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Abstract

The study of intersection problems on families of sets is one of the most im-
portant topics in extremal combinatorics. As is well-known, extremal problems
involving certain intersection constraints are equivalent to those with certain union
constraints by taking complement of sets. A family of sets is called s-union if the
union of any two sets in this family has size at most s. Katona [Acta Math. Hungar.
15 (1964)] provided the maximum size of an s-union family of sets of [n], and he
also determined the extremal families up to isomorphism. Recently, Frankl [J. Com-
bin. Theory Ser. B 122 (2017) 869–876] sharpened this result by establishing the
maximum size of an s-union family that is not a subfamily of the so-called Katona
family. In this paper, we determine the maximum size of an s-union family that
is neither contained in the Katona family nor in the Frankl family. Moreover, we
characterize all extremal families achieving the upper bounds.

Mathematics Subject Classifications: 05C65, 05D50

1 Introduction

Let [n] = {1, 2, . . . , n}. The power set 2[n] consists of the 2n subsets of [n]. For every subset
F ⊆ [n], we denote by F c the complement set of F in [n]. We write

(
[n]
k

)
for the collection

of all k-element subsets of [n], and
(
[n]
6k

)
for the collections of all subsets of [n] with size at

most k. Let F be a family of subsets of [n]. We say that F is k-uniform if all sets of F have
size k. If F is non-uniform, we usually denote Fi = {F ∈ F : |F | = i} = F ∩

(
[n]
i

)
. Given

a set G ⊆ [n] and a permutation σ ∈ Sn, we denote σ(G) = {σ(g) : g ∈ G}. We say that
G and H are isomorphic if there is a permutation σ ∈ Sn such that {σ(G) : G ∈ G} = H.
For isomorphic families G and H, we denote G = H whenever there are no confusions.
For two families G and H, we say that G is a subfamily of H, denoted by G ⊆ H, if there
is a permutation σ ∈ Sn such that σ(G) ∈ H for every G ∈ G.
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1.1 Uniform intersecting families

A family F of sets is called t-intersecting if |A ∩ B| > t for all A,B ∈ F . For t = 1,
we just say ‘intersecting’ instead of ‘1-intersecting’. A full star is a family that consists
of all the k-subsets of [n] that contains a fixed element. The celebrated Erdős–Ko–Rado
theorem [5] states that when n > 2k, a full star is the unique intersecting k-uniform family
attaining the maximum size.

Theorem 1 (Erdős–Ko–Rado [5]). Let n > 2k and F ⊆
(
[n]
k

)
be an intersecting family.

Then

|F| 6
(
n− 1

k − 1

)
.

When n > 2k, the equality holds if and only if F = {F ∈
(
[n]
k

)
: i ∈ F} for some i ∈ [n].

The Erdős–Ko–Rado theorem is widely regarded as a cornerstone of extremal com-
binatorics and has various generalizations and applications. For related problems, we
recommend [14] for the interested readers. Erdős, Ko and Rado [5] also proved that there
exists an integer n0(k, t) such that if n > n0(k, t) and F ⊆

(
[n]
k

)
is t-intersecting, then

|F| 6
(
n−t
k−t

)
. The smallest possible such n0(k, t) is (t+ 1)(k − t+ 1). This was proved by

Frankl [6] for t > 15, and then completely solved by Wilson [32] for all t.

Theorem 2 (Exact Erdős–Ko–Rado Theorem [6, 32]). Let k > t > 1 be integers and let
F ⊆

(
[n]
k

)
be a t-intersecting family. If n > (t+ 1)(k − t+ 1), then

|F| 6
(
n− t
k − t

)
.

The equality holds if and only if F is isomorphic to
{
F ∈

(
[n]
k

)
: [t] ⊆ F

}
or {F ∈

(
[n]
k

)
:

|F ∩ [t+ 2]| > t+ 1}. For the case n > (t+ 1)(k− t+ 1), the former family is the unique
extremal family.

Stability results for uniform t-intersecting families can be found in [7, 6, 1]. Moreover,
the study of stabilities for r-wise t-intersecting families has risen in popularity in the past
few years; see [30, 2, 3, 4]. Note that the Erdős–Ko–Rado theorem bounds the maximum
size of k-uniform t-intersecting families. In 1964, Katona [23] studied the problem for
non-uniform t-intersecting families.

Theorem 3 (Katona [23]). Let n > t > 2 be integers and let F ⊆ 2[n] be a t-intersecting
family.
(1) If n+ t = 2a for an integer a > 1, then

|F| 6
∑
k>a

(
n

k

)
.

The equality holds if and only if F = {F ⊆ [n] : |F | > a}.
(2) If n+ t = 2a+ 1 for an integer a > 1, then

|F| 6
(
n− 1

a

)
+
∑

k>a+1

(
n

k

)
.
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The equality holds if and only if F = {F ⊆ [n] : |F | > a+ 1} ∪
(
[n−1]

a

)
.

For the case t = 1, it is easy to see that every (non-uniform) intersecting family of
sets of [n] has size at most 2n−1, and there are many extremal families attaining this
bound. There are various extension and generalization of Katona’s theorem; see, e.g.,
[25, 29, 9, 11, 12] for more details.

1.2 Non-uniform families with s-union property

We say that a family F has the s-union property, or simply that F is s-union if |F∪F ′| 6 s
holds for every pair F, F ′ ∈ F . In this paper, we mainly investigate the s-union families.
We define m(n, s) as the maximum of |F| over all F ⊆ 2[n] having the s-union property.
Clearly, we have m(n, 0) = 1, m(n, 1) = 2, m(n, n) = 2n and m(n, n − 1) = 2n−1, where
the last equality holds by considering the 2n−1 pairs {F, F c} for each F ∈ 2[n] and F
contains at most one set of such pairs.

In what follows, we focus mainly on stabilities for non-uniform t-intersecting families.
In fact, the extremal problems for t-intersecting families can be reduced to that for s-
union families. Indeed, it is easy to see that F is t-intersecting if and only if the dual
family F c := {[n] \ F : F ∈ F} is (n − t)-union. Note that F and F c have the same
size. For notational convenience, we shall study the extremal problems in the language of
the s-union property, rather than t-intersecting property. In particular, Katona’s result
in Theorem 3 can be equivalently written as the following.

Theorem 4 (Katona [23]). Let 2 6 s 6 n− 2 be integers and let F ⊆ 2[n] be s-union.
(1) If s = 2d for an integer d > 1, then

|F| 6
∑
06i6d

(
n

i

)
,

with equality if and only if F = K(n, 2d) :=
(
[n]
6d

)
.

(2) If s = 2d+ 1 for an integer d > 1, then

|F| 6
∑
06i6d

(
n

i

)
+

(
n− 1

d

)
,

with equality if and only if F=K(n, 2d+ 1):=
(
[n]
6d

)
∪
{
F ∈

(
[n]
d+1

)
, y ∈ F

}
for some y ∈ [n].

