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Abstract

Let Γ denote a dual bipartite Q-polynomial distance-regular graph with vertex
set X and diameter D > 3. Fix x ∈ X, and let L∗ and R∗ denote the corresponding
dual lowering and dual raising matrix, respectively. We show that a certain linear
dependency among R∗L∗2, L∗R∗L∗, L∗2R∗, L∗ holds, and determine whether this
linear dependency endow Γ with a dual uniform or dual strongly uniform structure.
Precisely, except for two special cases a dual uniform structure is always attained,
and except for four special cases a dual strongly uniform structure is always attained.

Mathematics Subject Classifications: 05E99, 05C50

1 Introduction

In his thesis [5], Delsarte introduced the Q-polynomial property for a distance-regular
graph Γ (see Section 2 for formal definitions). Since then, the Q-polynomial property
has been investigated by many authors; see for example [1, 2, 3]. A survey about the
Q-polynomial property can be found in [4].

Assume Γ is Q-polynomial. In [13], Terwilliger introduced the subconstituent algebra
of Γ. For each vertex x of Γ, the corresponding subconstituent algebra T = T (x) is
generated by the adjacency matrix A and a certain diagonal matrix A∗ = A∗(x). The
eigenspaces of A∗ are the subconstituents of Γ with respect to x. The matrices A and
A∗ satisfy two relations called the tridiagonal relations [14, Lemma 5.4], [15]. The first
(resp., second) tridiagonal relation is of degree 3 in A (resp., A∗ ) and of degree 1 in A∗

(resp., A ). In [14], the tridiagonal relations are used to describe the combinatorics of Γ.
Assume for a moment that Γ is bipartite. For any fixed vertex x of Γ, define two (0, 1)-

matrices, L = L(x) and R = R(x) (indexed on the set of vertices of Γ) as follows. For the
vertices y, z of Γ, the (z, y)-entry of L is 1 if ∂(z, y) = 1 and ∂(x, z) = ∂(x, y)− 1, and 0
otherwise; here ∂ denotes the path-length distance of Γ. The matrix R is the transpose of
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L. Then the adjacency matrix A of Γ naturally decomposes as A = L+R. The matrices L
and R are respectively called the lowering matrix and raising matrix of Γ with respect to x
[10, 12]. In the first tridiagonal relation, if one eliminates A using A = L+R, one finds that
on each x-subconstituent of Γ the matrices RL2, LRL, L2R, L are linearly dependent.
The coefficients in this linear dependence depend on the subconstituent. The collection
of these dependencies is called an R/L dependency structure. Motivated by these R/L
dependency structures, in [12] Terwilliger introduced the uniform property for a partially
ordered set. In that work, he described the algebraic structure of the uniform posets and
displayed eleven infinite families of examples. A careful study of the known connection
between the Q-polynomial property and uniform posets was completed in [10], introducing
a variation on the uniform property, called strongly uniform. Strongly uniform implies
uniform. For each Q-polynomial structure on Γ (bipartite distance-regular), the authors
determined precisely when the corresponding R/L dependency structure is uniform or
strongly uniform.

Now, assume that our distance-regular graph Γ has a dual bipartite Q-polynomial
structure (see Section 4 for formal definitions). Then the diagonal matrix A∗ of Γ can be
decomposed as A∗ = L∗ +R∗, where L∗ = L∗(x) (resp., R∗ = R∗(x) ) is the dual lowering
matrix (resp., dual raising matrix) of Γ with respect to x (see Section 3). The matrix R∗

is the transpose of L∗. In the second tridiagonal relation, replacing A∗ by L∗ + R∗, one
finds that on each eigenspace of A the matrices

R∗L∗2, L∗R∗L∗, L∗2R∗, L∗

are linearly dependent. The coefficients in this linear dependence depend on the eigenspace.
We call this collection of dependencies an R∗/L∗ dependency structure (see Section 5). In
light of the analogy with the arguments from the previous paragraph, one can naturally
introduce the concept of a dual (strongly) uniform structure and study the connection
with the dual bipartite Q-polynomial structure. The purpose of this paper is to determine
for each (dual bipartite) Q-polynomial structure on Γ when the corresponding R∗/L∗ de-
pendency structure is dual uniform or dual strongly uniform. Throughout the paper, we
constantly refer to the classification of P - and Q-polynomial orderings contained in [1,
Theorem 5.1]. Precisely, when we say that Γ is of type (roman numeral), we mean that
its parameters are those listed in the corresponding case (roman numeral) of [1, Theorem
5.1].

To describe our main result, assume that our distance-regular graph Γ has vertex set
X and diameter D > 3, and that it admits a dual bipartite Q-polynomial structure. Fix
x ∈ X, and consider the corresponding dual lowering matrix and dual raising matrix, i.e.,
L∗ = L∗(x) and R∗ = R∗(x), respectively. Consider the following cases.

(i) Γ is the ordinary 2D-gon.

(ii) Γ is the cube H(D, 2), D even, type [1, Theorem 5.1(III)].

(iii) Γ is the halved cube 1
2
H(2D, 2).

the electronic journal of combinatorics 31(4) (2024), #P4.32 2



(iv) Γ is as in Lemma 8 with s ∈ {q−1, q−2D−1}, q2D 6= 1 (see Sections 4,7 for more
details).

We show that: in Cases (i) and (ii), the corresponding R∗/L∗ dependency structure is not
dual uniform; in Cases (iii) and (iv), this structure is dual uniform but not dual strongly
uniform; in all other cases, this structure is dual strongly uniform.

The paper is organized as follows. In Sections 2 and 3, we discuss the Bose-Mesner
algebra and the dual Bose-Mesner algebra of a distance-regular graph. In Section 4, we
consider the dual Q-polynomial bipartite case, and for it, in Sections 5 and 6, we introduce
R∗/L∗ dependency structures and dual (strongly) uniform structures. In Sections 7-10,
for each given (dual bipartite) Q-polynomial structure on Γ, we determine precisely when
the corresponding R∗/L∗ dependency structure is dual uniform or dual strongly uniform.
Our main result is Theorem 29.

