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Abstract

We consider two decomposition problems in directed graphs. We say that a
digraph is k-bounded for some k € Z>; if each of its connected components contains
at most k arcs.

For the first problem, a directed linear forest is a collection of vertex-disjoint
directed paths and we consider the problem of decomposing a given digraph into a
k-bounded and an ¢-bounded directed linear forest for some fixed k, ¢ € Z>1 U {oo}.
We give a full dichotomy for this problem by showing that it can be solved in
polynomial time if k4 ¢ < 3 and is NP-complete otherwise. This answers a question
of Campbell, Horsch, and Moore.

For the second problem, we say that an out-galaxy is a vertex-disjoint collection
of out-stars. Again, we give a full dichotomy of when a given digraph can be
arc-decomposed into a k-bounded and an ¢-bounded out-galaxy for fixed k,f €
Z=1 U {oo}. More precisely, we show that the problem can be solved in polynomial
time if min{k, ¢} € {1, 00} and is NP-complete otherwise.

Mathematics Subject Classifications: 05C20, 05C70

1 Introduction

Given a graph G (resp. a digraph), we say that a collection (Hy, ..., H;) of spanning
subgraphs (resp. subdigraphs) of G is a decomposition of G if (A(H;),...,A(H,)) is a
partition of E(G) (resp. A(G)). Given two properties P; and P, on digraphs, a general
problem consists of asking whether a digraph decomposes into two subdigraphs Hy, Ho
such that H; satisfies P;. We refer the reader to [4] for an extensive study of such problems.

Given an undirected graph G, a classical decomposition problem asks for the minimum
integer ¢ such that G admits a decomposition (Hy, ..., H;) in which H; is a forest for i € [t].
This parameter is called the arboricity of GG, and the following celebrated theorem by
Nash-Williams characterizes graphs with arboricity at most ¢.
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Theorem 1 (Nash-Williams [16]). For some positive integer t, a graph G decomposes
into t forests if and only if for every X C V(G), the subgraph of G induced by X contains
at most t - (| X| — 1) edges.

Although the condition in Theorem 1 involves an exponential family of vertex-sets,
it is well-known that one can actually compute the arboricity of a graph in polynomial
time.

An analogous problem has been defined for digraphs. A digraph is a branching if it is
an orientation of a forest in which every vertex has in-degree at most one. The directed
arboricity of a digraph D is then the minimum integer ¢ for which D decomposes into
t branchings. Using the celebrated Edmonds’ Branching Theorem [10], Frank proved the
following characterization of digraphs with directed arboricity at most .

Theorem 2 (Frank [11]). A digraph D decomposes into t branchings if and only if
e d;(v) <t holds for every vertex v € V(D), and
e the underlying graph G of D decomposes into t forests.

Theorem 2 together with the undirected result implies that the directed arboricity of
a digraph can be computed in polynomial time. A natural question is then to look at
the notion of arboricity when restricted to some classes of branchings. This is the topic
of this work, and we will consider both (bounded) directed linear forests and (bounded)
out-galaxies.

Recall that a directed linear forest is a vertex-disjoint union of directed paths. A
directed linear forest is k-bounded for some k € Z-; U {oo} if each of its connected
components is a directed path of length at most k, where the length of a directed path
refers to its number of arcs. Given a digraph D, the minimum integer ¢ such that D
decomposes into t directed linear forests is known as the directed linear-arboricity of
D, introduced by Nakayama and Peroche [15], see also [14]. For every integer k& > 1, when
restricted to k-bounded directed linear forests, following the notion recently introduced
by Zhou et al. [18], we define the directed linear-k-arboricity of a given digraph D
to be the minimum integer ¢ such that D decomposes into ¢ k-bounded directed linear
forests. Clearly, the problem of decomposing into one k-bounded linear forest is trivial.
Further, the problem of decomposing into three or more directed linear forests generalizes
the 3-edge-colouring problem, so there is little hope to obtain positive algorithmic results
for this class of problems. We hence focus on the possibility of decomposing a digraph
into two bounded directed linear forests. We thus consider the following class of problems,
for which not much is known.

(k, £)-bounded directed linear forest decomposition ((k,¢)-BDLFD)

Input: A digraph D

Question: Does D decompose into a k-bounded directed linear forest and an (-
bounded directed linear forest?
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In the following result, we settle the complexity of the problem above for all fixed
values of k and ¢, which answers a question raised by Campbell, Moore, and the first
author [7, Problem 3].

Theorem 3. For k,{ € Z>1 U {0}, the (k,€)-BDLFD problem is solvable in polynomial
time when k + ¢ < 3 and it 1s NP-complete when k + ¢ > 4.

Observe that it is straightforward that the (1,1)-BDLFEFD problem is solvable in polyno-
mial time: it asks whether the underlying graph of the input digraph is 2-edge-colourable.
The (00, c0)-BDLFD problem has been shown to be NP-complete by Nakayama and Pe-
roche in [15, Theorem 3.2]. We prove the remaining cases in Section 3. Interestingly, the
dichotomy proved in Theorem 3 matches exactly the one proved for the corresponding
problem in undirected graph which was partially proved in [7] and partially proved by
Banerjee et al. in [3]. Notice also that the following result directly follows from Theorem 3
when k£ = /.

Corollary 4. For every integer k > 2, deciding whether the directed linear-k-arboricity
of a digraph is 2 is NP-complete.

An out-star is a branching in which at most one vertex has positive out-degree. An
out-galaxy is a collection of vertex-disjoint out-stars. Again, it is k-bounded for some
k € Z-1 U{oc} if each of its connected component contains at most k + 1 vertices. Given
a digraph D, the minimum integer ¢ such that D decomposes into t out-galaxies is known
as the directed star-arboricity of D, and has been introduced by Algor and Alon
in [1], see also [2, 13, 8]. Analogously to the linear-arboricity, for every integer k > 1,
when restricted to k-bounded out-galaxies, we obtain the notion of directed star-k-
arboricity. To the best of the authors’ knowledge, it has not been defined before. We
then consider the following class of problems, which includes a directed analogue of |7,
Problem 2]. The undirected version of the problem was solved in [3, Theorem 1.4].

(k,¢)-bounded out-galaxy decomposition ((k,¢)-BOGD)

Input: A digraph D

Question: Does D decompose into a k-bounded out-galaxy and an ¢-bounded out-
galaxy?

In the following result, we settle the complexity of the problem above for all fixed
values of k£ and /.

Theorem 5. (k,£)-BOGD s solvable in polynomial time when min{k, ¢} =1 ork =1{=
0o. In every other case, it is NP-complete.

Again, we can observe that (1,1)-BOGD is easily solvable in polynomial time. We
prove the other cases in Section 4. Observe the following analogue of Corollary 4 for
star-arboricity.

Corollary 6. For every fized k > 2, deciding if the directed star-k-arboricity of a digraph
18 2 1s NP-complete.
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Outline of the paper. The paper is organised as follows. We first give our notation
on digraphs and recall some preliminary results in Section 2. Section 3 is devoted to
the proof of Theorem 3. We start by proving, in Section 3.1, that (k,¢)-BDLFD reduces
to 2-SAT when k + ¢ < 3, using some ideas which are similar to the ones of [7, Theo-
rem 2|. When both k and ¢ are integers, we prove the NP-completeness of (k,¢)-BDLFD
when ¢ = 1 and k£ > 3 in Section 3.2 and its NP-completeness when min{k, ¢} > 2 in
Section 3.3. In both cases, our proof consists of building specific gadgets, called forcers,
which force the existence, in every decomposition, of a directed path of specific length
on a vertex. We then use these forcers to build larger gadgets that model variables and
clauses, hence allowing us to reduce satisfiability problems to (k, ¢)-BDLFD. Finally, we
prove the NP-completeness of (k, ¢)-BDLFD when one of {k, ¢} is equal to oo by reducing
from hamiltonicity in 2-diregular digraphs. Section 4 is devoted to the proof of Theorem 5.
We first show in Section 4.1 that (0o, 00)-BOGD reduces to a 2-colourability problem. In
Section 4.2, we give a more involved proof that (1,%k)-BOGD is solvable in polynomial
time when k € Z-, U {oo}. The proof is based on a reduction to a matching problem in
undirected graphs and is also inspired by the proof of [7, Theorem 2]. We finally prove
the NP-completeness of (k,¢)-BOGD for the remaining cases in Section 4.3 by reducing
from specific satisfiability problems.

2 Preliminaries

2.1 Notation on digraphs

Our notation follows [5]. For some integer k, we denote by Z-, the set of integers which
are not smaller than k. We use [k] for {1,...,k}. Let D be a digraph. The underlying
graph UG(D) of D is the graph obtained from D by removing the orientations. We also
say that D is an orientation of UG(D). Note that UG(D) may contain parallel edges.
A digraph is connected if its underlying graph is a connected graph. A connected
component of D is a subdigraph H of D such that UG(H) is a connected component of
UG(D). A digon in D is a pair of opposite arcs between two vertices. The out-degree,
d},(v) (resp. in-degree, dj(v)) of a vertex v € V(D) is the number of arcs in A(D)
of the form vw (resp, uv) and the degree of v is dp(v) = df(v) + dp(v). A digraph
D is k-diregular if every vertex has in-degree and out-degree equal to k. Given a set
X C V(D) of vertices, we denote by 0,,(X) the set of arcs with tail in V(D) — X and
head in X. We let §5(X) denote 6, (V (D) — X). When X = {z} for a single vertex =,
with a slight abuse of notation we denote §5(X) and d,(X) respectively by &} (z) and
d5(z). A matching is a graph in which every vertex has degree at most one. A directed
matching is an orientation of a matching. A directed cycle is a connected digraph
in which every vertex has in-degree and out-degree exactly 1. A hamiltonian cycle in
a digraph D is a directed cycle of length |V(D)|. A directed path is obtained from a
directed cycle by the removal of exactly one arc. Let P be an orientation of a path. The
endvertices of P are the vertices of degree one in UG(P). When P has length at least
two, the endarcs of P are the arcs incident to its endvertices. A connected branching
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is called an arborescence, and its unique vertex with in-degree 0 is called its root. We
now recursively define a graph called binary tree with a special vertex called its tip
that has an integer k£ > 0 as parameter called its depth. A binary tree of depth 0 only
consists of the tip. For k > 1, a binary tree of depth k is constructed from two disjoint
binary trees T, T3 of depth k — 1 with tips x1, zo, respectively, by adding a vertex x and
the edges 1z and xox. Further, x is the tip of the binary tree.

2.2 Known complexity results

We recall a collection of well-known complexity results that we will use all along the
paper.

Proposition 7. (see [12]) k-SAT is NP-complete for any k > 3.

Proposition 8. (see [12]) 2-SAT can be solved in polynomial time. Moreover, a satisfying
assignment for a positive instance can be found in polynomial time.

Proposition 9. (see [12]) We can check in polynomial time whether a given graph is
bipartite.

Proposition 10. (see [17]) Let G be a graph and Z C V(G). We can decide in polynomial
time whether G contains a matching covering Z. Moreover, if such a matching exists, it
can be computed in polynomial time.

Theorem 11 ([5, Theorem 6.1.2]). It is NP-complete to decide whether a 2-diregular
digraph contains a hamiltonian cycle.

For some integer k£ > 1, an instance of the MONOTONE EQUITABLE k-SAT problem
(ME-£-SAT for conciseness) consists of a set of variables X and a set of clauses C' each of
which contains exactly 2k 4+ 1 non-negated variables and the question is whether there is
a truth assignment ¢ : X — {true, false} such that every clause in C' contains at least
k true and k false variables with respect to ¢. Note that ME-1-SAT is often referred
to as MONOTONE-NOT-ALL-EQUAL-3-SAT.

Proposition 12 ([9, Proposition 4.1]). For every integer k > 1, ME-k-SAT is NP-
complete.

The (3, B2)-SAT problem is the restriction of 3-SAT in which every litteral appears
exactly twice.

Theorem 13 ([6, Theorem 1)). (3, B2)-SAT is NP-complete.

3 Decompositions into bounded directed linear forests

This section is dedicated to proving our results concerning the computational complexity
of decomposing a given digraph into two (bounded) directed linear forests. More precisely,
we prove Theorem 3.

o
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First, in Section 3.1, we prove the positive algorithmic result contained in Theorem 3,
namely the case that k + ¢ < 3. The negative results are split into several parts. In
Section 3.2, we prove the complexity result for the case when both k£ and ¢ are finite
integers such that £ =1 and k£ > 3. In Section 3.3, we consider the case that both k and
¢ are finite integers and min{k, ¢} > 2. Finally, the case that exactly one of the directed
linear forests is unbounded is considered in Section 3.4. Together with the result in [15]
and the fact that (1,1)-BDLFD reduces to 2-colourability, we obtain Theorem 3.

Throughout this section, for k,¢ € Z-, U {c0}, a (k, £)-decomposition of a digraph
D is a decomposition (Fy, Fy) of D such that F}, is a k-bounded directed linear forest, and
F, is an ¢-bounded directed linear forest.

3.1 Decomposing into a matching and a 2-bounded directed linear forest

This section is dedicated to proving the main positive algorithmic result on directed linear
forest decompositions. More precisely, we prove the following theorem.

