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Abstract

We prove Menger-type results in which the obtained paths are pairwise non-
adjacent, both for graphs of bounded maximum degree and, more generally, for
graphs excluding a topological minor. More precisely, we show the existence of a
constant C, depending only on the maximum degree or on the forbidden topological
minor, such that for any pair of sets of vertices X,Y and any positive integer k,
there exist either k pairwise non-adjacent X-Y -paths, or a set of fewer than Ck
vertices which separates X and Y . We further show better bounds in the subcubic
case, and in particular obtain a tight result for two paths using a computer-assisted
proof.

Mathematics Subject Classifications: Primary 05C38; Secondary 05C15, 05C40,
05C83

1 Introduction

Given a graph G and X, Y ⊆ V (G), we say a set of vertices Z separates X and Y if
Z intersects every X-Y -path1. In general, we say two paths are disjoint if they do not
share any vertices. Menger’s theorem is a fundamental result of graph theory, relating the
existence of many disjoint paths between two sets of vertices in a graph with the absence
of small separators.

Theorem 1 (Menger’s theorem [12]). If k ∈ N, G is a graph and X, Y ⊆ V (G), then
there exist either
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this definition also allows a single vertex in X ∩ Y to qualify as an X-Y -path (of length 0).
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(1) k pairwise disjoint X-Y -paths, or

(2) a set of fewer than k vertices which separates X and Y .

It is a natural question to ask under which circumstances we can guarantee the paths
in point (1) to be far apart from each other in the graph metric, rather than just dis-
joint. Georgakopoulos and Papasoglu [6], motivated by questions in metric geometry, and
Albrechtsen et al. [1] conjectured a “Coarse Menger’s theorem”. Although it was later
disproved by Nguyen et al. [14], we will state it formally, as it motivates our work and
various relaxations of it are still open. Before stating it, we need the following notation.
If G is a graph, Z ⊆ V (G) and d ∈ N, we write BG(Z, d) for the ball of radius d around
Z, i.e. all vertices at distance at most d from one of the vertices in Z. If Z = {z}, we
may simply write BG(z, d).

Conjecture 2. For every k ∈ N, there exists c = c(k) ∈ N satisfying the following. If
d ∈ N, G is a graph and X, Y ⊆ V (G), then there exist either

(1) k disjoint X-Y -paths P1, . . . , Pk such that distG(Pi, Pj) > d for all distinct i, j, or

(2) a set Z of fewer than k vertices such that BG(Z, cd) separates X and Y .

We note that the version of the conjecture of Albrechtsen et al. was in fact stronger,
as it did not allow c to depend on k. It is also interesting to note that McCarty and
Seymour had shown that it was sufficient to prove the conjecture for the case d = 3 for
the entire conjecture to hold, see [1, Theorem 4].

Both Georgakopoulos and Papasoglu [6] and Albrechtsen et al. [1] have shown that
conjecture 2 holds for k = 2, the constant of 129 below is from the latter authors.

Theorem 3 ([6, 1]). If d ∈ N, G is a graph and X, Y ⊆ V (G), then there exist either

(1) two disjoint X-Y -paths P1, P2 such that distG(P1, P2) > d, or

(2) z ∈ V (G) such that BG(z, 129d) separates X and Y .

One possible variation on conjecture 2 is to replace the family of balls BG(Z, cd) which
separates X and Y in condition (2) by an arbitrary set. What is a natural upper bound on
the size of this set? If G has maximum degree bounded by a constant ∆, one can upper-
bound the size of BG(Z, cd) by |BG(Z, cd)| 6 |Z| ·

∑cd
i=0 ∆i < ∆cd+1k. In particular, if

the strong version of conjecture 2 proposed by Albrechtsen et al. had held (that is, with
c independent of k), it would have implied the following.

Conjecture 4. For every d,∆ ∈ N there exists a constant C = C(d,∆) > 0 such that
the following holds. If k ∈ N, G is a graph with ∆(G) 6 ∆ and X, Y ⊆ V (G), then there
exist either

(1) k X-Y -paths pairwise at distance at least d in G, or

(2) a set of fewer than Ck vertices in G which separates X and Y .
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We note that the reduction for d > 3 to d = 3 by McCarty and Seymour also holds
for conjecture 4, see appendix A.

In the first main result of this paper, namely theorem 5 below, we prove conjecture 4
in the first non-trivial case when d = 2, that is, when we look for a family of disjoint X-Y -
paths that are pairwise non-adjacent2. For brevity, when saying that paths are pairwise
non-adjacent, they will also be meant to be disjoint.

To state theorem 5 concisely we need a bit of terminology. Let G be a graph. We
say M ⊆ E(G) is an induced matching if distG(e1, e2) > 2 for every distinct e1, e2 ∈ M .
A strong edge colouring of G is a partition of the edges of G into induced matchings.
In other words, the edges are coloured such that no two edges of the same colour are
adjacent. The strong chromatic index of G, denoted by χ′s(G), is the smallest number of
matchings in a strong edge colouring of G. The strong chromatic index is well studied,
and there are many known bounds depending on the maximum degree ∆(G) of G, as
well as for more specific classes of graphs. In general, χ′s(G) 6 2∆(G)(∆(G) − 1) + 1,
which can be seen by counting the number of edges at distance at most 2 of any edge and
colouring greedily. For large enough ∆, currently the best bound, by Hurley, de Verclos
and Kang [10], is χ′s(G) 6 1.772∆2 when ∆(G) 6 ∆.

Theorem 5. If k ∈ N, G is a graph and X, Y ⊆ V (G), then there exist either

(1) k pairwise non-adjacent X-Y -paths, or

(2) a set of fewer than 2χ
′
s(G)k vertices which separates X and Y .

Given the bounds on χ′s(G) mentioned above, we may obtain the d = 2 case of con-
jecture 4 as a direct corollary of theorem 5.

By Menger’s theorem (theorem 1), theorem 5 is equivalent to the following result.

Theorem 6. If k ∈ N, G is a graph, X, Y ⊆ V (G) and there exist at least 2χ
′
s(G)k pairwise

disjoint X-Y -paths, then there exist k pairwise non-adjacent X-Y -paths in G.

We believe this result to be interesting in its own right, as it is a quite natural analogue
to Menger’s theorem in an induced setting. An example of another result of this type
would be Korhonen’s [11] proof of the grid minor theorem for induced minors for bounded
degree graphs.

The idea behind our proof is as follows. Given a large number of disjoint X-Y -paths
and a strong colouring of the edges in between the paths, we contract all edges of a colour
class (say, green) and apply Menger’s theorem to find many disjoint X-Y -paths in the
contracted graph, which we can then lift back to the original graph. By this contraction,
we will be guaranteed to not have any green edges between the paths, and the strong
colouring will guarantee that there are no edges of the original paths that go between the

2Since for every X-Y -path P in a graph G there exists an induced X-Y -path P ′ such that V (P ′) ⊆ V (P ),
one can see that the existence of a family of k pairwise non-adjacent X-Y -paths is equivalent to the
existence of a family P of k different X-Y -paths, such that the union of the paths in P forms an
induced subgraph of G. This explains the naming of the paper.
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new paths. After repeating this argument for every colour, we find a collection of pairwise
non-adjacent paths.

