [4], we set
ai = yizi. This finishes the description of D, see Figure 3 for an illustration.

We now show that D is a k-variable gadget. It follows by construction that (a) is
satisfied. For (b), by symmetry, it suffices to show that there is no (k, 1)-decomposition
(Fk, F1) ofD such that {a1, a2} ⊆ A(F1). Suppose otherwise. As F1 is a directed matching,
we obtain that {y1v1, y2v4} ⊆ A(Fk). As Fk is a directed linear forest, we obtain that
{v12v1, v3v4} ⊆ A(F1). As F1 is a directed matching, we obtain that {v1v2, v2v3} ⊆ A(Fk).
Hence the directed path obtained from concatenating the directed path of length k − 2
fully contained in the long (k, k − 2)-in-forcer incident to y1 whose last vertex is y1 with
the directed path y1v1v2v3 is a directed path of length k + 1 in Fk, a contradiction to Fk
being a k-bounded directed linear forest. This proves (b).
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v1 v2 v3 v4

v5

v6

v7
v8v9v10

v11

v12

y1

z1

y2

z2

y3

z3

y4

z4

Figure 3: An illustration of D and one of its (k, 1)-decompositions. The squares indicate
long (k, k − 2)-in-forcers. The red dashed arcs are in A(F1), the solid green arcs are in
A(Fk) and the long (k, k − 2)-in-forcers are decomposed as in Figure 2.

For (c), by symmetry, it suffices to prove that there exists a (k, 1)-decomposition
(Fk, F1) of D with {a1, a3} ⊆ A(F1). Consider the following decomposition (Fk, F1) of D.
For i ∈ [4], we choose a (k, 1)-decomposition (F i

k, F
i
1) of the (k, k − 2)-in-forcer incident

to yi such that yi is not contained in a directed path of length k − 1 of F i
k. We formally

define (Fk, F1), illustrated in Figure 3, in the following way:

A(F1) =
⋃
i∈[4]

A(F i
1) ∪ {v2v3, v6v7, v8v9, v12v1, y1z1, y2v4, y3z3, y4v10},

and A(Fk) = A(D)− A(F1).

It is straightforward to check that (Fk, F1) has the desired properties. This proves (c).

A k-clause gadget for some integer k > 3 is a digraph D together with three distinct
arcs b1, b2, b3 ∈ A(D) satisfying the following properties:

(a) d+D(yi) = 0 and d−D(yi) = 1 where yi is the head of bi for i ∈ [3],

(b) for every (k, 1)-decomposition (Fk, F1) of D, we have {b1, b2, b3} ∩ A(Fk) 6= ∅, and

(c) for every nonempty set S ⊆ {b1, b2, b3}, there is a (k, 1)-decomposition (Fk, F1) of
D such that {b1, b2, b3} ∩ A(Fk) = S.

Lemma 23. For every k > 3, there exists a k-clause gadget.

Proof. We create a k-clause gadget D for some fixed k > 3. We first let V (D) contain a
set {v1, . . . , v7, y1, y2, y3} and we let A(D) contain the arc-set

{v1v2, v3v2, v3v4, v4v5, v5v6, v6v7, v1y1, v5y2, v7y3}.
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If k > 4, we further identify v3 with the tip of a long (k, k − 3)-in-forcer. Finally, let
b1 = v1y1, b2 = v5y2, and b3 = v7y3. This finishes the description of D. An illustration
can be found in Figure 4.

v1 v2 v3 v4 v5 v6 v7

y1

b1

y2

b2

y3

b3

Figure 4: An illustration of D where the square marks a long (k, k − 3)-in-forcer. When
k = 3, the square is deleted.

We now show that (D, b1, b2, b3) is a k-clause gadget. By construction, we have that
(a) is satisfied. In order to prove (b), suppose for the sake of a contradiction that there
is a (k, 1)-decomposition (Fk, F1) of D with {b1, b2, b3} ⊆ A(F1). As F1 is a directed
matching, we obtain that {v1v2, v4v5, v5v6, v6v7} ⊆ A(Fk). We obtain that v3v2 ∈ A(F1)
and so v3v4 ∈ A(Fk). Further, by the definition long (k, k−3)-in-forcers, we obtain that v3
is the last vertex of a path of length k−3 in Fk. Concatenating this path with v3v4v5v6v7,
we obtain that Fk contains a directed path of length k + 1, a contradiction to Fk being a
k-bounded linear forest. This proves (b).

We now consider a decomposition of the long (k, k−3)-in-forcer in which v3 is not the
last vertex of a directed path of length k − 2 in Fk. A small case analysis shows that for
every nonempty S ⊆ {b1, b2, b3}, this can be extended to a (k, 1)-decomposition (Fk, F1)
of D such that {b1, b2, b3} ∩ Fk = S. All these cases are illustrated in Figure 5. This
proves (c).

We are now ready to prove the following theorem which is the main result of this
section.

Theorem 24. (k, 1)-BDLFD is NP-complete for every integer k > 3.

Proof. We fix some integer k > 3. Clearly, (k, 1)-BDLFD is in NP. We prove the hardness
by a reduction from (3, B2)-SAT, which is NP-complete by Theorem 13. Let (X, C) be
an instance of (3, B2)-SAT. We now create an instance D of (k, 1)-BDLFD.

For every x ∈ X, let C1, . . . , C4 be an ordering of the clauses containing x or x̄ such
that x ∈ C1 ∩C3 and x̄ ∈ C2 ∩C4. We add a k-variable gadget (Dx, axC1

, . . . , axC4
) and for

i = 1, . . . , 4, we let zxCi
be the head of axCi

. Observe that this gadget exists by Lemma 22.
For every C ∈ C, let x1, x2, x3 be an arbitrary ordering of the variables x for which

x ∈ C or x̄ ∈ C hold. We add a k-clause gadget (DC , bx1C , b
x2
C , b

x3
C ) and for i ∈ [4], we let

yxCi
be the head of bxCi

. Observe that this gadget exists by Lemma 23. We finally obtain
D by identifying zxC and yxC for all x ∈ X and C ∈ C for which x ∈ C or x̄ ∈ C holds.

We show in the following that D is a positive instance of (k, 1)-BDLFD if and only if
(X, C) is a positive instance of (3, B2)-SAT. First suppose that D is a positive instance
of (k, 1)-BDLFD, so there is a (k, 1)-decomposition (Fk, F1) of D. For every x ∈ X, as
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v1 v2 v3 v4 v5 v6 v7

y1

b1

y2

b2

y3

b3

v1 v2 v3 v4 v5 v6 v7

y1

b1

y2

b2

y3

b3

v1 v2 v3 v4 v5 v6 v7

y1

b1

y2

b2

y3

b3

v1 v2 v3 v4 v5 v6 v7

y1

b1

y2

b2

y3

b3

v1 v2 v3 v4 v5 v6 v7

y1

b1

y2

b2

y3

b3

v1 v2 v3 v4 v5 v6 v7

y1

b1

y2

b2

y3

b3

v1 v2 v3 v4 v5 v6 v7

y1

b1

y2

b2

y3

b3

S = {b1}

S = {b2}

S = {b3}

S = {b1, b2}

S = {b1, b3}

S = {b2, b3}

S = {b1, b2, b3}

Figure 5: The different decompositions of D. The green solid arcs belong to A(Fk) and
the dashed red arcs belong to A(F1). Each square marks a long (k, k−3)-in-forcer, whose
decomposition is the one of Figure 2.

Dx is a variable gadget, we obtain that {axC1
, . . . , axC4

} ∩ A(F1) ⊆ {axC1+i
, axC3+i

} for some
i ∈ {0, 1} where C1, . . . , C4 is the ordering of the clauses containing x or x̄ chosen in the
construction of D. We now define an assignment φ : X → {true, false} in the following
way: We set φ(x) = true if {axC1

, . . . , axC4
} ∩ A(F1) ⊆ {axC1

, axC3
}, and φ(x) = false,

otherwise. In order to see that φ is a satisfying assignment for (X, C), let C ∈ C. Suppose
that C is not satisfied by φ, hence φ(x) = false for all x ∈ X with x ∈ C and φ(x) = true

for all x ∈ X with x̄ ∈ C. It follows by construction that {ax1C , a
x2
C , a

x3
C } ⊆ A(Fk) where

{x1, x2, x3} is the set of variables x ∈ X such that x ∈ C or x̄ ∈ C holds. By construction
and as (Fk, F1) is a (k, 1)-decomposition of D, we obtain that {bx1C , b

x2
C , b

x3
C } ⊆ A(F1). By

the definition of k-clause gadgets, we obtain a contradiction to (Fk, F1) being a (k, 1)-
decomposition of D. Hence φ is a satisfying assignment for (X, C) and so (X, C) is a
positive instance of (3, B2)-SAT.

Now suppose that (X, C) is a positive instance of (3, B2)-SAT, so there is a satisfy-
ing assignment φ : X → {true, false} for (X, C). For every x ∈ X, let C1, . . . , C4 be
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the ordering of the clauses in C containing x or x̄. If φ(x) = true, let (F x
k , F

x
1 ) be a

(k, 1)-decomposition of Dx with {axC1
, . . . , axC4

} ∩ A(F x
1 ) = {axC1

, axC3
}. If φ(x) = false,

let (F x
k , F

x
1 ) be a (k, 1)-decomposition of Dx with {axC1

, . . . , axC4
} ∩ A(F x

1 ) = {axC2
, axC4
}.

Observe that these decompositions exist as Dx is a k-variable gadget.
For every C ∈ C, let SC contain the arc bxC for all x ∈ X with x ∈ C and φ(x) = true

and for all x ∈ X with x̄ ∈ C and φ(x) = false. Let (FC
k , F

C
1 ) be a (k, 1)-decomposition

of DC with {bx1C , b
x2
C , b

x3
C }∩A(F x

k ) = SC . Observe that such a decomposition exists as DC

is a clause gadget and φ satisfies C.
Now let (Fk, F1) be defined by A(Fk) =

⋃
x∈X A(F x

k ) ∪
⋃
C∈C A(FC

k ) and A(F1) =⋃
x∈X A(F x

1 ) ∪
⋃
C∈C A(FC

1 ). Observe that by construction, every vertex that is incident
to arcs from two different gadgets, is incident to exactly two arcs, one in A(Fk) and one
in A(F1). As (F x

k , F
x
1 ) is a (k, 1)-decomposition of Dx for all x ∈ X and (FC

k , F
C
1 ) is a

(k, 1)-decomposition of DC for all C ∈ C, we obtain that (Fk, F1) is a (k, 1)-decomposition
of D. Hence D is a positive instance of (k, 1)-BDLFD.