In 2017, Frankl [11] proved a stability result for Katona’s theorem; that is, he de-
termined the maximum size of an s-union family that is not a subfamily of the Katona
family K(n, s).

Theorem 5 (Frankl [11]). Let 2 6 s 6 n− 2 be integers and let F ⊆ 2[n] be s-union.
(1) If s = 2d for an integer d > 1 and F * K(n, 2d), then

|F| 6
∑
06i6d

(
n

i

)
−
(
n− d− 1

d

)
+ 1.
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Moreover, the equality holds if and only if F is isomorphic to

H(n, 2d) :=
(

[n]
6d−1

)
∪ {D} ∪ {H ∈

(
[n]
d

)
: H ∩D 6= ∅}

for some set D ∈
(

[n]
d+1

)
. For the case s = 4, apart from H(n, 4), there is one more

possibility, namely, H∗(n, 4) :=
(
[n]
61

)
∪ {H ∈

(
[n]
2

)
: H ∩ [2] 6= ∅} ∪

{
{1, 2, i} : i ∈ [3, n]

}
.

(2) If s = 2d+ 1 for an integer d > 1 and F * K(n, 2d+ 1), then

|F| 6
∑
06i6d

(
n

i

)
+

(
n− 1

d

)
−
(
n− d− 2

d

)
+ 1.

Moreover, the equality holds if and only if F is isomorphic to

H(n, 2d+ 1) :=
(
[n]
6d

)
∪ {D} ∪ {H ∈

(
[n]
d+1

)
: y ∈ H,H ∩D 6= ∅}

for some fixed element y ∈ [n] and set D ⊆ [n] \ {y} with |D| = d+ 1. For the case s = 5,
there is also one more possibility, namely, T (n, 5) :=

(
[n]
62

)
∪
{
F ∈

(
[n]
3

)
: |F ∩ [3]| > 2

}
.

We remark here that the extremal family H∗(n, 4) is missed in [11]. As mentioned
early, the analogous stability results have been studied for uniform intersecting families;
see [2, 3, 4, 18, 26, 22, 28, 30] for some recent progresses. Motivated by Theorems 4 and
5, one could ask the following stability problem.

Problem 6. What is the maximum size of an s-union family of sets of [n] that is neither
a subfamily of the Katona family K(n, s) nor of the Frankl family H(n, s)?

In this paper, we shall solve Problem 6 by studying the stabilities for non-uniform
families and characterizing all extremal families achieving the maximum size. Our ap-
proach adopts some similar ideas from Frankl [11], where the Hilton-Milner theorem are
used, while in our setting, we need to apply a further stability of Han and Kohayakawa;
see Section 2. Moreover, we need to prove a result for cross-intersecting families. Our
result refines the previous bound due to Frankl [8, 10]; see Section 3.

To begin with, we show the case s ∈ {2, 3}.

• For s = 2, recall that K(n, 2) = {F ⊆ [n] : |F | 6 1} and H(n, 2) =
{
∅, {d1}, {d2},

{d1, d2}
}

for some fixed set {d1, d2} ⊆ [n]. If F is 2-union, then F must be a
subfamily of K(n, 2) or H(n, 2).

• For s = 3, we know that K(n, 3) =
{
∅, {1}, . . . , {n}

}
∪ {F ∈

(
[n]
2

)
: y ∈ F} for

some fixed y ∈ [n], and H(n, 3) =
{
∅, {1}, . . . , {n}

}
∪
{
{d1, d2}, {y, d1}, {y, d2}

}
for some {d1, d2} ⊆ [n] \ {y}. If F is 3-union and F is neither a subfamily of
K(n, 3) nor of H(n, 3), then F contains a 3-element set, whence |F| is maximized
for
{
∅, {a, b, c}, {a}, {b}, {c}

}
for some {a, b, c} ⊆ [n].
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To state our results, we define the extremal families formally. Let d > 3 and n > 2d
be integers, and D1, D2 ⊆ [n] with |D1| = |D2| = d+ 1 and |D1 ∩D2| = d. We define two
families as below.

W(n, 2d) :=
(

[n]
6d−1

)
∪ {D1, D2} ∪

{
H ∈

(
[n]
d

)
: H ∩D1 6= ∅ and H ∩D2 6= ∅

}
.

Moreover, let J2(n, d+ 1) be a family introduced in Subsection 2.1. We define

W(n, 2d+ 1) :=
(
[n]
6d

)
∪ J2(n, d+ 1),

In addition, for the case s = 6, we need to define two exceptional families:

W∗(n, 6) :=
(
[n]
62

)
∪ {F ∈

(
[n]
3

)
: F ∩ [3] 6= ∅} ∪

{
H ∈

(
[n]
4

)
: [3] ⊆ H

}
and

W∗∗(n, 6) :=
(
[n]
62

)
∪ {F ∈

(
[n]
3

)
: F ∩ [2] 6= ∅} ∪

{
H ∈

(
[n]
4

)
: [2] ⊆ H

}
.

For the case s = 7, we also have two exceptional families as below

W∗(n, 7) :=
(
[n]
63

)
∪ {H ∈

(
[n]
4

)
: {2, 3} ⊆ H} ∪ {H ∈

(
[n]
4

)
: 1 ∈ H,H ∩ {2, 3} 6= ∅}

and

W∗∗(n, 7) :=
(
[n]
63

)
∪ {H ∈

(
[n]
4

)
: {2, 3, 4} ⊆ H} ∪ {H ∈

(
[n]
4

)
: 1 ∈ H,H ∩ {2, 3, 4} 6= ∅}.

In the following, we shall characterize the s-union families for every s ∈ [4, n− 2].

Theorem 7 (Main result). Let 4 6 s 6 n− 2 be integers and let F ⊆ 2[n] be an s-union
family such that F * K(n, s) and F * H(n, s). Then the following statement holds.
(1) If s = 2d for an integer d > 2 and further F * H∗(n, 4) for the case s = 4, then

|F| 6
∑
06i6d

(
n

i

)
−
(
n− d− 1

d

)
−
(
n− d− 2

d− 1

)
+ 2.

For s = 6, the equality holds if and only if F is isomorphic to W(n, 6) or W∗(n, 6) or
W∗∗(n, 6); for other s = 2d, equality holds if and only if F is isomorphic to W(n, 2d).
(2) If s = 2d+ 1 for an integer d > 2 and further F * T (n, 5) for the case s = 5, then

|F| 6
∑
06i6d

(
n

i

)
+

(
n− 1

d

)
−
(
n− d− 2

d

)
−
(
n− d− 3

d− 1

)
+ 2.

For s = 7, the equality holds if and only if F is isomorphic to W(n, 7) or W∗(n, 7) or
W∗∗(n, 7); for other s=2d+1, equality holds if and only if F is isomorphic toW(n, 2d+1).