Theorem 14. (2,1)-BDLFD is solvable in polynomial time.

The proof of Theorem 14 contains some ideas which are similar to the proof of [7,
Theorem 2]. We first need a collection of easy preliminary results, that we prove for
completeness, which deal with decompositions of orientations of paths and cycles.

Proposition 15. Let P be an orientation of a path of length at least 2, let ai,as be the
endarcs of P, and let Ay C {ay1,as}. Then we can decide in polynomial time whether there
exists a (2,1)-decomposition (Fy, Fy) of P with {a1,a2} N A(Fy) = Ao. Further, such a
decomposition can be constructed in polynomial time if it exists.

Proof. If the length of UG(P) is exactly 2, we can solve the problem by a brute force
approach. We may hence suppose that UG(P) is a path vy ...v, with ¢ > 4. Let P’ =
P —v; and let a} be the arc in A(P) whose endvertices are vy and vs. We distinguish
three cases.

Case 1: Ay # @.

Assume without loss of generality that a; € Ay. There exists a (2, 1)-decomposition
(Fy, Fy) of P with {aj,as} N A(F)) = Ap if and only if there exists a (2,1)-
decomposition (Fj, F{) of P' with {a},as} N A(F]) = Ay — a;. We can hence
recursively solve this smaller problem.

Case 2: Ay = @ and P[{vy,ve,v3}] is not a directed path.

In this case, there exists a (2, 1)-decomposition (Fy, F) of D with {ai, a2} NA(F}) =
Ay if and only if there exists a (2, 1)-decomposition (Fj, F}) of P’ with {aj,as} N
A(F]) = Ap U a). We can hence recursively solve this smaller problem.

Case 3: Ay = @ and P[{v1,vs,v3}] is a directed path.
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In this case, P has the desired decomposition. If ¢ is even, we define (Fy, F}) so
that A(F%) contains the orientation of v;v;41 for all odd i € [¢ — 1] and A(Fy) =
A(P) — A(F). If ¢ is odd, we define (Fy, F) so that A(F3) contains the orientation
of the edge v;ve and the orientation of the edge v;v;41 for all even i € [¢ — 1] and
A(Fy) = A(P)—A(F5). In either case, we have that (Fy, F}) is a (2, 1)-decomposition
of P. O]

Proposition 16. Let P be an orientation of a path of length at least 2, let ai,as be the
endarcs of P, and let Ay C {ai,as}. Then we can decide in polynomial time whether
there exists a (2,1)-decomposition (Fy, Fy) of P with A(Fy) N {ay, a2} = Ag and every
a € {ay,as} — Ao is the only arc in a connected component of Fy. Further, such a
decomposition can be constructed in polynomial time if it exists.

Proof. If the length of UG(P) is at most 3, we can solve the problem by a brute force
approach. We may hence suppose that UG(P) is a path vy ...v, where ¢ > 5. Let P’ be
the unique connected component of P — ({a1,as} — Ag) with vy € V(P') and let df, d}
be the endarcs of P’ such that a is incident to v, and ) is incident to v,_;. Then
there exists a (2, 1)-decomposition (Fy, Fy) of P with A(Fy) N {ay,a2} = Ap and every
a € {aj,as} — A is the only arc in a connected component of F; if and only if there
exists a (2, 1)-decomposition (Fy, F]) of P with {a},a3} C A(F]). By Proposition 15,
in polynomial time, we can decide the existence of such a decomposition of P’ and find
such a decomposition if it exists in polynomial time. Clearly, this yields a constructive
polynomial time algorithm for finding the desired decomposition of P. O]

Proposition 17. Let P be an orientation of a path and let a be an endarc of P. Then
there ezists a (2, 1)-decomposition (Fy, Fy) of P with a € A(Fy) and a (2,1)-decomposition
(3, F)) of P with a € A(F}) and a is the only arc in a connected component of F}.
Further, these decompositions can be constructed in polynomial time.

Proof. Let UG(P) be a path vy ... v, such that a is the orientation of vyve. Let (Fy, Fy) be
the decomposition of P defined so that A(F}) contains the orientation of v;v;,1 for all odd
i € [¢—1] and A(Fy) = A(P) — A(F}). Further, let (F3, FY) be defined by A(Fj) = A(F})
and A(FY]) = A(F3). Tt is easy to see that (Fy, F1) and (Fy, F]) have the desired properties.
The proof is clearly algorithmic. O]

Proposition 18. Let C be an orientation of a cycle vy ...vv1. Then C admits a (2,1)-
decomposition. Further, such a decomposition can be found in polynomial time.

Proof. If q is even, let the decomposition (F3, F}) of C' be defined so that the orientation
of v;v;41 is contained in A(F3) for all odd i € [¢ — 1] and A(Fy) = A(C) — A(F,). It
is easy to see that (Fy, F7) is a (2, 1)-decomposition of C. Now suppose that ¢ is odd.
As D cvio) d5(v) = |A(C)| is odd, there exists some v € V(C) with df(v) = 1. By
symmetry, we may suppose that C'[{vy, vg, v3}] is a directed path v1v9v3. We now consider
the decomposition (Fy, F}) of C' which is defined so that A(F3) contains vyvy and v;v;41
for all even i € [¢ — 1] and A(Fy) = A(C) — A(F,). It is easy to see that (Fy, Fi) is a
(2, 1)-decomposition of C'. Observe that this proof is clearly algorithmic. ]

THE ELECTRONIC JOURNAL OF COMBINATORICS 31(4) (2024), #P4.26 7



We are now ready to give the main proof of Theorem 14. It is based on excluding
a collection of configurations which clearly exclude the desired decomposition and then
reducing the problem to 2-SAT.

Proof of Theorem 14. Let D be an instance of (2,1)-BDLFD. Clearly, if there exists some
v € V(D) with dp(v) > 4, then D is a negative instance of (2,1)-BDLFD. We may hence
suppose that dp(v) < 3 for all v € V(D). Let V3 denote the set of vertices v € V(D)
with dp(v) = 3 and let V; denote the set of vertices v € V' with dp(v) = 1. Observe that,
if there is some v € V3 with max{d}(v),d,(v)} = 3, then D is a negative instance of
(2,1)-BDLFD. We may hence suppose that max{d},(v),d,(v)} = 2 for every v € V5. By
Propositions 17 and 18, we may suppose that every connected component of D contains
at least one vertex of V3. Let Py be the collection of subdigraphs of D whose underlying
graph is either a path connecting two vertices in V5 and none of whose interior vertices
is contained in V3 or a cycle containing exactly one vertex in V3. For some P € Py, we
define the associated path P’ to be P if P is a path and to be the path obtained from
P by detaching the unique vertex in V(P) N V5 into two vertices of degree 1 in UG(FP’)
if P is cycle. Further, let P; be the collection of subdigraphs of D whose underlying
graph is a path connecting a vertex in V3 and a vertex in V; and none of whose interior
vertices is contained in V3. Observe that {A(P) | P € Py U P} is a partition of A(D).
We now create an instance (X,C) of 2-SAT. We let X consist of a variable z, for every
arc a € A which is incident to at least one vertex in V3 in D. We let C consist of a
collection of clauses C, for every v € V3, a collection of clauses Cp for every P € Py and
a collection of clauses Cq for every subdigraph @) € Q where Q denotes the collection
of subdigraphs of D which are isomorphic to a digon. First consider some v € V3. Let
ay, as, az be the arcs incident to v such that |65 (v) N {az,as3}| € {0,2}. We then let C,
consist of the clauses {Z,, },{Za,, Tas }, and {x,,, 4, }. Now consider some P € Py and
let P’ be the associated path of P. If A(P) contains a single arc a, we set Cp = {z,}.
Now suppose that the length of UG(P’) is at least 2 and let a; and as be the endarcs
of P'. For every Ay C {ai,as}, we test whether there is a (2, 1)-decomposition (FY, FI)
of P’ such that A(F) N {a1,a} = Ap and every a € {aj,as} — Ay is the only arc in
a connected component of FX. Observe that this can be tested in polynomial time by
Proposition 16. If no such decomposition exists, we add the clause {yq,, Ya, } to Cp where
Ya; = Ta, if a; € Ag and y,, = x,, otherwise, for ¢ € [2]. We do this for every Ay C {aq, a2},
thus creating Cp. Further, for every subdigraph ) of D which is a digon containing two
arcs ai, ag, we set Cy = {{Za;, Tay }> {%ay, Ta, } . Finally, we set C = (J,cy,up,00 Co- This
finishes the description of (X, C).

Claim 19. (X,C) is a positive instance of 2-SAT if and only if D is a positive instance
of (2,1)-BDLFD. Further, a (2,1)-decomposition of D can be obtained from a satisfying
assignment for (X,C) in polynomial time.

Proof of claim. First suppose that (X, C) is a positive instance of 2-SAT so there exists a
satisfying assignment ¢: X — {true, false} for (X,C). Consider some P € P, and let P’
be the associated path of P. If A(P) contains only one arc a, we define a decomposition
(FP FF) of P by A(FP) = A(P) and A(FY) = @ if ¢(z,) = true and by A(Ff) = A(P)
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and A(F') = @ if ¢(z,) = false. Now suppose that the length of UG(P’) is at least 2
and let a; and ay be the endarcs of P'. As ¢ is satisfying for (X, C), there exists a (2, 1)-
decomposition (FY, F') of P’ such that for i € [2], we have that a; is contained in A(F})
if ¢(z,,) = true and q; is the only arc in a connected component of F; if ¢(x,,) = false.

Now consider some P € P; and let a be the unique arc in A(P) which is incident to a
vertex in Vi. If ¢(z,) = true, we choose a (2,1)-decomposition (F{f', F') of P with a €
A(FF). Otherwise, we choose a (2, 1)-decomposition (FY, F') of P with a € A(FY') and a
is the only arc in a connected component of F,. By Proposition 17, such a decomposition
exists and can be computed in polynomial time. We now define a decomposition (Fy, Fy)
of D by A(Fy) = Upep,up, A(F3) and A(Fy) = Upep,up, AFY).

We now show that (Fy, F}) is a (2,1)-decomposition of D. Let K be a connected
component of Fy or Fy. If V(K) C V(P) — V5 for some P € Py U Py, then K is a
2-bounded directed path if K is a connected component of F, and 1-bounded directed
path if F' is a connected component of F} by construction. We may hence suppose
that V(K) contains a vertex v € V5. Let ay,as, and as be the arcs incident to v such
that |65(v) N {ag,as}| € {0,2}. As the clauses in C, are satisfied by ¢, we obtain that
¢(z,,) = false and exactly one of z,, and z,, is true under ¢, say ¢(z,,) = true
and ¢(z,,) = false. As ¢ satisfies (X,C), we obtain that that none of a; and a3 are
contained in a path of Py of length 1. Hence if K is a connected component of Fy, we
have A(K) = {ay,a3}. Further, as ¢ satisfies (X,C), we obtain that a; and a3 do not
form a digon and so K is a 2-bounded directed path. Next, observe that, as the choice
of v was arbitrary, the second endvertex of as is not incident to any arc in A(F}) except
ay. It follows that as is the only arc of A(K) if K is a connected component of Fj.
Hence (Fy, Fy) is a (2, 1)-decomposition of D. Observe that (F,, F}) can be obtained in
polynomial time from ¢.

Now suppose that D is a positive instance of (2,1)-BDLFD, so there exists a (2, 1)-
decomposition (Fy, Fy) of D. We now define a truth assignment ¢: X — {true, false}
in the following way: for every a € A which is incident to at least one vertex in V3 in
D, we set ¢(z,) = true if a € A(F)) and ¢(x,) = false if a € A(Fz). We show in the
following that ¢ is a satisfying assignment for (X,C). First consider some v € V3 and
let ay,as,as be the arcs incident to v such that |6} (v) N {az,asz}| € {0,2}. As Fy is a
directed linear forest, we obtain that one of ay and as, say as, is contained in A(Fy). As
F} is a directed matching, we obtain that {a;, a3} C A(F»). By construction, this yields
O(24,) = ¢(xq,) = false and ¢(x,,) = true. In particular, all clauses in C, are satisfied
by ¢. Now consider some P € P,. If P is a path containing a single arc a, then observe
that a € A(F}), as a is incident to two vertices in V3 and (Fy, F1) is a (2, 1)-decomposition.
Hence ¢(x,) = true and so the unique clause in Cp is satisfied by ¢. Now suppose that
P contains at least two arcs, let P’ be the associated path of P and let a; and as be the
endarcs of P’. Observe that by construction, we have that Cp does not contain the clause
{Yay, Yar } Where y,, = x4, if a; € A(F) and y,, = Ty, if a; € A(F}) for i € [2]. It follows
that all the clauses in Cp are satisfied by ¢. Next consider some q € (). As F; and Fj are
directed linear forests, we obtain that exactly one of the two arcs in the digon is contained

in A(Fy). Hence the clauses in Cg are satisfied by ¢. As C = UUE%U%UQ C,, we obtain
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that ¢ is a satisfying assignment for (X, C). Hence ¢ is a satisfying assignment for (X, C).
O

By Claim 19, it suffices to decide whether (X,C) is a positive instance of 2-SAT. By
Proposition 8, this can be done in polynomial time. Further, as the proof is algorithmic,
a (2, 1)-decomposition of D can be constructed in polynomial time. ]

3.2 Decomposing into a matching and a (> 3)-bounded directed linear forest

This section is dedicated to proving our hardness results for the case that & > 3 is finite
and ¢ = 1. We first need the following preliminary constructions. For some integer k > 2,
a short k-in-forcer is a digraph D together with an arc a whose head is a vertex z with
d},(z) = 0 and d,(2) = 1 such that there is a (k,1)-decomposition of D and for every
(k, 1)-decomposition (F, F}) of D, we have that a € A(F}). We call z the tip of the short
k-in-forcer.