2 Preliminaries

Let X denote a nonempty finite set. Let MatX(R) denote the R-algebra consisting of the
matrices with entries in R, and rows and columns indexed by X. Let V = RX denote the
vector space over R consisting of the column vectors with entries in R and rows indexed
by X. Observe that MatX(R) acts on V by left multiplication. We refer to V as the
standard module of MatX(R). We endow V with the bilinear form 〈 , 〉 : V ×V → R that
satisfies 〈u, v〉 = utv for u, v ∈ V , where t denotes transpose. For y ∈ X, let ŷ denote the
vector in V that has y-coordinate 1 and all other coordinates 0. Observe that {ŷ | y ∈ X}
is an orthonormal basis for V .

Throughout the paper, let Γ = (X,R) denote a finite, undirected, connected graph,
without loops or multiple edges, with vertex set X, edge set R, path-length distance
function ∂, and diameter D := max{∂(x, y) | x, y ∈ X}. For x ∈ X and an integer i, let
Γi(x) = {y ∈ X | ∂(x, y) = i}. We abbreviate Γ(x) := Γ1(x). For an integer k > 0, we
say Γ is regular with valency k whenever |Γ(x)| = k for all x ∈ X. We say Γ is distance-
regular whenever for all integers 0 6 h, i, j 6 D and all x, y ∈ X with ∂(x, y) = h the
number phij := |Γi(x) ∩ Γj(y)| is independent of x, y. The constants phij are known as the
intersection numbers of Γ. For convenience, set ci := pi1 i−1 (1 6 i 6 D), ai := pi1i (0 6 i 6
D), bi := pi1 i+1 (0 6 i 6 D−1), ki := p0ii (0 6 i 6 D), and c0 := 0, bD := 0. For the rest of
this paper, assume Γ is distance-regular with diameter D > 3. By the triangle inequality,
for 0 6 h, i, j 6 D we have phij = 0 (resp., phij 6= 0 ) whenever one of h, i, j is greater
than (resp., equal to) the sum of the other two. In particular, ci 6= 0 for 1 6 i 6 D and
bi 6= 0 for 0 6 i 6 D − 1. Observe that Γ is regular with valency k = b0 = k1 and that
ci + ai + bi = k for 0 6 i 6 D.

We recall the Bose-Mesner algebra of Γ. For 0 6 i 6 D, let Ai denote the matrix in
MatX(R) with (y, z)-entry

(Ai)yz =

{
1 if ∂(y, z) = i,
0 if ∂(y, z) 6= i

(y, z ∈ X).
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The matrix Ai is called the ith distance matrix of Γ. We abbreviate A := A1 and call
it the adjacency matrix of Γ. Observe that (ai) A0 = I; (aii) J =

∑D
i=0Ai; (aiii) At

i =

Ai (0 6 i 6 D); (aiv) AiAj =
∑D

h=0 p
h
ijAh (0 6 i, j 6 D), where I (resp., J) denotes

the identity matrix (resp., all 1’s matrix) in MatX(R). Using these properties, we find
{Ai}Di=0 is a basis for a commutative subalgebra M of MatX(R), known as the Bose-
Mesner algebra of Γ. By [1, p. 190], A generates M . Furthermore, by [3, p. 45], M has a
basis {Ei}Di=0 such that (ei) E0 = |X|−1J ; (eii) I =

∑D
i=0Ei; (eiii) Et

i = Ei (0 6 i 6 D);

(eiv) EiEj = δijEi (0 6 i, j 6 D). We call {Ei}Di=0 the primitive idempotents of Γ. The
primitive idempotent E0 is said to be trivial.

Since {Ei}Di=0 form a basis for M , there exist scalars {θi}Di=0 in R such that A =∑D
i=0 θiEi. Combining this with (eiv), we find

AEi = EiA = θiEi (0 6 i 6 D). (1)

We call θi the eigenvalue of Γ associated with Ei. The {θi}Di=0 are mutually distinct since
A generates M . By (ei) we have θ0 = k. By (eii)-(eiv),

V = E0V + E1V + · · ·+ EDV (orthogonal direct sum).

For 0 6 i 6 D, the space EiV is the eigenspace of A associated with θi. Let mi denote
the rank of Ei, and note that mi is the dimension of EiV . We call mi the multiplicity of
θi.

We recall the Krein parameters of Γ. Let ◦ denote the entrywise product in MatX(R).
Observe that Ai ◦ Aj = δijAi for 0 6 i, j 6 D, so M is closed under ◦. Thus, there exist
scalars qhij ∈ R (0 6 h, i, j 6 D) such that

Ei ◦ Ej = |X|−1

D∑
h=0

qhijEh (0 6 i, j 6 D).

The parameters qhij are called the Krein parameters of Γ. By [3, Proposition 4.1.5], these

parameters are nonnegative. The given ordering {Ei}Di=0 of the primitive idempotents
is said to be Q-polynomial if for 0 6 h, i, j 6 D the Krein parameter qhij = 0 (resp.,
qhij 6= 0) whenever one of h, i, j is greater than (resp., equal to) the sum of the other two.
Let E denote a nontrivial primitive idempotent of Γ and let θ denote the corresponding
eigenvalue. We say that Γ is Q-polynomial with respect to E (or θ) whenever there exists
a Q-polynomial ordering {Ei}Di=0 of the primitive idempotents of Γ such that E1 = E.

3 The dual Bose-Mesner algebra

We continue to discuss the distance-regular graph Γ from the previous sections. In this
section, we recall the dual Bose-Mesner algebra of Γ. Fix x ∈ X. For 0 6 i 6 D, let
E∗

i = E∗
i (x) denote the diagonal matrix in MatX(R) with (y, y)-entry

(E∗
i )yy =

{
1 if ∂(x, y) = i,
0 if ∂(x, y) 6= i

(y ∈ X).
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We call E∗
i the ith dual idempotent of Γ with respect to x. For convenience, set E∗

i = 0
for i < 0 or i > D. It is known that (esi) I =

∑D
i=0E

∗
i ; (esii) E∗t

i = E∗
i (0 6 i 6 D);

(esiii) E∗
iE

∗
j = δijE

∗
i (0 6 i, j 6 D). By these properties, {E∗

i }
D
i=0 forms a basis for

a commutative subalgebra M∗ = M∗(x) of MatX(R), known as the dual Bose-Mesner
algebra of Γ with respect to x; also,

V = E∗
0V + E∗

1V + · · ·+ E∗
DV (orthogonal direct sum).