Organization. The paper is organized as follows. In Section 2, we review some basic
preliminaries, including the stabilities of intersecting families, Katona’s inequality, and
the shifting operation. In Section 3, we shall give a sharp upper bound on the maximum
of the sum of sizes of two cross-intersecting families in which one of them is 2-intersecting
(Theorem 15), which plays a significant role in the proof of our main result. In Section 4,
we shall give the proof of Theorem 7. Some ideas of our proof are motivated by Frankl’s
papers [11, 10]. In the last section, we conclude with some possible problems.
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2 Preliminaries

2.1 Stabilities for intersecting families

We say that an intersecting family F is trivial if all its members share a common element.
In other words, an intersecting family is called trivial if it is a subfamily of a full star.
Erdős, Ko and Rado [5] asked for the maximum size of a nontrivial intersecting family
of k-element subsets of [n]. In 1967, Hilton and Milner [19] answered this question by
proving the following result. We denote by EKR(n, k) the family of all k-element subsets
of [n] containing a fixed element.

Theorem 8 (Hilton–Milner [19]). Let k > 2 and n > 2k be integers and F ⊆
(
[n]
k

)
be an

intersecting family. If F * EKR(n, k), then

|F| 6
(
n− 1

k − 1

)
−
(
n− k − 1

k − 1

)
+ 1.

Moreover, for n > 2k, the equality holds if and only if F is isomorphic to

HM(n, k) :=
{
G ∈

(
[n]
k

)
: 1 ∈ G,G ∩ [2, k + 1] 6= ∅

}
∪
{

[2, k + 1]
}
.

or in the case of k = 3, there is one more possibility, namely

T (n, 3) :=
{
F ∈

(
[n]
3

)
: |F ∩ [3]| > 2

}
.

In 2017, Han and Kohayakawa [18] determined the maximum size of a non-trivial in-
tersecting uniform family that is not a subfamily of the Hilton–Milner family. To proceed,
we introduce some notation and define families Ji(n, k) and Gi(n, k). Let k > 3, i 6 k−1
and n > 2k be positive integers. For any (k− 1)-element set E ⊆ [n], any (i+ 1)-element
set J ⊆ [n] \ E, x0 ∈ J and Ji = J \ {x0}, we define

Ji(n, k) :=
{
G ∈

(
[n]
k

)
: x0 ∈ G,G ∩ (E ∪ {j}) 6= ∅ for each j ∈ Ji

}
∪
{
E ∪ {j} : j ∈ Ji

}
.

We next define the family Gi(n, k). Suppose now that i ∈ [2, k], x0 ∈ [n] and E ⊆ [n]\{x0}
is an i-element set. We define the k-uniform family Gi(n, k) as

Gi(n, k) :=
{
G ∈

(
[n]
k

)
: E ⊆ G

}
∪
{
G ∈

(
[n]
k

)
: x0 ∈ G,G ∩ E 6= ∅

}
.

The result of Han and Kohayakawa [18] can be stated as below.

Theorem 9 (Han–Kohayakawa [18]). Let k > 3, n > 2k and H be an intersecting k-
uniform family of subsets of [n]. If H * EKR(n, k) and H * HM(n, k), and if k = 3,
H * G2(n, 3), then

|H| 6
(
n− 1

k − 1

)
−
(
n− k − 1

k − 1

)
−
(
n− k − 2

k − 2

)
+ 2.

For k = 4, the equality holds if and only if H = J2(n, 4), G2(n, 4) or G3(n, 4); for every
other k, equality holds if and only if H = J2(n, k).
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For more stability results on uniform intersecting families, we refer the interested
readers to the recent papers [26, 22, 28]. The following lemma was provided Katona [23];
see [11] for a detailed proof.

Lemma 10 (See [23, 11]). If F ⊆ 2[n] has s-union property, then for every i ∈ [0, s/2],

|Fi|+ |Fs+1−i| 6
(
n

i

)
. (1)

Moreover, for n > s+ 2, in case of equality, Fi =
(
[n]
i

)
and Fs+1−i = ∅ holds.

2.2 The shifting operation and the lexicographic order

The remainder of this section is devoted to a useful operation of families used in this
article and a lemma related to lexicographic order. Let us recall the definition of the
(i, j)-shift Si,j. Given a family F ⊆ 2[n], for 1 6 i < j 6 n, we define

Si,j(F) = {Si,j(F ) : F ∈ F},

where

Si,j(F ) =

{
F ′ := (F \ {j}) ∪ {i}, if j ∈ F, i /∈ F and F ′ /∈ F ;

F, otherwise.

This operation was introduced by Erdős, Ko and Rado [5] and is now an important
technique in extremal set theory; see the comprehensive book [14]. From the definition, we
know that |Si,j(F )| = |F | and |Si,j(F)| = |F|. We say that F is left-shifted if Si,j(F) = F
for all 1 6 i < j 6 n. The following fact is frequently used in this paper.

Fact 11. Let F be a left-shifted family and {a1, . . . , ak} and {b1, . . . , bk} be two sets such
that a1 < · · · < ak and b1 < · · · < bk. If ai 6 bi for every 1 6 i 6 k and {b1, . . . , bk} ∈ F ,
then {a1, . . . , ak} ∈ F .

Let A and B be two families of subsets of [n]. We say that A and B are cross-
intersecting if A ∩ B 6= ∅ for any A ∈ A and B ∈ B. Recently, the research on cross-
intersecting families has attracted extensive attention; see, e.g., [15, 31]. It is well-known
that applying the left-shifting operation Si,j on two cross-intersecting families A and B,
the resulting two families are still cross-intersecting.

Fact 12 (See [5]). Let A and B be families of subsets of [n]. Let A be t-intersecting.
If A and B are cross-intersecting, then Si,j(A) and Si,j(B) are also cross-intersecting.
Moreover, Si,j(A) is also t-intersecting.

The following lemma follows from Fact 12.

Lemma 13 (See [5]). Let A ⊆
(
[n]
a

)
and B ⊆

(
[n]
b

)
be cross-intersecting families and let A

be t-intersecting. Then there exist left-shifted families A′ ⊆
(
[n]
a

)
and B′ ⊆

(
[n]
b

)
such that

all of the following hold.
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(i) |A| = |A′| and |B| = |B′|;

(ii) A′ and B′ are cross-intersecting;

(iii) A′ is t-intersecting.

Finally, let us define the lexicographic on the k-element subsets of [n]. We say that F is
smaller than G in the lexicographic order, denoted by F ≺ G, if min(F \G) < min(G\F )
holds. For example, {1, 2, 3} ≺ {1, 3, 4}. Let k ∈ [0, n] and m ∈ [0,

(
n
k

)
] be positive

integers. We denote by L(n, k,m) the family of the smallest m sets from
(
[n]
k

)
in the

lexicographic order. Let a, b, n be positive integers with n > a + b. Hilton [20] observed
that A ⊆

(
[n]
a

)
and B ⊆

(
[n]
b

)
are cross-intersecting if and only if A ∩∆a(Bc) = ∅, where

Bc = {[n] \B : B ∈ B} denotes the family of complements of sets of B. This observation
together with the Kruskal–Katona theorem [24, 27] implies the following lemma, which
plays an important role in the treatment of cross-intersecting families; see [13, p.266] for
a detailed proof.