Proposition 20. For every k > 2, there exists a short k-in-forcer.

Proof. Let D be the digraph with vertex-set V(D) = {v1,...,v4, 2} and arc-set A(D) =
{v1v9, Vov3, Vov4, v12} and let @ = v;z. For an illustration, see Figure 1.

Z 0<---@ [ ]

Figure 1: A (k,1)-decomposition (Fj, F}) of the short k-in-forcer D. The dashed red
arcs are in A(F}) and the solid green arcs are in A(F}).

Let (F, F1) be a (k,1)-decomposition of D. As Fj is a directed linear forest, we have
vov; € A(Fy) for some i € {3,4}. As F} is a directed matching, we obtain vyvy € A(F}).
As Fy is a directed linear forest, we obtain a € A(F)). Further, it is easy to see that
(Fy, Fy) is indeed a (k, 1)-decomposition. O

For some integers k > a > 1, a long (k, a)-in-forcer is a digraph D together with
a vertex z satisfying d},(z) = 0 and d,(z) = 1 such that there is a (k, 1)-decomposition
(Fy, F1) of D in which z is not the last vertex of a path of length a+ 1 in F}, and for every
(k,1)-decomposition (Fy, F1) of D, we have that z is the last vertex of a path of length «
in Fj. We call z the tip of the long (k, a)-in-forcer.

Proposition 21. For all integers k, « with k > « > 1, there exists a long (k, «)-in-forcer.

Proof. Let D be obtained from a directed path vy ...v,11 of length o by identifying
each vertex of {vq,...,v,} with the tip of a short k-in-forcer (the existence of which is
guaranteed by Proposition 20). Further, we let z = v,;. For an illustration, see Figure 2.
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Figure 2: A (k, 1)-decomposition (F}, Fy) of a long (k, 3)-in-forcer for some k > 3 with
tip z. The triangles indicate short k-in-forcers. The solid green arcs are in A(Fj) and the
short k-in-forcers are decomposed as in Figure 1.

Let (Fy, F1) be a (k, 1)-decomposition of D. By the definition of short k-in-forcers and
as Fy is a directed matching, we obtain that v;v;41 € A(F}) for i € [a]. Hence z is the last
vertex of a path of length « in Fj. Further, it is not the last vertex of a path of length
a + 1 since vy has no in-neighbour in Fj. ]

In the following, we describe some gadgets we need for our reduction. A k-variable
gadget for some k > 3 is a digraph D together with four arcs ay, ..., as € A(D) satisfying
the following properties:

(a) df(z) =0 and dj(z;) = 1 where z; is the head of a; for i € [4],
(b) for every (k,1)-decomposition (Fy, F}) of D, we have
{ar,...,as} VA(F1) C {a144, a3}
for some ¢ € {0,1}, and

(¢) for every i € {0, 1}, there is a (k, 1)-decomposition (F}, F}) of D such that
{ar,. o aa} NA(F) = {arss, azga -

Lemma 22. For every k > 3, there exists a k-variable gadget.

Proof. We describe a k-variable gadget D for some integer k > 3. We first let V(D)
contain sets {vy,...,via}, {21,..., 24}, and {y1,...,y4} and we let A(D) contain the arcs
v;v; for ¢ € [11], the arc vigvy, and the arcs y;2z; and y;vs,_o for @ € [4]. Further, for
i € [4], we identify y; with the tip of a long (k, k — 2)-in-forcer. Finally, for i € [4], we set
a; = y;z;. This finishes the description of D, see Figure 3 for an illustration.

We now show that D is a k-variable gadget. It follows by construction that (a) is
satisfied. For (b), by symmetry, it suffices to show that there is no (k, 1)-decomposition
(Fy, Fy) of D such that {ay, a2} C A(F)). Suppose otherwise. As F} is a directed matching,
we obtain that {yiv1,y2v4} C A(Fy). As Fy is a directed linear forest, we obtain that
{v19v1, v304} C A(Fy). As F} is a directed matching, we obtain that {vjve, vouz} C A(Fy).
Hence the directed path obtained from concatenating the directed path of length k — 2
fully contained in the long (k, k — 2)-in-forcer incident to y; whose last vertex is y; with
the directed path y;vi1v9v3 is a directed path of length £ 4+ 1 in F}, a contradiction to Fj,
being a k-bounded directed linear forest. This proves (b).
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Figure 3: An illustration of D and one of its (k, 1)-decompositions. The squares indicate
long (k,k — 2)-in-forcers. The red dashed arcs are in A(F}), the solid green arcs are in
A(Fy) and the long (k, k — 2)-in-forcers are decomposed as in Figure 2.

For (c), by symmetry, it suffices to prove that there exists a (k,1)-decomposition
(Fy, Fy) of D with {ay,a3} C A(F}). Consider the following decomposition (Fy, Fy) of D.
For i € [4], we choose a (k, 1)-decomposition (F}, F}) of the (k,k — 2)-in-forcer incident
to y; such that y; is not contained in a directed path of length k — 1 of F}. We formally
define (Fy, F1), illustrated in Figure 3, in the following way:

A(F) = U A(Ff) U {vav3, v6V7, Ugly, V1201, Y121, Y2V, Y323, YaV10 )
1€[4]

and A(Fy) = A(D) — A(F).
It is straightforward to check that (F}, F) has the desired properties. This proves (¢). [

A Ek-clause gadget for some integer k > 3 is a digraph D together with three distinct
arcs by, by, by € A(D) satisfying the following properties:

(a) df(y;) =0 and dp,(y;) = 1 where y; is the head of b; for i € [3],
(b) for every (k,1)-decomposition (Fy, F}) of D, we have {by, by, b3} N A(Fy) # &, and

(c) for every nonempty set S C {by, by, b3}, there is a (k,1)-decomposition (Fy, Fy) of
D such that {by,be,b3} N A(Fy) = S.

Lemma 23. For every k > 3, there exists a k-clause gadget.

Proof. We create a k-clause gadget D for some fixed k > 3. We first let V(D) contain a
set {v1,...,v7,91,Y2,ys} and we let A(D) contain the arc-set

{UWQ, V3V2, U3y, U4 U5, U5Vg, VU7, V1Y1, UsY2, v7y3}.
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If £ > 4, we further identify v with the tip of a long (k, k — 3)-in-forcer. Finally, let
b1 = viy1, by = vsys, and by = wvrys. This finishes the description of D. An illustration
can be found in Figure 4.

U1 V2 U3 Uy Us Ve U7

® { ] o —>0—>0—0

I R
[ J [ ] [ J
n Y2 Y3

Figure 4: An illustration of D where the square marks a long (k, k — 3)-in-forcer. When
k = 3, the square is deleted.

We now show that (D, by, be, b3) is a k-clause gadget. By construction, we have that
(a) is satisfied. In order to prove (b), suppose for the sake of a contradiction that there
is a (k,1)-decomposition (Fj, F1) of D with {b1,bs,b3} C A(F}). As Fj is a directed
matching, we obtain that {vyvy, v4v5, V506, v6v7} C A(F)). We obtain that vzvy € A(Fy)
and so v3vy € A(F}). Further, by the definition long (k, k— 3)-in-forcers, we obtain that vs
is the last vertex of a path of length £ — 3 in F},. Concatenating this path with vzv vsvgv7,
we obtain that F} contains a directed path of length k£ + 1, a contradiction to Fj, being a
k-bounded linear forest. This proves (b).

We now consider a decomposition of the long (k, k — 3)-in-forcer in which v5 is not the
last vertex of a directed path of length £ — 2 in F),. A small case analysis shows that for
every nonempty S C {by, by, b3}, this can be extended to a (k,1)-decomposition (Fj, Fy)
of D such that {by,by,b3} N F, = S. All these cases are illustrated in Figure 5. This
proves (c). O

We are now ready to prove the following theorem which is the main result of this
section.

Theorem 24. (k,1)-BDLFD is NP-complete for every integer k > 3.

Proof. We fix some integer k£ > 3. Clearly, (k,1)-BDLFD is in NP. We prove the hardness
by a reduction from (3, B2)-SAT, which is NP-complete by Theorem 13. Let (X,C) be
an instance of (3, B2)-SAT. We now create an instance D of (k,1)-BDLFD.

For every z € X, let C,...,Cy be an ordering of the clauses containing x or  such
that » € CyNCs and Z € C, N Cy. We add a k-variable gadget (D*,ag, , ..., ag,) and for
i=1,...,4, we let z¢. be the head of a¢,. Observe that this gadget exists by Lemma 22.

For every C' € C, let x1,x9,x3 be an arbitrary ordering of the variables x for which
z € Cor e Chold. We add a k-clause gadget (D, bg, b72,b7) and for i € [4], we let
y¢&, be the head of b, . Observe that this gadget exists by Lemma 23. We finally obtain
D by identifying 2¢ and y¢ for all x € X and C' € C for which x € C' or z € C holds.

We show in the following that D is a positive instance of (k, 1)-BDLFD if and only if
(X,C) is a positive instance of (3, B2)-SAT. First suppose that D is a positive instance
of (k,1)-BDLFD, so there is a (k, 1)-decomposition (F, ) of D. For every z € X, as
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Figure 5: The different decompositions of D. The green solid arcs belong to A(F}) and
the dashed red arcs belong to A(F;). Each square marks a long (k, k — 3)-in-forcer, whose
decomposition is the one of Figure 2.

D? is a variable gadget, we obtain that {a¢,,...,a¢,} N A(F1) C {ag, . ag,,,} for some
i € {0,1} where CY,...,C} is the ordering of the clauses containing x or Z chosen in the
construction of D. We now define an assignment ¢: X — {true, false} in the following
way: We set ¢(r) = true if {ag,,...,ag,} N A(F1) C {ag,,a¢,}, and ¢(x) = false,
otherwise. In order to see that ¢ is a satisfying assignment for (X,C), let C' € C. Suppose
that C' is not satisfied by ¢, hence ¢(x) = false for allx € X with x € C' and ¢(z) = true
for all z € X with z € C. It follows by construction that {aZ},a?, e’} C A(Fj) where
{x1, z9, 23} is the set of variables x € X such that € C' or z € C holds. By construction
and as (Fy, F1) is a (k, 1)-decomposition of D, we obtain that {b7, b7, b7} C A(Fy). By
the definition of k-clause gadgets, we obtain a contradiction to (Fy, F}) being a (k,1)-
decomposition of D. Hence ¢ is a satisfying assignment for (X,C) and so (X,C) is a
positive instance of (3, B2)-SAT.

Now suppose that (X,C) is a positive instance of (3, B2)-SAT, so there is a satisfy-
ing assignment ¢: X — {true,false} for (X,C). For every x € X, let C4,...,Cy be
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the ordering of the clauses in C containing x or z. If ¢(v) = true, let (F7, F¥) be a
(k,1)-decomposition of D with {ag,,...,a¢, } NV A(FY) = {a¢,,ag,}. If ¢(v) = false,
let (F}7, FY) be a (k,1)-decomposition of D* with {af ,...,a¢, } N A(FY) = {a¢,,af,}.
Observe that these decompositions exist as D” is a k-variable gadget.

For every C € C, let S contain the arc b, for all x € X with z € C' and ¢(z) = true
and for all z € X with z € C and ¢(x) = false. Let (FF, FF) be a (k, 1)-decomposition
of D with {b%},b32,b%} N A(F®) = Sc. Observe that such a decomposition exists as D¢
is a clause gadget and ¢ satisfies C.

Now let (Fy, Fy) be defined by A(Fy) = U,ex AFT) U Upec A(FY) and A(Fy) =
Usex AFT) UUcee A(FY). Observe that by construction, every vertex that is incident
to arcs from two different gadgets, is incident to exactly two arcs, one in A(Fj) and one
in A(Fy). As (FF, F¥) is a (k,1)-decomposition of D* for all z € X and (FF, FC) is a
(k, 1)-decomposition of D for all C' € C, we obtain that (F}, F}) is a (k, 1)-decomposition
of D. Hence D is a positive instance of (k,1)-BDLFD. O

3.3 Decomposing into two linear forests with length bounds at least 2

In this section, we deal with the case that both k and ¢ are finite integers and min{k, £} >
2. The reduction is from ME-1-SAT and we use a variable and a clause gadget. Once
these gadgets are constructed, our reduction will work for any choice of £ and ¢ in the
considered domain. However, during the construction of the gadgets, the case that
min{k,/} = 2 often needs to be treated separately. Again, we first give some prelim-
inary constructions in Section 3.3.1. After, we describe the variable and clause gadgets
in Sections 3.3.2 and 3.3.3, respectively. Finally, we give the reduction in Section 3.3.4.