The algebras M and M∗ are related as follows. By [13, Lemma 3.2],

E∗
iAjE

∗
h = 0 if and only if phij = 0 (0 6 h, i, j 6 D).

Let E denote a nontrivial primitive idempotent of Γ. For the rest of the section, assume
Γ is Q-polynomial with respect to E. Let A∗ = A∗(x) denote the diagonal matrix in
MatX(R) with (y, y)-entry

A∗
yy = |X|Exy (y ∈ X).

The matrix A∗ is called the dual adjacency matrix of Γ corresponding to E and x. By
[13, Lemma 3.11(ii)], A∗ generates M∗. Since {E∗

i }
D
i=0 forms a basis for M∗, there exist

scalars {θ∗i }
D
i=0 in R such that A∗ =

∑D
i=0 θ

∗
iE

∗
i . Combining this with (esiii), we obtain

A∗E∗
i = E∗

iA
∗ = θ∗iE

∗
i (0 6 i 6 D).

We call {θ∗i }
D
i=0 the dual eigenvalue sequence for the given Q-polynomial structure. Note

that the {θ∗i }
D
i=0 are mutually distinct since A∗ generates M∗. For 0 6 i 6 D, the space

E∗
i V is the eigenspace of A∗ associated with θ∗i . By [1, Proposition 3.4.(iv)], we have that

θ∗0 = rank(E) = dim(EV ).

Lemma 1. ([14, Lemma 5.4]) Let {Ei}Di=0 denote a Q-polynomial ordering of the primitive
idempotents of Γ and, for 0 6 i 6 D, let θi denote the eigenvalue of Γ for Ei. Let
{θ∗i }

D
i=0 denote the dual eigenvalue sequence for the given Q-polynomial structure. Then

the following (i)-(iii) hold.

(i) There exists β ∈ R such that

β + 1 =
θi−2 − θi+1

θi−1 − θi
=
θ∗i−2 − θ∗i+1

θ∗i−1 − θ∗i

for 2 6 i 6 D − 1.

(ii) There exist γ, γ∗ ∈ R such that

γ = θi−1 − βθi + θi+1, γ∗ = θ∗i−1 − βθ∗i + θ∗i+1

for 1 6 i 6 D − 1.
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(iii) There exist %, %∗ ∈ R such that

% = θ2i−1 − βθi−1θi + θ2i − γ (θi−1 + θi) ,

%∗ = θ∗2i−1 − βθ∗i−1θ
∗
i + θ∗2i − γ∗

(
θ∗i−1 + θ∗i

)
for 1 6 i 6 D.

Lemma 2. ([14, Lemma 5.4]) Let E denote a Q-polynomial primitive idempotent of Γ
and let A∗ = A∗(x) denote the corresponding dual adjacency matrix. Then[

A,A2A∗ − βAA∗A+ A∗A2 − γ (AA∗ + A∗A)− %A∗] = 0,[
A∗, A∗2A− βA∗AA∗ + AA∗2 − γ∗ (A∗A+ AA∗)− %∗A

]
= 0,

where [r, s] = rs− sr and β, γ, γ∗, %, %∗ are from Lemma 1.

We now recall some special matrices for the graph Γ. Define the matrices R∗ =
R∗(x), F ∗ = F ∗(x), L∗ = L∗(x) by

R∗ =
D∑
i=0

Ei+1A
∗Ei, F ∗ =

D∑
i=0

EiA
∗Ei, L∗ =

D∑
i=0

Ei−1A
∗Ei, (2)

where ED+1 = E−1 = 0. They are known as the dual raising, dual flat, and dual lowering
matrices of Γ with respect to x, respectively. Note that R∗, F ∗, and L∗ have real entries.
Also, observe that F ∗ is symmetric and R∗ = (L∗)t. Moreover,

A∗ = R∗ + F ∗ + L∗. (3)

Using Equation (2) and the convention that E−1 = 0, ED+1 = 0, we find

R∗Ei = Ei+1R
∗ (−1 6 i 6 D),

F ∗Ei = EiF
∗ (0 6 i 6 D),

L∗Ei = Ei−1L
∗ (0 6 i 6 D + 1).

(4)

Furthermore, one can easily derive the following lemma from the above considerations.

Lemma 3. Let L∗, R∗ be as in (2). Then the following (i), (ii) hold.

(i) R∗EiV ⊆ Ei+1V for 0 6 i 6 D − 1, and R∗EDV = 0;

(ii) L∗EiV ⊆ Ei−1V for 1 6 i 6 D, and L∗E0V = 0.

4 Dual bipartite Q-polynomial distance-regular graphs

We continue to refer to the distance-regular graph Γ from the previous sections. Assume
that Γ admits a Q-polynomial structure. Such a Q-polynomial structure is dual bipartite
whenever a∗i := qi1i = 0 for 0 6 i 6 D. In this case, using [13, Lemma 3.12], we have

EiA
∗Eh = 0 if |h− i| 6= 1 (0 6 h, i 6 D). (5)
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Moreover, it follows from (2), (3), and (5) that F ∗ = 0 and A∗ = R∗ + L∗.
For Γ admitting a dual bipartite Q-polynomial structure, the following classification

results are known.

Theorem 4. ([6, Theorem 1.1]) Let Γ denote a distance-regular graph with diameter
D > 3 and valency k, and suppose Γ is not bipartite. Then Γ has a dual bipartite Q-
polynomial structure if and only if bi = cD−i for 0 6 i 6 D− 1 and the array {c1, . . . , cD}
for Γ is one of the following:

(i) {1, 4, 9, . . . , D2};

(ii) {1, 6, 15, . . . , 2D2 −D};

(iii) {1, k − a1 − 1, k}; or

(iv) {1, δη, (δ2 − 1) (2η − δ + 1), δ (2η + 2ηδ − δ2)}, where δ > 3, η > 3δ/4 are integers
and η divides δ2 (δ2 − 1) /2.