3.3 Decomposing into two linear forests with length bounds at least 2

In this section, we deal with the case that both k and ` are finite integers and min{k, `} >
2. The reduction is from ME-1-SAT and we use a variable and a clause gadget. Once
these gadgets are constructed, our reduction will work for any choice of k and ` in the
considered domain. However, during the construction of the gadgets, the case that
min{k, `} = 2 often needs to be treated separately. Again, we first give some prelim-
inary constructions in Section 3.3.1. After, we describe the variable and clause gadgets
in Sections 3.3.2 and 3.3.3, respectively. Finally, we give the reduction in Section 3.3.4.

3.3.1 Preliminary constructions

We here give some preliminary constructions we need for the gadgets which are described
in Sections 3.3.2 and 3.3.3. The first one will play a crucial role in the case min{k, `} > 3.
Let k, ` ∈ Z>3 be two integers. A (k, `,−2)-in-forcer is a digraph D with a special arc
a = xz such that:

(a) a is the only arc incident to z,

(b) in every (k, `)-decomposition (Fk, F`) of D, a is either the last arc of a directed path
of length k − 2 in Fk or the last arc of a directed path of length `− 2 in F`,

(c) there exists a (k, `)-decomposition (Fk, F`) of D such that a ∈ A(Fk) and a is not
the last arc of a directed path of length k − 1 in Fk, and

(d) there exists a (k, `)-decomposition (Fk, F`) of D such that a ∈ A(F`) and a is not
the last arc of a directed path of length `− 1 in F`.

In the following, we show that (k, `,−2)-in-forcers exist for all integers k, ` ∈ Z>3. We
first consider the case k = `.

Lemma 25. For every integer k > 3, there exists a (k, k,−2)-in-forcer.
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Proof. We describe a (k, k,−2)-in-forcer (D, a) for some fixed k > 3. We first let D
contain the unique orientation of a binary tree of depth k− 3 that contains a path from v
to x for all vertices v of this digraph where x is the tip of the binary tree. We now obtain
D by adding another vertex z and the arc a = xz. See Figure 6 for an illustration. Note
that (a) clearly holds.

x

z

Figure 6: An illustration of a (6, 6)-decomposition of a (6, 6,−2)-in-forcer.

Let (Fk, F
′
k) be a (k, k)-decomposition of D. By symmetry, we may suppose that

xz ∈ A(Fk). We will show that xz is the last arc of a directed path of length k − 2 in
Fk. Let P be a directed path of Fk whose length is maximum among all the directed
paths in Fk whose last arc is xz. If the length of P is smaller than k − 2, since D is
the described orientation of a binary tree of depth k − 3, the initial vertex y of P has
two in-neighbours y1, y2 in D. Hence, as F ′k is a directed linear forest, either y1y or y2y
belongs to Fk, contradicting the maximality of P . This proves (b).

We now describe a (k, k)-decomposition (Fk, F
′
k) of D whose existence proves (c). For

every v ∈ V (D) with d−D(v) = 2, arbitrarily assign one of its entering arcs to A(Fk) and the
other one to A(F ′k). Finally assign xz to A(Fk). This results into a (k, k)-decomposition
of D with the desired properties, illustrated in Figure 6. By symmetry (d) also holds.

For the case k 6= `, we first need some preliminary constructions. For integers k >
` > 3, a long (k, `)-out-forcer is a digraph D together with a special arc a = xy
such that d−D(x) = 0, d+D(x) = 1, D admits a (k, `)-decomposition, and for every (k, `)-
decomposition (Fk, F`) of D, a belongs to A(Fk). We say that x is the origin of the long
(k, `)-out-forcer.

Proposition 26. For all integers k, ` with k > ` > 3, there exists a long (k, `)-out-forcer.

Proof. We describe a long (k, `)-out-forcer D for some fixed integers k, ` with k > ` > 3.
We first let D contain the unique orientation of a binary tree of depth ` with a tip y in
which there exists a path from y to v for every vertex v. We then create D by adding x
and the arc a = xy, see Figure 7 for an illustration. Clearly, a is the only arc incident to
x.
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y

x

Figure 7: An illustration of a (k, 3)-decomposition (Fk, F3) of a long (k, 3)-out-forcer for
some k > 4. The dashed red arcs are in A(F3) and the solid green arcs are in A(Fk).

Let (Fk, F`) be a (k, `)-decomposition of D and suppose for the sake of a contradiction
that a ∈ A(F`). Let P be the unique longest path in F` that contains a and let v be
the last vertex of P . As Fk is a linear directed forest, we obtain that d+D(v) 6 1. By
construction, we obtain that the length of P is at least ` + 1. This contradicts F` being
an `-bounded linear forest.

We now justify the existence of a (k, `)-decomposition. Let (Fk, F`) be a decomposition
of D with a ∈ A(Fk) and such that for every v ∈ V (D) with d+D(v) = 2, we have that
one of the arcs in δ+D(v) is in A(Fk) and the other one is in A(F`). Then (Fk, F`) is a
(k, `)-decomposition of D with the desired properties.

For some integers k > ` > 3, we now define a short (k, `)-out-forcer as a digraph
D together with a special arc a = xy such that d−D(x) = 0, d+D(x) = 1, D admits a
(k, `)-decomposition, and for every (k, `)-decomposition (Fk, F`) of D, a belongs to A(F`).
Again, we say that x is the origin of the short (k, `)-out-forcer.

Proposition 27. For all integers k, ` with k > ` > 3, there exists a short (k, `)-out-forcer.

Proof. We describe a short (k, `)-out-forcer D for some fixed integers k and ` with k >
` > 3. We first let D contain the digraph obtained from a long (k, `)-out-forcer with origin
y by reversing all arcs. We then obtain D by adding x and the arc xy. Clearly, we have
d−D(x) = 0 and d+D(x) = 1. Next observe that there is a direct correspondence between the
(k, `)-decompositions of D − x and the (k, `)-decompositions of the corresponding long
(k, `)-out-forcer.

Let (Fk, F`) be a (k, `)-decomposition of D. Clearly, and (Fk − x, F` − x) is a (k, `)-
decomposition of D−x and so the unique arc incident to y in D−x is contained in A(Fk).
As Fk is a linear directed forest, we obtain that xz ∈ A(F`).

We now justify the existence of a (k, `)-decomposition of D. There exists a (k, `)-
decomposition (F ′k, F

′
`) of D−x in which the unique arc incident to y is contained in A(F ′k).

The decomposition (Fk, F`) of D defined by A(Fk) = A(F ′k) and A(F`) = A(F ′`) ∪ xy is a
(k, `)-decomposition of D with the desired properties.
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We are now ready to show that (k, `,−2)-in-forcers exist for all integers k, ` > 3.
Recall that the case k = ` has been proved in Lemma 25.

Lemma 28. For all integers k, ` with k > ` > 3, there exists a (k, `,−2)-in-forcer.

Proof. We describe a (k, `,−2)-in-forcer (D, a) for some fixed integers k > ` > 3. We
first let V (D) contain a set {u1, . . . , uk−3}, a set {v1, . . . , v`−3} if ` > 4, and a set {x, z}.
Further, we let A(D) contain the arcs uiui+1 for i ∈ [k − 4] if k > 5, the arcs vivi+1 for
i ∈ [` − 4] if ` > 5 , the arc uk−3x, the arc v`−3x if ` > 4, and the arc a = xz. Finally,
for i ∈ [k − 3], we identify ui with the origin of a short (k, `)-out-forcer and, if ` > 4,
for i ∈ [` − 3], we identify vi with the origin of a long (k, `)-out-forcer. This finishes the
description of D, see Figure 8 for an illustration.

u1

v1

u2

v2

uk−3

v`−3

· · ·

· · ·

x z

Figure 8: An illustration of a (k, `)-decomposition (Fk, F`) of a (k, `,−2)-in-forcer with
k > ` > 4 and xz ∈ A(Fk). The squares indicate short (k, `)-out-forcers and the triangles
indicate long (k, `)-out-forcers. The dashed red arcs are in A(F`) and the solid green arcs
are in A(Fk).

We now prove that (a) − (d) holds. Clearly, (a) holds. Now let (Fk, F`) be a (k, `)-
decomposition of D. For i ∈ [k − 3], by the definition of short (k, `)-out-forcers, we have
that there exists an arc in δ+D(ui) ∩ A(F`) that is contained in the short (k, `)-out-forcer
attached to ui. It follows that uk−3z ∈ A(Fk) and, if k > 5, then uiui+1 ∈ A(Fk) for
i ∈ [k − 4]. It follows that z is the last vertex of a directed path of length k − 3 in Fk.
A similar argument shows that z is the last vertex of a directed path of length ` − 3 in
F`. Hence if a ∈ A(Fk), then a is the last arc of a directed path of length k − 2 in Fk
and if a ∈ A(F`), then a is the last arc of a path of length ` − 2 in F`, so (b) holds.
Further, by choosing appropriate decompositions of the short and long (k, `)-out-forcers,
if a ∈ A(Fk), then we have a decomposition as required in (c), and if a ∈ A(F`), then we
have a decomposition as required in (d).

We further need one preliminary construction which will be useful in the case that
min{k, `} = 2. Let k, α be integers with k > 3 and 1 6 α 6 k. A (k, 2, α)-in-forcer is
a digraph D with a special arc a such that:

(a) the head of a is not incident to any other arc in D,

(b) in every (k, 2)-decomposition (Fk, F2) of D, a is the last arc of a path of length at
least α in Fk, and
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(c) D has a (k, 2)-decomposition (Fk, F2) in which a is not contained in a path of length
α + 1 in Fk.

Lemma 29. For all integers k, α with k > 3 and 1 6 α 6 k, there exists a (k, 2, α)-in-
forcer.