We will prove theorem 6 in section 2. In fact, given that we do not need to colour the
edges of the original paths, we can obtain an improvement over the constant 2χ

′
s(G), which

is most significant when the maximum degree is small. In particular, in section 4, we will
show the following two results. For brevity, if P is a collection of subgraphs (typically, of
paths) of a graph G, then write V (P) =

⋃
P∈P V (P ) and E(P) =

⋃
P∈P E(P ).

Theorem 7. If G is a graph, X, Y ⊆ V (G), and there exists a collection P of at least
16k disjoint X-Y -paths such that every vertex in V (P) is incident to at most one edge in
E(G) \ E(P), then there exist at least k pairwise non-adjacent X-Y -paths in G.

This is a large improvement over the constant 210 which would be obtained from
theorem 6 with the bound of χ′s(G) 6 10 when ∆(G) 6 3 proved independently by
Andersen [2] and by Horák, Qing and Trotter [9].

For the case k = 2, we will show in a computer-assisted proof the following tight result.

Theorem 8. If G is a graph, X, Y ⊆ V (G), and there exists a collection P of five disjoint
X-Y -paths such that every vertex in V (P) is incident to at most one edge in E(G)\E(P),
then there exist two pairwise non-adjacent X-Y -paths in G.

Furthermore, the statement does not necessarily hold if either

(a) P contains four paths instead of five, or

(b) we replace the condition that every vertex in V (P) is incident to at most one edge
in E(G) \ E(P) by the condition that the maximum degree of G is three.

Both the proof methods of Theorems 7 and 8 and (b) in the latter indicate that the
maximum degree of G−E(P) is a more natural parameter to bound than the maximum
degree of G.

A direct consequence of (a) in this result is that the 16k in theorem 7 cannot be
improved below 4k − 3 (consider a disjoint union of k − 1 copies of a graph containing 4
disjoint X-Y -paths but no two non-adjacent X-Y -paths).

We say a graph H is a topological minor of a graph G if G contains a subdivision3

of H as a subgraph. In section 3, using the structure theorem for graphs excluding a
topological Kr-minor first proved by Grohe and Marx [7], as well as Erde and Weißauer
[4], we then generalize our induced Menger’s theorem to the class of graphs excluding the
complete graph Kr as a topological minor.

Theorem 9. For every r ∈ N, there exists c = c9(r) > 0 such that the following holds.
If G is a graph not containing Kr as a topological minor and X, Y ⊆ V (G), then there

exist either

(1) k pairwise non-adjacent X-Y -paths, or

3As usual, by a subdivision of H we here mean any graph that is isomorphic to a graph that can be
obtained from H by replacing its edges by paths of positive length.
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(2) a set of fewer than ck vertices which separates X and Y .

We note that theorems 5 and 9 were also proved, with slightly different constants,
independently by Gartland et al. [5].

We will need the following notation. If G is a graph and S is a set of vertices of G,
then G[S] is the graph subgraph of G induced on S, and G − S is the subgraph of G
induced on V (G) \ S. If M is a set of edges of G, then G−M is the subgraph of G with
vertex set V (G) and set of edges E(G) \M .

2 Graphs with bounded maximum degree

theorem 6 follows directly from the following result, by takingM as the colour classes of
edges in E(G[V (P)]) \ E(P) (in other words, the edges not in P but with both ends in
vertices in P) in a strong edge colouring of G.

Theorem 10. If m, k ∈ N, G is a graph, X, Y ⊆ V (G), P is a collection of 2mk pairwise
disjoint X-Y -paths and M is a partition of E (G[V (P)]) \ E(P) into at most m induced
matchings of G, then there exist k pairwise non-adjacent X-Y -paths in G.

Proof. First note that we may without loss of generality assume that V (G) = V (P), by
restricting G,X, Y to V (P). This implies that E(G) = E(P) ∪ (∪M), where ∪M :=⋃
M∈MM .

We prove the statement by induction on m. If m = 0, then M = ∅. In particular,
E (G[V (P)]) \ E(P) = ∅, and so the 20k = k paths of P are pairwise non-adjacent.

We now show the inductive step. We may assume that the paths of P are chosen such
that the sum of the lengths of paths in P is smallest possible among all collections of k
disjoint X-Y -paths. This immediately implies that every P ∈ P is an induced path in G,
and that every path P ∈ P intersects X and Y only in its endpoints.

Let M ∈ M, chosen arbitrarily, and write M∗ := M \ {M}. We define G′ = G −
E(M∗), and let G′′ be obtained from G′ by contracting the edges of M .4 Let f : V (G)→
V (G′′) denote the mapping of vertices underlying the resulting contraction. The sets
corresponding to X, Y in G′′ are then X ′ := f(X), Y ′ := f(Y ′).

By Menger’s theorem (theorem 1), there exists either

1. a collection P ′ of 2m−1k disjoint X ′-Y ′-paths in G′′, or

2. a set Z ′ of fewer than than 2m−1k vertices separating X ′ and Y ′ in G′′.

First suppose we are in case (2). Let Z := f−1(Z ′). As we have contracted by a
matching, the preimage of any vertex in G′′ is of size at most two, and so |Z| 6 2|Z ′| <
2mk. We claim Z separates X and Y in G′, which would be a contradiction as there
are at least 2mk pairwise disjoint X-Y -paths in G′ (the paths in P are not affected by
removing M∗). If P is an X-Y -path in G′, then f(V (P )) corresponds to the vertex set of

4An edge is contracted by identifying its end vertices, and removing any resulting loops and parallel
edges.
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a X ′-Y ′ walk in G′′, from which we can extract an X ′-Y ′-path P ′. Given that Z ′ separates
X ′ and Y ′ in G′′, there exists v′ ∈ Z ′ ∩ V (P ′) 6= ∅. By construction of P ′, there exists
v ∈ V (P ) such that f(v) = v′. By definition of Z, v ∈ Z. Hence, v ∈ Z∩V (P ) as desired.
Therefore, we are necessarily in case (1).

Given a path P ′ ∈ P ′, it is easily seen that G′[f−1(V (P ′))] is connected and so there
exists an X-Y path P in G′ such that f(V (P )) ⊆ V (P ′). There may be multiple such
paths, but we will choose one and refer to it as the lift of P ′. In particular, we may
suppose that this path is induced in G′. Let P2 be the collection of lifts of paths of P ′.
Given that the paths of P ′ are pairwise disjoint, so are those in P2.