3.3.1 Preliminary constructions

We here give some preliminary constructions we need for the gadgets which are described
in Sections 3.3.2 and 3.3.3. The first one will play a crucial role in the case min{k, ¢} > 3.
Let k, ¢ € Z=3 be two integers. A (k, £, —2)-in-forcer is a digraph D with a special arc
a = xz such that:

(a) a is the only arc incident to z,

(b) in every (k,¢)-decomposition (F}, F;) of D, a is either the last arc of a directed path
of length & — 2 in F} or the last arc of a directed path of length ¢ — 2 in Fj,

(c) there exists a (k, ¢)-decomposition (Fy, Fy) of D such that a € A(F)) and a is not
the last arc of a directed path of length k£ — 1 in F}, and

(d) there exists a (k, ¢)-decomposition (Fy, Fy) of D such that a € A(F,) and a is not
the last arc of a directed path of length £ — 1 in F}.

In the following, we show that (k, ¢, —2)-in-forcers exist for all integers k, ¢ € Z~3. We
first consider the case k = (.

Lemma 25. For every integer k > 3, there exists a (k, k, —2)-in-forcer.
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Proof. We describe a (k, k, —2)-in-forcer (D, a) for some fixed & > 3. We first let D
contain the unique orientation of a binary tree of depth k — 3 that contains a path from v
to x for all vertices v of this digraph where z is the tip of the binary tree. We now obtain
D by adding another vertex z and the arc a = zz. See Figure 6 for an illustration. Note
that (a) clearly holds.

\
<

LS O--->0 N

Figure 6: An illustration of a (6, 6)-decomposition of a (6,6, —2)-in-forcer.

Let (Fy, F}) be a (k,k)-decomposition of D. By symmetry, we may suppose that
xz € A(Fy). We will show that zz is the last arc of a directed path of length & — 2 in
Fy. Let P be a directed path of Fj whose length is maximum among all the directed
paths in Fj whose last arc is xz. If the length of P is smaller than k — 2, since D is
the described orientation of a binary tree of depth k& — 3, the initial vertex y of P has
two in-neighbours yy,y> in D. Hence, as F is a directed linear forest, either y;y or vy
belongs to Fy, contradicting the maximality of P. This proves (b).

We now describe a (k, k)-decomposition (Fj, F}) of D whose existence proves (c). For
every v € V(D) with dj,(v) = 2, arbitrarily assign one of its entering arcs to A(F},) and the
other one to A(F}). Finally assign xz to A(F). This results into a (k, k)-decomposition
of D with the desired properties, illustrated in Figure 6. By symmetry (d) also holds. [

For the case k # {, we first need some preliminary constructions. For integers k >
¢ > 3, a long (k,£)-out-forcer is a digraph D together with a special arc a = xy
such that d,(z) = 0, dj,(z) = 1, D admits a (k, ¢)-decomposition, and for every (k,()-
decomposition (Fy, Fy) of D, a belongs to A(Fy). We say that x is the origin of the long
(k, £)-out-forcer.

Proposition 26. For all integers k, ¢ with k > € > 3, there exists a long (k, £)-out-forcer.

Proof. We describe a long (k, £)-out-forcer D for some fixed integers k, ¢ with k > ¢ > 3.
We first let D contain the unique orientation of a binary tree of depth ¢ with a tip y in
which there exists a path from y to v for every vertex v. We then create D by adding =
and the arc a = xy, see Figure 7 for an illustration. Clearly, a is the only arc incident to
x.
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Figure 7: An illustration of a (k, 3)-decomposition (Fy, F3) of a long (k, 3)-out-forcer for
some k > 4. The dashed red arcs are in A(F3) and the solid green arcs are in A(Fy).

Let (Fy, Fy) be a (k, £)-decomposition of D and suppose for the sake of a contradiction
that @ € A(F;). Let P be the unique longest path in Fj that contains a and let v be
the last vertex of P. As Fj is a linear directed forest, we obtain that dj(v) < 1. By
construction, we obtain that the length of P is at least ¢ 4+ 1. This contradicts F} being
an (-bounded linear forest.

We now justify the existence of a (k, £)-decomposition. Let (F}, F;) be a decomposition
of D with a € A(F}) and such that for every v € V(D) with d},(v) = 2, we have that
one of the arcs in 6},(v) is in A(Fy) and the other one is in A(F;). Then (F, F}) is a
(k, £)-decomposition of D with the desired properties. ]

For some integers k > ¢ > 3, we now define a short (k, £)-out-forcer as a digraph
D together with a special arc @ = zy such that dy(x) = 0, d},(z) = 1, D admits a
(k, £)-decomposition, and for every (k, £)-decomposition (F}, Fy) of D, a belongs to A(Fy).
Again, we say that z is the origin of the short (k, ¢)-out-forcer.

Proposition 27. For all integers k,{ with k > € > 3, there exists a short (k, {)-out-forcer.

Proof. We describe a short (k, ¢)-out-forcer D for some fixed integers k and ¢ with k >
¢ > 3. We first let D contain the digraph obtained from a long (k, £)-out-forcer with origin
y by reversing all arcs. We then obtain D by adding = and the arc zy. Clearly, we have
dp(z) = 0 and d},(x) = 1. Next observe that there is a direct correspondence between the
(k, 0)-decompositions of D — x and the (k,¢)-decompositions of the corresponding long
(k, )-out-forcer.

Let (Fg, Fy) be a (k, {)-decomposition of D. Clearly, and (F}, — =, F, — x) is a (k, ()-
decomposition of D —z and so the unique arc incident to y in D —x is contained in A(Fg).
As F} is a linear directed forest, we obtain that xz € A(F}).

We now justify the existence of a (k,¢)-decomposition of D. There exists a (k,{)-
decomposition (F}, F)) of D—x in which the unique arc incident to y is contained in A(F}).
The decomposition (Fy, Fy) of D defined by A(Fy) = A(F}) and A(F;) = A(F)) Uxy is a
(k, ¢)-decomposition of D with the desired properties. O
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We are now ready to show that (k,¢, —2)-in-forcers exist for all integers k,¢ > 3.
Recall that the case k = ¢ has been proved in Lemma 25.

Lemma 28. For all integers k,{ with k > ¢ > 3, there exists a (k,{, —2)-in-forcer.

Proof. We describe a (k, ¢, —2)-in-forcer (D, a) for some fixed integers k > ¢ > 3. We
first let V(D) contain a set {us,...,ux_3}, a set {vy,...,v-3} if £ >4, and a set {x, z}.
Further, we let A(D) contain the arcs u;u;.; for i € [k — 4] if & > 5, the arcs v;v;1; for
i€l —4]if ¢ =5, the arc ug_sz, the arc vy_sx if £ > 4, and the arc a = zz. Finally,
for ¢ € [k — 3], we identify u; with the origin of a short (k,¢)-out-forcer and, if ¢ > 4,
for i € [¢ — 3], we identify v; with the origin of a long (k, ¢)-out-forcer. This finishes the
description of D, see Figure 8 for an illustration.

Q& O

o @ | J
Uy Uz Uk—3 T =
- °
U1 (%) Vg3 .-~
- ---- >@- - - > --->@
VAN VAN

Figure 8: An illustration of a (k,¢)-decomposition (Fj, Fy) of a (k, ¥, —2)-in-forcer with
k> (>4 and xz € A(Fy). The squares indicate short (k, ¢)-out-forcers and the triangles
indicate long (k, ¢)-out-forcers. The dashed red arcs are in A(F}) and the solid green arcs
are in A(Fy).

We now prove that (a) — (d) holds. Clearly, (a) holds. Now let (Fj, Fy) be a (k,{)-
decomposition of D. For i € [k — 3], by the definition of short (k, ¢)-out-forcers, we have
that there exists an arc in §5(u;) N A(F,) that is contained in the short (k, £)-out-forcer
attached to w;. It follows that ux_32z € A(Fy) and, if & > 5, then wu; 1 € A(Fj) for
i € [k —4]. It follows that z is the last vertex of a directed path of length k& — 3 in Fy.
A similar argument shows that z is the last vertex of a directed path of length ¢ — 3 in
F,. Hence if a € A(F}), then a is the last arc of a directed path of length £ — 2 in Fj
and if a € A(Fy), then a is the last arc of a path of length ¢ — 2 in Fy, so (b) holds.
Further, by choosing appropriate decompositions of the short and long (k, ¢)-out-forcers,
if a € A(F}y), then we have a decomposition as required in (c), and if a € A(Fy), then we
have a decomposition as required in (d). O

We further need one preliminary construction which will be useful in the case that
min{k, (} = 2. Let k,a be integers with £ > 3 and 1 < a < k. A (k, 2, a)-in-forcer is
a digraph D with a special arc a such that:

(a) the head of a is not incident to any other arc in D,
(b) in every (k,2)-decomposition (Fy, Fy) of D, a is the last arc of a path of length at

least o in F}, and
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(¢) D has a (k,2)-decomposition (F}, F,) in which a is not contained in a path of length
o+ 1in Fk

Lemma 29. For all integers k, o with k > 3 and 1 < o < k, there ezists a (k,2, «)-in-
forcer.

Proof. We describe a (k, 2, a)-in-forcer (D, a) for some fixed integers k and o with k& > 3
and 1 < a < k. We let V(D) contain a set of a + 1 vertices vy,...,v441. Further, for
every i € [a], we let V(D) contain 6 vertices u;, w;, ), 2, y!, and y?. For i € [a], we
then let A(D) contain the arcs v;y1v;, ur), w;x?, wiug, viy1u;, yiw;, and yw;. We finally
set a = vyvy, which finishes the description of (D, a). For an illustration, see Figure 9.

U1 V2 V3 V4
. . . .
2 ! 2 .2 1 2 .2 ! 2
Ty & YL Ty & Yy T3 & 2 Y3
J 5 J 4 J 4
[ J ] [ J @ [ J @
1 (A w1 1 1 (%) Wo 1 1 Uus W3 1
) ® ®Yy Ty @ ® Yy, T3 @ ® Y3

Figure 9: An illustration of a (k, 2)-decomposition of a (k, 2, 3)-in-forcer. The dashed red
arcs are in A(F3) and the solid green arcs are in A(F}).

Note that (a) clearly holds. Now, let (F}, Fy) be a (k,2)-decomposition of D. For
every i € [a], as F}, is a directed linear forest, we obtain that one of w;z} and u;z? is
contained in A(F3), and one of ylw;, and y?w; is contained in A(Fy). As Fy is a 2-
bounded directed linear forest, we obtain that w;u; € A(Fy). As F}, is a directed linear
forest, we obtain that v;,ju; € A(Fy). As Fy is a 2-bounded directed linear forest, we
obtain that v, 1v; € A(F})). Hence vpyq ... v; is a path of Fy of length o whose last arc is
a. This proves (b).

On the other hand, let (Fj, F») be the decomposition of D with

A(Fk) = U{Uiﬂvi,uﬂ%,wiui,y}wi} and A(Fz) = U{uix$>vi+1uiayz'2wi}-
i=1 =1

Then (Fy, F3) is a (k, 2)-decomposition of D with the desired properties. For an illustra-
tion, see Figure 9. This proves (c). O

3.3.2 Variable gadgets

In this section, we describe the variable gadgets. For integers k,/, and t with & > ¢ > 2
and t > 1, a (k, £, t)-variable gadget is a digraph D together with a collection of arcs
{ai,...,a;} with the following properties:

(a) for each a € {ai,...,a;}, we have that a is the only arc incident to its head,
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(b) for every (k,f)-decomposition (Fy, Fy) of D, we have that A(Fy) N{ay,...,a:} be-
longs to {@,{a1,...,a:}} and each arc in A(Fy) N {ay,...,a;} is the last arc of a
path either of length k in F} or of length ¢ in Fj,

(c) there is a (k, £)-decomposition (F}, Fy) of D such that {ai,...,a;} C A(Fy), and
(d) there is a (k, ¢)-decomposition (F}, F}) of D such that {ay,...,a;} C A(F))

We now show that variable gadgets exist for all integers in the considered domain. We
start with the case that min{k, ¢} > 3.

Lemma 30. For all integers k,¢ and t > 1 with k > ¢ > 3, there exists a (k,,t)-variable
gadget whose size is polynomial in t.

Proof. We construct a (k,¢,t)-variable gadget (D,{ai,...,a;}) for some fixed integers
k.0, and t with &k > ¢ >3 and t > 1.

We first let D contain a directed path on 2t + 1 vertices uy, . .., us. Then for every
i € [2t — 1], we add a vertex v; and the arc u;v;. We further add two more vertices w;
and wy and the arcs ugw; and ugws. We now obtain D by identifying u; with the tip of
a (k, ¢, —2)-in-forcer for all ¢ € [2¢t — 1] and identifying uo with the tips of two (k, ¢, —2)-
in-forcers, where all these (k, ¢, —2)-in-forcers are vertex-disjoint before the identification.
Observe that these (k, ¢, —2)-in-forcers exist by Lemmas 25 and 28. For every i € [t]
we further set a; = wug;_1v9;_1. This completes the description of (D, {a,...,a;}), see
Figure 10 for an illustration.