Lemma 14 (See [20, 24, 27]). Let a, b, n be positive integers with n > a + b. If A ⊆(
[n]
a

)
and B ⊆

(
[n]
b

)
are cross-intersecting, then L(n, a, |A|) and L(n, b, |B|) are cross-

intersecting.

3 A result for cross-intersecting families

The cross-intersecting property is a natural extension on the intersecting property. In this
section, we shall prove some important properties of pairs of cross-intersecting families.

Theorem 15. Let d > 3 and n > 2d+1 be positive integers. Let A ⊆
(

[n]
d+1

)
and B ⊆

(
[n]
d

)
be cross-intersecting families. If |A| > 2 and A is 2-intersecting, then

|A|+ |B| 6
(
n

d

)
−
(
n− d− 1

d

)
−
(
n− d− 2

d− 1

)
+ 2.

For n > 2d + 2, the above equality holds if and only if, under the isomorphism, A =
{[d + 1], [d] ∪ {d + 2}} and B = {B ∈

(
[n]
d

)
: B ∩ [d] 6= ∅ or {d + 1, d + 2} ⊆ B}; or two

more possibilities when d = 3, namely, A = {A ∈
(
[n]
4

)
: [3] ⊆ A} and B = {B ∈

(
[n]
3

)
:

B ∩ [3] 6= ∅}; or A = {A ∈
(
[n]
4

)
: [2] ⊆ A} and B = {B ∈

(
[n]
3

)
: B ∩ [2] 6= ∅}.

To prove Theorem 15, we shall present a series of lemmas. The following lemma states
that the condition d > 3 in Theorem 15 is necessary since the result is not true for the
case d = 2.

Lemma 16. Let n > 6 be an integer and let A ⊆
(
[n]
3

)
and B ⊆

(
[n]
2

)
be cross-intersecting

families. If |A| > 2 and A is 2-intersecting, then

|A|+ |B| 6
(
n

2

)
−
(
n− 3

2

)
+ 1.

Equality holds if and only if A = {{1, 2} ∪ {i} : i ∈ [3, n]} and B = {B ∈
(
[n]
2

)
: 1 ∈

B or 2 ∈ B} under isomorphism.
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Proof. Since A is 2-intersecting and n > 6, by Theorem 2, we get |A| 6 n−2. By Lemma
14, we may assume that A,B are the collections of the smallest |A|, |B| sets in

(
[n]
3

)
,
(
[n]
2

)
with respect to the lexicographical order, respectively. Then

A =
{
{1, 2, i} : 3 6 i 6 |A|+ 2

}
.

Case 1. |A| = 2, that is, A = {A1, A2}, where A1 = {1, 2, 3} and A2 = {1, 2, 4}.
Denote by

B1 =

{
B ∈

(
[n]

2

)
: B ∩ A1 = ∅

}
,

and

B2 =

{
B ∈

(
[n]

2

)
: B ∩ A1 = {3}, B ∩ A2 = ∅

}
.

Since A,B are cross-intersecting, we have B ∩ Ai 6= ∅ for both i = 1, 2 and every B ∈ B.
Then the families B1,B2 and B are pairwise disjoint. Therefore

|B| 6
(
n

2

)
− |B1| − |B2| =

(
n

2

)
−
(
n− 3

2

)
− (n− 4) <

(
n

2

)
−
(
n− 3

2

)
− 1.

Case 2. 3 6 |A| 6 n− 2. Since A,B are cross-intersecting, we get B ∩ {1, 2} 6= ∅ for

each B ∈ B. Then B ⊆
{
B ∈

(
[n]
2

)
: B ∩ [2] 6= ∅

}
. Hence, we have

|A|+ |B| 6 n− 2 +

(
n

2

)
−
(
n− 2

2

)
=

(
n

2

)
−
(
n− 3

2

)
+ 1.

Equality holds if and only if A = {{1, 2} ∪ {i} : i ∈ [3, n]} and B = {B ∈
(
n
2

)
: 1 ∈

B or 2 ∈ B} under isomorphism. Now we consider an arbitrary family A ⊆
(
[n]
3

)
with

|A| = n − 2. Since A is 2-intersecting, Theorem 2 implies either A =
(
T
3

)
for some

T ∈
(
[n]
4

)
or A is isomorphic to {{1, 2} ∪ {i} : i ∈ [3, n]}. So assume that A =

(
T
3

)
for

some T ∈
(
[n]
4

)
, which together with |A| = n− 2 yields n = 6. Then B ⊆

(
T
2

)
since A and

B are cross-intersecting. Then |A| + |B| 6
(
4
3

)
+
(
4
2

)
= 10 <

(
6
2

)
−
(
3
2

)
+ 1 = 13. So the

extremal family is unique up to isomorphism.

Lemma 17. Let d > 1 be an integer. If A ⊆
(
[2d+1]
d+1

)
and B ⊆

(
[2d+1]

d

)
are cross-

intersecting, then

|A|+ |B| 6
(

2d+ 1

d

)
.

Proof. For every F ∈
(
[2d+1]
d+1

)
, we denote F c = [2d + 1] \ F . Since A and B are cross-

intersecting, we have F /∈ A or F c /∈ B. Thus, at most half of the sets in
(
[2d+1]
d+1

)
∪
(
[2d+1]

d

)
belong to A ∪ B. Then

|A|+ |B| 6 1

2

((
2d+ 1

d+ 1

)
+

(
2d+ 1

d

))
=

(
2d+ 1

d

)
.

This completes the proof.
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The following result due to Frankl and Tokushige [8] is needed for our purpose. We
remark that a generalization was recent proved by Frankl and Wang [16].

Lemma 18 (See [8]). If A ⊆
(
[n]
a

)
and B ⊆

(
[n]
b

)
are non-empty cross intersecting families

with n > a+ b and a 6 b, then

|A|+ |B| 6
(
n

b

)
−
(
n− a
b

)
+ 1.

For n > a+ b, the equality holds if and only if A = {A} and B = {B ∈
(
[n]
b

)
: B ∩A 6= ∅}

or for (a, b) = (2, 2), there is one more possible family A = B = {S ∈
(
[n]
2

)
: 1 ∈ S}.

Now we are ready to prove Theorem 15.

Proof of Theorem 15. First let us apply induction on n > 2d + 1 and d > 3. For the
base case n = 2d + 1, the result holds by Lemma 17. Assume that n > 2d + 2 and the
result holds for integers less than n. By Lemma 13, we may assume that A and B are
left-shifted. Recall that A(n) := {A \ {n} : n ∈ A ∈ A} and A(n) := {A ∈ A : n /∈ A}.
For the family B, we define B(n) and B(n) similarly.