Let M2 be the collection of matchings of M∗ restricted to edges in
E (G[V (P2)]) \ E(P2).

We claimM2 partitions the edges of E (G[V (P2)])\E(P2). The fact that the matchings
in M2 are pairwise disjoint is direct from their construction as restrictions of matchings
inM∗. Let e = uv ∈ E (G[V (P2)]) \E(P2), and suppose for a contradiction that e is not
in any matching of M2.

First suppose that e ∈ M . We cannot have u, v ∈ V (P ) for P ∈ P2, since e /∈ E(P2),
M ⊆ E(G′) and P is induced in G′. Hence, u ∈ V (P1) and v ∈ V (P2) for distinct paths
P1, P2 ∈ P2. However, P1, P2 are lifts of paths in G′′, say P ′1, P

′
2 ∈ P ′. In particular,

f(u) ∈ V (P ′1) and f(v) ∈ V (P ′2). As uv ∈ M , f(u) = f(v), and so P ′1 and P ′2 are not
disjoint, which is a contradiction to the choice of P ′. Hence, we may now suppose that
e /∈M .

Given that e /∈ M and e is not in any matching of M∗, e /∈ ∪M. By our first
assumption, necessarily e ∈ E(P). If we show that both u and v are incident to some
edges of M , this would be a contradiction to the fact that M is a strong matching.

We will show that u is incident to some edge of M ; the proof for v is analogous. Let
P ∈ P2 be the path such that u ∈ V (P ). There are two cases to consider. First suppose u
is not an endpoint of P , i.e. u has distinct neighbours z1, z2 ∈ V (P ). It is impossible that
both uz1, uz2 ∈ E(P), given that this is a collection of paths (so u cannot be incident
to three edges of E(P)) and we know that e ∈ E(P); without loss of generality say
uz1 ∈ ∪M. Recall that P2 is a collection of paths in G′ and so necessarily uz1 ∈ M , as
desired. Now suppose that u is an endpoint of P , hence u ∈ X ∪ Y . If u ∈ X ∩ Y , then e
would not appear in P , as we have assumed those paths to be as short as possible. Hence,
u /∈ Y and so there exists some edge uz ∈ E(P2). By our hypothesis that the paths in
P are shortest possible, u is not an interior vertex of any path in P , i.e. u appears in at
most one edge of P , which we already know to be e. Hence uz /∈ E(P) and so uz ∈ ∪M.
By the same argument as previously, uz ∈M . This completes the proof of the claim.

Note that |P2| = |P ′| = 2m−1k and |M2| = |M∗| = |M| − 1 6 m− 1. Hence, by the
induction hypothesis applied to G′, we obtain k pairwise non-adjacent X-Y -paths in G,
as desired.

We now briefly discuss why our proof does not work in the d = 3 case. The main
difficulty is that there is no nice analogue of moving to an induced subgraph; the first
step of the previous proof was that we can assume that V (G) = V (P). Indeed, when
we find non-adjacent paths in an induced subgraph of the original graph, they are also
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non-adjacent in the latter. This no longer holds when d = 3. We would need to consider
paths of length two between any paths in P , but after an iteration of our method, the
vertices which are on these paths of length two might now be part of P . Hence, we must
also consider the paths of length two between those vertices, and so on. It is unclear how
one might then manage the complications arising from this.

3 Excluding a topological minor

In this section, we will prove theorem 9. We first need some definitions and notation. Let
G be a graph. If S ⊆ V (G), we write G[S] for the subgraph of G induced by S.

A separation in G is to be understood as a pair (A,B) of subsets of V (G) such that
A ∪ B = V (G) and there exists no edge in G with endpoints in A \ B and B \ A. It is
slightly unusual but convenient for us to allow in this definition also degenerate cases in
which A ⊆ B or B ⊆ A. Given a separation (A,B) of G, we call A∩B its separator and
refer to |A ∩B| as the order of the separation (A,B).

A tree-decomposition of G is a pair (T,V), where T is a tree and V = (Vt)t∈V (T ) is a
collection of subsets of V (G) satisfying the following properties:

• for every v ∈ V (G), the set {t ∈ V (T ) : v ∈ Vt} induces a non-empty subtree of T ,
and

• for every uv ∈ V (G), there exists at least one t ∈ V (T ) such that u, v ∈ Vt.

Given a tree decomposition (T,V) of G, for every edge e = t1t2 ∈ E(T ), we denote
S(e) := Vt1 ∩ Vt2 and call maxe∈E(T ) |S(e)| the adhesion of the tree-decomposition (T,V).
Given a vertex t ∈ V (T ), the torso at t, denoted by τ(t), is defined as the graph obtained
from G[Vt] by adding, for every edge e ∈ E(T ) incident to t, an edge between any two
non-adjacent vertices in S(e), in other words we make S(e) a clique for every incident
edge e of t.

For every edge e = t1t2 ∈ E(T ), there exists a natural corresponding separation in G,
namely  ⋃

t∈(T−e)(t1)

Vt,
⋃

t∈(T−e)(t2)

Vt

 ,

where (T − e)(ti) denotes the set of vertices of the unique component of T − e that
contains ti. From the definition of a tree decomposition it is not hard to see that this

indeed is a separation in G, with Vt1 ∩Vt2 =
(⋃

t∈(T−e)(t1) Vt

)
∩
(⋃

t∈(T−e)(t2) Vt

)
being the

corresponding separator.
Finally, we say a graph H is a minor of G if a graph isomorphic to H can be obtained

from G be removing vertices and edges, and contracting edges. It is direct that if G
contains H as a topological minor, it also contains H as a minor.

The following structure theorem is a key element of our proof of theorem 9. We use
the exact statement of Erde and Weißauer [4, Theorem 4], see also Grohe and Marx [7,
Theorem 4.1].
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Theorem 11 ([7, 4]). If r ∈ N and G is a graph excluding Kr as a topological minor,
then G admits a tree-decomposition of adhesion less than r2 such that every torso either

(1) has fewer than r2 vertices of degree at least 2r4, or

(2) is Kh-minor-free, for h = 2r2.

Broadly speaking, our proof of theorem 9 will proceed as follows. Given a collection
of X-Y -paths in a smallest counterexample G, we will apply theorem 11 and find a torso
of the tree decomposition which intersects every path in the collection. Then, in order to
find the desired collection of paths, we will either apply our result for bounded maximum
degree (theorem 6), if we are in case (1), or use the following lemma, if we are in case (2).

Lemma 12. If h, k ∈ N, G is a Kh-minor-free graph, X, Y ⊆ V (G) and there exist k
pairwise disjoint X-Y -paths in G, then there exist at least k

2(h−1)
pairwise non-adjacent

X-Y -paths in G.