Proof. We describe a (k, 2, α)-in-forcer (D, a) for some fixed integers k and α with k > 3
and 1 6 α 6 k. We let V (D) contain a set of α + 1 vertices v1, . . . , vα+1. Further, for
every i ∈ [α], we let V (D) contain 6 vertices ui, wi, x

1
i , x

2
i , y

1
i , and y2i . For i ∈ [α], we

then let A(D) contain the arcs vi+1vi, uix
1
i , uix

2
i , wiui, vi+1ui, y

1
iwi, and y2iwi. We finally

set a = v2v1, which finishes the description of (D, a). For an illustration, see Figure 9.

v1 v2 v3 v4

u1x11

x21

w1 y11

y21

u2x12

x22

w2 y12

y22

u3x13

x23

w3 y13

y23

Figure 9: An illustration of a (k, 2)-decomposition of a (k, 2, 3)-in-forcer. The dashed red
arcs are in A(F2) and the solid green arcs are in A(Fk).

Note that (a) clearly holds. Now, let (Fk, F2) be a (k, 2)-decomposition of D. For
every i ∈ [α], as Fk is a directed linear forest, we obtain that one of uix

1
i and uix

2
i is

contained in A(F2), and one of y1iwi, and y2iwi is contained in A(F2). As F2 is a 2-
bounded directed linear forest, we obtain that wiui ∈ A(Fk). As Fk is a directed linear
forest, we obtain that vi+1ui ∈ A(F2). As F2 is a 2-bounded directed linear forest, we
obtain that vi+1vi ∈ A(Fk). Hence v`+1 . . . v1 is a path of Fk of length α whose last arc is
a. This proves (b).

On the other hand, let (Fk, F2) be the decomposition of D with

A(Fk) =
α⋃
i=1

{vi+1vi, uix
1
i , wiui, y

1
iwi} and A(F2) =

α⋃
i=1

{uix2i , vi+1ui, y
2
iwi}.

Then (Fk, F2) is a (k, 2)-decomposition of D with the desired properties. For an illustra-
tion, see Figure 9. This proves (c).

3.3.2 Variable gadgets

In this section, we describe the variable gadgets. For integers k,`, and t with k > ` > 2
and t > 1, a (k, `, t)-variable gadget is a digraph D together with a collection of arcs
{a1, . . . , at} with the following properties:

(a) for each a ∈ {a1, . . . , at}, we have that a is the only arc incident to its head,
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(b) for every (k, `)-decomposition (Fk, F`) of D, we have that A(Fk) ∩ {a1, . . . , at} be-
longs to {∅, {a1, . . . , at}} and each arc in A(Fk) ∩ {a1, . . . , at} is the last arc of a
path either of length k in Fk or of length ` in F`,

(c) there is a (k, `)-decomposition (Fk, F`) of D such that {a1, . . . , at} ⊆ A(Fk), and

(d) there is a (k, `)-decomposition (F ′k, F
′
`) of D such that {a1, . . . , at} ⊆ A(F ′`)

We now show that variable gadgets exist for all integers in the considered domain. We
start with the case that min{k, `} > 3.

Lemma 30. For all integers k, ` and t > 1 with k > ` > 3, there exists a (k, `, t)-variable
gadget whose size is polynomial in t.

Proof. We construct a (k, `, t)-variable gadget (D, {a1, . . . , at}) for some fixed integers
k, `, and t with k > ` > 3 and t > 1.

We first let D contain a directed path on 2t + 1 vertices u0, . . . , u2t. Then for every
i ∈ [2t − 1], we add a vertex vi and the arc uivi. We further add two more vertices w1

and w2 and the arcs u2tw1 and u2tw2. We now obtain D by identifying ui with the tip of
a (k, `,−2)-in-forcer for all i ∈ [2t− 1] and identifying u0 with the tips of two (k, `,−2)-
in-forcers, where all these (k, `,−2)-in-forcers are vertex-disjoint before the identification.
Observe that these (k, `,−2)-in-forcers exist by Lemmas 25 and 28. For every i ∈ [t]
we further set ai = u2i−1v2i−1. This completes the description of (D, {a1, . . . , at}), see
Figure 10 for an illustration.

u1 u3 u5u0 u2 u4 u6

v1

a1

v3

a2

v5

a3

v2 v4

w1

w2

Figure 10: An illustration of a (k, `)-decomposition of the (k, `, 3)-variable gadget with
k > ` > 3. Triangles indicate (k, `,−2)-in-forcers. The dashed red arcs are in A(F`)
and the solid green arcs are in A(Fk). The colour of a forcer indicates the part of the
decomposition the arc incident to its tip is contained in.

First observe that (a) clearly holds. To show that (b) holds, let us fix a (k, `)-
decomposition (Fk, F`) of D. We show by induction on i ∈ [2t − 1] that uivi is either
the last arc of a directed path of length ` in F` or the last arc of a directed path of length
k in Fk. Moreover, we show that this directed path also contains ui−1ui. Observe that
this implies (b).

When i = 1, by definition of a (k, `,−2)-in-forcer, we know that one entering arc of u0
is the last arc of a directed path of length k − 2 in Fk, and that the other one is the last
arc of a directed path of length `− 2 in F`. Hence u0u1 is either the last arc of a directed
path of length k− 1 in Fk or the last arc of a directed path of length `− 1 in F`. In both
cases, since u2 has out-degree 2, u1v1 and u0u1 must belong to the same part.
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Now assume that i ∈ {2, . . . , 2t− 1}. Since by induction ui−2ui−1 and ui−1vi−1 belong
to the same part of (Fk, F`), we deduce that ui−1ui and the arc incident to ui−1 contained
in the attached (k, `,−2)-in-forcer are contained in the same part of (Fk, F`). By the
definition of (k, `,−2)-in-forcers, we obtain that ui−1ui is the last arc of a directed path
either of length k − 1 in Fk or of length ` − 1 in F`. Since ui+1 has out-degree 2, we
deduce that ui−1ui and uivi belong to the same part, and that uivi is either the last arc
of a directed path of length k in Fk or the last arc of a directed path of length ` in F`.
This shows (b).

Further observe that the described (k, `)-decomposition indeed yields the decomposi-
tions required in (c) and (d) when choosing appropriate decompositions of the (k, `,−2)-
in-forcers. An illustration can be found in Figure 10. Note that the roles of Fk and F`
are symmetric.

We now give a similar result for the case that min{k, `} = 2.

Lemma 31. For all positive integers k, t with k > 2, there exists a (k, 2, t)-variable gadget.

Proof. We describe a (k, 2, t)-variable gadget for fixed positive integers k and t with k > 2.
First let V (D) contain a vertex vji for all i ∈ [t] and j ∈ [7] with (i, j) /∈ {(t, 6), (t, 7)}. We
further let V (D) contain one more vertex w. Next, for every i ∈ [t], we let A(D) contain
the arcs v2i v

1
i , v

2
i v

3
i , v

4
i v

3
i , and v4i v

5
i and for every i ∈ [t− 1], we let A(D) contain the arcs

v1i v
6
i , v

7
i v

6
i , and v6i v

1
i+1. Next, we add the arc wv11. We now complete the construction of

D dependent on k. If k = 2, we further add two in-arcs to w and to v4i for every i ∈ [t].
If k > 3, we further attach a (k, 2, k − 2)-in-forcer to v2i for all i ∈ [t] and to v7i for all
i ∈ [t − 1] and we attach a (k, 2, k − 1)-in-forcer and an in-arc to w and to v4i for every
i ∈ [t]. Observe that these forcers exist by Lemma 29. Finally, for i ∈ [t], we set ai = v4i v

5
i .

This finishes the description of D. For an illustration, see Figure 11.

v11

v21

v31

v41

v51

a1

v12

v22

v32

v42

v52

a2

v13

v23

v33

v43

v53

a3

v61

v71

v62

v72

w

Figure 11: An illustration of a (k, 2, 3)-variable gadget for some k > 2. When k > 3, the
triangles indicate (k, 2, k − 1)-in-forcers and the squares indicate (k, 2, k − 2)-in-forcers.
When k = 2, the triangles indicate in-arcs and the squares are deleted.

the electronic journal of combinatorics 31(4) (2024), #P4.26 21



Clearly, D satisfies (a). For (b), let (Fk, F2) be a (k, 2)-decomposition of D. First
suppose for the sake of a contradiction that there is an index i ∈ [t − 1] such that
ai ∈ A(F2) and ai+1 ∈ A(Fk). As Fk and F2 are directed linear forests, we obtain that
v2i v

1
i ∈ A(Fk) and v2i+1v

1
i+1 ∈ A(F2). As F2 is a directed linear forest, we obtain that

v6i v
1
i+1 ∈ A(Fk). If v1i v

6
i ∈ A(Fk) and k = 2, we obtain that v2i v

1
i v

6
i v

1
i+1 is a path of

length 3 in Fk, a contradiction. If v1i v
6
i ∈ A(Fk) and k > 3, we obtain that the path

which is obtained from concatenating a path in Fk of length k − 2 fully contained in the
(k, 2, k − 2)-in-forcer incident to v2i whose last vertex is v2i with v2i v

1
i v

6
i v

1
i+1 is a path of

length k+ 1 in Fk, a contradiction. Hence v1i v
6
i ∈ A(F2). As Fk is a directed linear forest,

we obtain that xv1i ∈ A(F2) where x = v6i−1 if i > 2 and x = w otherwise. Further, as
d−D(x) = 2 by construction and Fk is a linear forest, there exists a vertex y ∈ N−D (x) with
yx ∈ A(F2). It follows that yxv1i v

6
i is a path of length 3 in F2, a contradiction.

Now suppose for the sake of a contradiction that there is an index i ∈ [t−1] such that
ai ∈ A(Fk) and ai+1 ∈ A(F2). By the above, we have aj ∈ A(Fk) for all j ∈ [i]. As Fk
and F2 are directed linear forests, we obtain that v2j v

1
j ∈ A(F2) for all j ∈ [i]. As F2 is a

directed linear forest, we obtain wv11 ∈ A(Fk) and v6j v
1
j+1 ∈ A(Fk) for all j ∈ [i − 1]. As

Fk is a linear forest, we obtain v6i v
1
i+1 ∈ A(Fk). We next show that v1j v

6
j ∈ A(Fk) for all

j ∈ [i]. Suppose otherwise and let j0 be the largest integer with j0 6 i and v1j0v
6
j0
∈ A(F2).