Claim 1. |A(n)| > 2.

Proof. If A(n) = ∅, then A = A(n) and the claim holds since |A| > 2. If A(n) 6= ∅, there
exists A ∈ A with n ∈ A. Since n > 2d+ 2 and A is left-shifted, there exist two different
elements u, v ∈ [n] \A such that (A\{n})∪{u}, (A\{n})∪{v} ∈ A(n). Thus the claim
holds.

We can easily see that A(n) and B(n) are cross-intersecting, and A(n) is 2-intersecting.
Note that A(n) ⊆

(
[n−1]
d+1

)
and B(n) ⊆

(
[n−1]

d

)
. By applying the induction hypothesis, we

have

|A(n)|+ |B(n)| 6
(
n− 1

d

)
−
(
n− d− 2

d

)
−
(
n− d− 3

d− 1

)
+ 2. (2)

In the sequel, we shall proceed in three cases: A(n) = ∅, |A(n)| = 1 and |A(n)| > 2.
Case 1. A(n) = ∅.
Claim 1 gives |A(n)| > 2. Let A1, A2 ∈ A(n) and x ∈ [n − 1] such that x ∈ A1 \ A2.

We denote

B1 =

{
B ∈

(
[n− 1]

d− 1

)
: B ∩ A1 = ∅

}
,

and

B2 =

{
B ∈

(
[n− 1]

d− 1

)
: B ∩ A1 = {x}, B ∩ A2 = ∅

}
.

Clearly, we have |B1| =
(
n−d−2
d−1

)
and |B2| >

(
n−d−3
d−2

)
. Note that B(n) and A(n) are

cross-intersecting, and then B1,B2 and B(n) are pairwise disjoint. Therefore, we get

|B(n)| 6
(
n− 1

d− 1

)
− |B1| − |B2| 6

(
n− 1

d− 1

)
−
(
n− d− 2

d− 1

)
−
(
n− d− 3

d− 2

)
. (3)
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Note that the equality in (3) holds if and only if A(n) = {A1, A2} with |A1 ∩A2| = d and
B(n) = {B ∈

(
[n−1]
d−1

)
: B ∩ A1 6= ∅ and B ∩ A2 6= ∅}.

Combining the inequalities (2) and (3), we get

|A|+ |B| = |A(n)|+ |B(n)|+ |B(n)| 6
(
n

d

)
−
(
n− d− 1

d

)
−
(
n− d− 2

d− 1

)
+ 2. (4)

The equality holds if and only if both equalities in (2) and (3) hold. Hence, equality in
(4) holds if and only if A = A(n) = {A1, A2} with |A1 ∩ A2| = d and B =

{
B ∈

(
[n]
d

)
:

B ∩ A1 6= ∅ and B ∩ A2 6= ∅
}

.
Case 2. |A(n)| = 1, that is, there exists A ∈ A with n ∈ A.
For each i = d + 1, . . . , n, we denote Ai = {1, 2, . . . , d, i} and A′ = {Ad+1, Ad+2,

. . ., An−1}. Since A is left-shifted and n ∈ A ∈ A, we get Ai ∈ A for each i, that is,
A′ ⊆ A(n). Note that A and B are cross-intersecting, which implies that A′ and B(n)
are cross-intersecting. Since n > 2d+ 2, we have |A′| > d+ 1. Then B ∩ [d] 6= ∅ for every
B ∈ B(n). So

|B(n)| 6
(
n− 1

d− 1

)
−
(
n− d− 1

d− 1

)
. (5)

The equality holds if and only if B(n) =
{
B ∈

(
[n−1]
d−1

)
: B ∩ [d] 6= ∅

}
and then A′ = A(n).

Firstly, we assume that A′ = A(n). Since |A(n)| = 1 and A is left-shifted, we have
A = {[d] ∪ {i} : i ∈ [d+ 1, n]}. Then B ⊆ {B ∈

(
[n]
d

)
: B ∩ [d] 6= ∅}. Hence

|A|+ |B| 6 (n− d) +

(
n

d

)
−
(
n− d
d

)
=

(
n

d

)
−
(
n− d− 1

d

)
−
(
n− d− 2

d− 1

)
+ 2 +

(
n− d− 2−

(
n− d− 2

d− 2

))
6

(
n

d

)
−
(
n− d− 1

d

)
−
(
n− d− 2

d− 1

)
+ 2.

The equality holds if and only if n − d − 2 =
(
n−d−2
d−2

)
, which leads to d = 3, and A ={

{1, 2, 3} ∪ {i} : i ∈ [4, n]
}

and B = {B ∈
(
[n]
3

)
: B ∩ [3] 6= ∅}.

Now, we assume that A′ 6= A(n). Then the inequality in (5) holds strictly, that is,

|B(n)| <
(
n− 1

d− 1

)
−
(
n− d− 1

d− 1

)
. (6)

So combining (2) and (6), and |A(n)| = 1, we have

|A|+ |B| = |A(n)|+ |B(n)|+ |A(n)|+ |B(n)|

<

(
n− 1

d

)
−
(
n−d−2

d

)
−
(
n−d−3

d− 1

)
+ 2 + 1 +

(
n− 1

d− 1

)
−
(
n−d−1

d− 1

)
=

(
n

d

)
−
(
n− d− 1

d

)
−
(
n− d− 2

d− 1

)
+ 2 +

(
1−

(
n− d− 3

d− 3

))
6

(
n

d

)
−
(
n− d− 1

d

)
−
(
n− d− 2

d− 1

)
+ 2.
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Case 3. |A(n)| > 2. In this case, we shall prove the following two claims.
Claim 2. A(n) is 2-intersecting. Suppose on the contrary that there exist A1, A2 ∈

A(n) such that |A1 ∩A2| 6 1. Note that A is 2-intersecting, we then have |A1 ∩A2| = 1.
Thus |A1∪A2| = |A1|+ |A2|−|A1∩A2| = 2d−1. Since n > 2d+2, there exist two distinct
elements u, v ∈ [n] \ (A1 ∪A2). Since A1, A2 ∈ A(n), we have A1 ∪ {n} and A2 ∪ {n} are
contained in A. Then both A1 ∪ {u} and A2 ∪ {v} belong to A as A is left-shifted. We
can see that |(A1 ∪{u})∩ (A2 ∪{v})| = 1, contradicting the fact that A is 2-intersecting.

Claim 3. A(n) and B(n) are cross-intersecting. For the sake of a contradiction,
suppose that there exist A ∈ A(n) and B ∈ B(n) such that A ∩ B = ∅. Since |A ∪ B| =
|A|+ |B| = 2d− 1 and n > 2d+ 2, there exist two different elements u, v ∈ [n] \ (A∪B).
Note that A ∪ {n} ∈ A, B ∪ {n} ∈ B. Then A ∪ {u} ∈ A and B ∪ {v} ∈ B since A and
B are shifted. We can observe that (A ∪ {u}) ∩ (B ∪ {v}) = ∅, contradicting that A and
B are cross-intersecting.