Proof. Let P be a collection of k disjoint X-Y -paths in G. Let H be the minor of G
obtained from G

[⋃
P∈P V (P )

]
by contracting each path P ∈ P into a single vertex. In

this way, the vertices of H have a natural one-to-one correspondence with the paths in P ,
and two vertices in H are adjacent if and only if the corresponding paths in P are adjacent.
Since G is Kh-minor-free, so is H. Hence, by a classical result of Duchet and Meyniel [3],

we have that H contains an independent set of size at least α(H) > |V (H)|
2(h−1)

= k
2(h−1)

. The

subcollection P ′ ⊆ P corresponding to this independent set in H now consists of pairwise
non-adjacent X-Y -paths, as desired.

theorem 9 follows directly from the following result, by applying Menger’s theorem
(theorem 1) and choosing c9(t) > 1

ε13(t)
. The additive 1

2
is used solely for formal reasons,

as it simplifies the inductive proof.

Theorem 13. For every r ∈ N, there exists ε = ε(r) > 0 such that the following holds.
If G is a graph not containing Kr as a topological minor, X, Y ⊆ V (G), k ∈ N and

there are k pairwise disjoint X-Y -paths in G, then there also exists a family of at least
εk + 1

2
pairwise non-adjacent X-Y -paths in G.

Proof. Fix r ∈ N; we prove the statement with the constant ε(r) := 2−(8r8+3). Towards
a contradiction, suppose the claim is not true, and consider a counterexample G with
|V (G)| minimum. Hence, there exist X, Y ⊆ V (G) and k ∈ N such that on the one hand,
there exists a collection P consisting of k pairwise disjoint X-Y -paths in G, but on the
other hand, every collection Q of pairwise non-adjacent X-Y -paths in G has size less than
εk + 1

2
. Note that the latter fact implies that 1 < εk + 1

2
, so k > 1

2ε
. Our next claim uses

the minimality assumption on G to guarantee that for every separation (A,B) in G of
sufficiently small order, one of its two sides must intersect all paths in P .

Claim 14. If (A,B) is a separation in G of order |A ∩ B| < 28r8+1, then V (P ) ∩ A 6= ∅
for every P ∈ P or V (P ) ∩B 6= ∅ for every P ∈ P.
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Proof of claim 14. Suppose towards a contradiction that there exist two paths
P1, P2 ∈ P such that V (P1) ⊆ A \ B and V (P2) ⊆ B \ A. Let P1 := {P ∈ P :
V (P ) ⊆ A \ B}, P2 := {P ∈ P : V (P ) ⊆ B \ A}, and let us denote k1 := |P1|,
k2 := |P2|. Note that since (A,B) is a separation, every path P ∈ P \ (P1 ∪ P2) must
intersect the separator A ∩ B. Since the paths in P are pairwise disjoint, this implies
that k − (k1 + k2) 6 |A ∩ B| < 28r8+1. Note that P1 is a collection of k1 > 1 pairwise
disjoint (X ∩ (A \ B))-(Y ∩ (A \ B))-paths in G[A \ B], and P2 is a collection of k2 > 1
pairwise disjoint (X ∩ (B \ A))-(Y ∩ (B \ A))-paths in G[B \ A]. Since by our minimal-
ity assumption on G both graphs G[A \ B] and G[B \ A] satisfy the hypothesis of the
theorem, we find that there is a collection Q1 of at least εk1 + 1

2
pairwise non-adjacent

(X ∩ (A \ B))-(Y ∩ (A \ B))-paths in G[A \ B], and a collection Q2 of at least εk2 + 1
2

pairwise non-adjacent (X ∩ (B \A))-(Y ∩ (B \A))-paths in G[B \A]. Since there are no
edges in G between A\B and B \A, the collection Q := Q1∪Q2 also consists of pairwise
non-adjacent X-Y -paths in G. We furthermore have

|Q| = |Q1|+ |Q2| >
(
εk1 +

1

2

)
+

(
εk2 +

1

2

)
= ε(k1 + k2) + 1

> ε
(
k − 28r8+1

)
+ 1 = εk +

1

2
+

(
1

2
− ε28r8+1

)
> εk +

1

2
.

This is a contradiction on our initial assumptions that such a collection Q cannot
exist. Hence our assumption was false, and this concludes the proof of the claim. �

Next, we apply Theorem 11 to G, which yields a tree-decomposition
(T, (Vt)t∈V (T )) of G of adhesion less than r2, such that every torso τ(t) has at most r2

vertices of degree at least 2r4, or is Kh-minor-free for h := 2r2.

Claim 15. There exists a vertex t∗ ∈ V (T ) such that V (P ) ∩ Vt∗ 6= ∅ for every P ∈ P.

Proof of claim 15. For every edge e = t1t2 of T , we have that ⋃
t∈(T−e)(t1)

Vt,
⋃

t∈(T−e)(t2)

Vt


forms a separation in G of order |S(e)| < r2 < 28r8+1. Hence, by claim 14, every path in
P intersects

⋃
t∈(T−e)(t1) Vt, or every path in P intersects

⋃
t∈(T−e)(t2) Vt. We can therefore

find an orientation ~T of T such that for every edge e = t1t2 oriented from t1 to t2 in ~T , we

have V (P ) ∩
(⋃

t∈(T−e)(t2) Vt

)
6= ∅ for every P ∈ P . Since T is a tree, there must exists a

vertex t∗ ∈ V (T ) that is a sink in the orientation ~T of T . We now claim that V (P )∩Vt∗ 6= ∅
for every P ∈ P . Suppose otherwise towards a contradiction. Let P ∈ P be such that
V (P )∩Vt∗ = ∅ and let R := {t ∈ V (T ) : V (P )∩Vt 6= ∅}. Since P is a connected subgraph
of G, it readily follows from the definition of a tree-decomposition that R induces a subtree
of T , which does not include t∗. Hence, there is an edge e = t′t∗ ∈ E(T ) incident to t∗ such
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that R ⊆ (T−e)(t′). This, however, contradicts the fact that V (P )∩
(⋃

t∈(T−e)(t∗) Vt

)
6= ∅,

which follows since e is oriented from t′ to t∗ in ~T . This concludes the proof of the claim.
�

Let H be the graph obtained from G[Vt∗ ] by adding an edge between every pair x, y
of non-adjacent vertices in G[Vt∗ ] for which there exists a path in G with endpoints x, y
all whose internal vertices are in V (G) \ Vt∗ .

Claim 16. For every pair of vertices x, y ∈ Vt∗ with xy /∈ E(G) for which there exists a
path in G with endpoints x, y all whose internal vertices are in V (G) \Vt∗, there exists an
edge f = tt∗ ∈ E(T ) incident with t∗ such that x, y ∈ S(f). In particular, G[Vt∗ ] ⊆ H ⊆
τ(t∗).