The arrays (i) and (ii) are uniquely realized by the Johnson graph J(D, 2D) and the halved
cube 1

2
H(2D, 2), respectively. The graphs with array (iii) are the Taylor graphs.

Remark 5. With reference to Theorem 4(iii), the Gosset graph is a Taylor graph with
array {1, 10, 27} [4, Section 5.1].

Remark 6. An example with array (iv) in Theorem 4 is the Meixner double cover (δ =
4, η = 6) [4, Section 3.2.4]. However, the array (iv) with δ, η odd has been ruled out by
Jurǐsić and Koolen [9, Corollary. 3.2].

Theorem 7. ([6, Theorem 1.2]) Let Γ denote a distance-regular graph with diameter
D > 3 and valency k, and suppose Γ is bipartite. Then Γ has a dual bipartite Q-polynomial
structure if and only if bi = cD−i for 0 6 i 6 D − 1 and the array {c1, . . . , cD} for Γ is
one of:

(i) {1, 1, . . . , 1, 2};

(ii) {1, 2, 3, . . . , k};

(iii) {1, k − 1, k};

(iv) {1, 2ξ, 4ξ − 1, 4ξ}, where ξ > 1 is an integer; or

(v) {1, c, k−c, k−1, k}, where k = ξ (ξ2 + 3ξ + 1) , c = ξ(ξ+1), and ξ > 2 is an integer.

The arrays (i), (ii), and (iii) are uniquely realized by the ordinary 2D-gon, the cube
H(D, 2), and the complement of Kk+1 ×K2, respectively. The graphs with array (iv) are
the Hadamard graphs of order 4ξ. The array (v) is uniquely realized for ξ = 2 by the
double cover of the Higman-Sims graph. We know of no examples with ξ > 3.

The lemma below will play a crucial role in our analysis.
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Lemma 8. ([11]) Let Γ = (X,R) denote a distance-regular graph with diameter D > 3,
and suppose Γ has a dual bipartite Q-polynomial structure with dual eigenvalues θ∗0, . . . , θ

∗
D.

Furthermore, suppose Γ is not the cube H(D, 2), the halved cube 1
2
H(2D, 2), the Johnson

graph J(D, 2D), or the Gosset graph. Then bi = cD−i for 0 6 i 6 D − 1, and there exist
complex numbers q 6= 0 and s with

qj 6= 1, 1 6 j 6 D,

qj 6= −1, 0 6 j 6 D − 1,

sqj 6= 1, 2 6 j 6 2D,

such that

ai =
(q2i − 1)

(
q2D − q2i

) (
qD + q2

) (
1 + sqD+1

)
(q − 1) (q2i + qD+1) (q2i+1 + qD) (1− sq2D)

, 1 6 i 6 D − 1,

ci =
q2i−1

(
qD + q

) (
qD + q2

)
(q2i − 1)

(
1− sq2D+2−2i

)
(q2 − 1) (q2i + qD) (q2i + qD+1) (1− sq2D)

, 1 6 i 6 D − 1,

cD =

(
qD − 1

) (
qD + q2

)
(1− sq2)

q (q2 − 1) (1− sq2D)
,

θ∗i =
qD
(
q−i − qi−D

)
(1− sq3)

(q − 1) (1− sqD+2)
, 0 6 i 6 D.

Proposition 9. Let Γ = (X,R) denote a distance-regular graph with diameter D > 3,
and suppose Γ has a dual bipartite Q-polynomial structure. Then the statements (ii) and
(iii) from Lemma 1 hold with γ∗ = 0, and

A∗3A− AA∗3 − (β + 1)(A∗2AA∗ − A∗AA∗2) = %∗(A∗A− AA∗). (6)

Proof. If Γ is H(D, 2), 1
2
H(2D, 2), J(D, 2D), or the Gosset graph, then Γ has classical

parameters1 and so admits a dual bipartite Q-polynomial structure with dual eigenvalues
θ∗i = D − i, 0 6 i 6 D [3, Corollary 8.4.2] (see also [1, Theorem 5.1], type (IIC) for
H(D, 2), and type (IIA) for the others). Thus, from Lemma 1, we have β = 2 and γ∗ = 0.
Note that for the cube H(D, 2), with D even, there exists another (dual bipartite) Q-
polynomial structure with dual eigenvalues θ∗i = (−1)i(D − 2i), 0 6 i 6 D [1, p. 305 –
type (III)]. Here, Lemma 1 gives β = −2 and γ∗ = 0. When Γ is none of the previous
graphs, we use the expression of θ∗i from Lemma 8, so obtaining β = q + q−1 and γ∗ = 0
by Lemma 1.
Equation (6) follows from Lemma 2 with γ∗ = 0.

1For the sake of completeness, we address the reader to [3, Sections 6.1, 8.4, 8.5, Chapter 9] for all basic
definitions and results regarding graphs with classical parameters. However, all these details, except
those explicitly mentioned, are not relevant in the context of this article.
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Remark 10. The proof of Proposition 9 also reveals that the parameter β from Lemma
1 takes on different values depending on the (dual bipartite) Q-polynomial structure we
consider for our graph Γ. Precisely,

(a) if Γ is H(D, 2)– type (IIC), 1
2
H(2D, 2), J(D, 2D), or the Gosset graph, then β = 2;

(b) if Γ is H(D, 2)– type (III), with D even, then β = −2;

(c) otherwise, β = q + q−1 6= ±2 (see Lemma 8).

From now on, we refer to the following notational convention.

Notation 11. Assume that our distance-regular graph Γ admits a dual bipartite Q-
polynomial structure with diameter D > 3. Let {Ei}Di=0 denote the corresponding Q-

polynomial ordering of the primitive idempotents of Γ, and let {θi}Di=0 denote the cor-
responding eigenvalues. Abbreviate E = E1, and consider our fixed vertex x ∈ X. For
0 6 i 6 D, let E∗

i = E∗
i (x) denote the ith dual idempotent of Γ with respect to x. Let

A∗ = A∗(x) denote the dual adjacency matrix of Γ that corresponds to E and x. Let
{θ∗i }

D
i=0 denote the dual eigenvalue sequence for the given Q-polynomial structure. Let

the scalars β, γ, γ∗, %, %∗ be as in Lemma 1. Let the matrices L∗ = L∗(x) and R∗ = R∗(x)
be defined as in (2).