Let us apply the induction on d. For the base case d = 3, we have A(n) ⊆
(
[n−1]

3

)
and B(n) ⊆

(
[n−1]

2

)
. If A(n) is not isomorphic to

{
{1, 2} ∪ {i} : i ∈ [3, n − 1]

}
, then the

inequality in Lemma 16 is strict, and we get

|A(n)|+ |B(n)| <
(
n− 1

2

)
−
(
n− 4

2

)
+ 1. (7)

Adding (2) and (7), we have

|A|+ |B| = |A(n)|+ |B(n)|+ |A(n)|+ |B(n)|

<

((
n− 1

3

)
−
(
n− 5

3

)
−
(
n− 6

2

)
+ 2

)
+

((
n− 1

2

)
−
(
n− 4

2

)
+ 1

)
=

(
n

3

)
−
(
n− 4

3

)
−
(
n− 5

2

)
+ 2.

Next, we may assume that A(n) =
{
{1, 2} ∪ {i} : i ∈ [3, n − 1]

}
. Thus, we have

{1, 2, n− 1, n} ∈ A. Since A is left-shifted, it follows that A contains every set {1, 2, i, j}
with 3 6 i < j 6 n. Consequently, we get A = {A ∈

(
[n]
4

)
: [2] ⊆ A}. Otherwise, if

{1, 3, 4, 5} ∈ A, then |{1, 3, 4, 5} ∩ {1, 2, 6, 7}| = 1, which is a contradiction since A is
2-intersecting. Note that each set B ∈ B satisfies B ∩ [2] 6= ∅. Hence

|A|+ |B| 6
(
n− 2

2

)
+

((
n

3

)
−
(
n− 2

3

))
=

(
n

3

)
−
(
n− 4

3

)
−
(
n− 5

2

)
+ 2.

Moreover, the above equality holds if and only if A = {A ∈
(
[n]
4

)
: [2] ⊆ A} and B = {B ∈(

[n]
3

)
: B ∩ [2] 6= ∅} under the isomorphism.

So assume that d > 4 and the result holds for less than d. Note that A(n) ⊆
(
[n−1]

d

)
and B(n) ⊆

(
[n−1]
d−1

)
. Then applying the induction hypothesis, we have

|A(n)|+ |B(n)| 6

(
n− 1

d− 1

)
−
(

(n− 1)− (d− 1)− 1

d− 1

)
−
(

(n− 1)− (d− 1)− 2

d− 2

)
+ 2

=

(
n− 1

d− 1

)
−
(
n− d− 1

d− 1

)
−
(
n− d− 2

d− 2

)
+ 2,
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which together with the inequality (2) yields

|A|+ |B| = |A(n)|+ |B(n)|+ |A(n)|+ |B(n)|

6

(
n

d

)
−
(
n− d− 1

d

)
−
(
n− d− 2

d− 1

)
+ 2 +

(
2−

(
n− d− 2

d− 2

)
−
(
n− d− 3

d− 3

))
<

(
n

d

)
−
(
n− d− 1

d

)
−
(
n− d− 2

d− 1

)
+ 2,

where 2−
(
n−d−2
d−2

)
−
(
n−d−3
d−3

)
< 0 since n > 2d+ 2 and d > 3.

In the above discussion, we have determined the extremal families A and B that attain
the required upper bound under the left-shifting assumption by Lemma 13. Next, we are
going to characterize the extremal families in general case. Let A0 and B0 be the initial
families before applying the left-shifting operations. In other words, A,B are obtained
from A0,B0 by applying a series of left-shifting operations. In what follows, we show that
A0 is isomorphic to A, and B0 is isomorphic to B as well.

Suppose on the contrary that there exist two families A1 and B1 such that A1 is not
isomorphic to A, and B1 is not isomorphic to B with Si,j(A1) = A and Si,j(B1) = B for
some 1 6 i < j 6 n. We proceed the argument in the following three cases.

Case 1. A = {[d+1], [d]∪{d+2}}, B = {B ∈
(
[n]
d

)
: B∩ [d] 6= ∅ or {d+1, d+2} ⊆ B}.

We denote A1 = {A1, A2}. Since A1 is not isomorphic to A, we have |A1∩A2| 6 d−1.
As A1 and B1 are cross-intersecting, we get |B1| < |B|, contradicting to |B1| = |B|.

Case 2. A = {A ∈
(
[n]
4

)
: [3] ⊆ A} and B = {B ∈

(
[n]
3

)
: B ∩ [3] 6= ∅}.

Recall that Si,j(A1) = B and Si,j(B1) = B. Then it yields that j ∈ [4, n] and i ∈ [3].
Without loss of generally, we may assume that j = 4 and i = 3. We denote A1 =
{[4]} ∪ A11 ∪ A12 and B1 = {B ∈

(
[n]
3

)
: B ∩ [2] 6= ∅, or [3, 4] ⊂ A} ∪ B11 ∪ B12, where

A11 = {A ∈ A1 : 3 ∈ A, 4 /∈ A}, A12 = {A ∈ A1 : 3 /∈ A, 4 ∈ A}, B11 = {A ∈ B1 ∩
(
[3,n]
3

)
:

3 ∈ A, 4 /∈ A} and B12 = {B ∈ B1 ∩
(
[4,n]
3

)
: 4 ∈ B}. Note that A11 6= ∅ and A12 6= ∅

since A1 is not isomorphic to A. Similarly, we have B11 6= ∅ and B12 6= ∅. We know
that A11 and B12 are cross-intersecting, A12 and B11 are cross-intersecting. We denote
A′11 = {A \ [3] : A ∈ A11} and B′12 = {B \ {4} : B ∈ B12}. It is clear that A′11 ⊆

(
[5,n]
1

)
and B′12 ⊆

(
[5,n]
2

)
are non-empty cross-intersecting with |A′11| = |A11| and |B′12| = |B12|.

Hence, Lemma 18 implies

|A11|+ |B12| = |A′11|+ |B′12| 6
(
n− 4

2

)
−
(
n− 5

2

)
+ 1.

Similarly, we have

|A12|+ |B11| 6
(
n− 4

2

)
−
(
n− 5

2

)
+ 1.
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Consequently, we obtain

|A1|+ |B1| = 1 +

(
n− 1

2

)
+

(
n− 2

2

)
+ (|A11|+ |B12|) + (|A12|+ |B11|)

6 1 +

(
n− 1

2

)
+

(
n− 2

2

)
+ 2

((
n− 4

2

)
−
(
n− 5

2

)
+ 1

)
< (n− 3) +

(
n− 1

2

)
+

(
n− 2

2

)
+

(
n− 3

2

)
= |A|+ |B|,

which leads to a contradiction.
Case 3. A = {A ∈

(
[n]
4

)
: [2] ⊆ A} and B = {B ∈

(
[n]
3

)
: B ∩ [2] 6= ∅}.