Proof of claim 16. Let P be an x-y-path in G such that V (P ) ∩ Vt∗ = {x, y}. Let S :=
{s ∈ V (T ) : Vs ∩ (V (P ) \ {x, y}) 6= ∅}. It follows readily from the definition of a tree-
decomposition (and since P − {x, y} is a connected subgraph of G) that S induces a
connected subgraph of T , i.e., T [S] is a subtree of T . We furthermore have Vt∗ ∩ (V (P ) \
{x, y}) = ∅, and thus t∗ /∈ S. Therefore, there exists an edge f = tt∗ incident with t∗

such that S is contained in (T − f)(t). Let x, x1, . . . , x`, y be the vertex-trace of P . By
definition of a tree-decomposition, there exist bags Vt1 and Vt2 such that x, x1 ∈ Vt1 and
x`, y ∈ Vt2 . This directly implies that t1, t2 ∈ S ⊆ (T − f)(t). Hence, we have

x, y ∈

 ⋃
s∈(T−f)(t)

Vs

 ∩ Vt∗ = Vt ∩ Vt∗ .

This proves that x, y ∈ S(f), as desired. This concludes the proof. �

Next, we define a family P∗ of k disjoint paths in H as follows. For every path P ∈ P ,
let P ∗ denote the path in H that has vertex-set V (P ) ∩ Vt∗ and visits the vertices in
V (P ) ∩ Vt∗ in the same order as P . This indeed forms a path in H, since for every
subpath x, x1, . . . , x`, y of P with x, y ∈ Vt∗ and x1, . . . , x` /∈ Vt∗ , we have xy ∈ E(H) by
definition.

For every endpoint v of a path P ∈ P , let us denote by v∗ ∈ Vt∗ the unique vertex
in V (P ) ∩ Vt∗ that is closest to v along the path P . Necessarily, v∗ is an endpoint of P ∗.
Using this notation, we now define two subsets X∗, Y ∗ ⊆ Vt∗ as

X∗ := {v∗ : v ∈ X and v is the endpoint of some path in P},

Y ∗ := {v∗ : v ∈ Y and v is the endpoint of some path in P}.

In particular, P∗ is a collection of k pairwise disjoint X∗-Y ∗-paths in H.

Claim 17. There exists a family Q∗ consisting of pairwise non-adjacent X∗-Y ∗-paths in
H such that |Q∗| > εk + 1

2
.
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Proof of claim 17. By the properties of the tree-decomposition (T, (Vt)t∈V (T )), we know
that τ(t∗) either has at most r2 vertices of degree at least 2r4, or is Kh-minor-free for
h = 2r2. In particular, the same is true for the subgraph H of τ(t∗).

Let us start with considering the first case. Let Z ⊆ Vt∗ denote the set of vertices of
degree at least 2r4 in H. Then we know that |Z| 6 r2 and ∆(H − Z) < 2r4 := ∆. Let
P ′ be the set of paths of P∗ which do not intersect Z. Then, since the paths in P∗ are
pairwise disjoint, we have that |P∗| > k − |Z| > k − 2r4. Hence, theorem 6 implies that
there exists a collection Q∗ of pairwise non-adjacent (X∗ \ Z)-(Y ∗ \ Z)-paths in H − Z
such that

|Q∗| >
⌊

1

22∆2 (k − 2r4)

⌋
.

Clearly, Q∗ is also a family of pairwise non-adjacent X∗-Y ∗-paths in H. Using that k > 1
2ε

and ε = 2−(8t8+3), we can lower bound its size as follows.

|Q∗| > k

22∆2 −
2r4

22∆2 − 1

=
k

28r8
− 2r4

28r8
− 1

= 8εk − 2r4

28r8
− 1

= εk +
1

2
+

(
7εk − 2r4

28r8
− 3

2

)
> εk +

1

2
.

This establishes the claim in the first case.
Next, consider the case that H is Kh-minor-free. Then, by Lemma 12 there exists a

collectionQ∗ of pairwise non-adjacent X∗-Y ∗-paths in H of size at least k
2(h−1)

= k
2(2r2−1)

>

2−(8r8+2)k = 2εk > εk + 1
2
, as desired. This concludes the proof of the claim also in the

second possible case. �

We now finish the proof of the theorem by using Q∗, as given by claim 17, to construct
a family Q of pairwise non-adjacent X-Y -paths in G of size |Q| = |Q∗| > εk + 1

2
.

For every edge xy ∈ E(H) \ E(G[Vt∗ ]), pick and fix a path Pxy in G that has end-
points x, y and no internal vertices in Vt∗ (such a path always exists by definition of H).
Furthermore, for every edge xy ∈ E(G[Vt∗ ]), we let Pxy denote the path consisting of the
single edge xy in G.

Now consider any path Q∗ ∈ Q∗ and let x1, x2, . . . , xq be its sequence of vertices, such
that x1 ∈ X∗ and xq ∈ Y ∗. Then, by definition, there exist x ∈ X, y ∈ Y such that
x∗ = x1, y∗ = xq. We now define W (Q∗) as the walk5 in G that starts at x, follows
the unique path in P that x is an endpoint of, until it reaches x∗ = x1, then follows the

5Note that W (Q∗) is not necessarily a path itself, given that the paths Pxixi+1
might not be disjoint.
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concatenation of the paths Pxixi+1
for 1 6 i < q and then follows the unique path in P

that y is an endpoint of, until it reaches y.

Claim 18. If Q∗1, Q
∗
2 ∈ Q∗ are distinct, then W (Q∗1) and W (Q∗2) are non-adjacent in G.

Proof of claim 18. Suppose towards a contradiction that there exist a ∈ V (W (Q∗1)), b ∈
V (W (Q∗2)) that are at distance at most 1 in G. Let a′ ∈ V (Q∗1) be a vertex closest to
a along W (Q∗1), and let b′ ∈ V (Q∗2) be defined similarly for b. In particular, there exist
paths R1 and R2 that form subwalks of V (W (Q∗1)) and V (W (Q∗2)), respectively, such that
R1 has endpoints a, a′ and V (R1)∩Vt∗ = {a′}, and analogously R2 has endpoints b, b′ and
V (R2)∩ Vt∗ = {b′}. Now, as a = b or ab ∈ E(G), then the walk W in G that starts at a′,
follows R1 to a, moves to b, and follows R2 until it reaches b′, satisfies V (W )∩Vt∗ = {a′, b′}.
This implies that there exists an a′-b′-path R in G with V (R) ⊆ V (W ), in particular we
have V (R)∩Vt∗ = {a′, b′}. By definition of H, this implies that a′ = b′ or a′b′ ∈ E(H), in
either case a contradiction, since Q∗1 and Q∗2 are non-adjacent in H. This concludes the
proof of the claim. �

We can now define Q by, for every Q∗ ∈ Q∗, short-cutting the walk W (Q∗) into a path
in G that has the same endpoints and such that V (Q) ⊆ V (W (Q∗)). By claim 18, any
two distinct paths in Q are non-adjacent. Clearly, |Q| = |Q∗| by definition, and claim 17
now implies that Q consists of at least εk + 1

2
pairwise non-adjacent X-Y -paths in G.