5 A R∗/L∗ dependency relation

In this section, we display a certain linear dependency among R∗L∗2, L∗R∗L∗, L∗2R∗, L∗.

Proposition 12. With reference to Notation 11, for 1 6 i 6 D,

θi − θi−1 + (β + 1) (θi−2 − θi−1)

θi − θi−1

R∗L∗2 + (β + 2)L∗R∗L∗

+
θi − θi−1 + (β + 1) (θi − θi+1)

θi − θi−1

L∗2R∗ = %∗L∗
(7)

holds on EiV , where θ−1 and θD+1 are inderteminants.

Proof. Multiplying (6) by Ei−1 on the left and by Ei on the right, it follows from (1) that

(θi − θi−1)Ei−1A
∗3Ei + (β + 1)Ei−1

(
A∗AA∗2 − A∗2AA∗)Ei = %∗ (θi − θi−1)Ei−1A

∗Ei.

Using A∗ = R∗ + L∗ along with (1), (4) and EiEj = δijEi (1 6 i 6 D), we find

(θi − θi−1)
(
R∗L∗2 + L∗R∗L∗ + L∗2R∗)Ei + (β + 1)

(
(θi−2 − θi−1)R

∗L∗2 + (θi − θi−1)L
∗R∗L∗

+ (θi − θi+1)L
∗2R∗)Ei = %∗ (θi − θi−1)L

∗Ei.

Equation (7) is obtained once we factor out the above equation with respect to R∗L∗2,
L∗R∗L∗, L∗2R∗, L∗ and divide the result by θi − θi−1(6= 0). In the end, observe that (7)
still holds at the extremes (i = 1, D) as L∗2E1V = 0 and R∗EDV = 0 from Lemma 3.

We call Equation (7) the R∗/L∗ dependency structure which corresponds to the given
(dual bipartite) Q-polynomial structure of Γ.
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6 Dual uniform structures

In this section, with reference to Notation 11, we introduce the notion of a dual uniform
structure for Γ, which somehow dualizes that of a uniform structure for bipartite Q-
polynomial distance-regular graphs; see [12], [10], [8], and [7] for further details. We first
need to define what a parameter matrix is.

Definition 13. A parameter matrix U = (e∗ij)16i,j6D is a tridiagonal matrix with entries
in C satisfying the following conditions:

(i) e∗ii = 1 for 1 6 i 6 D;

(ii) e∗i i−1 6= 0 for 2 6 i 6 D or e∗i−1 i 6= 0 for 2 6 i 6 D;

(iii) the principal submatrix U(p, t) = (e∗ij)p6i, j6t is nonsingular for 1 6 p 6 t 6 D.

For convenience we write e∗−i := e∗i i−1 for 2 6 i 6 D and e∗+i := e∗i i+1 for 1 6 i 6 D − 1.
We also set e∗−1 := 0 and e∗+D := 0.

Definition 14. A dual uniform structure of Γ is a pair (U, f), where U is a parameter
matrix and f = {f ∗

i }Di=1 is a vector in CD, such that

e∗−i R∗L∗2 + L∗R∗L∗ + e∗+i L∗2R∗ = f ∗
i L

∗ (8)

is satisfied on EiV (1 6 i 6 D), where Ei are the idempotents of Γ. In addition, a dual
strongly uniform structure of Γ is a dual uniform structure (U, f) for which e∗−i 6= 0 for
2 6 i 6 D and e∗+i 6= 0 for 1 6 i 6 D − 1.

Consider our Q-polynomial structure from Notation 11. Our next goal is to determine
in which cases the corresponding R∗/L∗ dependency structure is dual uniform or dual
strongly uniform. According to Lemma 8, there are five distinct graphs to deal with.
We start from the case where Γ is different from H(D, 2), 1

2
H(2D, 2), J(D, 2D), and the

Gosset graph. Recall that in this case β = q + q−1 6= ±2 (see Remark 10).

7 Case β = q + q−1

In this section, assume that the graph Γ from Notation 11 is different from H(D, 2),
1
2
H(2D, 2), J(D, 2D), and the Gosset graph. We determine when the corresponding
R∗/L∗ dependency structure is dual uniform or dual strongly uniform.

Lemma 15. With reference to Notation 11, assume that Γ satisfies the conditions of
Lemma 8. Then the corresponding R∗/L∗ dependency structure is given by

− q2(1− q2i−3s)

(q + 1)(1− q2is)
R∗L∗2 + L∗R∗L∗ − 1− q2i+3s

q(q + 1)(1− q2is)
L∗2R∗ =

qD−1(1− q3s)2

(1− qD+2s)2
L∗ (9)

on EiV for 1 6 i 6 D. Here, the parameters q, s are as in Lemma 8.
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Proof. According to the notation of [1, Theorem 5.1], Γ is of type (I) with r2 = −r1, r3 =
q−1−D, s = r21, and s∗ = −q−1−D. In this case, we find the equations in Lemma 8 as well
as

θi = θ0 + hq−i(1− qi)(1− sqi+1) (0 6 i 6 D).

Then, combining this with Lemma 1, we can easily compute the corresponding R∗/L∗

dependency structure from Equation (7), i.e.,

−q(q + 1)(1− q2i−3s)

1− q2is
R∗L∗2 + (q + q−1 + 2)L∗R∗L∗

−(q + 1)(1− q2i+3s)

q2(1− q2is)
L∗2R∗ =

qD−2(q + 1)2(1− q3s)2

(1− qD+2s)2
L∗,

which holds on EiV for 1 6 i 6 D. The result is obtained once we divide the previous
equation by β + 2 = (q + q−1 + 2) 6= 0.