[ ] [ ] [ J [ J [ ]
A A A
aj! as' as'!
: : e
- - - > o -->@ - -->0@ o
Ug .2 UL |V U 7 U3 | Ug |, Us Ug @ W2

Figure 10: An illustration of a (k, ¢)-decomposition of the (k,¢,3)-variable gadget with
k > ¢ > 3. Triangles indicate (k, ¢, —2)-in-forcers. The dashed red arcs are in A(F})
and the solid green arcs are in A(Fy). The colour of a forcer indicates the part of the
decomposition the arc incident to its tip is contained in.

First observe that (a) clearly holds. To show that (b) holds, let us fix a (k,¢)-
decomposition (Fy, Fy) of D. We show by induction on i € [2¢ — 1] that w;v; is either
the last arc of a directed path of length ¢ in F} or the last arc of a directed path of length
k in Fj. Moreover, we show that this directed path also contains u;_ju;. Observe that
this implies (b).

When i = 1, by definition of a (k, ¢, —2)-in-forcer, we know that one entering arc of u
is the last arc of a directed path of length k£ — 2 in F}, and that the other one is the last
arc of a directed path of length ¢ — 2 in F},. Hence ugu, is either the last arc of a directed
path of length £ — 1 in Fj or the last arc of a directed path of length ¢ — 1 in F,. In both
cases, since us has out-degree 2, ui;v; and ugu; must belong to the same part.
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Now assume that i € {2,...,2¢t —1}. Since by induction u; su; 1 and u;_1v; 1 belong
to the same part of (Fy, Fy), we deduce that u;_ju; and the arc incident to u;_; contained
in the attached (k, ¢, —2)-in-forcer are contained in the same part of (Fj, Fy). By the
definition of (k, ¢, —2)-in-forcers, we obtain that u;_ju; is the last arc of a directed path
either of length £ — 1 in Fj, or of length ¢ — 1 in F,. Since u;;; has out-degree 2, we
deduce that u;_qju; and w;v; belong to the same part, and that w;v; is either the last arc
of a directed path of length k in F} or the last arc of a directed path of length ¢ in F.
This shows (b).

Further observe that the described (k, £)-decomposition indeed yields the decomposi-
tions required in (¢) and (d) when choosing appropriate decompositions of the (k, ¢, —2)-
in-forcers. An illustration can be found in Figure 10. Note that the roles of Fj, and F,
are symmetric. O

We now give a similar result for the case that min{k, (} = 2.
Lemma 31. For all positive integers k,t with k > 2, there exists a (k, 2,t)-variable gadget.

Proof. We describe a (k, 2,t)-variable gadget for fixed positive integers k and ¢ with & > 2.
First let V(D) contain a vertex v] for all ¢« € [t] and j € [7] with (4, j) ¢ {(¢,6), (t,7)}. We
further let V(D) contain one more vertex w. Next, for every i € [t], we let A(D) contain

the arcs v2v}, v2v3, vivd, and viv? and for every i € [t — 1], we let A(D) contain the arcs

vivd, vlvf, and vPu}, ;. Next, we add the arc wv}. We now complete the construction of
D dependent on k. If k = 2, we further add two in-arcs to w and to v} for every i € [t].
If k > 3, we further attach a (k,2,k — 2)-in-forcer to v? for all 7 € [¢] and to v] for all
i € [t — 1] and we attach a (k,2,k — 1)-in-forcer and an in-arc to w and to v} for every
i € [t]. Observe that these forcers exist by Lemma 29. Finally, for i € [t], we set a; = v}v}.

This finishes the description of D. For an illustration, see Figure 11.

® v} R ® v}
a a2 a3
/ / /
! R0 ! 05 L 0
CI o CI ol e} <)I v CI v3
ec 3 ° ° P P
w 1 6 1 6 1

Figure 11: An illustration of a (k,2,3)-variable gadget for some k > 2. When k > 3, the
triangles indicate (k, 2,k — 1)-in-forcers and the squares indicate (k,2,k — 2)-in-forcers.
When k = 2, the triangles indicate in-arcs and the squares are deleted.
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Clearly, D satisfies (a). For (b), let (Fj, Fy) be a (k,2)-decomposition of D. First
suppose for the sake of a contradiction that there is an index ¢ € [t — 1] such that
a; € A(F,) and a;41 € A(Fy). As Fj, and F, are directed linear forests, we obtain that
v} € A(F)) and o7 v}, € A(Fy). As F is a directed linear forest, we obtain that
vl € A(Fy). If v}of € A(Fy) and k = 2, we obtain that vZvjvfv} , is a path of
length 3 in Fj, a contradiction. If v}vd € A(F}) and k > 3, we obtain that the path
which is obtained from concatenating a path in Fj of length k — 2 fully contained in the
(k,2, k — 2)-in-forcer incident to v? whose last vertex is v} with v7vjvdv},; is a path of
length k+ 1 in F},, a contradiction. Hence vivP € A(F;). As F}, is a directed linear forest,
we obtain that xv} € A(F,) where z = 0P ; if i > 2 and * = w otherwise. Further, as
dp(x) = 2 by construction and Fj is a linear forest, there exists a vertex y € N (x) with
yr € A(F,). Tt follows that yzviv is a path of length 3 in Fy, a contradiction.

Now suppose for the sake of a contradiction that there is an index ¢ € [t — 1] such that
a; € A(Fy) and a;41 € A(F3). By the above, we have a; € A(F}) for all j € [i]. As F},
and F; are directed linear forests, we obtain that viv; € A(F) for all j € [i]. As Fy is a
directed linear forest, we obtain wv; € A(Fy) and vjvj,, € A(Fy) for all j € [i —1]. As
Fy is a linear forest, we obtain vjv;,, € A(Fj). We next show that vjv$ € A(Fy) for all
J € [i]. Suppose otherwise and let jj be the largest integer with jo < ¢ and UJI-OU?O € A(F).
If jo = i, we obtain that viv}vfv},, is a directed path of length 3 in Fj, a contradiction,
so assume jo < i. As F is a directed linear forest, we obtain that v} v2 € A(F}). Since
jo < i, we have v$vj ., € A(F;), and by maximality of jo we have vj 0% ., € A(F}).
Further, by construction, we have that UJTO is the last vertex of a path of length £ — 2 in
Fj.. The concatenation of this path with vl v% vl 0% | is a directed path of length k41
in F},, a contradiction. In particular, we obtain that viv$ € A(F;). By definition, there
exists a path of length £ —1 in F} whose last vertex is w and that is fully contained in the
(k, 2,k — 1)-in-forcer attached at w. Concatenating this path with wvjv? yields a path of
length k£ + 1 in F}, a contradiction.

We have shown that A(Fy) N{a,...,a:} € {{a1,...,a:},@}. Let i € [t]. We will
show that a; is either the last arc of a directed path of length k in F}) or the last arc of a
directed path of length 2 in Fy. Assume first that a; € A(Fy), since v} has two entering
arcs, it has an in-neighbour z such that zv} € A(Fy). Thus, zviv? is a directed path of
length 2 in F,. Now assume that a; € A(Fy). If k = 2, F» and F}, play a symmetric role,
so assume k > 3. The concatenation of the path of Fj of length k£ — 1 fully contained in
the (k,2, k — 1)-in-forcer attached in v} and a; is a path of length k in F},, the last arc of
which is a;. This yields (b).

For (c¢), we define a decomposition (Fy, F3) of D in the following way: If & > 3, for every
(k, 2,k —1)-in-forcer (respectively (k, 2, k — 2)-in-forcer), we choose a (k, £)-decomposition
such that the tip arc of this forcer is not the last arc of a path of length k (respectively
k—1) fully contained in the forcer. Next, we let all attached in-arcs be contained in A(F3).
If k =2, for every v € {v} | i € [t]} Uw, we let each of A(F}) and A(F,) contain one of
the arcs entering v. We then extend this to (Fj, F») in the following way: for every i € [t],
we let A(F},) contain a; and vZv}, for every i € [t — 1], we let A(F},) contain vfv} ; and

1 7)) 3

v]v8, and we let A(Fy) contain wvi. We then set A(F,) = A(D) — A(Fy). This finishes

171
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the description of (Fj, Fy). For an illustration, see Figure 12.

o ) L 0 ® 3
aq as as
D 114 De 114 e 114
7 U1 7% Uy ® U3
: : :
Y Y Y
o v} 0 L 0
2 7 2 7 2
C? V1 <>‘ 1 » V) <>' Vg C? U3
: : :
Y Y Y
VAN @ ------- ~® @ ------- ~e °
2w 1 6 1 6 1
U1 U1 Uy Uy Vs

Figure 12: An illustration of the decomposition (Fy, Fy). The dashed red arcs are in A(F)
and the solid green arcs are in A(F)). When k = 2, the triangles are replaced by solid
green arcs.

This shows (¢). When k = 2, it also shows (d), so we now assume k > 3.

For (d), we define a decomposition (F}, F3) of D in the following way: Again, for every
(k, 2,k —1)-in-forcer (respectively (k, 2, k — 2)-in-forcer), we choose a (k, 2)-decomposition
such that the tip arc of this forcer is not the last arc of a path of length k (respectively
k — 1) fully contained in the forcer. We then extend this to (F}, F3) in the following way:
for every i € [t], we let A(F) contain a; and v?v?, for every i € [t—1], we let A(F}) contain
v}, and v]vP, and we let A(F3) contain wui. We then set A(F) = A(D)— A(F}). This

1 7))

171
finishes the description of (Fj, F}). For an illustration, see Figure 13. This shows (d).
[l
o ] ® 3 ® 3
G1E CLQE a3i
v} Axi V5 Axi v3

Qe
S

@

S

S

S

<

Sio

P
Jw 1 6 1 6 1
Uy vy Uy Uy U3

Figure 13: An illustration of the decomposition (F}, F3). The dashed red arcs are in A(F})
and the solid green arcs are in A(F}).
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3.3.3 Clause gadgets

We now describe the clause gadgets we need. For two integers k and ¢ with min{k, ¢} > 2,
a (k,£)-clause gadget is a digraph D together with three special arcs ay, as, a3 € A(D)
and three special vertices t1, to, 13 € V(D) satisfying the following properties:

(a) for ¢ € [3], we have that a; is the only arc incident to ¢;,

(b) for every (k,{)-decomposition (Fy, Fy) of D, we have A(Fy) N {a1,aq,a3} # @ and
A(Fy) Nn{ay,as2,a3} # &, and

(c) for every nonempty Z C [3] there is a (k, ¢)-decomposition (Fy, F;) of D with {i €
3] | a; € A(Fy)} = Z.

Again, we first prove the existence of clause gadgets when min{k, (} > 3.
Lemma 32. For all integers k, ¢ with min{k, (} > 3, there exists a (k,{)-clause gadget.

Proof. Let D be the digraph on six vertices vy, ¥2, 3, t1, t2, t3 made of the directed triangle
y1y2ysy1 and the arcs a; = t;y; for i € [3], see Figure 14 for an illustration. Clearly, (a)

tl L
ay
vie.
: \\\\ a/3
! o<-- -0
i Ys t3
Yo @
a2
tQ ®

Figure 14: An illustration of the (k, ¢)-decomposition (Fj, Fy) of the (k, ¢)-clause gadget

when min{k, ¢} > 3. The dashed red arcs are in A(F}) and the solid green arcs are in
A(F).

holds. In order to prove (b), let (Fy, F;) be a (k, {)-decomposition of D and suppose for
the sake of a contradiction that A(Fy)N{ay,as,a3} = @. As Fy is a directed linear forest,
we obtain that {y1ys, ¥2ys, ysy1} C A(F). This contradicts F) being a directed linear
forest. A similar argument shows that A(Fy) N {a1,a2,a3} # @. This yields (b). For
(¢), by symmetry, it suffices to prove the statement for Z € {{1,2},{3}}. Let (Fj, F})
be defined by A(Fy) = {t1y1,taye, y2ys} and A(Fy) = A(D) — A(Fy). Then (Fy, Fy) has
the desired properties for Z = {1,2} and (Fy, F},) has the desired properties for Z = {3}.
This proves (c). O

We now prove a similar result for the case that min{k, ¢} = 2.

Lemma 33. For every integer k > 2, there exists a (k,2)-clause gadget.
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Proof. We describe a (k,2)-clause gadget D for some k > 2. We first let V(D) contain
some vertices t1, ta, t3, vy, ..., vs and we let A(D) contain the arcs vity, vote, t3v3, V4v1, VU9,
vsvs, and vsvy. If B > 3, we further attach a (k, 2,k — 2)-in-forcer to vs. Observe that
this forcer exists by Lemma 29. We finally set a; = vit1, as = wvots, and a3 = tzvs. This
finishes the description of (D, {ay, as,as}). For an illustration, see Figure 15. Clearly, D

V4 Us
/ T
® Uy ® U e Us
Ial a2 a3
(] tl L] tz L] t3

Figure 15: An illustration of D where the square marks a (k, 2, k — 2)-in-forcer which does
not exist if k = 2.

satisfies (a).