This yields the desired contradiction, completing the proof of the theorem.

4 Subcubic graphs

In this section, we show our results on subcubic graphs. We begin by proving theorem 7,
which we restate for convenience.

Theorem 7. If G is a graph, X, Y ⊆ V (G), and there exists a collection P of at least
16k disjoint X-Y -paths such that every vertex in V (P) is incident to at most one edge in
E(G) \ E(P), then there exist at least k pairwise non-adjacent X-Y -paths in G.

Proof. Let F := E(G[V (P)]) \ E(P). By theorem 10, it suffices to partition F into four
induced matchings. By hypothesis, no two edges of F share an end vertex.

A standard tool for studying strong edge colouring is to find a proper vertex colouring
of the square of the line graph; we slightly vary this argument given that we only want
to partition the edges in F . We construct the auxiliary graph H with vertex set F and
such that e1, e2 ∈ F are adjacent if distG(e1, e2) = 1. In other words, e1, e2 are adjacent if
and only if one of the end vertices of e1 and one of the end vertices of e2 are consecutive
vertices on one of the paths in P . This implies that ∆(H) 6 4, since the maximum degree
in a path is two and since no two edges in F are incident.

By construction, a proper vertex-colouring of H with four colours yields the desired
partition; each colour class is an induced matching. It suffices to show that H is 3-
degenerate. Suppose, for a contradiction, that H has a 4-regular subgraph H ′. Let
P ∈ P such that some edge e ∈ V (H ′) has an end u ∈ V (P ) and choose such e and u so
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Figure 1: Example requiring four colours for any strong edge colouring of non-horizontal
edges.

that the distance from u to an end of P along P is minimum. Then at most one neighbour
of u in P is an end of an edge in V (H ′). It follows that e has degree at most three in H ′,
obtaining the desired contradiction to the assumption that H ′ is 4-regular.

We note that the 4-colouring of the auxiliary graph H in the proof above is best
possible. The configuration shown in fig. 1 (where the horizontal edges are part of the
paths of P), is an example in which we cannot partition the edges outside P into three
induced matchings. In particular, in this case the auxiliary graph is the Moser spindle
[13], which is easily verified to not be 3-colourable.

We now prove theorem 8, which we restate for convenience.

Theorem 8. If G is a graph, X, Y ⊆ V (G), and there exists a collection P of five disjoint
X-Y -paths such that every vertex in V (P) is incident to at most one edge in E(G)\E(P),
then there exist two pairwise non-adjacent X-Y -paths in G.

Furthermore, the statement does not necessarily hold if either

(a) P contains four paths instead of five, or

(b) we replace the condition that every vertex in V (P) is incident to at most one edge
in E(G) \ E(P) by the condition that the maximum degree of G is three.

Proof. We begin by proving the first part of the statement.
We define a path system as a quadruple H = (H,A,B,Q) where H is a graph, A,B ⊆

V (H) and Q is a 5-tuple of five disjoint A-B-paths such that

1. V (H) = V (Q),

2. no vertex in A is incident in H to any edge in E(H) \ E(Q),

3. every vertex of V (H) \A is incident in H to exactly one edge in E(H) \E(Q), and

4. there does not exist any collection Q′ of 5 pairwise disjoint A-B-paths such that
V (Q′) ( V (H).

Note that conditions (1) and (4) imply that the paths in Q contain no vertices in A ∪ B
other than their endpoints, and if x ∈ A ∩ B then one of the paths consists of exactly x.
In particular |A| = |B| = 5.

We may suppose without loss of generality that G = (G,X, Y,P) is a path system.
By restricting G, X and Y to vertices V (P), we may suppose that (1) holds; any pair of
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non-adjacent paths in an induced subgraph remains non-adjacent in the original graph.
We may suppose (2) holds since if a vertex x ∈ X is incident to some edge in E(H)\E(Q),
we can add a new vertex x′ to G as well as the edge x′x, replace X by (X \ {x}) ∪ {x′},
and prepend x′x to the path of P with x as an endpoint. Any x′-Y -path in the new graph
directly yields an x-Y -path with the same set of neighbours. We may suppose (3) holds
for vertices not in Y given that finding a pair of non-adjacent paths in a graph directly
yields such a pair in a subdivision of this graph. Furthermore, if some vertex y ∈ Y \X
is not incident to some edge in E(G) \ E(P), then y has a neighbour in the path of P of
which it is an endpoint, which exists by (1) (this path cannot be a singleton as y /∈ X);
say y′y ∈ E(P). We may then remove y from G and from its path of P and replace Y by
(Y \{y})∪{y′}; any X-y′-path directly extends to an X-y-path with the same neighbours.
By repeating this argument, we may suppose that (3) holds for vertices in Y . Finally,
we may suppose (4), as otherwise we could then replace P with these paths. It is easily
verified that none of these reductions are in conflict.

In the following, for k ∈ N we write [k] = {1, . . . , k}.
We now define an operation (which will have two variants) which allows us to easily

construct and represent path systems. Let

H = (H,A,B,Q = (Q1, Q2, Q3, Q4, Q5))

be a path system. For i ∈ [5], write bi for the vertex of B in Qi.
Let E :=

(
[5]
2

)
be the collection of (unordered) pairs of integers between 1 and 5. Let

{i1, i2} ∈ E . We define H⊕ {i1, i2} as the path system obtained by

• adding new vertices b′i1 , b
′
i2

and the edges bi1b
′
i1

, bi2b
′
i2

and b′i1b
′
i2

to H,

• appending the edges bi1b
′
i1

and bi2b
′
i2

, respectively, to Qi1 and Qi2 , and

• replacing B with (B \ {bi1 , bi2}) ∪ {b′i1 , b
′
i2
}

An example of this operation is provided in fig. 2(b).
Let C be the set of cyclic permutations of length at least two with values in [5].

We write such cycles as (i1 . . . ik), for instance (i1 i2 i3) = (i2 i3 i1) = (i3 i1 i2). For
(i1 . . . ik) ∈ C, we say H⊕ (i1 . . . ik) is the path system obtained by

• adding new vertices ci1 , . . . , cik and b′i1 , . . . , b
′
ik

and the edges
bi1ci1 , . . . , bikcik , ci1b

′
i1
, . . . , cikb

′
ik

and ci1b
′
i2
, . . . , cikb

′
i1

to H,

• appending edges bijcij and cijb
′
ij

to Qij for every j ∈ [k], and

• replacing B with (B \ {bi1 , . . . , bik}) ∪ {b′i1 , . . . , b
′
ik
}.