Proposition 16. With reference to Notation 11, asssume that Γ is not H(D, 2), 1
2
H(2D, 2),

J(D, 2D), or the Gosset graph. The corresponding R∗/L∗ dependency structure is dual
uniform if and only if Γ is not the ordinary 2D-gon. Furthermore, it is dual strongly
uniform if and only if Γ is bipartite or s /∈ {q−1, q−2D−1}.

Proof. We need to check whether the coefficients

e∗−i := − q2(1− q2i−3s)

(q + 1)(1− q2is)
(2 6 i 6 D), e∗+i := − 1− q2i+3s

q(q + 1)(1− q2is)
(1 6 i 6 D − 1)

of Equation (9) satisfy the conditions (ii), (iii) from Definition 13. Here, we set f ∗
i :=

qD−1(1−q3s)2

(1−qD+2s)2
(1 6 i 6 D). By Lemma 8, e∗−i 6= 0 for 3 6 i 6 D, and e∗+i 6= 0 for

1 6 i 6 D − 2. For 1 6 p 6 t 6 D, let Up,t = (e∗ij)p6i,j6t denote the principal submatrix
of U as in Definition 13. It is easy to see that if p = t then det(Up,t) = 1. Similarly, if
t = p+ 1, then

det(Up,t) = 1− e∗+p e∗−p+1 =
(q2 + q + 1)(1− q2p+1s)2

(q + 1)2(1− q2ps)(1− q2(p+1)s)
.

If t > p+ 2, expanding det(Up,t) by the first row and then by the first column, we obtain
that

det(Up,t) = det(Up+1,t)− e∗+p e∗−p+1 det(Up+2,t).

A simple induction argument shows that

det(Up,t) =

(qt−p+2 − 1)(1− qp+ts)

t−p−1∏
i=0

(1− q2p+2i+1s)2

(q − 1)(q + 1)t−p+1

2(t−p)∏
i=0

(1− q2p+is)

. (10)
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It follows from Lemma 8 that all factors in the numerator (and denominator) of (10) are
nonzero, implying that Up,t is nonsingular. Here, we have to distinguish some different
cases. If s = q−1 and q2D = 1, then e∗−2 = e∗+D−1 = 0, and the corresponding R∗/L∗

dependency structure is not dual uniform. This is exactly the case when Γ is the ordinary
2D-gon from Theorem 7(i).

If s ∈ {q−1, q−2D−1}, with q2D 6= 1, the conditions (ii), (iii) from Definition 13 are
both attained; so Γ has a dual uniform R∗/L∗ dependency structure, which is not dual
strongly uniform since e∗−2 = 0 or e∗+D−1 = 0. In this case, Γ cannot be bipartite (otherwise,
s = −q−D−1 [6, Lemma 3.1]), and it is of type (iii) or (iv) from Theorem 7, depending on
whether D = 3 or D = 4, respectively.

If s /∈ {q−1, q−2D−1}, the conditions (ii), (iii) from Definition 13 are satisfied with
e∗−i 6= 0 (2 6 i 6 D), e∗+i 6= 0 (1 6 i 6 D − 1), and hence Γ has a dual strongly uniform
R∗/L∗ dependency structure.

8 Case β = 2

In this section, we assume that our graph Γ from Notation 11 has classical parameters (see
[3, Sections 6.1, 8.4, 8.5, Chapter 9] for a detailed description). For such a graph, there is
a dual bipartite Q-polynomial structure with dual eigenvalues θ∗i = D− i (0 6 i 6 D) [3,
Corollary 8.4.2]2; and so, as computed in the proof of Proposition 9, we have β = 2. Our
analysis will be then split into four subsections, one for each of the possible cases among
H(D, 2), 1

2
H(2D, 2), J(D, 2D), and the Gosset graph; we will show that the corresponding

R∗/L∗ dependency structure is always dual strongly uniform, except for the case of the
halved cube, whose R∗/L∗ dependency structure is dual uniform but not dual strongly
uniform.

8.1 The cube H(D, 2)

With reference to [1, Theorem 5.1], let Γ be the cube H(D, 2) of type (IIC), where r = 2,
r1 = −D − 1, and s = s∗ = −2. Then

θi − θ0 = θ∗i − θ∗0 = −2i (0 6 i 6 D). (11)

Lemma 17. With reference to Notation 11, if Γ is the cube H(D, 2) [1, Theorem 5.1(IIC)],
then the corresponding R∗/L∗ dependency structure is given by

−1

2
R∗L∗2 + L∗R∗L∗ − 1

2
L∗2R∗ = L∗ (12)

on EiV for 1 6 i 6 D.

Proof. Using (11) together with Lemma 1, we can easily compute the correspondingR∗/L∗

dependency structure from Equation (7), i.e.,

−2R∗L∗2 + 4L∗R∗L∗ − 2L∗2R∗ = 4L∗

2The Q-sequence θ∗i = θ∗0 − s∗i (0 6 i 6 D) from [1, Theorem 5.1(IIC),(IIA)] is here normalized in such
a way that θ∗D−1 = 1, θ∗D = 0.
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holds on EiV for 1 6 i 6 D. The result is obtained once we divide the previous equation
by β + 2 = 4.

Proposition 18. With reference to Notation 11, asssume that Γ is the cube H(D, 2) [1,
Theorem 5.1(IIC)]. Then the corresponding R∗/L∗ dependency structure is dual strongly
uniform.

Proof. We need to check whether the coefficients

e∗−i := −1

2
(2 6 i 6 D), e∗+i := −1

2
(1 6 i 6 D − 1)

of Equation (12) satisfy the conditions (ii), (iii) from Definition 13. Here, we set f ∗
i :=

1 (1 6 i 6 D). It is obvious that e∗−i 6= 0 for 2 6 i 6 D, and e∗+i 6= 0 for 1 6 i 6 D − 1.
For 1 6 p 6 t 6 D, let Up,t = (e∗ij)p6i,j6t denote the principal submatrix of U as in
Defintion 13. A simple linear recurrence argument shows that

det(Up,t) =
t− p+ 2

2t−p+1
,

implying that Up,t is nonsingular. Since the conditions (ii),(iii) from Definition 13 are
satisfied with e∗−i 6= 0 (2 6 i 6 D), e∗+i 6= 0 (1 6 i 6 D − 1), Γ supports a dual strongly
uniform R∗/L∗ dependency structure.