If j0 = i, we obtain that v2i v
1
i v

6
i v

1
i+1 is a directed path of length 3 in F2, a contradiction,

so assume j0 < i. As F2 is a directed linear forest, we obtain that v7j0v
6
j0
∈ A(Fk). Since

j0 < i, we have v6j0v
1
j0+1 ∈ A(Fk), and by maximality of j0 we have v1j0+1v

6
j0+1 ∈ A(Fk).

Further, by construction, we have that v7j0 is the last vertex of a path of length k − 2 in
Fk. The concatenation of this path with v7j0v

6
j0
v1j0+1v

6
j0+1 is a directed path of length k+ 1

in Fk, a contradiction. In particular, we obtain that v11v
6
1 ∈ A(Fk). By definition, there

exists a path of length k−1 in Fk whose last vertex is w and that is fully contained in the
(k, 2, k− 1)-in-forcer attached at w. Concatenating this path with wv11v

6
1 yields a path of

length k + 1 in Fk, a contradiction.
We have shown that A(Fk) ∩ {a1, . . . , at} ∈ {{a1, . . . , at},∅}. Let i ∈ [t]. We will

show that ai is either the last arc of a directed path of length k in Fk or the last arc of a
directed path of length 2 in F2. Assume first that ai ∈ A(F2), since v4i has two entering
arcs, it has an in-neighbour x such that xv4i ∈ A(F2). Thus, xv4i v

5
i is a directed path of

length 2 in F2. Now assume that ai ∈ A(Fk). If k = 2, F2 and Fk play a symmetric role,
so assume k > 3. The concatenation of the path of Fk of length k − 1 fully contained in
the (k, 2, k − 1)-in-forcer attached in v4i and ai is a path of length k in Fk, the last arc of
which is ai. This yields (b).

For (c), we define a decomposition (Fk, F2) ofD in the following way: If k > 3, for every
(k, 2, k−1)-in-forcer (respectively (k, 2, k−2)-in-forcer), we choose a (k, `)-decomposition
such that the tip arc of this forcer is not the last arc of a path of length k (respectively
k−1) fully contained in the forcer. Next, we let all attached in-arcs be contained in A(F2).
If k = 2, for every v ∈ {v4i | i ∈ [t]} ∪ w, we let each of A(Fk) and A(F2) contain one of
the arcs entering v. We then extend this to (Fk, F2) in the following way: for every i ∈ [t],
we let A(Fk) contain ai and v2i v

3
i , for every i ∈ [t − 1], we let A(Fk) contain v6i v

1
i+1 and

v7i v
6
i , and we let A(Fk) contain wv11. We then set A(F2) = A(D) − A(Fk). This finishes
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the description of (Fk, F2). For an illustration, see Figure 12.

v11

v21

v31

v41

v51

a1

v12

v22

v32

v42

v52

a2

v13

v23

v33

v43

v53

a3

v61

v71

v62

v72

w

Figure 12: An illustration of the decomposition (Fk, F2). The dashed red arcs are in A(F2)
and the solid green arcs are in A(Fk). When k = 2, the triangles are replaced by solid
green arcs.

This shows (c). When k = 2, it also shows (d), so we now assume k > 3.
For (d), we define a decomposition (F ′k, F

′
2) of D in the following way: Again, for every

(k, 2, k−1)-in-forcer (respectively (k, 2, k−2)-in-forcer), we choose a (k, 2)-decomposition
such that the tip arc of this forcer is not the last arc of a path of length k (respectively
k− 1) fully contained in the forcer. We then extend this to (F ′k, F

′
2) in the following way:

for every i ∈ [t], we let A(F ′2) contain ai and v2i v
3
i , for every i ∈ [t−1], we let A(F ′2) contain

v6i v
1
i+1 and v7i v

6
i , and we let A(F ′2) contain wv11. We then set A(F ′k) = A(D)−A(F ′2). This

finishes the description of (F ′k, F
′
2). For an illustration, see Figure 13. This shows (d).

v11

v21

v31

v41

v51

a1

v12

v22

v32

v42

v52

a2

v13

v23

v33

v43

v53

a3

v61

v71

v62

v72

w

Figure 13: An illustration of the decomposition (F ′k, F
′
2). The dashed red arcs are in A(F ′2)

and the solid green arcs are in A(F ′k).
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3.3.3 Clause gadgets

We now describe the clause gadgets we need. For two integers k and ` with min{k, `} > 2,
a (k, `)-clause gadget is a digraph D together with three special arcs a1, a2, a3 ∈ A(D)
and three special vertices t1, t2, t3 ∈ V (D) satisfying the following properties:

(a) for i ∈ [3], we have that ai is the only arc incident to ti,

(b) for every (k, `)-decomposition (Fk, F`) of D, we have A(Fk) ∩ {a1, a2, a3} 6= ∅ and
A(F`) ∩ {a1, a2, a3} 6= ∅, and

(c) for every nonempty Z ( [3] there is a (k, `)-decomposition (Fk, F`) of D with {i ∈
[3] | ai ∈ A(Fk)} = Z.

Again, we first prove the existence of clause gadgets when min{k, `} > 3.

Lemma 32. For all integers k, ` with min{k, `} > 3, there exists a (k, `)-clause gadget.

Proof. Let D be the digraph on six vertices y1, y2, y3, t1, t2, t3 made of the directed triangle
y1y2y3y1 and the arcs ai = tiyi for i ∈ [3], see Figure 14 for an illustration. Clearly, (a)

y1

t1

y2

t2

y3 t3

a1

a2

a3

Figure 14: An illustration of the (k, `)-decomposition (Fk, F`) of the (k, `)-clause gadget
when min{k, `} > 3. The dashed red arcs are in A(Fk) and the solid green arcs are in
A(F`).

holds. In order to prove (b), let (Fk, F`) be a (k, `)-decomposition of D and suppose for
the sake of a contradiction that A(Fk)∩{a1, a2, a3} = ∅. As F` is a directed linear forest,
we obtain that {y1y2, y2y3, y3y1} ⊆ A(Fk). This contradicts Fk being a directed linear
forest. A similar argument shows that A(F`) ∩ {a1, a2, a3} 6= ∅. This yields (b). For
(c), by symmetry, it suffices to prove the statement for Z ∈ {{1, 2}, {3}}. Let (Fk, F`)
be defined by A(Fk) = {t1y1, t2y2, y2y3} and A(F`) = A(D) − A(Fk). Then (Fk, F`) has
the desired properties for Z = {1, 2} and (F`, Fk) has the desired properties for Z = {3}.
This proves (c).

We now prove a similar result for the case that min{k, `} = 2.

Lemma 33. For every integer k > 2, there exists a (k, 2)-clause gadget.
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Proof. We describe a (k, 2)-clause gadget D for some k > 2. We first let V (D) contain
some vertices t1, t2, t3, v1, . . . , v5 and we let A(D) contain the arcs v1t1, v2t2, t3v3, v4v1, v4v2,
v5v3, and v5v4. If k > 3, we further attach a (k, 2, k − 2)-in-forcer to v5. Observe that
this forcer exists by Lemma 29. We finally set a1 = v1t1, a2 = v2t2, and a3 = t3v3. This
finishes the description of (D, {a1, a2, a3}). For an illustration, see Figure 15. Clearly, D

t1

v1

a1

t2

v2

a2

t3

v3

a3

v4 v5

Figure 15: An illustration of D where the square marks a (k, 2, k−2)-in-forcer which does
not exist if k = 2.

satisfies (a).
For (b), let (Fk, F2) be a (k, 2)-decomposition of D and first suppose for the sake of

a contradiction that {a1, a2, a3} ⊆ A(Fk). As Fk and F2 are directed linear forests, we
obtain that v5v4 ∈ A(Fk) and one of v4v1 and v4v2, say v4v1, is contained in A(Fk). If
k = 2, we obtain that v5v4v1t1 is a directed path of length 3 in Fk, a contradiction. If
k > 3, then the concatenation of a path in Fk of length k − 2 fully contained in the
(k, 2, k−2)-in-forcer attached to v5 whose last vertex is v5 with v5v4v1t1 is a directed path
of length k+ 1 in Fk, a contradiction. If k = 2, this yields (b) by symmetry. Now suppose
that k > 3 and, for the sake of a contradiction, that {a1, a2, a3} ⊆ A(F2). As Fk and F2

are directed linear forests, we obtain that v5v4 ∈ A(F2) and one of v4v1 and v4v2, say v4v1,
is contained in A(F2). Then v5v4v1t1 is a directed path of length 3 in F2, a contradiction.
This yields (b).

For (c), if k > 3, we choose a decomposition of the (k, 2, k−2)-in-forcer attached to v5 in
which v5 is not the last vertex of a path of length k−1. A small case analysis shows that for
any nonempty S ( [3], this decomposition can be extended into a decomposition (Fk, F2)
of D with {i ∈ [3] | ai ∈ A(Fk)} = S. All these cases are illustrated in Figure 16.

3.3.4 The main reduction

We are finally ready to prove the following main result of Section 3.3 making use of the
gadgets constructed in Sections 3.3.2 and 3.3.3.

Theorem 34. For all integers k, ` with min{k, `} > 2, (k, `)-BDLFD is NP-complete.

Proof. Let us fix a pair of integers k and ` with min{k, `} > 2. Note that (k, `)-BDLFD is
clearly in NP. We will show that it is NP-complete through a reduction from ME-1-SAT,
which is NP-complete by Proposition 12.
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t1

v1

t2

v2

t3

v3

v4 v5

S = {1}
t1

v1

t2

v2

t3

v3

v4 v5

S = {2}
t1

v1

t2

v2

t3

v3

v4 v5

S = {3}

t1

v1

t2

v2

t3

v3

v4 v5

S = {1, 2}
t1

v1

t2

v2

t3

v3

v4 v5

S = {1, 3}
t1

v1

t2

v2

t3

v3

v4 v5

S = {2, 3}

Figure 16: An illustration of the possible decompositions (Fk, F2) of D for all different
choices of S. The dashed red arcs are in A(F2) and the solid green arcs are in A(Fk).

Let (X, C) be an instance of ME-1-SAT. We now describe a digraph D. For some
x ∈ X, let C1, . . . , Cq be the clauses containing x. We let D contain a (k, `, q)-variable
gadget (Hx, {a1, . . . , aq}) which exists by Lemmas 30 and 31. Further, for i ∈ [q], we let
u(x,Ci) denote the head of ai. We do this for every x ∈ X. For some C ∈ C, let x1, x2, and
x3 be the variables contained in C. We let D contain a clause-gadget (HC , {a1, a2, a3})
which exists by Lemmas 33 and 32. Further, for i ∈ [3], we let t(xi,C) denote the vertex
incident to ai which is of degree 1 in HC . We do this for every C ∈ C.