This case is similar to Case 2, so we omit the details. This completes the proof.

4 Proof of Theorem 7

Let 4 6 s 6 n − 2 be integers, F ⊆ 2[n] be s-union, and F * K(n, s) and F * H(n, s).
Note that for each F ∈ F and E ⊆ F , the family F ′ := F ∪ {E} also has the s-union
property. Moreover, it is easy to see that F ′ is still not contained in the Katona family
K(n, s) and the Frankl family H(n, s). Thus, we may assume that F is hereditary (also
known as a down-closed family, or complex), that is, E ⊆ F ∈ F implies E ∈ F . We
next present our proof in two cases.

Case I. Assume that s = 2d. Since F is s-union, we have Fi = ∅ for every i >
2d + 1. Moreover, we can see that Fd+1 is 2-intersecting. Otherwise there exist two sets
A,B ∈ Fd+1 such that |A ∩ B| 6 1, then by the inclusion-exclusion principle, |A ∪ B| =
|A|+ |B| − |A ∩B| > 2d+ 1 > s, which contradicts the fact that F is s-union.

Subcase 1.1. d = 2. In this case, we further assume that F * H∗(n, 4). If F has
a 4-element set {a, b, c, d}, then 2{a,b,c,d} ⊆ F since F is hereditary. Since s = 4 and
F is 4-union, we get F = 2{a,b,c,d}, and then |F| = 24 <

∑2
i=0

(
n
i

)
−
(
n−3
2

)
−
(
n−4
2

)
+ 2

since n > s + 2 = 6, as required. Next, we assume that F4 is empty. Since F is neither
isomorphic to a subfamily of K(n, 4) nor of H(n, 4), we have |F3| > 2. If F3 has exactly
two 3-element sets, say D1, D2, then |D1∩D2| = 2. Since F3 and F2 are cross-intersecting,
we get |F2| 6

(
n
2

)
−
(
n−4
2

)
− 2
(
n−4
1

)
=
(
n
2

)
−
(
n−3
2

)
−
(
n−4
1

)
. The Katona inequality (1)

states that |F0| 6 1 and |F1|+ |F4| 6 n. Thus, we get

|F| 6
∑
06i62

(
n

i

)
−
(
n− 3

2

)
−
(
n− 4

1

)
+ 2.

Moreover, the equality holds if and only if F = W(n, 4). If |F3| = 3, then there are
two possibilities, namely, F3 = {{a, b, c}, {a, b, d}, {a, b, e}} or F3 = {{a, b, c}, {a, b, d},
{b, c, d}} for some {a, b, c, d, e} ⊆ [n]. For the first possibility, we have F2 ⊆ {H ∈(
[n]
2

)
: H ∩ {a, b} 6= ∅}, which implies that F is isomorphic to a subfamily of H∗(n, 4), a

contradiction; for the second possibility, we can verify that F2 ⊆ {H ∈
(
[n]
2

)
: b ∈ H} ∪
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{
{a, c}, {a, d}, {c, d}

}
, which leads to |F2| 6 n+2. Hence, we have |F| 6 1+n+(n−1)+3,

which is smaller than the required bound. If |F3| > 4, then F3 ⊆ {{a, b, x} : x ∈
[n] \ {a, b}}, which yields F2 ⊆ {H ∈

(
[n]
2

)
: H ∩ {a, b} 6= ∅}. Hence F is isomorphic to a

subfamily of H∗(n, 4), a contradiction.
Subcase 1.2. d > 3. Since F is not a subfamily of H(n, 2d) or K(n, 2d), and F is

hereditary, we get |Fd+1| > 2. Setting A = Fd+1 and B = Fd, by Theorem 15, we obtain

|Fd|+ |Fd+1| 6
(
n

d

)
−
(
n− d− 1

d

)
−
(
n− d− 2

d− 1

)
+ 2. (8)

By Katona’s inequality (1), we get that for each i = 0, 1, . . . , d− 1,

|Fi|+ |F2d+1−i| 6
(
n

i

)
. (9)

Then adding (8) and (9), we have

|F| =
∑

06i6d−1

(|Fi|+ |F2d+1−i|) + (|Fd|+ |Fd+1|)

6
∑
06i6d

(
n

i

)
−
(
n− d− 1

d

)
−
(
n− d− 2

d− 1

)
+ 2.

For d > 3 and n > 2d+ 1, whenever |F| attains the upper bound, equalities have to hold
in (8) and (9) as well. Then Fi =

(
[n]
i

)
for every i 6 d− 1, and Fd+1 = {D1, D2} for fixed

D1, D2 ∈
(

[n]
d+1

)
with |D1∩D2| = d and Fd = {B ∈

(
[n]
d

)
: B∩D1 6= ∅ and B∩D2 6= ∅}. In

addition, for the case d = 3, we know from Theorem 15 that there are two more possible
families attaining the equality in (8), namely, F3 = {F ∈

(
[n]
3

)
: F ∩ [3] 6= ∅} and F4 ={

F ∈
(
[n]
4

)
: [3] ⊆ F

}
; or F3 = {F ∈

(
[n]
3

)
: F ∩ [2] 6= ∅} and F4 =

{
F ∈

(
[n]
4

)
: [2] ⊆ F

}
.

Thus, F is isomorphic to W(n, 6) or W∗(n, 6) or W ∗∗(n, 6).
Case II. Assume that s = 2d+1. Since F is s-union, we know that Fd+1 is intersecting.
Subcase 2.1. |Fd+2| = 0. By the hereditary property of F , we get Fi = ∅ for every

i > d+ 2. Since F * K(n, 2d+ 1) and F * H(n, 2d+ 1), we have Fd+1 * EKR(n, d+ 1)
and Fd+1 * HM(n, d + 1). For the case d = 2, s = 5, the condition F * T (n, 5) implies
that F3 * G2(n, 3). By Theorem 9, we have

|Fd+1| 6
(
n− 1

d

)
−
(
n− d− 2

d

)
−
(
n− d− 3

d− 1

)
+ 2. (10)

Moreover, by Katona’s inequality (1), then for each i ∈ {1, 2, . . . , d}, we have

|Fi|+ |F2d+2−i| 6
(
n

i

)
. (11)

Therefore, we obtain

|F| =
∑
06i6d

(|Fi|+ |F2d+2−i|) + |Fd+1|

6
∑
06i6d

(
n

i

)
+

(
n− 1

d

)
−
(
n− d− 2

d

)
−
(
n− d− 3

d− 1

)
+ 2,
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In case of equality, the inequality in (10) and (11) must be an equality. By Theorem 9,
when s > 9, that is, d > 4, we get that Fd+1 is isomorphic to J2(n, d + 1). Hence F is
isomorphic to

W(n, 2d+ 1) = {F ⊆ [n] : |F | 6 d} ∪ J2(n, d+ 1).