For (b), let (Fy, F2) be a (k,2)-decomposition of D and first suppose for the sake of
a contradiction that {ai, as,as} C A(Fg). As Fy and F; are directed linear forests, we
obtain that vsvy € A(Fy) and one of vyv; and vyve, say v4vy, is contained in A(Fy). If
k = 2, we obtain that vsvsvit; is a directed path of length 3 in F}, a contradiction. If
k > 3, then the concatenation of a path in Fj of length k£ — 2 fully contained in the
(k,2, k —2)-in-forcer attached to vs whose last vertex is vs with vsvsv1t; is a directed path
of length k+1 in Fj, a contradiction. If & = 2, this yields (b) by symmetry. Now suppose
that k£ > 3 and, for the sake of a contradiction, that {a;, as,as} C A(F3). As F), and Fy
are directed linear forests, we obtain that vsvy, € A(F3) and one of v4v; and vyvy, say v4v1,
is contained in A(F»). Then vsvgv;ty is a directed path of length 3 in Fy, a contradiction.
This yields (b).

For (¢), if k > 3, we choose a decomposition of the (k, 2, k—2)-in-forcer attached to vz in
which vs is not the last vertex of a path of length k—1. A small case analysis shows that for
any nonempty S C [3], this decomposition can be extended into a decomposition (Fj, F»)
of D with {i € [3] | a; € A(F})} = S. All these cases are illustrated in Figure 16. O

3.3.4 The main reduction

We are finally ready to prove the following main result of Section 3.3 making use of the
gadgets constructed in Sections 3.3.2 and 3.3.3.

Theorem 34. For all integers k, ¢ with min{k, ¢} > 2, (k,{)-BDLFD is NP-complete.

Proof. Let us fix a pair of integers k and ¢ with min{k, £} > 2. Note that (k, ¢)-BDLFD is
clearly in NP. We will show that it is NP-complete through a reduction from ME-1-SAT,
which is NP-complete by Proposition 12.
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V4 Us V4 Us Uy Us

,04——00 9"“‘<> o ’Q
U1 e V2 ¢ U3 e Ul . V2 ° U3 o U ; VU2 b U3
.tl ztg ;tg ztl .tQ ;tg ‘tl ;tg .t3

S ={1} S =12} 5 =13}

Uy Vs V4 Us U4 Vs

.- Y .
0U1‘”2:U3 0’1,)1 o Uy @ Us U e Uy & U3
.tl .tQ ;tg .tl :tg .tg ztl .tg .t3
S ={1,2} S =1{1,3} S ={2,3}

Figure 16: An illustration of the possible decompositions (Fy, F») of D for all different
choices of S. The dashed red arcs are in A(F3) and the solid green arcs are in A(Fy).

Let (X,C) be an instance of ME-1-SAT. We now describe a digraph D. For some
x € X, let Cp,...,C, be the clauses containing . We let D contain a (k, ¢, ¢)-variable
gadget (H,,{ai,...,a,}) which exists by Lemmas 30 and 31. Further, for i € [¢], we let
U(z,c;) denote the head of a;. We do this for every z € X. For some C' € C, let 21, x5, and
x3 be the variables contained in C'. We let D contain a clause-gadget (He, {a1, as,as})
which exists by Lemmas 33 and 32. Further, for i € [3], we let t(,, ¢y denote the vertex
incident to a; which is of degree 1 in Ho. We do this for every C € C.

Finally, we obtain D by identifying u,c) and t ) for all z € X and C € C with
x € C. We now show that D is a positive instance of (k,¢)-BDLFD if and only if (X,C)
is a positive instance of ME-1-SAT.

First suppose that (X, C) is a positive instance of ME-1-SAT, so there exists a satisfying
assignment ¢: X — {true,false} for (X,C). Let x € X. If ¢(z) = true, we choose
a (k,f)-decomposition (F?,F}) of H, with {a1,...,a,} C Fy and if ¢(z) = false, we
choose a (k, ¢)-decomposition (FY, F}) of H, with {ay,...,a,} C F,. We do this for every
x € X. Observe that such a decomposition exists by the definition of H,. Now consider
some C' € C and let x1, x5, and x3 be the variables contained in C' in the order they were
used when constructing Ho. Let Z = {i € [3] | ¢(z;) = false}. As ¢ is a satisfying
assignment for (X, C), we have that Z is a nonempty, strict subset of [3]. We now choose
a (k,{)-decomposition (FF, FF) of He with {i € [3] | a; € A(FF)} = Z. Observe that
such a decomposition exists by the definition of Hs. We now define a decomposition
(F, Fy) of D by A(Fy) = U,exoe AEY) and A(F;) = A(D) — A(F}). Observe that every
connected component of Fj or Fy is fully contained in H, for some x € X UC. It follows
that (Fy, Fy) is a (k, £)-decomposition of D, so D is a positive instance of (k, /)-BDLFD.
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Now suppose that D is a positive instance of (k, ¢)-BDLFD, so there exists a (k, {)-
decomposition (Fj, Fy) of D. We now define a truth assignment ¢: X — {true,false}.
Consider some = € X. By the definition of H,, we have that one of {ay,...,a,} C A(F})
and {ay,...,a,} € A(F;) holds. In the former case, we set ¢(r) = true and in the
latter case, we set ¢(z) = false. In order to prove that ¢ is a satisfying assignment, we
consider some C' € C. We let x1, x5, and x3 be the variables contained in C' and we let
Z ={i € [3] | ¢(x;) = true}. By the definition of ¢ and H,, for i € [3], we obtain that
{i € 3] | a; € A(FF)} = Z. 1t follows by the definition of Ho that Z is a non-empty,
strict subset of [3]. This yields that ¢ is a satisfying assignment for (X,C), so (X,C) is a
positive instance of ME-1-SAT. O]

3.4 Decomposing into directed linear forests, one of which is unbounded

Finally, in this section, we show the result for the case that one of the two directed linear
forests is unbounded. More precisely, we prove the following result.

Theorem 35. For every integer k > 1, (00, k)-BDLFD is NP-complete.

Proof. The problem clearly being in NP, we prove the hardness by a reduction from
the problem of deciding whether a given 2-diregular digraph admits a hamiltonian cycle.
Recall that this problem is NP-complete by Theorem 11.

Let D be a 2-diregular digraph and let = be an arbitrary vertex in V(D). We now
create a digraph D’ in the following way: For every v € V (D), we let V(D') contain two
vertices vy and v_. Further, if k > 2, for every v € V(D) —z, we let V/(D') contain 2k — 2
additional vertices vy, ..., vy, vh, ..., v,. Next, for every arc wv € A(D), we let A(D’)
contain the arc uyv_. If k = 1, for every v € V(D) — x, we let A(D’) contain the arc
v_vy. Ifk > 2, for every v € V(D)—z, we let A(D’) contain the arcs v_uvsy, v_v}, vhva, Vx4,
and the arcs v;_1v;,v;_1v,, and v/v; for every ¢ € {3,...,k}. This finishes the description
if D'. For an illustration, see Figure 17.

We now prove that D’ admits an (oo, k)-decomposition if and only if D contains a
hamiltonian cycle. First suppose that D contains a hamiltonian cycle C'. We now define
a set Ay, C A(D'). We first let A, contain the arc u,v_ for every arc uv € A(C). Next,
if k =1, for every v € V(D) — z, we let A, contain the arc v_v, and if k > 2, we let A
contain the arcs v_v}, vjve, Vv, and the arcs viv; and v;_1v] for every i € {3,...,k}. We
now define the decomposition (Fy,, Fy) of D' by A(F) = Aw and A(F)) = A(D') — A
In order to see that Fj, is a k-bounded directed linear forest observe that by construction,
every connected component of Fj, is a directed path of the form u,v_ if £ = 1 and a
directed path of the form u v_vy... vy if k > 2 for some arc uv € A(D). In order to see
that F is a directed linear forest, first observe that we have dj, (z4) = 1,dp_(24) =
0,df (x-) = 0,dp_(z—) =1 and df_(v) = dp_(v) = 1 for all v € V(D') — {a;,x_}.
It hence suffices to prove that Fl, does not contain a directed cycle C" with V(C”) C
V(D) —{x4,x_}. Suppose for the sake of a contradiction that C” is such a cycle and let
C"” be the subdigraph of D defined by A(C") = {uv € A(D) | usv_ € A(C")}. As (" is a
directed cycle, we have d, (v) < 1 and df,(v) = dg.(v) for all v € V(D). Tt follows that
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Figure 17: An example for the construction of the digraph D’ from the digraph D with
k = 2, together with an (oo, k)-decomposition (F.,, Fj) of D', built from the hamiltonian
cycle of D coloured in blue. The dashed red arcs are in A(Fj) and the solid green arcs
are in A(Fy).

C" is a disjoint collection of directed cycles and disjoint cycles. By construction, we have
that A(C") is nonempty and dj,(z) = 0. Finally, by construction, we have that C” is a
subdigraph of C'. This contradicts C' being a hamiltonian cycle of D.

Now suppose that there exists an (oo, k)-decomposition (Fy,, Fy) of D. Let C be the
spanning subdigraph of D defined by A(C) = {uww € A(D) | ujv_ € A(Fy)}. As Fy
and Fj are directed linear forests, we have df,(v) = dg(v) =1 for all v € V(D), so C' is
a collection of directed cycles. Suppose for the sake of a contradiction that C' contains a
connected component C’ which is a directed cycle v!...v? with z ¢ {v',... v?}. If for
every i € [q], we have that F, contains a directed vivi—path, then F, contains a con-
nected component containing the arcs of all those paths and {u,v_ | uv € A(C")}. This
contradicts F, being a directed linear forest. Hence there exists some w € {v!,... v?}
such that F, does not contain a directed w_w,-path. Observe that, as both F, and Fj
are directed linear forests, we have that both F,, and F) contain a directed path from
w_ to the unique vertex in N (w,) and both these paths are of length at least k — 1. As
F does not contain a directed w_w,-path, we obtain that the unique edge in ¢, (w)
is contained in A(F},). It follows that w_ is the first vertex of a path of length at least k
in Fy. Hence, as Fy is a k-bounded directed linear forest, both arcs entering w_ in A(D")
are contained in A(F,). This contradicts Fi, being a directed linear forest. We obtain a
contradiction to the existence of C”. It follows that C' is a hamiltonian cycle of D. O
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4 Decomposing into out-galaxies

This section is dedicated to proving Theorem 5. In Section 4.1, we give the simple proof
that the problem of decomposing a given digraph into two unbounded out-galaxies can be
reduced to finding a bipartition of a certain graph and can hence be solved in polynomial
time. In Section 4.2, we give the somewhat more involved proof that the problem of
decomposing a given digraph into a directed matching and a (bounded) out-galaxy can
be solved in polynomial time by a reduction to a matching problem. In Section 4.3,
we show that the problem is NP-complete in all remaining cases. The combination of
these results yields Theorem 5. Throughout this section, for k, ¢ € Z>, U {0}, a (k, £)-
factorization of a digraph D is a decomposition (Fy, Fy) of D such that F} is a k-bounded
out-galaxy, and F} is an /-bounded out-galaxy.

4.1 Decomposing into two unbounded out-galaxies

We here prove the following result which covers one of the cases of Theorem 5. The proof
consists of a simple reduction to a bipartition problem.

Theorem 36. (co,00)-BOGD is solvable in polynomial time.

Proof. Let D be an instance of (00, 00)-BOGD. We create an undirected graph G in the
following way. For every a € A(D), we let V(G) contain a vertex v, and we let E(G)
contain an edge linking two vertices v, and v, if a and o’ share a vertex which is not the
tail of both of them in D.

Claim 37. D is a positive instance of (00,00)-BOGD if and only if G is bipartite.

Proof of claim. First suppose that D is a positive instance of (0o, 00)-BOGD, so there
exists an (0o, 0o)-factorization (F, F') of D. Let X = {v, |a € A(F)} andY =V (G)—X.
Let vy,vy € X. Then, as F is an out-galaxy, we obtain that a and a’ are either disjoint
or have a common tail. We obtain that v, and v, are not linked by an edge in G. It
follows that X is an independent set. Similarly, Y is an independent set, so (X,Y) is a
bipartition of G.

Now suppose that G is bipartite and let (X,Y") be a bipartition of G. Let F' be the
spanning subdigraph of D with A(F) = {a € A | v, € X} and let F’ be the spanning
subdigraph of D with A(F’) = A(D)— A(F). As X is an independent set in G, we obtain
that all arcs a,a’ € A(F) are either disjoint or share their tail. It follows that F' is an
out-galaxy. Similarly, F” is an out-galaxy, so (F, F’) is an (0o, co)-factorization of D. ¢

By Claim 37, it suffices to check whether G is bipartite. By Proposition 9 and as G
can be constructed from D in polynomial time, this can be done in polynomial time. [

4.2 Decomposing into a matching and an out-galaxy

This section is dedicated to proving that a decomposition of a given digraph into a directed
matching and a possibly bounded out-galaxy can be found in polynomial time. The proof
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is based on a reduction to a matching problem in undirected graphs and has certain
similarities with the proof of Theorem 14 and the proof of [7, Theorem 2|. We first need
a collection of preliminary results which deal with certain decompositions of orientations
of cycles and paths.

Proposition 38. Let C' be an orientation of a cycle. Then, for any k € Z=oU{oo} there
exists a (k,1)-factorization of C' if and only if k is even or C' is not oriented as a circuit.