Finally, we obtain D by identifying u(x,C) and t(x,C) for all x ∈ X and C ∈ C with
x ∈ C. We now show that D is a positive instance of (k, `)-BDLFD if and only if (X, C)
is a positive instance of ME-1-SAT.

First suppose that (X, C) is a positive instance of ME-1-SAT, so there exists a satisfying
assignment φ : X → {true, false} for (X, C). Let x ∈ X. If φ(x) = true, we choose
a (k, `)-decomposition (F x

k , F
x
` ) of Hx with {a1, . . . , aq} ⊆ Fk and if φ(x) = false, we

choose a (k, `)-decomposition (F x
k , F

x
` ) of Hx with {a1, . . . , aq} ⊆ F`. We do this for every

x ∈ X. Observe that such a decomposition exists by the definition of Hx. Now consider
some C ∈ C and let x1, x2, and x3 be the variables contained in C in the order they were
used when constructing HC . Let Z = {i ∈ [3] | φ(xi) = false}. As φ is a satisfying
assignment for (X, C), we have that Z is a nonempty, strict subset of [3]. We now choose
a (k, `)-decomposition (FC

k , F
C
` ) of HC with {i ∈ [3] | ai ∈ A(FC

k )} = Z. Observe that
such a decomposition exists by the definition of HC . We now define a decomposition
(Fk, F`) of D by A(Fk) =

⋃
x∈X∪C A(F x

k ) and A(F`) = A(D)−A(Fk). Observe that every
connected component of Fk or F` is fully contained in Hx for some x ∈ X ∪ C. It follows
that (Fk, F`) is a (k, `)-decomposition of D, so D is a positive instance of (k, `)-BDLFD.
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Now suppose that D is a positive instance of (k, `)-BDLFD, so there exists a (k, `)-
decomposition (Fk, F`) of D. We now define a truth assignment φ : X → {true, false}.
Consider some x ∈ X. By the definition of Hx, we have that one of {a1, . . . , aq} ⊆ A(Fk)
and {a1, . . . , aq} ⊆ A(F`) holds. In the former case, we set φ(x) = true and in the
latter case, we set φ(x) = false. In order to prove that φ is a satisfying assignment, we
consider some C ∈ C. We let x1, x2, and x3 be the variables contained in C and we let
Z = {i ∈ [3] | φ(xi) = true}. By the definition of φ and Hxi for i ∈ [3], we obtain that
{i ∈ [3] | ai ∈ A(FC

` )} = Z. It follows by the definition of HC that Z is a non-empty,
strict subset of [3]. This yields that φ is a satisfying assignment for (X, C), so (X, C) is a
positive instance of ME-1-SAT.

3.4 Decomposing into directed linear forests, one of which is unbounded

Finally, in this section, we show the result for the case that one of the two directed linear
forests is unbounded. More precisely, we prove the following result.

Theorem 35. For every integer k > 1, (∞, k)-BDLFD is NP-complete.

Proof. The problem clearly being in NP, we prove the hardness by a reduction from
the problem of deciding whether a given 2-diregular digraph admits a hamiltonian cycle.
Recall that this problem is NP-complete by Theorem 11.

Let D be a 2-diregular digraph and let x be an arbitrary vertex in V (D). We now
create a digraph D′ in the following way: For every v ∈ V (D), we let V (D′) contain two
vertices v+ and v−. Further, if k > 2, for every v ∈ V (D)−x, we let V (D′) contain 2k−2
additional vertices v2, . . . , vk, v

′
2, . . . , v

′
k. Next, for every arc uv ∈ A(D), we let A(D′)

contain the arc u+v−. If k = 1, for every v ∈ V (D) − x, we let A(D′) contain the arc
v−v+. If k > 2, for every v ∈ V (D)−x, we let A(D′) contain the arcs v−v2, v−v

′
2, v
′
2v2, vkv+,

and the arcs vi−1vi, vi−1v
′
i, and v′ivi for every i ∈ {3, . . . , k}. This finishes the description

if D′. For an illustration, see Figure 17.
We now prove that D′ admits an (∞, k)-decomposition if and only if D contains a

hamiltonian cycle. First suppose that D contains a hamiltonian cycle C. We now define
a set A∞ ⊆ A(D′). We first let A∞ contain the arc u+v− for every arc uv ∈ A(C). Next,
if k = 1, for every v ∈ V (D)− x, we let A∞ contain the arc v−v+ and if k > 2, we let A∞
contain the arcs v−v

′
2, v
′
2v2, vkv+, and the arcs v′ivi and vi−1v

′
i for every i ∈ {3, . . . , k}. We

now define the decomposition (F∞, Fk) of D′ by A(F∞) = A∞ and A(Fk) = A(D′)−A∞.
In order to see that Fk is a k-bounded directed linear forest observe that by construction,
every connected component of Fk is a directed path of the form u+v− if k = 1 and a
directed path of the form u+v−v2 . . . vk if k > 2 for some arc uv ∈ A(D). In order to see
that F∞ is a directed linear forest, first observe that we have d+F∞(x+) = 1, d−F∞(x+) =
0, d+F∞(x−) = 0, d−F∞(x−) = 1 and d+F∞(v) = d−F∞(v) = 1 for all v ∈ V (D′) − {x+, x−}.
It hence suffices to prove that F∞ does not contain a directed cycle C ′ with V (C ′) ⊆
V (D′)− {x+, x−}. Suppose for the sake of a contradiction that C ′ is such a cycle and let
C ′′ be the subdigraph of D defined by A(C ′′) = {uv ∈ A(D) | u+v− ∈ A(C ′)}. As C ′ is a
directed cycle, we have d+C′′(v) 6 1 and d+C′′(v) = d−C′′(v) for all v ∈ V (D). It follows that
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Figure 17: An example for the construction of the digraph D′ from the digraph D with
k = 2, together with an (∞, k)-decomposition (F∞, Fk) of D′, built from the hamiltonian
cycle of D coloured in blue. The dashed red arcs are in A(Fk) and the solid green arcs
are in A(F∞).

C ′′ is a disjoint collection of directed cycles and disjoint cycles. By construction, we have
that A(C ′′) is nonempty and d+C′′(x) = 0. Finally, by construction, we have that C ′′ is a
subdigraph of C. This contradicts C being a hamiltonian cycle of D.

Now suppose that there exists an (∞, k)-decomposition (F∞, Fk) of D. Let C be the
spanning subdigraph of D defined by A(C) = {uv ∈ A(D) | u+v− ∈ A(F∞)}. As F∞
and Fk are directed linear forests, we have d+C(v) = d−C(v) = 1 for all v ∈ V (D), so C is
a collection of directed cycles. Suppose for the sake of a contradiction that C contains a
connected component C ′ which is a directed cycle v1 . . . vq with x /∈ {v1, . . . , vq}. If for
every i ∈ [q], we have that F∞ contains a directed vi−v

i
+-path, then F∞ contains a con-

nected component containing the arcs of all those paths and {u+v− | uv ∈ A(C ′)}. This
contradicts F∞ being a directed linear forest. Hence there exists some w ∈ {v1, . . . , vq}
such that F∞ does not contain a directed w−w+-path. Observe that, as both F∞ and Fk
are directed linear forests, we have that both F∞ and Fk contain a directed path from
w− to the unique vertex in N−D (w+) and both these paths are of length at least k− 1. As
F∞ does not contain a directed w−w+-path, we obtain that the unique edge in δ−D′(w+)
is contained in A(Fk). It follows that w− is the first vertex of a path of length at least k
in Fk. Hence, as Fk is a k-bounded directed linear forest, both arcs entering w− in A(D′)
are contained in A(F∞). This contradicts F∞ being a directed linear forest. We obtain a
contradiction to the existence of C ′. It follows that C is a hamiltonian cycle of D.
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4 Decomposing into out-galaxies

This section is dedicated to proving Theorem 5. In Section 4.1, we give the simple proof
that the problem of decomposing a given digraph into two unbounded out-galaxies can be
reduced to finding a bipartition of a certain graph and can hence be solved in polynomial
time. In Section 4.2, we give the somewhat more involved proof that the problem of
decomposing a given digraph into a directed matching and a (bounded) out-galaxy can
be solved in polynomial time by a reduction to a matching problem. In Section 4.3,
we show that the problem is NP-complete in all remaining cases. The combination of
these results yields Theorem 5. Throughout this section, for k, ` ∈ Z>1 ∪ {∞}, a (k, `)-
factorization of a digraph D is a decomposition (Fk, F`) of D such that Fk is a k-bounded
out-galaxy, and F` is an `-bounded out-galaxy.

4.1 Decomposing into two unbounded out-galaxies

We here prove the following result which covers one of the cases of Theorem 5. The proof
consists of a simple reduction to a bipartition problem.

Theorem 36. (∞,∞)-BOGD is solvable in polynomial time.

Proof. Let D be an instance of (∞,∞)-BOGD. We create an undirected graph G in the
following way. For every a ∈ A(D), we let V (G) contain a vertex va and we let E(G)
contain an edge linking two vertices va and va′ if a and a′ share a vertex which is not the
tail of both of them in D.

Claim 37. D is a positive instance of (∞,∞)-BOGD if and only if G is bipartite.

Proof of claim. First suppose that D is a positive instance of (∞,∞)-BOGD, so there
exists an (∞,∞)-factorization (F, F ′) of D. Let X = {va | a ∈ A(F )} and Y = V (G)−X.
Let va, va′ ∈ X. Then, as F is an out-galaxy, we obtain that a and a′ are either disjoint
or have a common tail. We obtain that va and va′ are not linked by an edge in G. It
follows that X is an independent set. Similarly, Y is an independent set, so (X, Y ) is a
bipartition of G.

Now suppose that G is bipartite and let (X, Y ) be a bipartition of G. Let F be the
spanning subdigraph of D with A(F ) = {a ∈ A | va ∈ X} and let F ′ be the spanning
subdigraph of D with A(F ′) = A(D)−A(F ). As X is an independent set in G, we obtain
that all arcs a, a′ ∈ A(F ) are either disjoint or share their tail. It follows that F is an
out-galaxy. Similarly, F ′ is an out-galaxy, so (F, F ′) is an (∞,∞)-factorization of D. ♦

By Claim 37, it suffices to check whether G is bipartite. By Proposition 9 and as G
can be constructed from D in polynomial time, this can be done in polynomial time.