In addition, when s = 7, that is, d = 3, then F4 is isomorphic to J2(n, 4), or G2(n, 4) or
G3(n, 4). Thus, F is isomorphic to

(
[n]
63

)
∪ J2(n, 4), or

(
[n]
63

)
∪ G2(n, 4) or

(
[n]
63

)
∪ G3(n, 4);

when s = 5, that is, d = 2, we see that F3 is isomorphic to J2(n, 3), and then F is
isomorphic to

(
[n]
62

)
∪ J2(n, 3).

Subcase 2.2. |Fd+2| = 1. Denote Fd+2 = {A}. Note that
(

A
d+1

)
⊆ Fd+1 and then

∩F∈Fd+1
F = ∅. By the Hilton–Milner theorem, we get

|Fd+1| 6
(
n− 1

d

)
−
(
n− d− 2

d

)
+ 1.

Since F is (2d+1)-union, every set of Fd intersects A, and so |Fd| 6
(
n
d

)
−
(
n−d−2

d

)
. Hence

|Fd|+ |Fd+2| 6
(
n

d

)
−
(
n− d− 2

d

)
+ 1.

Therefore, we obtain

|F| =
∑
06i6d

(|Fi|+ |F2d+2−i|) + |Fd+1|

6
∑

06i6d−1

(
n

i

)
+

((
n

d

)
−
(
n− d− 2

d

)
+ 1

)
+

(
n− 1

d

)
−
(
n− d− 2

d

)
+ 1

<
∑
06i6d

(
n

i

)
+

(
n− 1

d

)
−
(
n− d− 2

d

)
−
(
n− d− 3

d− 1

)
+ 2.

Subcase 2.3. |Fd+2| > 2. Since F is s-union, Fd+1 is intersecting. Furthermore, we
claim that Fd+1 * EKR(n, d+1) and Fd+1 * HM(n, d+1). Let A,B ∈ Fd+2. The down-
closed property implies that both

(
A

d+1

)
and

(
B

d+1

)
are contained in Fd+1. Firstly, we can

see that
⋂

F∈Fd+1
F = ∅ since

(
A

d+1

)
⊆ Fd+1. Thus, we get Fd+1 * EKR(n, d+1). Secondly,

we claim that Fd+1 * HM(n, d+1). Assume on the contrary that Fd+1 ⊆ HM(n, d+1),
where

HM(n, d+ 1) :=

{
F ∈

(
[n]

d+ 1

)
: 1 ∈ F, F ∩ [2, d+ 2] 6= ∅

}
∪
{

[2, d+ 2]
}
.

If 1 /∈ A or 1 /∈ B, then we can find at least two distinct (d+ 1)-element sets in Fd+1 such
that they do not contain element 1, contradicting Fd+1 ⊆ HM(n, d + 1). If 1 ∈ A ∩ B,
then both A \ {1} and B \ {1} are distinct (d + 1)-element sets in Fd+1 not containing
element 1, a contradiction. Thus Fd+1 * HM(n, d + 1). To apply Theorem 9 for the
family Fd+1 in the case d = 2 and s = 5, we need to distinguish the cases whether F3 is
a subfamily of G2(n, 3).
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Firstly, we assume that d > 3, or d = 2 and F3 * G2(n, 3). Then as in Subcase 2.1,
applying Theorem 9 and Katona’s inequality (1) yields the required inequality. Further-
more, since Fd+2 6= ∅, the equality in (11) can not happen. Thus, the required inequality
holds strictly.

Now assume that d = 2 and F3 ⊆ G2(n, 3). Note that F is 5-union and so F4 is 3-
intersecting. Without loss of generality we may assume that {1, 2, 3, 4}, {1, 2, 3, 5} ∈ F4.
Thus {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 5}, {1, 3, 5}, {2, 3, 5} ∈ F3 since F is
hereditary. Then F3 ⊆ {F ∈

(
[n]
3

)
: |F ∩ {1, 2, 3}| > 2} and F4 ⊆ {F ∈

(
[n]
4

)
: {1, 2, 3} ⊆

F}. If |F4| > 3, then F2 ⊆ {F ∈
(
[n]
2

)
: |F ∩ {1, 2, 3}| > 1}. If |F4| = 2, then

F2 ⊆ {F ∈
(
[n]
2

)
: |F ∩ {1, 2, 3}| > 1} ∪ {4, 5}. This implies that

|F2|+ |F4| 6 max{(3n− 5) + 2, (3n− 6) + (n− 3)} = 4n− 9.

The Katona inequality (1) implies that |F0| 6 1 and |F1|+ |F5| 6 n. And |F3| 6 3n− 8
since F3 ⊆ {F ∈

(
[n]
3

)
: |F ∩ {1, 2, 3}| > 2}. Therefore, we obtain |F| 6 8n− 16, which is

less than the desired bound 1 +
(
n
1

)
+
(
n
2

)
+
(
n−1
2

)
−
(
n−4
2

)
−
(
n−5
1

)
+ 2 = 1

2
(n2 + 5n − 2)

since n > s+ 2 = 7. This completes the proof.

5 Concluding remarks

For two subsets A and B, the symmetric difference of A,B is defined as

A4B = (A \B) ∪ (B \ A) = (A ∪B) \ (A ∩B).

The distance of A and B is defined as d(A,B) = |A4B|. The family of all subsets with
the binary function d forms a metric space. The diameter of a family F is defined as the
maximum distance of pairs of sets in F . Observe that |F ∪ F ′| 6 s implies d(F, F ′) 6 s.
However, the reverse is not true. In 1966, Kleitman [25] extended Katona’s Theorem 4 to
the families with given diameter.

Theorem 19 (Kleitman [25]). Suppose that n > s > 2 and F is a family of subsets of
[n] with diameter at most s, that is, d(F, F ′) 6 s for all distinct sets F, F ′ ∈ F .

(1) If s = 2d for some d > 1, then |F| 6
∑

06i6d

(
n
i

)
.

(2) If s = 2d+ 1 for some d > 1, then |F| 6
∑

06i6d

(
n
i

)
+
(
n−1
d

)
.

In 2017, Frankl [12] determined the extremal families attaining the upper bound, and
he also established a stability result on Kleitman’s theorem, that is, a diameter version
of Theorem 5. Inspired by these results, we would like to propose the following problem
for readers.

Problem 20. Is there a diameter version of Theorem 7?

In 2020, Huang, Klurman and Pohoata [21] provided an algebraic proof for Theorem
19, which leads to an algebraic proof of Theorem 4 as well. For the case s = 2d + 1,
Gao, Liu and Xu [17] recently proved a finer stability result on Kleitman’s theorem by an
algebraic method.

Problem 21. Are there algebraic proofs of Theorems 5 and 7?
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