Proof. Let C' be an orientation of the cycle vivy...v,v,. If 7 is even, we can define a
decomposition (Fy, F}) of C' in which A(Fy) consists of the orientation of the edge v;v;1;
for all odd i € [r] and A(F)) = A(C) — A(Fy). It is easy to see that (Fy, F}) is a
(k, 1)-factorization of C.

We may hence suppose that r is odd. First suppose C' is oriented as a circuit, say
vV ... vv; and that there exists a (k, 1)-factorization (Fj, F1) of C. At least one arc of
A(C) belongs to F). Hence, by symmetry, we may suppose that v,v; € A(Fy). As Fj, and
F} are out-galaxies, we inductively obtain that v;v;11 € A(F}) for all odd i € [r — 2] and
vV € A(F}) for all even ¢ € [r —1]. This yields v,_jv,, v,v; € A(F}), a contradiction to
F}. being an out-galaxy. Hence in this case there exists no (k, 1)-factorization of C'. Now
suppose that C'is not a circuit. Then C' contains a source, that is some vertex v € V(C)
with df(v) = 2, say vy. Then let A(F) contain v;v, and the orientation of the edge v;v; 41
for all odd i € [r — 2] and let A(Fy) = A(C) — A(Fg). It is easy to see that (Fj, F1) is a
(k, 1)-factorization of C. O

Proposition 39. Let P be an orientation of a path of length at least 2, aq, as the endarcs
of P, and let Ay C {a1,as}. Then we can decide in polynomial time whether there exists
a (k,1)-factorization (Fg, Fy) of P with A(Fy) N {a, a2} = Ao.

Proof. Let the underlying graph of P be the path v;...v,. If ¢ = 3, we can solve the
instance by a brute force approach. We may hence suppose that ¢ > 4. We distinguish
three cases.

Case 1: Ay # @.

We assume without loss of generality that a; € Ag. Then there exists a (k,1)-
factorization (Fj, F1) of P with A(F}) N {a1,as} = Ag if and only if there exists a
(k, 1)-factorization (F}, F]) of P — vy with A(F]) N {a}, a2} = Ay — a1 where a} is
the orientation of the edge vyv3 in P. We can hence recursively solve this smaller
instance.

Case 2: Ay =@ and A(P) does not contain {vqvy, vv3}.

In this case, there exists a (k, 1)-factorization (Fy, Fy) of P with A(Fy)N{a1, a2} = @
if and only if there exists a (k, 1)-factorization (F},F]) of P — vy with A(F]) N
{a}, a2} = {a}} where d} is the orientation of the edge vousz in P. We can hence
recursively solve this smaller instance.
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Case 3: Ay = @ and A(P) contains {vavy, vou3}.

We will show that in this case, we can find the desired decomposition. If ¢ is odd,
we define Fy by letting A(F}) consist of vyv; and the orientation of v;v;4; for all
even integers i € {2,...,q¢ — 1}. If ¢ is even, we define F} by letting A(F}) consist
of the orientation of v;v;41 for all odd integers i € {1,...,q — 1}. We define F; by
A(Fy) = A(P) — A(Fy). In both cases, it is easy to see that (Fj, Fy) is a (k,1)-
factorization of P and that A(Fy) N{a1, a2} = @. O

Proposition 40. Let P be an orientation of a path of length at least 2, ay, as the endarcs
of P and let X C 2152} be the set such that for every Ay C {a1,as}, there exists a (k,1)-
factorization (Fy, Fy) of P with A(Fy) N{a1,a2} = Ao if and only if {i € {1,2} | a; €
Ao} € X. Then at least one of {@,{1,2}} C X and {{1},{2}} C X holds. Moreover, we
can compute X in polynomaial time.

Proof. Let P be an orientation of the path v; ...v, for some positive integer ¢ > 3. We
can define a decomposition (Fj, F1) of P where A(F},) contains the orientation of v;v;11
for all odd integers i and A(F}) contains the orientation of v;v;4; for all even integers
i. Further, we can define (F}, F|) by A(F}) = A(Fy) and A(F]) = A(Fy). It is easy
to see that both (Fy, Fy) and (F}, F]) are (k,1)-factorizations of P. This proves that
{2,{1,2}} C X if ¢ is even and {{1},{2}} C X if ¢ is odd. In order to compute X, we
test whether I € X for every I C {1,2}. As there are only four sets to test, this can be
done in polynomial time by Proposition 39. [

In order to reduce our decomposition problem to a matching problem, we need a
collection of gadgets. Each of these gadgets will correspond to a path in the underlying
graph of the input digraph and the gadget will reflect the possible decompositions of the
corresponding subdigraph of the input digraph. The following result shows that all the
desired gadgets exist.

Lemma 41. Let X C 2102 with {@ {1,2}} € X or {{1},{2}} € X. Then there exists
a graph G together with some vy,v5 € V(G),e1,ea € E(G) and Z C V(G) — {vy, v} with
the following properties:

e fori=1,2, the only edge incident to v; is e;,

o for every I € X, there exists a matching M in G covering Z with M N {ey, e} =
{ei ‘ 1 E [}7
e for every matching M in G covering Z, we have {i € {1,2} | e; € M} € X.
Proof. We explicitly give the gadgets for every possible set X, omitting sets which are

fully symmetric to previously considered ones. As it is easily visible that these gadgets
have the desired properties, we do not prove that in detail.
Case 1: X ={@,{1,2}}.

Weset V(G) = {v1,v2, 21, 22}, E(G) = {e1 = v121, €9 = 229, 2120} and Z = {21, 22},
see Figure 18 (a).
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Case 2: X = {{1},{2}}.
We set V(G) = {v,v9,2}, E(G) = {e1 = viz,ea = vz}, and Z = {z}, see
Figure 18 (b).

Case 3: X = {@,{1},{2}}. We set V(G) = {v1,v9,w}, E(G) = {e1 = vyw, e3 = vqw}
and Z = @, see Figure 18 (c).

Case 4: X ={@ {1},{1,2}}.

We set V(G) = {v1,v9, z,w}, E(G) = {e1 = v12,e2 = vow,wz} and Z = {z}, see
Figure 18 (d).

Case 5: X ={@,{2},{1,2}}.
This case is symmetric to the previous one.

Case 6: X = {{1},{2}, {1,2}}.

We set V(G) = {v1,v9,21,22,w}, E(G) = {e; = vi121,e9 = 0329, 21w, 22w} and
Z ={z, 2}, see Figure 18 (e).

Case 7: X = {@ {1},{2},{1,2}}. We set V(G) = {v1,v2,w1,we}, E(G) = {e; =

viwy, e2 = vows} and Z = &, see Figure 18 (f). O
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Figure 18: An illustration of the X-gadgets for all sets X which are relevant by Proposi-
tion 40. The vertices in Z are marked by squares and the remaining vertices by disks.

We say that (G, vy, vq, €1, €9, Z) as described in Lemma 41 is an X-gadget. We are now
ready to prove the main result of this section. We first exclude some local configurations
which clearly make the instance negative and then reduce the problem to a matching
problem.

Theorem 42. For every k € Z>; U {0}, (k,1)-BOGD is solvable in polynomial time,
even if k is part of the input.
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Proof. Let D be an instance of (k,1)-BOGD for some k € Z-; U{oco}. Observe that D is
a positive instance of (0o, 1)-BOGD if and only if D is a positive instance of (k,1)-BOGD
for k = max,cy dp(v). We may hence suppose that k is finite.

A vertex v € V is called big if it satisfies dp(v) > 3 and tiny if it satisfies dp(v) = 1.
We denote by B and T the set of big and tiny vertices, respectively. By Proposition 38,
we may suppose that every connected component of D that contains at least one arc
contains a vertex in BUT. Further, for 7« = 0, 1, we denote by B; the set of vertices in B
with d,(v) =i and dp(v) < k+ 1. Clearly, if D contains a vertex in B — (By U By), then
D is a negative instance of (k,1)-BOGD. As this property can be checked in polynomial
time, we may suppose that B = ByU B;. We further let P be the set of subdigraphs of D
whose underlying graphs forms either a path in UG(D) connecting two vertices of BUT
and none of whose interior vertices is contained in B U T or a cycle containing exactly
one vertex in BUT. We say that P is incident to these vertices in BUT. Observe that
{A(P) | P € P} is a partition of A(D).

We now create an undirected graph G. First, we let V(G) contain By UT. For every
be ByUT and every arc a € A which is incident to b, we also refer to b as ug. Next, for
every b € By and every a € §5(b), we let V(@) contain two vertices u¢ and 2¢, and we let
E(G) contain an edge ugzy. Further, for every b € B; and every a € d,(b), we let V(G)
contain a vertex ug.

Now consider some P € P. Let b;,bo € BUT be the vertices incident to P with
by = by if P is a cycle. We define the associated path P’ of P by P’ = P if P is a path
and the path obtained by detaching b; into two vertices by, by with dp/(by) = dpi(by) = 1
if P is a cycle. Further, let a;, as be the arcs in A(P’) such that a; is incident to b;. We
now compute the set Xp C 212} such that for every I C {1,2}, we have that P’ admits
a (k,1)-decomposition (F}, Fy) with {i € {1,2} | a; € A(F1)} = I if and only if [ € X*.
Observe that X” = {@,{1,2}} if P’ is of length 1. By Proposition 39, we obtain that
X7* can be computed in polynomial time.

We now add an XP-gadget (GF,v{",vf, el el Z") and identify v{ with u;' and vj
with u;?. The existence of this gadget is guaranteed by Proposition 40 and Lemma 41.
We do this for every P € P. This finishes the description of G. We now let Z consist of
Upep 27, the vertex uf for every b € By and a € 67 (b), the vertex zj for every b € By
and a € §7(b) and the vertex b for every b € By with df(b) = k + 1. For an illustration,
see Figure 19.

Claim 43. D is a positive instance of (k,1)-BOGD if and only if G contains a matching
covering Z.

Proof of claim. First suppose that D is a positive instance of (k, 1)-BOGD, so there exists
a (k,1)-factorization (Fy, Fy) of D. We now construct a set M C E(G). We first let
M contain the set of edges uiz{ for all b € By and a € 6;,(b). Now let P € P and let
ai,as € A be the arcs of P incident to vertices in BUT in the order they were used when
constructing G. We now let M? be a matching in G¥ that covers Z¥ and, for i = 1, 2,
contains el if and only if a; € A(F;). Observe that such a matching exists by the choice
of G and because the restriction of (F}, F}) to P is a (k, 1)-factorization of P. We now
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Figure 19: An example for the construction of the graph G from the digraph D for k = 3.
In D, we have T = {v1}, By = {vs,v5}, and By = {vy,v3}. For integers i € [5] and
J € [7] such that v; is an endvertex of P;, the unique arc of P; incident to v; is denoted
by a;;. Vertices in Z are marked by squares. The different elements of P = { Py, ..., Ps}
are marked in different colours. For i € [8], the gadget in G corresponding to P; in D
is marked in the same colour as P;. We have X' = {@, {2}, {1,2}}, X = {{1},{2}},
X = {@, {1}7 {2}7 {1’ 2}}’ XM= {Q’ {1}’ {2}}’ X = {Q’ {17 2}}7 X = {®7 {17 2}}7
Xt = {{1},{2}}, and XP¥ = {{1},{2} {1,2}}, where for i € [7], we let (by,by) be the
endvertices of P; in increasing order with respect to (v, ..., vs).

add M? to M and do this for all P € P. This finishes the description of M. We next
show that M is a matching that covers Z. By construction, every vertex contained in
V(Gp)—{vF vl’} for some P € P is incident to at most one edge in M and M covers Z¥
for all P € P. Next, every t € T is incident to only one edge in E(G), hence in particular
at most one edge in M. Next, consider some b € By. Every edge of M incident to b
corresponds to an arc of A(F}) incident to b. As F} is a directed matching, there is at
most one such arc. Moreover, if b € Z, then d},(b) = k + 1. As Fj is a k-bounded out-
galaxy and (A(Fy), A(F)) is a partition of A(D), we obtain that b is incident to exactly
one arc in A(F}). Hence b is covered by M. Finally, consider some b € B; and let a* be
the unique arc in 0, (b). As (Fy, F1) is a (k, 1)-out galaxy decomposition of D, we obtain
that a* is contained in A(F}) and all other arcs incident to b in D are contained in A(F}).
Hence the unique edge in E(G) incident to uf" is contained in M and for all a € 6;,(b), we
have that ujzy € M and no other edge incident to uj in G is contained in M. It follows
that each vertex in V(G) is incident to at most one edge of M and moreover, every vertex
in Z is incident to exactly one edge of M. Hence M is a matching covering Z.
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Now suppose that G contains a matching M covering Z. Consider some P € P and
let a1, as be the arcs incident to vertices by, by € BUT, respectively, in the order they were
used when constructing G. We now let Ag C {ay,as} be the set that, for i = 1,2, contains
the arc a; if e/ € M. By construction, we obtain that there exists a (k, 1)-factorization
(FF, FP) of P such that A(F) N {a1,a} = Ag. We now consider the decomposition
(Fk, 1) of D which is defined by A(Fy) = Upep A(F) and A(Fy) = A(D) — A(Fy). Let
K be a connected component of Fi. If V(K) C V(P) — B for some P € P, it follows
from the fact that FF is a k-bounded out-galaxy that K is a k-bounded out-star. We
may hence suppose that V(K) contains some b € B. First suppose that d(b) > 1, so
there exists an arc a € 0,(b) N5 (b) for some P € P. In particular, we have b € By and
by construction, the unique edge in G incident to uf is not contained in M. As uf € Z,
this contradicts M covering Z. We may hence suppose that d(b) = 0 and, as b was
chosen arbitrarily and (FF, F[) is a (k, 1)-factorization of P for all P € P, that b is the
only vertex in V(K)N (BUT) and the underlying graph of K is a star. If d},(b) < k, we
obtain dj(b) < d},(b) < k, so K is a k-bounded tree. If d},(b) =k + 1, then b € Z, so b
is incident to an edge of M. By construction, this means that b is incident to an arc of
A(Fy). Tt follows that dj(b) = df(b) — df, (b)) = (k+1) —1 =k, so K is a k-bounded
star.