4.2 Decomposing into a matching and an out-galaxy

This section is dedicated to proving that a decomposition of a given digraph into a directed
matching and a possibly bounded out-galaxy can be found in polynomial time. The proof
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is based on a reduction to a matching problem in undirected graphs and has certain
similarities with the proof of Theorem 14 and the proof of [7, Theorem 2]. We first need
a collection of preliminary results which deal with certain decompositions of orientations
of cycles and paths.

Proposition 38. Let C be an orientation of a cycle. Then, for any k ∈ Z>2 ∪{∞} there
exists a (k, 1)-factorization of C if and only if k is even or C is not oriented as a circuit.

Proof. Let C be an orientation of the cycle v1v2 . . . vrv1. If r is even, we can define a
decomposition (Fk, F1) of C in which A(Fk) consists of the orientation of the edge vivi+1

for all odd i ∈ [r] and A(F1) = A(C) − A(Fk). It is easy to see that (Fk, F1) is a
(k, 1)-factorization of C.

We may hence suppose that r is odd. First suppose C is oriented as a circuit, say
v1v2 . . . vrv1 and that there exists a (k, 1)-factorization (Fk, F1) of C. At least one arc of
A(C) belongs to Fk. Hence, by symmetry, we may suppose that vrv1 ∈ A(Fk). As Fk and
F1 are out-galaxies, we inductively obtain that vivi+1 ∈ A(F1) for all odd i ∈ [r − 2] and
vivi+1 ∈ A(Fk) for all even i ∈ [r− 1]. This yields vr−1vr, vrv1 ∈ A(Fk), a contradiction to
Fk being an out-galaxy. Hence in this case there exists no (k, 1)-factorization of C. Now
suppose that C is not a circuit. Then C contains a source, that is some vertex v ∈ V (C)
with d+C(v) = 2, say v1. Then let A(Fk) contain v1vr and the orientation of the edge vivi+1

for all odd i ∈ [r − 2] and let A(F1) = A(C)− A(Fk). It is easy to see that (Fk, F1) is a
(k, 1)-factorization of C.

Proposition 39. Let P be an orientation of a path of length at least 2, a1, a2 the endarcs
of P , and let A0 ⊆ {a1, a2}. Then we can decide in polynomial time whether there exists
a (k, 1)-factorization (Fk, F1) of P with A(F1) ∩ {a1, a2} = A0.

Proof. Let the underlying graph of P be the path v1 . . . vq. If q = 3, we can solve the
instance by a brute force approach. We may hence suppose that q > 4. We distinguish
three cases.

Case 1: A0 6= ∅.

We assume without loss of generality that a1 ∈ A0. Then there exists a (k, 1)-
factorization (Fk, F1) of P with A(F1) ∩ {a1, a2} = A0 if and only if there exists a
(k, 1)-factorization (F ′k, F

′
1) of P − v1 with A(F ′1) ∩ {a′1, a2} = A0 − a1 where a′1 is

the orientation of the edge v2v3 in P . We can hence recursively solve this smaller
instance.

Case 2: A0 = ∅ and A(P ) does not contain {v2v1, v2v3}.
In this case, there exists a (k, 1)-factorization (Fk, F1) of P with A(F1)∩{a1, a2} = ∅
if and only if there exists a (k, 1)-factorization (F ′k, F

′
1) of P − v1 with A(F ′1) ∩

{a′1, a2} = {a′1} where a′1 is the orientation of the edge v2v3 in P . We can hence
recursively solve this smaller instance.
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Case 3: A0 = ∅ and A(P ) contains {v2v1, v2v3}.
We will show that in this case, we can find the desired decomposition. If q is odd,
we define Fk by letting A(Fk) consist of v2v1 and the orientation of vivi+1 for all
even integers i ∈ {2, . . . , q − 1}. If q is even, we define Fk by letting A(Fk) consist
of the orientation of vivi+1 for all odd integers i ∈ {1, . . . , q − 1}. We define F1 by
A(F1) = A(P ) − A(Fk). In both cases, it is easy to see that (Fk, F1) is a (k, 1)-
factorization of P and that A(F1) ∩ {a1, a2} = ∅.

Proposition 40. Let P be an orientation of a path of length at least 2, a1, a2 the endarcs
of P and let X ⊆ 2{1,2} be the set such that for every A0 ⊆ {a1, a2}, there exists a (k, 1)-
factorization (Fk, F1) of P with A(F1) ∩ {a1, a2} = A0 if and only if {i ∈ {1, 2} | ai ∈
A0} ∈ X. Then at least one of {∅, {1, 2}} ⊆ X and {{1}, {2}} ⊆ X holds. Moreover, we
can compute X in polynomial time.

Proof. Let P be an orientation of the path v1 . . . vq for some positive integer q > 3. We
can define a decomposition (Fk, F1) of P where A(Fk) contains the orientation of vivi+1

for all odd integers i and A(F1) contains the orientation of vivi+1 for all even integers
i. Further, we can define (F ′k, F

′
1) by A(F ′k) = A(F1) and A(F ′1) = A(Fk). It is easy

to see that both (Fk, F1) and (F ′k, F
′
1) are (k, 1)-factorizations of P . This proves that

{∅, {1, 2}} ⊆ X if q is even and {{1}, {2}} ⊆ X if q is odd. In order to compute X, we
test whether I ∈ X for every I ⊆ {1, 2}. As there are only four sets to test, this can be
done in polynomial time by Proposition 39.

In order to reduce our decomposition problem to a matching problem, we need a
collection of gadgets. Each of these gadgets will correspond to a path in the underlying
graph of the input digraph and the gadget will reflect the possible decompositions of the
corresponding subdigraph of the input digraph. The following result shows that all the
desired gadgets exist.

Lemma 41. Let X ⊆ 2{1,2} with {∅, {1, 2}} ⊆ X or {{1}, {2}} ⊆ X. Then there exists
a graph G together with some v1, v2 ∈ V (G), e1, e2 ∈ E(G) and Z ⊆ V (G)− {v1, v2} with
the following properties:

• for i = 1, 2, the only edge incident to vi is ei,

• for every I ∈ X, there exists a matching M in G covering Z with M ∩ {e1, e2} =
{ei | i ∈ I},

• for every matching M in G covering Z, we have {i ∈ {1, 2} | ei ∈M} ∈ X.

Proof. We explicitly give the gadgets for every possible set X, omitting sets which are
fully symmetric to previously considered ones. As it is easily visible that these gadgets
have the desired properties, we do not prove that in detail.

Case 1: X = {∅, {1, 2}}.
We set V (G) = {v1, v2, z1, z2}, E(G) = {e1 = v1z1, e2 = v2z2, z1z2} and Z = {z1, z2},
see Figure 18 (a).

the electronic journal of combinatorics 31(4) (2024), #P4.26 31



Case 2: X = {{1}, {2}}.
We set V (G) = {v1, v2, z}, E(G) = {e1 = v1z, e2 = v2z}, and Z = {z}, see
Figure 18 (b).

Case 3: X = {∅, {1}, {2}}. We set V (G) = {v1, v2, w}, E(G) = {e1 = v1w, e2 = v2w}
and Z = ∅, see Figure 18 (c).

Case 4: X = {∅, {1}, {1, 2}}.
We set V (G) = {v1, v2, z, w}, E(G) = {e1 = v1z, e2 = v2w,wz} and Z = {z}, see
Figure 18 (d).

Case 5: X = {∅, {2}, {1, 2}}.
This case is symmetric to the previous one.

Case 6: X = {{1}, {2}, {1, 2}}.
We set V (G) = {v1, v2, z1, z2, w}, E(G) = {e1 = v1z1, e2 = v2z2, z1w, z2w} and
Z = {z1, z2}, see Figure 18 (e).

Case 7: X = {∅, {1}, {2}, {1, 2}}. We set V (G) = {v1, v2, w1, w2}, E(G) = {e1 =
v1w1, e2 = v2w2} and Z = ∅, see Figure 18 (f).

v1 v2

z1 z2

e1 e2

(a)
v1 v2

z

e1 e2

(b)
v1 v2

w

e1 e2

(c)

v1 v2

z w

e1 e2

(d)
v1 v2

z1
w

z2

e1 e2

(e)
v1 v2

w1 w2

e1 e2

(f)

Figure 18: An illustration of the X-gadgets for all sets X which are relevant by Proposi-
tion 40. The vertices in Z are marked by squares and the remaining vertices by disks.

We say that (G, v1, v2, e1, e2, Z) as described in Lemma 41 is an X-gadget. We are now
ready to prove the main result of this section. We first exclude some local configurations
which clearly make the instance negative and then reduce the problem to a matching
problem.

Theorem 42. For every k ∈ Z>1 ∪ {∞}, (k, 1)-BOGD is solvable in polynomial time,
even if k is part of the input.
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Proof. Let D be an instance of (k, 1)-BOGD for some k ∈ Z>1 ∪ {∞}. Observe that D is
a positive instance of (∞, 1)-BOGD if and only if D is a positive instance of (k, 1)-BOGD
for k = maxv∈V dD(v). We may hence suppose that k is finite.

A vertex v ∈ V is called big if it satisfies dD(v) > 3 and tiny if it satisfies dD(v) = 1.
We denote by B and T the set of big and tiny vertices, respectively. By Proposition 38,
we may suppose that every connected component of D that contains at least one arc
contains a vertex in B ∪ T . Further, for i = 0, 1, we denote by Bi the set of vertices in B
with d−D(v) = i and dD(v) 6 k+ 1. Clearly, if D contains a vertex in B − (B0 ∪B1), then
D is a negative instance of (k, 1)-BOGD. As this property can be checked in polynomial
time, we may suppose that B = B0∪B1. We further let P be the set of subdigraphs of D
whose underlying graphs forms either a path in UG(D) connecting two vertices of B ∪ T
and none of whose interior vertices is contained in B ∪ T or a cycle containing exactly
one vertex in B ∪ T . We say that P is incident to these vertices in B ∪ T . Observe that
{A(P ) | P ∈ P} is a partition of A(D).