Remark 19. It is known the cube H(D, 2) [1, Theorem 5.1(IIC),(III)] gives rise to a P -
and Q-polynomial association scheme such that P = Q, i.e., a self-dual scheme [1, p.
310]. Thus, the corresponding R/L and R∗/L∗ dependency structures have the same
coefficients; also, the first is uniform if and only if the second is dual uniform. In [10] it
was shown that the cube H(D, 2) of type (IIC) has a strongly uniform R/L dependency
structure. In light of the arguments above, this means that the corresponding R∗/L∗

dependency structure is dual strongly uniform, and so Proposition 18 is proved.

8.2 The halved cube 1
2
H(2D, 2)

With reference to [1, Theorem 5.1], let Γ be the halved cube 1
2
H(2D, 2), which is of type

(IIA) with r1 = −D − 1, r2 = −D − 1
2
, s = −2D − 1, and s∗ = −4. Then

θi = θ0 + hi(i− 2D), θ∗i = θ∗0 − 4i (0 6 i 6 D). (13)

Lemma 20. With reference to Notation 11, if Γ is the halved cube 1
2
H(2D, 2), then the

corresponding R∗/L∗ dependency structure is given by

− D − i+ 2

2D − 2i+ 1
R∗L∗2 + L∗R∗L∗ − D − i− 1

2D − 2i+ 1
L∗2R∗ = 4L∗ (14)

on EiV for 1 6 i 6 D.
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Proof. Using (13) together with Lemma 1, we can easily compute the correspondingR∗/L∗

dependency structure from Equation (7), i.e.,

−4D − 4i+ 8

2D − 2i+ 1
R∗L∗2 + 4L∗R∗L∗ − 4D − 4i− 4

2D − 2i+ 1
L∗2R∗ = 16L∗

holds on EiV for 1 6 i 6 D. The result is obtained once we divide the previous equation
by β + 2 = 4.

Proposition 21. With reference to Notation 11, assume that Γ is the halved cube
1
2
H(2D, 2). Then the corresponding R∗/L∗ dependency structure is dual uniform, but

not dual strongly uniform.

Proof. We need to check whether the coefficients

e∗−i := − D − i+ 2

2D − 2i+ 1
(2 6 i 6 D), e∗+i := − D − i− 1

2D − 2i+ 1
(1 6 i 6 D − 1)

of Equation (14) satisfy the conditions (ii), (iii) from Definition 13. Here, we set f ∗
i :=

4 (1 6 i 6 D). It is easy to see that e∗−i 6= 0 for 2 6 i 6 D, and e∗+i 6= 0 for
1 6 i 6 D − 2. For 1 6 p 6 t 6 D, let Up,t = (e∗ij)p6i,j6t denote the principal submatrix
of U as in Defintion 13. Note that if p = t then det(Up,t) = 1. Similarly, if t = p+ 1, then

det(Up,t) = 1− e∗+p e∗−p+1 =
3(D − p)2

(2D − 2p− 1)(2D − 2p+ 1)
.

If t > p+ 2, expanding det(Up,t) by the first row and then by the first column, we obtain
that

det(Up,t) = det(Up+1,t)− e∗+p e∗−p+1 det(Up+2,t).

A simple induction argument shows that

det(Up,t) =

2t−p−1(2D − t+ 1)(t− p+ 2)

t−p−1∏
i=0

(D − t+ i+ 1)2

2(t−p)∏
i=0

(2D − 2t+ i+ 1)

. (15)

Observe that all factors in the numerator (and denominator) of (15) are nonzero, imply-
ing that Up,t is nonsingular. Since both the conditions (ii) and (iii) from Definition 13
are satisfied, Γ supports a dual uniform R∗/L∗ dependency structure, which is not dual
strongly uniform as e∗+D−1 = 0.

8.3 The Johnson graph J(D, 2D)

With reference to [1, Theorem 5.1], let Γ be the Johnson graph J(D, 2D), which is of type
(IIA) with r1 = −D − 1, r2 = −D + 1, s = −2(D + 1), and s∗ = − 2

D
(2D − 1). Then

θi = θ0 + hi(i− 2D − 1), θ∗i = θ∗0 −
2i(2D − 1)

D
(0 6 i 6 D). (16)
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Lemma 22. With reference to Notation 11, if Γ is the Johnson graph J(D, 2D), then the
corresponding R∗/L∗ dependency structure is given by

− 2D − 2i+ 5

4(D − i+ 1)
R∗L∗2 + L∗R∗L∗ − 2D − 2i− 1

4(D − i+ 1)
L∗2R∗ =

(2D − 1)2

D2
L∗ (17)

on EiV for 1 6 i 6 D.

Proof. Using (16) together with Lemma 1, we can easily compute the correspondingR∗/L∗

dependency structure from Equation (7), i.e.,

−2D − 2i+ 5

D − i+ 1
R∗L∗2 + 4L∗R∗L∗ − 2D − 2i− 1

D − i+ 1
L∗2R∗ =

4(2D − 1)2

D2
L∗

holds on EiV for 1 6 i 6 D. The result is obtained once we divide the previous equation
by β + 2 = 4.

Proposition 23. With reference to Notation 11, asssume that Γ is the Johnson graph
J(D, 2D). Then the corresponding R∗/L∗ dependency structure is dual strongly uniform.

Proof. We need to check whether the coefficients

e∗−i := − 2D − 2i+ 5

4(D − i+ 1)
(2 6 i 6 D), e∗+i := − 2D − 2i− 1

4(D − i+ 1)
(1 6 i 6 D − 1)

of Equation (17) satisfy the conditions (ii), (iii) from Definition 13. Here, we set f ∗
i :=

(2D−1)2

D2 (1 6 i 6 D). It is easy to see that e∗−i 6= 0 for 2 6 i 6 D, and e∗+i 6= 0 for
1 6 i 6 D − 1. For 1 6 p 6 t 6 D, let Up,t = (e∗ij)p6i,j6t denote the principal submatrix
of U as in Defintion 13. Note that if p = t then det(Up,t) = 1. Similarly, if t = p+ 1, then

det(Up,t) = 1− e∗+p e∗−p+1 =
3(2D − 2p+ 1)2

16(D − p)(D − p+ 1)
.