Now let K be a connected component of Fy. It follows from the fact that F is a
directed matching for every P € P that dg(v) < 1 for all v € V(G) — (BUT). For all
b € ByUT, the fact that b is incident to at most one edge in M by construction yields
dx(b) < 1. Finally consider some b € By. For all a € §5(b), we obtain from z € Z that
ugzg € M. As M is a matching, we obtain that no other edge incident to uj is contained
in M. Hence, by construction, we have dg(b) < 1. This yields that F} is a directed
matching. Hence (Fy, Fy) is a (k, 1)-factorization of D. O

By Claim 43, it suffices to check whether G contains a matching covering Z. By
Proposition 10, this can be done in polynomial time. Further observe that the algorithm
is fully constructive, hence the desired decomposition can be found in polynomial time if
it exists. O

4.3 Decomposing into two (> 2)-bounded out-galaxies

In this section, we prove the hardness results contained in Theorem 5. We first describe
a gadget which will prove useful. For every ¢ > 1, a g-variable gadget is a digraph D
together with a set S C V(D) of size ¢ with the following properties:

(a) d},(v) =0 and d,(v) = 1 hold for all s € S,

(b) for every (oo, 00)-decomposition (F, F’) of D, we have §,(S) C A(F) or §,(S5) C
A(F"), and

(c) there exists a (2, 2)-factorization of D.

Proposition 44. For every integer ¢ > 1, there exists a q-variable gadget whose size is
polynomial in q.
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Proof. Let D be the digraph on 3¢ vertices uy, . .., ugq, V1, . .., v, that consists of a directed
path on 2q vertices uy, . . ., ug, and the arc uyv; for ¢ € [¢], see Figure 20 for an illustration.
Further, let S = {vy,...,v,}. Observe that the size of D is clearly polynomial in ¢ and
that D satisfies (a).

Next, let (F, F') be an (00, 0o)-factorization of D. By symmetry, we may suppose that
urug € A(F). As F and F’ are out-galaxies, we inductively obtain that wu;41 € A(F)
for all odd ¢ € [2¢ — 1] and u;u;41 € A(F”) for all even @ € [2g —2]. As F is an out-galaxy,
we obtain that ugv; € A(F”) for all i € [g]. Hence (b) holds.

We now define (F, F') by A(F) = {ugi—1u | ¢ € ¢} and A(F') = A(D) — A(F). It is
easy to see that (F, F') is a (2, 2)-factorization of D, so (c) holds. An illustration can be

found in Figure 20. [
U1 ) U3 V4
[ J [ J [ ] [ J
o -->0 o -->0 o -->0 o -->0

Ui U9 us Uy Us Ug Uy us

Figure 20: A 4-variable gadget together with a (2,2)-factorization.

We are now ready to prove our NP-completeness results. The proof deals with two
cases separately. The first one is the case that the bounds imposed on the out-galaxies
are equal and the second one is the case that they are distinct.

Theorem 45. For every integer k > 2, (k,k)-BOGD is NP-complete.

Proof. First observe that (k, k)-BOGD is clearly in NP. We will show that (k, k)-BOGD
is NP-complete by a reduction from ME-(k — 1)-SAT, which is NP-complete by Propo-
sition 12.

Let (X,C) be an instance of ME-(k — 1)-SAT. We now describe a digraph D. For
every x € X, we let D contain a ¢(x)-variable gadget (D,, S,) whose size is polynomial in
q(z), where ¢(z) denotes the number of clauses in C containing = and S, contains a vertex
S(z,0) for every C' € C with x € C. Observe that such a gadget exists by Proposition 44.
Further, for every C' € C, we let D contain an out-star D¢ whose root is a vertex ve and
that contains a leaf t(, ¢y for every x € C. We finally obtain D by identifying s(,c) and
L,y into a vertex v, ¢y for every C' € C and every x € C.

We show in the following that D is a positive instance of (k, k)-BOGD if and only if
(X,C) is a positive instance of ME-(k — 1)-SAT.

First suppose that (X,C) is a positive instance of ME-(k — 1)-SAT, so there exists a
mapping ¢: X — {true, false} such that every C' € C contains at least k — 1 variables
assigned true and at least £ — 1 variables assigned false by ¢. We now define a decom-
position (F, F') of D. For every x € X with ¢(x) = true (respectively false), we choose
a (2, 2)-factorization (F,, F;) of D, such that 5, (S.) € A(F,) (respectively A(F})). Ob-
serve that such a decomposition exists as D, is a g(z)-variable gadget. Next for every
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C € C, we define a decomposition (F¢, F,) of D¢ in the following way: for every x € C| if
¢(x) = true we let the arc vot(, oy be contained in A(FY,), otherwise we let it be contained
in A(Fc¢). We now define the decomposition (F, F') of D by A(F) = J,cx e A(F») and
A(F") = A(D) — A(F).

In order to show that (F, F’) is a (k, k)-factorization of D, by symmetry, it suffices
to prove that every connected component of F' is a k-bounded out-star. Let K be a
connected component of F. It follows by construction that K is a subdigraph of D,
for some z € X UC. If K is a subdigraph of D, for some x € X, then, it follows by
construction that K is a k-bounded out-star. If K is a subdigraph of D¢ for some C' € C,
then it follows by construction that K is an out-star whose root is vo. Further, every leaf
of K corresponds to a variable x € C' with ¢(z) = false. As ¢ is satisfying assignment
for (X,C), there are at most k such variables and hence K is k-bounded. It follows that
D is a positive instance of (k, k)-BOGD.

Now suppose that D is a positive instance of (k, k)-BOGD, so there exists a (k, k)-
factorization (F,F") of D. For every x € X, as D, is a ¢(x)-variable gadget, we obtain
that 05, (S.) € A(F) or dp (S.) € A(F") holds. We now define ¢: X — {true,false}
by ¢(z) = true if 6}, (S.) € A(F) and ¢(x) = false, otherwise. In order to see that ¢ is
a satisfying assignment for (X, C), consider some C' € C. As F} is an out-galaxy, for every
x € C with ¢(x) = true, we have that vev o) € A(F'). As F' is a k-bounded out-galaxy,
we obtain that there are at most k variables x € C' with ¢(z) = true. A similar argument
shows that there are at most k variables x € C with ¢(x) = false. Hence ¢ is a satisfying
assignment for (X,C) and so (X, C) is a positive instance of ME-(k — 1)-SAT. O

For the case that k # ¢, we need a slightly more complex clause gadget. More con-
cretely, for some ¢ € Z-o, some k € Z-y.1 U {oo} and nonnegative integers aq, as with
aj+as =L0+1, a(k,£, a1, az)-clause gadget is a digraph D together with two disjoint
sets S1, 9 C V(D) with |S;| = a; for i € [2] satisfying the following properties:

(a) df(v) =0 and dj(v) = 1 hold for all v € S; U S,

(b) for every (k,{)-factorization (Fy, Fy) of D, we have d,(S1 U Ss) N A(Fy) # 05(S2),
and

(c) for every Sy C Sy U Sy with Sy # Sa, there exists a (k, £)-factorization of D with
A(Fy) N5 (S1 U Sy) =05(5).

Lemma 46. Let { € Zzo, k € Zzpr1 U {o0} and oy, e be nonnegative integers with
a; +ay =0+ 1. There exists a (k,{, a1, as)-clause gadget.
Proof. We create a digraph D with vertex-set

V(D) = {151, ., Says 51+ Sty Ul - - - Uay }-

Further, we let A(D) consist of the arcs rs; for i € [a;] and the arcs ru; and w;s, for
i € |ap). Finally, we set S; = {s1,...,84,} and Sy = {s},...,s,,}. This finishes the
description of D. For an illustration, see Figure 21.
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Figure 21: A (k, 6,4, 3)-clause gadget for some k > 7.

Clearly, Sy and S5 are disjoint, we have |S;| = «; for ¢ € [2], and (a) is satisfied. For (b),
suppose for the sake of a contradiction that there exists a (k, ¢)-factorization (Fy, Fy) of
D with A(F},)Nd5(S1USsy) = d5(Ss). As Fy, is an out-galaxy, we obtain that 67,(r) C Fy.
As d5(r) = ay + az = £+ 1, this contradicts F; being an ¢-bounded out-galaxy. This
proves (b).

Now consider some Sy C S; U Sy with Sy # S5. We define the factorization (Fy, Fy)
of D by A(Fy) = {rs; | si € SoNS1}U{ws, | si € SoN S} U{ru; | s; € Sy — Sy} and
A(F,) = A(D) — A(F}). It is easy to see that (Fj, Fy) has the desired properties. This
proves (c). O

We are now ready to prove the second part of our hardness results.

Theorem 47. For every integer £ > 2 and every k € Zsyp1 U {0}, (k,¢)-BOGD is
NP-complete.

Proof. Let us fix { € Z>y and k € Z>y11U{o0}. First observe that (k,¢)-BOGD is clearly
in NP. We will show that (k, £)-BOGD is NP-complete by a reduction from (¢ + 1)-SAT,
which is known to be NP-complete since £ + 1 > 3 and by Proposition 7.

Let (X,C) be an instance of (¢ 4 1)-SAT. We now create a digraph D. For every
x € X, we let D contain a g(z)-variable gadget (D*, S*) where ¢(z) is the total number of
occurences of x or 7 in (X,C) and S* contains a vertex t(, ¢y for every C' € C containing
x or . Now consider some clause C' € C, let a; be the number of positive literals in
C and let as be the number of negative literals in C'. Observe that a; + g = £ + 1 by
definition. We now let D contain a (k, £, ay, ag)-clause gadget (D€, S¢S where S¢
contains a vertex s ¢ for every x € X with x € C and S2C contains a vertex s ¢y for
every z € X with ¥ € C. We now obtain D by identifying ¢, ¢y and s ¢y for all x € X
and C' € C with x € C or € C'. We show in the following that D is a positive instance
of (k,¢)-BOGD if and only if (X,C) is a positive instance of (¢ + 1)-SAT.

First suppose that (X,C) is a positive instance of (¢ + 1)-SAT, so there exists a satis-
fying assignment ¢: X — {true,false} for (X,C). For every x € X with ¢(x) = true
(¢p(x) = false), we choose a (k,{)-factorization (F?, F}) of D* with 0,.(5%) C A(F})
(65 (S*) C A(FF), respectively). For every C € C, let S§ be the set containing the
vertices s for all variables x for which either x € C' and ¢(x) = true or z € C' and
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#(x) = false holds. As ¢ is satisfying, we have S§ # S§. We now choose a (k,()-
factorization (F, F{') of DY with A(F{) N, (ST USY) = 6,6(S5). Finally, we define
(Fy, Fy) by A(Fy) = Uyexoe AFY) and A(Fy) = A(D) — A(Fj). Observe that every
connected component of Fj, or Fy is fully contained in D* for some x € X UC. It follows
that (Fy, Fy) is a (k, £)-factorization of D, so D is a positive instance of BOGD.

Now suppose that D is a positive instance of BOGD, so D admits a (k, ¢)-factorization
(Fy, Fy) of D. Consider some z € X. As D7 is a ¢(x)-variable gadget, we obtain that
dpe (S*) € A(Fy) or 0,.(S*) C A(Fy) holds. We now define ¢p: X — {true, false} by
o(z) = true if §,.(5") C A(Fy) and ¢(x) = false, otherwise. In order to see that ¢
is a satisfying assignment for (X, C), consider some C' € C and suppose for the sake of a
contradiction that C' is not satisfied by ¢. For all x € X with x € | we obtain that the
unique arc entering s(, ¢y which is not contained in A(D?) is contained in A(F},). Hence,
as Fj, is an out-galaxy, we obtain that 6, (S{) C A(Fy). For all z € X with z € C, we
obtain that the unique arc entering s(, ¢y which is not contained in A(D®) is contained
in A(Fy). Hence, as F; is an out-galaxy, we obtain that 6, (S§) C A(F). This yields
050(S1 U Ss) N A(F)) = 6,c(S2), a contradiction as D is a clause gadget. Hence ¢
satisfies (X,C) and so (X,C) is a positive instance of (¢ + 1)-SAT. O
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