We now create an undirected graph G. First, we let V (G) contain B0 ∪ T . For every
b ∈ B0 ∪ T and every arc a ∈ A which is incident to b, we also refer to b as uab . Next, for
every b ∈ B1 and every a ∈ δ+D(b), we let V (G) contain two vertices uab and zab , and we let
E(G) contain an edge uabz

a
b . Further, for every b ∈ B1 and every a ∈ δ−D(b), we let V (G)

contain a vertex uab .
Now consider some P ∈ P . Let b1, b2 ∈ B ∪ T be the vertices incident to P with

b1 = b2 if P is a cycle. We define the associated path P ′ of P by P ′ = P if P is a path
and the path obtained by detaching b1 into two vertices b1, b2 with dP ′(b1) = dP ′(b2) = 1
if P is a cycle. Further, let a1, a2 be the arcs in A(P ′) such that ai is incident to bi. We
now compute the set XP ⊆ 2{1,2} such that for every I ⊆ {1, 2}, we have that P ′ admits
a (k, 1)-decomposition (Fk, F1) with {i ∈ {1, 2} | ai ∈ A(F1)} = I if and only if I ∈ XP .
Observe that XP = {∅, {1, 2}} if P ′ is of length 1. By Proposition 39, we obtain that
XP can be computed in polynomial time.

We now add an XP -gadget (GP , vP1 , v
P
2 , e

P
1 , e

P
2 , Z

P ) and identify vP1 with ua1b1 and vP2
with ua2b2 . The existence of this gadget is guaranteed by Proposition 40 and Lemma 41.
We do this for every P ∈ P . This finishes the description of G. We now let Z consist of⋃
P∈P Z

P , the vertex uab for every b ∈ B1 and a ∈ δ−(b), the vertex zab for every b ∈ B1

and a ∈ δ+(b) and the vertex b for every b ∈ B0 with d+D(b) = k + 1. For an illustration,
see Figure 19.

Claim 43. D is a positive instance of (k, 1)-BOGD if and only if G contains a matching
covering Z.

Proof of claim. First suppose that D is a positive instance of (k, 1)-BOGD, so there exists
a (k, 1)-factorization (Fk, F1) of D. We now construct a set M ⊆ E(G). We first let
M contain the set of edges uabz

a
b for all b ∈ B1 and a ∈ δ+D(b). Now let P ∈ P and let

a1, a2 ∈ A be the arcs of P incident to vertices in B ∪T in the order they were used when
constructing G. We now let MP be a matching in GP that covers ZP and, for i = 1, 2,
contains ePi if and only if ai ∈ A(F1). Observe that such a matching exists by the choice
of GP and because the restriction of (Fk, F1) to P is a (k, 1)-factorization of P . We now
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Figure 19: An example for the construction of the graph G from the digraph D for k = 3.
In D, we have T = {v1}, B0 = {v4, v5}, and B1 = {v2, v3}. For integers i ∈ [5] and
j ∈ [7] such that vi is an endvertex of Pj, the unique arc of Pj incident to vi is denoted
by aij. Vertices in Z are marked by squares. The different elements of P = {P1, . . . , P8}
are marked in different colours. For i ∈ [8], the gadget in G corresponding to Pi in D
is marked in the same colour as Pi. We have XP1 = {∅, {2}, {1, 2}}, XP2 = {{1}, {2}},
XP3 = {∅, {1}, {2}, {1, 2}}, XP4 = {∅, {1}, {2}}, XP5 = {∅, {1, 2}}, XP6 = {∅, {1, 2}},
XP7 = {{1}, {2}}, and XP8 = {{1}, {2} {1, 2}}, where for i ∈ [7], we let (b1, b2) be the
endvertices of Pi in increasing order with respect to (v1, . . . , v5).

add MP to M and do this for all P ∈ P . This finishes the description of M . We next
show that M is a matching that covers Z. By construction, every vertex contained in
V (GP )−{vP1 , vP2 } for some P ∈ P is incident to at most one edge in M and M covers ZP

for all P ∈ P . Next, every t ∈ T is incident to only one edge in E(G), hence in particular
at most one edge in M . Next, consider some b ∈ B0. Every edge of M incident to b
corresponds to an arc of A(F1) incident to b. As F1 is a directed matching, there is at
most one such arc. Moreover, if b ∈ Z, then d+D(b) = k + 1. As Fk is a k-bounded out-
galaxy and (A(F1), A(Fk)) is a partition of A(D), we obtain that b is incident to exactly
one arc in A(F1). Hence b is covered by M . Finally, consider some b ∈ B1 and let a∗ be
the unique arc in δ−D(b). As (Fk, F1) is a (k, 1)-out galaxy decomposition of D, we obtain
that a∗ is contained in A(F1) and all other arcs incident to b in D are contained in A(Fk).
Hence the unique edge in E(G) incident to ua

∗

b is contained in M and for all a ∈ δ+D(b), we
have that uabz

a
b ∈ M and no other edge incident to uab in G is contained in M . It follows

that each vertex in V (G) is incident to at most one edge of M and moreover, every vertex
in Z is incident to exactly one edge of M . Hence M is a matching covering Z.

the electronic journal of combinatorics 31(4) (2024), #P4.26 34



Now suppose that G contains a matching M covering Z. Consider some P ∈ P and
let a1, a2 be the arcs incident to vertices b1, b2 ∈ B∪T , respectively, in the order they were
used when constructing G. We now let A0 ⊆ {a1, a2} be the set that, for i = 1, 2, contains
the arc ai if ePi ∈ M . By construction, we obtain that there exists a (k, 1)-factorization
(F P

k , F
P
1 ) of P such that A(F P

1 ) ∩ {a1, a2} = A0. We now consider the decomposition
(Fk, F1) of D which is defined by A(Fk) =

⋃
P∈P A(F P

k ) and A(F1) = A(D)−A(Fk). Let
K be a connected component of Fk. If V (K) ⊆ V (P ) − B for some P ∈ P , it follows
from the fact that F P

k is a k-bounded out-galaxy that K is a k-bounded out-star. We
may hence suppose that V (K) contains some b ∈ B. First suppose that d−K(b) > 1, so
there exists an arc a ∈ δ−K(b) ∩ δ−P (b) for some P ∈ P . In particular, we have b ∈ B1 and
by construction, the unique edge in G incident to uab is not contained in M . As uab ∈ Z,
this contradicts M covering Z. We may hence suppose that d−K(b) = 0 and, as b was
chosen arbitrarily and (F p

k , F
P
1 ) is a (k, 1)-factorization of P for all P ∈ P , that b is the

only vertex in V (K) ∩ (B ∪ T ) and the underlying graph of K is a star. If d+D(b) 6 k, we
obtain d+K(b) 6 d+D(b) 6 k, so K is a k-bounded tree. If d+D(b) = k + 1, then b ∈ Z, so b
is incident to an edge of M . By construction, this means that b is incident to an arc of
A(F1). It follows that d+K(b) = d+D(b) − d+F1

(b) = (k + 1) − 1 = k, so K is a k-bounded
star.

Now let K be a connected component of F1. It follows from the fact that F P
1 is a

directed matching for every P ∈ P that dK(v) 6 1 for all v ∈ V (G) − (B ∪ T ). For all
b ∈ B0 ∪ T , the fact that b is incident to at most one edge in M by construction yields
dK(b) 6 1. Finally consider some b ∈ B1. For all a ∈ δ+D(b), we obtain from zab ∈ Z that
uabz

a
b ∈M . As M is a matching, we obtain that no other edge incident to uab is contained

in M . Hence, by construction, we have dK(b) 6 1. This yields that F1 is a directed
matching. Hence (Fk, F1) is a (k, 1)-factorization of D. ♦

By Claim 43, it suffices to check whether G contains a matching covering Z. By
Proposition 10, this can be done in polynomial time. Further observe that the algorithm
is fully constructive, hence the desired decomposition can be found in polynomial time if
it exists.

4.3 Decomposing into two (> 2)-bounded out-galaxies

In this section, we prove the hardness results contained in Theorem 5. We first describe
a gadget which will prove useful. For every q > 1, a q-variable gadget is a digraph D
together with a set S ⊆ V (D) of size q with the following properties:

(a) d+D(v) = 0 and d−D(v) = 1 hold for all s ∈ S,

(b) for every (∞,∞)-decomposition (F, F ′) of D, we have δ−D(S) ⊆ A(F ) or δ−D(S) ⊆
A(F ′), and

(c) there exists a (2, 2)-factorization of D.

Proposition 44. For every integer q > 1, there exists a q-variable gadget whose size is
polynomial in q.
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Proof. Let D be the digraph on 3q vertices u1, . . . , u2q, v1, . . . , vq that consists of a directed
path on 2q vertices u1, . . . , u2q and the arc u2ivi for i ∈ [q], see Figure 20 for an illustration.
Further, let S = {v1, . . . , vq}. Observe that the size of D is clearly polynomial in q and
that D satisfies (a).

Next, let (F, F ′) be an (∞,∞)-factorization of D. By symmetry, we may suppose that
u1u2 ∈ A(F ). As F and F ′ are out-galaxies, we inductively obtain that uiui+1 ∈ A(F )
for all odd i ∈ [2q− 1] and uiui+1 ∈ A(F ′) for all even i ∈ [2q− 2]. As F is an out-galaxy,
we obtain that u2ivi ∈ A(F ′) for all i ∈ [q]. Hence (b) holds.

We now define (F, F ′) by A(F ) = {u2i−1u2i | i ∈ q} and A(F ′) = A(D)− A(F ). It is
easy to see that (F, F ′) is a (2, 2)-factorization of D, so (c) holds. An illustration can be
found in Figure 20.

u1 u2 u3 u4 u5 u6 u7 u8

v1 v2 v3 v4

Figure 20: A 4-variable gadget together with a (2, 2)-factorization.

We are now ready to prove our NP-completeness results. The proof deals with two
cases separately. The first one is the case that the bounds imposed on the out-galaxies
are equal and the second one is the case that they are distinct.

Theorem 45. For every integer k > 2, (k, k)-BOGD is NP-complete.

Proof. First observe that (k, k)-BOGD is clearly in NP. We will show that (k, k)-BOGD
is NP-complete by a reduction from ME-(k − 1)-SAT, which is NP-complete by Propo-
sition 12.