An example is provided in fig. 2(c).
LetH0 = (H0, A0, B0,Q0) be the path system consisting of the graph H0 with singleton

vertices V (H0) = A0 = B0 = {v1, v2, v3, v4, v5} and P0 the 5 paths of length 0 in H0.
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A B

(a) H

A B

(b) H⊕ {2, 3}

A B

(c) H⊕ (1 3 4 5)

Figure 2: Example of a path system H and two examples for the ⊕ operation. The paths
are labelled from 1 to 5 from top to bottom.

We now show that every path system can be obtained from H0 using the ⊕ operation.
We say two path systems H1 = (H1, A1, B1,Q1) and H2 = (H2, A2, B2,Q2) are isomor-
phic, which we denote by H1 ' H2, if there exists a graph isomorphism h : V (H1)→ (H2)
which maps A1 to A2, B1 to B2 and Q1 to Q2 (the ordering of the paths must be the
same).

Claim 19. For every path system H, there exists some sequence m1, . . . ,mk ∈ E ∪C such
that H ' H0 ⊕m1 ⊕ · · · ⊕mk.

Proof of claim 19. Write H = (H,A,B,Q). We prove the statement by induction on
|E(H) \ E(Q)|.

For the base case, if |E(H) \ E(Q)| = 0, then (3) implies that A = V (Q), and so
necessarily H ' H0.

We now show the inductive step. Let F be the set of edges in E(H) \ E(Q) incident
to B. As |E(H) \ E(Q)| > 0, condition (2) implies that A 6= B, and so by (3) we have
that F 6= ∅.

First suppose there exists an edge of F with both ends in B, say b′i1b
′
i2

, where b′i1 ∈
V (Qi1) and b′i2 ∈ V (Qi2). Let H′ be the path system resulting from removing b′i1 , b

′
i2

.
More precisely, if bi1 and bi2 are, respectively, the neighbours of b′i1 in Qi1 and of b′i2 in
Qi2 (these exist since b′i1 , b

′
i2
/∈ A), then H′ = (H ′, A,B′,Q′) where H ′ = H − {b′i1 , b

′
i2
},

B′ =
(
B \ {b′i1 , b

′
i2
}
)
∪ {bi1 , bi2} and Q′ is identical to Q except that the edges bi1b

′
i1

and
bi2b

′
i2

are removed from, respectively, Qi1 and Qi2 . It is direct from the definitions that
H ' H′ ⊕ {i1, i2}. In particular, condition (3) implies that b′i1b

′
i2

were not incident to
any edge other than bi1b

′
i1

, bi2b
′
i2

and b′i1b
′
i2

. Furthermore, E(H ′) \ E(Q′) = (E(H) \
E(Q)) \ {b′i1b

′
i2
}. By induction, there exists a sequence m1, . . . ,mk−1 ∈ E ∪ C such that

H′ ' H0⊕m1⊕ · · · ⊕mk−1. Hence, we obtain that H ' H0⊕m1⊕ · · · ⊕mk−1⊕{i1, i2},
as desired.

Otherwise, we construct an auxiliary digraph J with vertex set F as follows. Let
ci1b

′
i2
, ci3b

′
i4
∈ F , where b′i2 ∈ V (Qi2) ∩B and b′i4 ∈ V (Qi4) ∩B, and ci1 ∈ V (Qi1) \B and

ci3 ∈ V (Qi3) \ B. Further note that i1 6= i2 and i3 6= i4: these edges are not in Q and by
(4) the paths of Q are necessarily induced. In our auxiliary digraph J , we put a directed
edge from ci1bi2 to ci3bi4 in J if and only if i2 = i3.
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Every edge in F has in-degree at least one in J (in fact, it is necessarily exactly one).
Indeed, let ci1b

′
i2
∈ F . Let b′i1 be the unique vertex of V (Qi1)∩B. As ci1 /∈ B, necessarily

b′i1 /∈ A. Hence, by (3), there exists there is some edge e ∈ F incident to b′i1 . In particular,
there is a directed edge in J from e to ci1b

′
i2

.
Hence, there exists in J a directed cycle. By definition, the sequence of vertices in this

directed cycle is of the form ci1b
′
i2
, . . . , cikb

′
i1

, where cij ∈ V (Qij) \B and b′ij ∈ V (Qij)∩B
for every j ∈ [k]. We claim cijb

′
ij
∈ E(Qij) for every j ∈ [k]. Suppose otherwise that

for some j ∈ [k] there exists at least one vertex x between cij and bij on Qij . Then, the
following collection of paths would contradict (4): in Q, replace the paths Qi1 , . . . , Qik

with the paths formed by following Pij until cij and then following the edge cijb
′
ij+1

(with
addition modulo k). In particular, this new set of paths does not contain x.

Let H′ be the path system resulting from removing cij and b′ij for every j ∈ [k]. More
precisely, if we write bij for the neighbour of cij in V (Qij) which is not b′ij (this vertex
exists since cij /∈ A by (2)), for every j ∈ [k], then H′ = (H ′, A,B′,Q′) where where H ′ =
H−{ci1 , . . . , cik , b′i1 , . . . , b

′
ik
}, B′ =

(
B \ {b′i1 , . . . , b

′
ik
}
)
∪{bi1 , . . . , bik} and Q′ is identical to

Q except that the edges bijcij and cijb
′
ij

are removed from Qij , for every j ∈ [k]. Similarly
to above, it is then direct from the definitions thatH ' H′⊕(i1 . . . ik)), and by induction,
there exists a sequence m1, . . . ,mk−1 ∈ E∪C such that H′ ' H0⊕m1⊕· · ·⊕mk−1. Hence,
we obtain that H ' H0 ⊕m1 ⊕ · · · ⊕mk−1 ⊕ (i1 . . . ik), as desired. �

We define a state as an unordered pair {S1, S2} of non-empty disjoint subsets of [5].
Given a path systemH = (H,A,B,Q = (Q1, Q2, Q3, Q4, Q5)), we say a state S = {S1, S2}
is H-reachable if there exist sets C1, C2 ⊆ V (H) such that

• C1, C2 are disjoint and non-adjacent in H,

• C1 ∩ A 6= ∅ and C2 ∩ A 6= ∅,

• C1 ∩ V (Qi) ∩ B 6= ∅ if and only if i ∈ S1 and C2 ∩ V (Qi) ∩ B 6= ∅ if and only if
i ∈ S2, and

• H[C1], H[C2] are connected.

Claim 20. For every path system H, there exists an H-reachable state.