If t > p+ 2, expanding det(Up,t) by the first row and then by the first column, we obtain
that

det(Up,t) = det(Up+1,t)− e∗+p e∗−p+1 det(Up+2,t).

A simple induction argument shows that

det(Up,t) =

(2D − t− p+ 2)(t− p+ 2)

2(t−p)∏
i=0

(2D − 2t+ i+ 2)

23(t−p+1)

t−p∏
i=0

(D − t+ i+ 1)2

. (18)

Observe that all factors in the numerator (and denominator) of (18) are nonzero, implying
that Up,t is nonsingular. Since both the conditions (ii) and (iii) from Definition 13 are
satisfied with e∗−i 6= 0 (2 6 i 6 D), e∗+i 6= 0 (1 6 i 6 D − 1), Γ supports a dual strongly
uniform R∗/L∗ dependency structure.
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8.4 The Gosset graph

With reference to [1, Theorem 5.1], let Γ be the Gosset graph, which is of type (IIA) with
r1 = −4, r2 = −13

4
, s = −13

2
, and s∗ = −14

3
. Then

θi = (9− 4i)(3− i)− i, θ∗i = 7− 14

3
i (0 6 i 6 3). (19)

Lemma 24. With reference to Notation 11, if Γ is the Gosset graph, then the correspond-
ing R∗/L∗ dependency structure is given by

− 4i− 19

2(4i− 13)
R∗L∗2 + L∗R∗L∗ − 4i− 7

2(4i− 13)
L∗2R∗ =

49

9
L∗ (20)

on EiV for 1 6 i 6 D.

Proof. Using (19) together with Lemma 1, we can easily compute the correspondingR∗/L∗

dependency structure from Equation (7), i.e.,

−8i− 38

4i− 13
R∗L∗2 + 4L∗R∗L∗ − 8i− 14

4i− 13
L∗2R∗ =

196

9
L∗

holds on EiV for 1 6 i 6 D. The result is obtained once we divide the previous equation
by β + 2 = 4.

Proposition 25. With reference to Notation 11, assume that Γ is the Gosset graph. Then
the corresponding R∗/L∗ dependency structure is dual strongly uniform.

Proof. We need to check whether the coefficients

e∗−i := − 4i− 19

2(4i− 13)
(i = 2, 3), e∗+i := − 4i− 7

2(4i− 13)
(i = 1, 2)

of Equation (20) satisfy the conditions (ii), (iii) from Definition 13. Here, we set f ∗
i :=

49
9

(1 6 i 6 3). It is clear that e∗−i 6= 0 for i = 2, 3, and e∗+i 6= 0 for i = 1, 2. For
1 6 p 6 t 6 3, let Up,t = (e∗ij)p6i,j6t denote the principal submatrix of U as in Defintion
13. Note that det(Up,p) = 1, and

det(U1,2) =
49

60
, det(U2,3) =

27

20
, det(U) = det(U1,3) =

7

6
, (21)

which are all nonzero. Since both the conditions (ii) and (iii) from Definition 13 are
satisfied with e∗−i 6= 0 (i = 2, 3), e∗+i 6= 0 (i = 1, 2), Γ supports a dual strongly uniform
R∗/L∗ dependency structure.
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9 Case β = −2

As mentioned in the proof of Proposition 9, the cube H(D, 2) admits a further (dual
bipartite) Q-polynomial structure with respect to the original one, which yields the re-
strictions r1 = −D− 1, r2 = −D+1

2
, r3 = −r2, and s = s∗ = D+ 1 [1, p. 305 – type (III)].

Then
θi = θ∗i = (−1)i(D − 2i) (0 6 i 6 D), (22)

and hence Lemma 1 gives β = −2. We will show that in this case the corresponding
R∗/L∗ dependency structure is not dual uniform.

Lemma 26. With reference to Notation 11, if Γ is the cube H(D, 2) [1, Theorem 5.1(III)],
then the corresponding R∗/L∗ dependency structure is given by

− 2

D − 2i+ 1
R∗L∗2 +

2

D − 2i+ 1
L∗2R∗ = 4L∗ (23)

on EiV for 1 6 i 6 D.

Proof. Using (22) together with Lemma 1, we can easily compute the correspondingR∗/L∗

dependency structure from Equation (7), so obtaining (23).

Proposition 27. With reference to Notation 11, assume that Γ is the cube H(D, 2)
[1, Theorem 5.1(III)]. Then the corresponding R∗/L∗ dependency structure is not dual
uniform.

Proof. Equation (23) does not match the form of (8).

Remark 28. In [10] it was shown that the cube H(D, 2) of type (III) has a R/L dependency
structure which is not uniform. In light of the same arguments as in Remark 19, this
means that the corresponding R∗/L∗ dependency structure is not dual uniform, and so
Proposition 27 is proved.

10 The main result

In this section, we simply collect together all the results obtained in the previous sections,
thus providing our main theorem.

Theorem 29. Let Γ be a distance-regular graph with vertex set X and diameter D > 3.
Assume Γ has a dual bipartite Q-polynomial structure. Fix x ∈ X, and let L∗ = L∗(x),
R∗ = R∗(x) respectively denote the corresponding dual lowering matrix and dual raising
matrix as in (2). Then the corresponding R∗/L∗ dependency structure is dual strongly
uniform with the following exceptions:

(i) Γ is the ordinary 2D-gon:

(ii) Γ is the cube H(D, 2), D even, type [1, Theorem 5.1(III)];
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(iii) Γ is the halved cube 1
2
H(2D, 2);

(iv) Γ is as in Lemma 8 with s ∈ {q−1, q−2D−1}, q2D 6= 1.

Precisely, in Cases (i) and (ii), the corresponding R∗/L∗ dependency structure is not
dual uniform; in Cases (iii) and (iv), this structure is dual uniform but not dual strongly
uniform.

Proof. Immediate from Propositions 16, 18, 21, 23, 25, and 27.
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