Let (X, C) be an instance of ME-(k − 1)-SAT. We now describe a digraph D. For
every x ∈ X, we let D contain a q(x)-variable gadget (Dx, Sx) whose size is polynomial in
q(x), where q(x) denotes the number of clauses in C containing x and Sx contains a vertex
s(x,C) for every C ∈ C with x ∈ C. Observe that such a gadget exists by Proposition 44.
Further, for every C ∈ C, we let D contain an out-star DC whose root is a vertex vC and
that contains a leaf t(x,C) for every x ∈ C. We finally obtain D by identifying s(x,C) and
t(x,C) into a vertex v(x,C) for every C ∈ C and every x ∈ C.

We show in the following that D is a positive instance of (k, k)-BOGD if and only if
(X, C) is a positive instance of ME-(k − 1)-SAT.

First suppose that (X, C) is a positive instance of ME-(k − 1)-SAT, so there exists a
mapping φ : X → {true, false} such that every C ∈ C contains at least k − 1 variables
assigned true and at least k − 1 variables assigned false by φ. We now define a decom-
position (F, F ′) of D. For every x ∈ X with φ(x) = true (respectively false), we choose
a (2, 2)-factorization (Fx, F

′
x) of Dx such that δ−Dx

(Sx) ∈ A(Fx) (respectively A(F ′x)). Ob-
serve that such a decomposition exists as Dx is a q(x)-variable gadget. Next for every
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C ∈ C, we define a decomposition (FC , F
′
C) of DC in the following way: for every x ∈ C, if

φ(x) = true we let the arc vCt(x,C) be contained in A(F ′C), otherwise we let it be contained
in A(FC). We now define the decomposition (F, F ′) of D by A(F ) =

⋃
x∈X∪C A(Fx) and

A(F ′) = A(D)− A(F ).
In order to show that (F, F ′) is a (k, k)-factorization of D, by symmetry, it suffices

to prove that every connected component of F is a k-bounded out-star. Let K be a
connected component of F . It follows by construction that K is a subdigraph of Dx

for some x ∈ X ∪ C. If K is a subdigraph of Dx for some x ∈ X, then, it follows by
construction that K is a k-bounded out-star. If K is a subdigraph of DC for some C ∈ C,
then it follows by construction that K is an out-star whose root is vC . Further, every leaf
of K corresponds to a variable x ∈ C with φ(x) = false. As φ is satisfying assignment
for (X, C), there are at most k such variables and hence K is k-bounded. It follows that
D is a positive instance of (k, k)-BOGD.

Now suppose that D is a positive instance of (k, k)-BOGD, so there exists a (k, k)-
factorization (F, F ′) of D. For every x ∈ X, as Dx is a q(x)-variable gadget, we obtain
that δ−Dx

(Sx) ⊆ A(F ) or δ−Dx
(Sx) ⊆ A(F ′) holds. We now define φ : X → {true, false}

by φ(x) = true if δ−Dx
(Sx) ⊆ A(F ) and φ(x) = false, otherwise. In order to see that φ is

a satisfying assignment for (X, C), consider some C ∈ C. As Fk is an out-galaxy, for every
x ∈ C with φ(x) = true, we have that vCv(x,C) ∈ A(F ′). As F ′ is a k-bounded out-galaxy,
we obtain that there are at most k variables x ∈ C with φ(x) = true. A similar argument
shows that there are at most k variables x ∈ C with φ(x) = false. Hence φ is a satisfying
assignment for (X, C) and so (X, C) is a positive instance of ME-(k − 1)-SAT.

For the case that k 6= `, we need a slightly more complex clause gadget. More con-
cretely, for some ` ∈ Z>2, some k ∈ Z>`+1 ∪ {∞} and nonnegative integers α1, α2 with
α1 +α2 = `+1, a (k, `, α1, α2)-clause gadget is a digraph D together with two disjoint
sets S1, S2 ⊆ V (D) with |Si| = αi for i ∈ [2] satisfying the following properties:

(a) d+D(v) = 0 and d−D(v) = 1 hold for all v ∈ S1 ∪ S2,

(b) for every (k, `)-factorization (Fk, F`) of D, we have δ−D(S1 ∪ S2) ∩ A(Fk) 6= δ−D(S2),
and

(c) for every S0 ⊆ S1 ∪ S2 with S0 6= S2, there exists a (k, `)-factorization of D with
A(Fk) ∩ δ−D(S1 ∪ S2) = δ−D(S0).

Lemma 46. Let ` ∈ Z>2, k ∈ Z>`+1 ∪ {∞} and α1, α2 be nonnegative integers with
α1 + α2 = `+ 1. There exists a (k, `, α1, α2)-clause gadget.

Proof. We create a digraph D with vertex-set

V (D) = {r, s1, . . . , sα1 , s
′
1, . . . , s

′
α2
, u1, . . . , uα2}.

Further, we let A(D) consist of the arcs rsi for i ∈ [α1] and the arcs rui and uis
′
i for

i ∈ [α2]. Finally, we set S1 = {s1, . . . , sα1} and S2 = {s′1, . . . , s′α2
}. This finishes the

description of D. For an illustration, see Figure 21.
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Figure 21: A (k, 6, 4, 3)-clause gadget for some k > 7.

Clearly, S1 and S2 are disjoint, we have |Si| = αi for i ∈ [2], and (a) is satisfied. For (b),
suppose for the sake of a contradiction that there exists a (k, `)-factorization (Fk, F`) of
D with A(Fk)∩ δ−D(S1∪S2) = δ−D(S2). As Fk is an out-galaxy, we obtain that δ+D(r) ⊆ F`.
As d+D(r) = α1 + α2 = ` + 1, this contradicts F` being an `-bounded out-galaxy. This
proves (b).

Now consider some S0 ⊆ S1 ∪ S2 with S0 6= S2. We define the factorization (Fk, F`)
of D by A(Fk) = {rsi | si ∈ S0 ∩ S1} ∪ {uis′i | s′i ∈ S0 ∩ S2} ∪ {rui | s′i ∈ S2 − S0} and
A(F`) = A(D) − A(Fk). It is easy to see that (Fk, F`) has the desired properties. This
proves (c).

We are now ready to prove the second part of our hardness results.

Theorem 47. For every integer ` > 2 and every k ∈ Z>`+1 ∪ {∞}, (k, `)-BOGD is
NP-complete.

Proof. Let us fix ` ∈ Z>2 and k ∈ Z>`+1∪{∞}. First observe that (k, `)-BOGD is clearly
in NP. We will show that (k, `)-BOGD is NP-complete by a reduction from (`+ 1)-SAT,
which is known to be NP-complete since `+ 1 > 3 and by Proposition 7.

Let (X, C) be an instance of (` + 1)-SAT. We now create a digraph D. For every
x ∈ X, we let D contain a q(x)-variable gadget (Dx, Sx) where q(x) is the total number of
occurences of x or x̄ in (X, C) and Sx contains a vertex t(x,C) for every C ∈ C containing
x or x̄. Now consider some clause C ∈ C, let α1 be the number of positive literals in
C and let α2 be the number of negative literals in C. Observe that α1 + α2 = ` + 1 by
definition. We now let D contain a (k, `, α1, α2)-clause gadget (DC , SC1 , S

C
2 ) where SC1

contains a vertex s(x,C) for every x ∈ X with x ∈ C and SC2 contains a vertex s(x,C) for
every x ∈ X with x̄ ∈ C. We now obtain D by identifying t(x,C) and s(x,C) for all x ∈ X
and C ∈ C with x ∈ C or x̄ ∈ C. We show in the following that D is a positive instance
of (k, `)-BOGD if and only if (X, C) is a positive instance of (`+ 1)-SAT.

First suppose that (X, C) is a positive instance of (`+ 1)-SAT, so there exists a satis-
fying assignment φ : X → {true, false} for (X, C). For every x ∈ X with φ(x) = true

(φ(x) = false), we choose a (k, `)-factorization (F x
k , F

x
` ) of Dx with δ−Dx(Sx) ⊆ A(F x

` )
(δ−Dx(Sx) ⊆ A(F x

k ), respectively). For every C ∈ C, let SC0 be the set containing the
vertices s(x,C) for all variables x for which either x ∈ C and φ(x) = true or x̄ ∈ C and
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φ(x) = false holds. As φ is satisfying, we have SC0 6= SC2 . We now choose a (k, `)-
factorization (FC

k , F
C
` ) of DC with A(FC

k ) ∩ δ−
DC (SC1 ∪ SC2 ) = δ−

DC (SC0 ). Finally, we define
(Fk, F`) by A(Fk) =

⋃
x∈X∪C A(F x

k ) and A(F`) = A(D) − A(Fk). Observe that every
connected component of Fk or F` is fully contained in Dx for some x ∈ X ∪ C. It follows
that (Fk, F`) is a (k, `)-factorization of D, so D is a positive instance of BOGD.

Now suppose that D is a positive instance of BOGD, so D admits a (k, `)-factorization
(Fk, F`) of D. Consider some x ∈ X. As Dx is a q(x)-variable gadget, we obtain that
δ−Dx(Sx) ⊆ A(F`) or δ−Dx(Sx) ⊆ A(Fk) holds. We now define φ : X → {true, false} by
φ(x) = true if δ−Dx(Sx) ⊆ A(F`) and φ(x) = false, otherwise. In order to see that φ
is a satisfying assignment for (X, C), consider some C ∈ C and suppose for the sake of a
contradiction that C is not satisfied by φ. For all x ∈ X with x ∈ C, we obtain that the
unique arc entering s(x,C) which is not contained in A(DC) is contained in A(Fk). Hence,
as Fk is an out-galaxy, we obtain that δ−

DC (SC1 ) ⊆ A(F`). For all x ∈ X with x̄ ∈ C, we
obtain that the unique arc entering s(x,C) which is not contained in A(DC) is contained
in A(F`). Hence, as F` is an out-galaxy, we obtain that δ−

DC (SC2 ) ⊆ A(Fk). This yields
δ−
DC (S1 ∪ S2) ∩ A(Fk) = δ−

DC (S2), a contradiction as DC is a clause gadget. Hence φ
satisfies (X, C) and so (X, C) is a positive instance of (`+ 1)-SAT.
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[7] R. Campbell, F. Hörsch, and B. Moore. Decompositions into two linear forests of
bounded lengths. Discrete Math., 347(6):113962, 2024.
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