Proof of claim 20. Let S = {S1, S2} be a state and m ∈ E ∪ C. We construct a collection
of states f(S,m) by saying S ′ ∈ f(S,m) if and only if S ′ can be written as S ′ = {S1, S2}
such that the following holds: writing, H0⊕m = (Hm, Am, Bm,Qm), there exist C1, C2 ⊆
V (Hm) such that

• C1, C2 are disjoint and non-adjacent in Hm,

• C1 ∩ V (Qi) ∩ Am if and only if i ∈ S1 and C2 ∩ V (Qi) ∩ Am if and only if i ∈ S2,

• C1 ∩ V (Qi) ∩ Bm 6= ∅ if and only if i ∈ S ′1 and C2 ∩ V (Qi) ∩ Bm 6= ∅ if and only if
i ∈ S ′2,
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• for every vertex of C1 ∩ Bm, its connected component in H[C1] contains a vertex
of C1 ∩ Am, and for every vertex of C2 ∩ Bm, its connected component in H[C2]
contains a vertex of C2 ∩ Am.

It is easily verified that for any path system H, if S is H-reachable, then every state in
f(S,m) is H⊕m-reachable. The crucial observation is that H⊕m can be obtained from
H and H0 ⊕m by identifying the vertices in the B set from the former and the vertices
from the A set in the latter. From this, these conditions are exactly those which allow us
to extend the non-adjacent sets C1, C2 corresponding to states in H to sets in H⊕m.

If S is a collection of states, let g(S,m) =
⋃
S∈S f(S,m). Hence, for any H, if S

is a collection of H-reachable states, then g(S,m) is a collection of H ⊕ m-reachable
states. We say a collection of states S ′ is a descendant of S if there exists some sequence
m1, . . . ,mk ∈ E ∪ C such that S ′ = g(. . . g(g(S,m1),m2) . . . ,mk).

Let S0 := {{{x}, {y}} : x, y ∈ [5], x 6= y}. It is direct from the definition that every
state in S0 isH0-reachable. By claim 19, everyH can be written asH = G0⊕m1⊕· · ·⊕mk

for some sequence of m1, . . . ,mk ∈ E ∪ C. In particular, g(. . . g(g(S0,m1),m2) . . . ,mk) is
a collection of H-reachable states. We want to show that this collection is non-empty.
In order to prove the claim, it thus suffices to show that ∅ is not a descendant of S0.
Our strategy is thus as follows : start with the collection S0, and then repeatedly apply
g(·,m) for every m ∈ E ∪ C until no new collection of states are found. If the ∅ is never
encountered, we are done.

Along the way, we may in fact trim some branches off of this process, in the three
following ways:

(i) If S is a collection of H-reachable states and σ is a permutation of [5], then σ(S),
which is obtained by applying σ to the elements in S, is H′-reachable, where H′ is
identical to H′ except that we have permuted the order of the paths of Q according
to σ.

If g(. . . g(g(σ(S),m1),m2) . . . ,mk) = ∅, then

g(. . . g(g(S ′, σ−1(m1)), σ−1(m2)) . . . , σ−1(mk))

is empty, and so if ∅ is not a descendant of S, it is not a descendant of σ(S) either.
In particular, we need only keep one collection of states from each equivalence class
under permutation.

(ii) If S ⊆ S ′ are collections of states, then g(S,m) ⊆ g(S ′,m). In particular, if ∅ is not
a descendant of S, it is not a descendent of S ′ either. Hence, during our searching
process, we may throw out any collection of states which is not minimal.

(iii) We do not need to use the definition of f to compute every instance of f(S,m).
Indeed, similarly to (i), it is easily verified from the definitions that if σ is a permu-
tation of [5], then f(S,m) = σ−1(f(σ(S), σ(m))), so we only need to compute f for
one pair (S,m) in every equivalence class.
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We have implemented this approach in Mathematica [15], the code is provided in [8].
This code is fully commented, consult these for further implementation details. As a
benchmark, this script can run in under 14 minutes on a 2020 MacBook Air with M1 chip
and 16 GB ram running Mathematica 13.0.0.0. �

In particular, there exists some G-reachable state. This state is a certificate of the ex-
istence of two non-adjacent sets C1, C2 which induce connected graphs and both intersect
X and Y . From these, we may extract two non-adjacent X-Y -paths, as desired. This
concludes the proof of the first part of the statement.

We now show that this result is best possible, in two ways.
First, consider the statement when we are given four paths instead of five. By modify-

ing the approach used above to also take into account paths which “backtrack”, we were
able to find a counter-example to this modified statement; it is shown in fig. 3. A short
Mathematica script which verifies that no pair of non-adjacent X-Y -paths exists in this
graph is provided in [8].

X Y

Figure 3: Counter-example (a) in theorem 8.

X Y

Figure 4: Counter-example (b) in theorem 8.

Secondly, consider the statement if we replace the condition that every vertex in V (P)
is incident to at most one edge in E(G)\E(P) by the condition that the maximum degree
is three. Of course, the difference only concerns vertices in X and in Y , given that these
vertices are the only ones with fewer than two neighbours in their path. The graph formed
by a adding a matching between a five-cycle (with vertices X) and the complement of a
copy of this five-cycle (with vertices Y ), as shown in fig. 4, is easily verified to not contain
any pair of non-adjacent edges between X and Y .
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A Reduction of conjecture 4 to distance 3

In this appendix, we show that reduction for d > 3 to d = 3 by McCarty and Seymour
also holds for conjecture 4. For this paper to be self-contained, we reproduce this proof
here with only slight modifications for the change of setting.

Theorem 21. If conjecture 4 holds for d = 3, it also holds for d > 3 with constant
C(d,∆) = C(3,∆d+1)k.

Proof. Suppose G be a graph with ∆(G) 6 ∆ and X, Y ⊆ V (G), and k ∈ N. Let H
be the d-th power of G, i.e. the graph obtained from G by adding edges to any pair of
vertices at distance at most d in G. Note that the maximum degree of H is at most ∆d+1.
Given that conjecture 4 holds for distance 3, there exist either

(1) k X-Y -paths pairwise at distance at least 3 in H, or

(2) a set of fewer than C(3,∆d+1)k vertices in H which separates X and Y .

First suppose we are in case (1). Let P ′1, . . . , P
′
k be X-Y paths in H, pairwise at

distance at least 3. We wish to construct P1, . . . , Pk, X-Y paths in H, pairwise at distance
at least d. For each i ∈ [k], P ′i can be converted into a path in G with the same endpoints
by following paths of length at most d in G between every pair of consecutive vertices
in P ′i (these exist by definition of H), and then converting the resulting walk to a path
by removing cycles. In particular, any vertex in Pi is at distance at most d

2
from P ′i . If

dG(Pi, Pj) > d for every distinct i, j ∈ [k], then we are done. Otherwise, suppose there
exist distinct i, j ∈ [k] such that distG(Pi, Pj) 6 d. In particular, the distance between P ′i
and P ′j is at most d

2
+ d+ d

2
= 2d. By definition of H, this implies that distH(P ′i , P

′
j) 6 2,

which is a contradiction.
Otherwise, we are in case (2). As G is a subgraph of H, the set of size less than

C(3,∆d+1)k which separates X and Y in H also separates X and Y in G.
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